

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Jacobo Torán & Florian Wörz

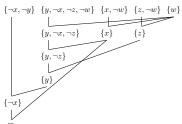
Universität Ulm

STACS 2020, Montpellier Session B3 – March 11, 2020

Just to Check We Are on the Same Page...

 The proof system resolution has only one derivation rule:

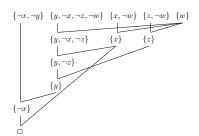
- Length of $\pi=\#$ of clauses in π
- Clause Space of $\pi = \max \#$ of clauses in memory simultaneously during π
- $\mu(F \vdash \Box) := \min_{\pi: F \vdash \Box} \mu(\pi).$
- Prefix "Tree-" before a complexity measure indicates tree-like resolution



Just to Check We Are on the Same Page...

 The proof system resolution has only one derivation rule:

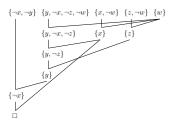
$$\frac{B \vee x \quad C \vee \overline{x}}{B \vee C}$$

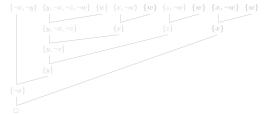


- Complexity measures:
 - Length of $\pi=\#$ of clauses in π
 - Clause Space of $\pi = \max \#$ of clauses in memory simultaneously during π
 - $\mu(F \vdash \Box) := \min_{\pi: F \vdash \Box} \mu(\pi).$
 - Prefix "Tree-" before a complexity measure indicates tree-like resolution.

Tree-like vs. General Resolution Refutations

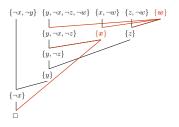
If a clause is needed more than once in a refutation, it has to be rederived each time.

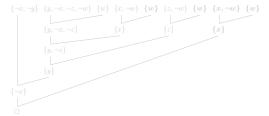




Tree-like vs. General Resolution Refutations

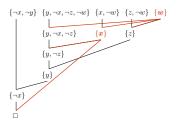
If a clause is needed more than once in a refutation, it has to be rederived each time.

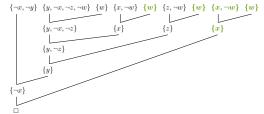




Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time. (\rightarrow refutation DAG G_{π} becomes a tree)





Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatisfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatisfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w. r. t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatisfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w. r. t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatisfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

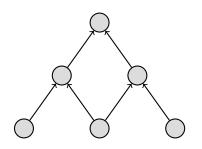
Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Part I

Separations for Pebbling Formulas

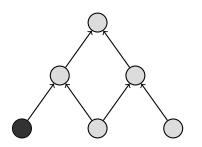
Pebble Games (games played on graphs)

Goal: Get a single black pebble on the sink of the graph.



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

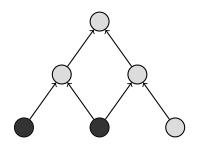
Goal: Get a single black pebble on the sink of the graph.



 $\max \# \text{ of pebbles}$ used at any point:

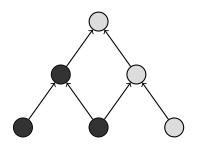
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



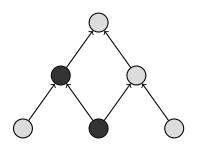
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



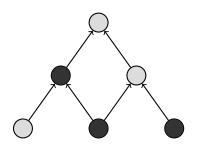
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



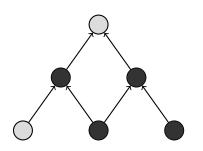
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



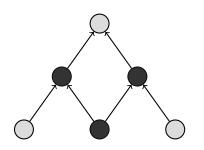
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



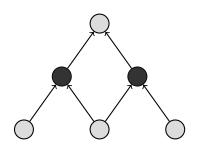
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



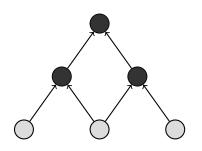
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



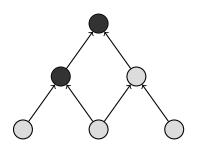
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



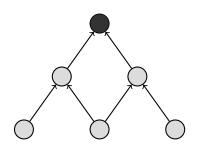
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

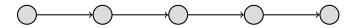
Goal: Get a single black pebble on the sink of the graph.



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Same Goal: Get a single black pebble on the sink of the graph.

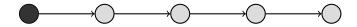
Same measure: $\max \#$ of pebbles used at any point:



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph.

Same measure: $\max \#$ of pebbles used at any point: I



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph.

Same measure: $\max \#$ of pebbles used at any point: II

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph.

Same measure: $\max \#$ of pebbles used at any point: III

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph.

Same measure: $\max \#$ of pebbles used at any point: III

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

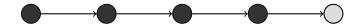
Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



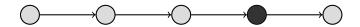
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



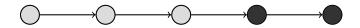
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

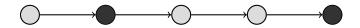
Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

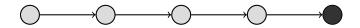
- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Complexity Measures for the Pebble Games

$$\mathsf{Black}(G) := \min_{\mathsf{black} \text{ pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev.\ pebblings}\ \mathcal{P}} \left(\underbrace{\max\ \#\ \mathsf{of\ pebbles\ used\ at\ any\ point\ in\ } \mathcal{P}}_{=:\mathsf{space}(\mathcal{P})} \right)$$

 $\mathsf{time}(\mathcal{P}) := \ \# \ \mathsf{of} \ \mathsf{moves} \ \mathsf{in} \ \mathcal{P}$

Why even care about these pebbling prices?

→ Plethora connections to resolution! [Nordström '15: New Wine . . .]

$$\mathrm{CS}(F dash \square) = \min_{\pi: F dash \square} \mathsf{Black}(G_\pi)$$
 [Esteban, Torán '01: Space bdds. for res.]

Complexity Measures for the Pebble Games

$$\mathsf{Black}(G) := \min_{\mathsf{black} \ \mathsf{pebblings} \ \mathcal{P}} \bigg(\max \ \# \ \mathsf{of} \ \mathsf{pebbles} \ \mathsf{used} \ \mathsf{at} \ \mathsf{any} \ \mathsf{point} \ \mathsf{in} \ \mathcal{P} \bigg)$$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev.\ pebblings}\ \mathcal{P}} \left(\underbrace{\max\ \#\ \mathsf{of\ pebbles\ used\ at\ any\ point\ in\ }\mathcal{P}}_{=:\mathsf{space}(\mathcal{P})} \right)$$

 $\mathsf{time}(\mathcal{P}) := \ \# \ \mathsf{of} \ \mathsf{moves} \ \mathsf{in} \ \mathcal{P}$

Why even care about these pebbling prices?

→ Plethora connections to resolution! [Nordström '15: New Wine ...]

$$\operatorname{CS}(F dash \Box) = \min_{\pi: F dash \Box} \operatorname{\mathsf{Black}}(G_\pi)$$
 [Esteban, Torán '01: Space bdds. for res.]

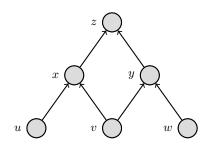
Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

Clauses of Peb_G :

 $\frac{u}{v}$

w

$$\begin{array}{l} (u \wedge v) \to x = \overline{u} \vee \overline{v} \vee x \\ (v \wedge w) \to y = \overline{v} \vee \overline{w} \vee y \\ (x \wedge y) \to z = \overline{x} \vee \overline{y} \vee z \\ \overline{z} \end{array}$$



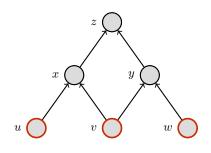
- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Clauses of Peb_G :

 $\frac{u}{v}$

w

 $(u \wedge v) \to x = \overline{u} \vee \overline{v} \vee x$ $(v \wedge w) \to y = \overline{v} \vee \overline{w} \vee y$ $(x \wedge y) \to z = \overline{x} \vee \overline{y} \vee z$ \overline{z}



- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Clauses of Peb_G :

u v

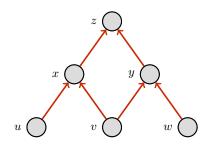
w

$$(u \wedge v) \to x = \overline{u} \vee \overline{v} \vee x$$

$$(v \wedge w) \to y = \overline{v} \vee \overline{w} \vee y$$

$$(x \wedge y) \to z = \overline{x} \vee \overline{y} \vee z$$

$$\overline{z}$$



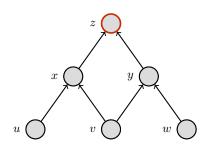
- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Clauses of Peb_G :

 $\frac{u}{v}$

w

 $(u \wedge v) \to x = \overline{u} \vee \overline{v} \vee x$ $(v \wedge w) \to y = \overline{v} \vee \overline{w} \vee y$ $(x \wedge y) \to z = \overline{x} \vee \overline{y} \vee z$



- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Reversible Pebbling meets Tree-CS

Theorem 1

For all DAGs G with a unique sink:

$$\operatorname{Rev}(G) + 2 \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_G[\oplus_2] \vdash \Box\right) \leq 2 \cdot \operatorname{Rev}(G) + 2.$$

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96 Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

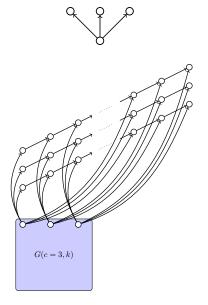
Idea:

- $CS(Peb_G[\oplus_2] \vdash \Box) = O(Black(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- Construct a graph family with a gap between its black and reversible pebbling price

- Black $(P_n) = O(1) \ \forall n \in \mathbb{N} \quad \exists \text{ Results for non-const. space?}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Obtaining Space-Separations with Pebble games (2/3)

Non-constant black pebbling number and Black-Rev-separation:



Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $\left(\operatorname{Peb}_{G_n}[\oplus_2]\right)_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $CS(Peb_{G_n}[\oplus_2] \vdash \Box) = O(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $\left(\operatorname{Peb}_{G_n}[\oplus_2]\right)_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $CS(Peb_{G_n}[\oplus_2] \vdash \Box) = O(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Part II

Upper Bounds for Tree-CS for General Formulas

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS
$$(F \vdash \Box) \le \min_{\pi: F \vdash \Box} \text{Rev}(G_{\pi}) + 2.$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$$
 [ET01] \sim Similarity to Thm!

We will now prove the inequality of the Theorem..

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS
$$(F \vdash \Box) \le \min_{\pi: F \vdash \Box} \text{Rev}(G_{\pi}) + 2.$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi: F \vdash \Box} Black(G_{\pi})$$
 [ET01] \sim Similarity to Thm!

We will now prove the inequality of the Theorem.

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS
$$(F \vdash \Box) \le \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2.$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi: F \vdash \Box} Black(G_{\pi})$$
 [ET01] \sim Similarity to Thm!

We will now prove the inequality of the Theorem..

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS
$$(F \vdash \Box) \le \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2.$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi: F \vdash \Box} Black(G_{\pi})$$
 [ET01] \sim Similarity to Thm!

We will now prove the inequality of the Theorem...

A combinatorial characterization of Tree-CS (by a game played on formulas)

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over...

Score of Delayer = # of *'s

Prover

Delayer

- Wants to fallisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - -x=0
 - -x=1 or
 - -x=* ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over...

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - -x=0
 - -x=1 or
 - -x = * ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over...

Score of Delayer = # of *'s

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - -x=0,
 - -x=1 or
 - -x=* ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over...

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - x = 0.
 - x = 1 or
 - -x=* ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over...

Score of Delayer = # of *'s

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - x = 0.
 - x = 1 or
 - -x=* ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until this unfair game is over... Score of Delayer = # of *'s

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F

- Answers
 - x = 0.
 - x = 1 or
 - -x=* ("you choose")

A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.

 $\mathsf{PD}(F) := \max \mathsf{pts.}$ of Delayer on F against optimal strategy of Prover.

$\mathsf{Theorem}\;ig(\mathsf{[Esteban,\; Torán\; '03:\; A\; combinatorial\; char.\; of\; treelike\; res.\; space]}$

Let F be an unsatisfiable CNF formula. Then

$$Tree-CS(F \vdash \Box) = PD(F) + 2$$

A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.

 $PD(F) := \max pts.$ of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán '03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS
$$(F \vdash \Box) = PD(F) + 2$$
.

The equivalence of Rev and R-Mc

Given: A single sink DAG ${\cal G}$

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	
	• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Reversible pebbling is hard to analyse

Raz-McKenzie Game to the help

Given: A single sink DAG G

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=} 0$
 Chooses empty vertex 	
	• Colours it $red = 0$ or $blue = 1$

Reversible pebbling is hard to analyse

Raz-McKenzie Game to the help

Given: A single sink DAG G

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	
	• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Given: A single sink DAG G

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=} 0$
 Chooses empty vertex 	
	• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

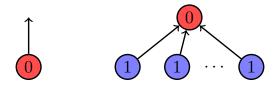
Given: A single sink DAG G

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=}0$
 Chooses empty vertex 	
	• Colours it $\operatorname{red} \widehat{=} 0$ or $\operatorname{blue} \widehat{=} 1$

Given: A single sink DAG G

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=}0$
 Chooses empty vertex 	
	• Colours it $\operatorname{red} \widehat{=} 0$ or $\operatorname{blue} \widehat{=} 1$

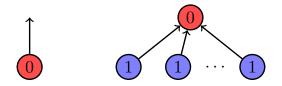
Two players take rounds... until Game Over..., i. e., when we have:



Either a red source or red vertex with all predecessors blue.

 $\mathsf{R} ext{-}\mathsf{Mc}(G) := \mathsf{smallest}\ r\ \mathsf{s.th.}\ \mathsf{Pebbler}\ \mathsf{wins}\ \mathsf{in} \le r\ \mathsf{rounds}$ against an optimal strategy of Colourer

Two players take rounds... until Game Over..., i. e., when we have:



Either a red source or red vertex with all predecessors blue.

 $\mathsf{R} ext{-}\mathsf{Mc}(G) := \mathsf{smallest}\ r\ \mathsf{s.th.}\ \mathsf{Pebbler}\ \mathsf{wins}\ \mathsf{in} \le r\ \mathsf{rounds}$ against an optimal strategy of Colourer

$$Rev(G) = R-Mc(G)$$

Theorem ([Chan '13: Just a pebble game])

For any single-sink DAG G:

$$Rev(G) = R-Mc(G).$$

The Actual Proof

An upper bound for Tree-CS Proof sketch of Tree-CS $(F \vdash \Box) \leq \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow {\sf Prover\ queries\ vars.}$ in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α
 - \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
- 2. a variable is given * by Delayer
 - \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow {\sf Prover\ queries\ vars.}$ in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α
 - \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
- 2. a variable is given * by Delayer
 - \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
- 2. a variable is given * by Delayer \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
- 2. a variable is given * by Delayer \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow {\sf Prover}$ queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α
 - \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
- 2. a variable is given * by Delayer
 - \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow {\sf Prover}$ queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α
 - ightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C\!\!\upharpoonright_{\!\!\alpha}$
- 2. a variable is given * by Delayer
 - \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

Given: a res. refutation π of F with a ref.-graph G_{π} and $Rev(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C\longrightarrow {\sf Prover}$ queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

- 1. the clause C is sat./fals. by α
 - o Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C\!\!\upharpoonright_{\!\!\alpha}$
- 2. a variable is given * by Delayer
 - \rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
 - \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
 - \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_\pi) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

- 1. either a source vertex in G_π is assigned colour 0 by Colourer,
 - ightarrow since lpha defines Colourer's answer: lpha fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
 - \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
 - \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Proof sketch of Tree-CS $(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
 - \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
 - \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

An upper bound for Tree-CS in terms of CS*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$CS^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} (CS(\pi) \cdot \log L(\pi))$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2$.

Proof

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_\pi) + 2 \leq \operatorname{min}_{\mathcal{P}} \left(\operatorname{space}(\mathcal{P}) \cdot \operatorname{log} \operatorname{time}(\mathcal{P})\right) + 2, \text{ where the minimum is taken over all black pebblings } \mathcal{P} \text{ of } G_\pi.$
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

An upper bound for Tree-CS in terms of CS*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$CS^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} (CS(\pi) \cdot \log L(\pi))$$

Corollary

Tree-CS $(F \vdash \Box) \le CS^*(F \vdash \Box) + 2$.

Proof

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_\pi) + 2 \leq \operatorname{min}_{\mathcal{P}} \left(\operatorname{space}(\mathcal{P}) \cdot \operatorname{log} \operatorname{time}(\mathcal{P})\right) + 2, \text{ where the minimum is taken over all black pebblings } \mathcal{P} \text{ of } G_\pi.$
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

An upper bound for Tree-CS in terms of CS*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$CS^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} (CS(\pi) \cdot \log L(\pi))$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2$.

Proof.

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_\pi) + 2 \leq \operatorname{min}_{\mathcal{P}} \left(\operatorname{space}(\mathcal{P}) \cdot \operatorname{log} \operatorname{time}(\mathcal{P})\right) + 2, \text{ where the minimum is taken over all black pebblings } \mathcal{P} \text{ of } G_\pi.$
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

Part III

The Tseitin Formula Case

Better Bounds for Tseitin Formulas

Tseitin Formulas: "Sum of degrees of vertices in a graph is even"

A quick recap: We have just seen

$$\operatorname{Tree-CS}(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \Big(\operatorname{CS}(\pi) \cdot \boxed{\log \operatorname{L}(\pi)} \Big).$$

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

• For any connected graph G with n vertices and odd marking χ :

Tree-CS
$$(\operatorname{Ts}(G,\chi) \vdash \Box) \lesssim \operatorname{CS}(\operatorname{Ts}(G,\chi) \vdash \Box) \cdot \log n$$
.

• \exists a family of Tseitin formulas $(\operatorname{Ts}(G_n,\chi_n))_{n=1}^{\infty}$ s.th. $\forall n\in\mathbb{N}$:

Tree-CS
$$\left(\operatorname{Ts}(G_n, \chi_n) \vdash \Box\right) = \Omega\left(\operatorname{CS}\left(\operatorname{Ts}(G_n, \chi_n) \vdash \Box\right) \cdot \log n\right).$$

Better Bounds for Tseitin Formulas

Tseitin Formulas: "Sum of degrees of vertices in a graph is even"

A quick recap: We have just seen

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \Big(CS(\pi) \cdot \underline{\log L(\pi)} \Big).$$

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

• For any connected graph G with n vertices and odd marking χ :

Tree-CS
$$(\operatorname{Ts}(G,\chi) \vdash \Box) \lesssim \operatorname{CS}(\operatorname{Ts}(G,\chi) \vdash \Box) \cdot \underline{\log n}$$
.

• \exists a family of Tseitin formulas $(\operatorname{Ts}(G_n,\chi_n))_{n=1}^{\infty}$ s. th. $\forall n \in \mathbb{N}$:

Tree-CS
$$(\operatorname{Ts}(G_n, \chi_n) \vdash \Box) = \Omega(\operatorname{CS}(\operatorname{Ts}(G_n, \chi_n) \vdash \Box) \cdot \log n).$$

Open Questions

Is it possible to improve

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \Big(CS(\pi) \cdot \log L(\pi) \Big).$$

to

Tree-CS
$$(F \vdash \Box) \lesssim \text{CS}(F \vdash \Box) \cdot \log n$$
,

where n = # vertices / formula size?

Related Question in the World of Pebbling

Can [Královič]'s bound

$$\mathsf{Rev}(G) \leq \min_{\mathcal{P}} \left(\mathsf{space}(\mathcal{P}) \cdot \log \mathsf{time}(\mathcal{P}) \right)$$

be improved to

$$\operatorname{Rev}(G) \leq \min_{\mathcal{P}} \left(\operatorname{space}(\mathcal{P}) \cdot \log |V(G)| \right)$$
 ?

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- \bullet Separations between $\operatorname{Tree-CS}$ and CS by graphs G exhibiting separation between $\operatorname{Rev}(G)$ and $\operatorname{Black}(G)$
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi})$
- Tree-CS $(F \vdash \Box) \lesssim \text{CS}^*(F \vdash \Box)$ for general F

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi : F \vdash \Box} \mathsf{Rev}(G_{\pi})$ (*)
- Tree-CS $(F \vdash \Box) \lesssim \text{CS}^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi})$ (*)
- Tree-CS $(F \vdash \Box) \lesssim \text{CS}^*(F \vdash \Box)$ for general F (*)
- (*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!