
Enabling HPRC reference in GED-MAP through bidirected
sequence graph to EDS graph transformation

Thomas Büchler
Institute of Theoretical Computer Science, Ulm University, Germany

August 11, 2023

Abstract
The reference genome plays a key role in genome analyses. In the process of read mapping DNA reads are
aligned against the given reference. While the most basic form of reference comprises a single linear sequence,
this linear representation cannot include common genomic variations. In response to this limitation, over the
past decades a linear reference was combined with a list of variation into a simple structured graph. Several
methods were developed to align reads against such graphs [1, 3, 4, 6]. Recently a new (more complex) reference
graph was assembled and proposed to be used as the new reference standard [5]. This report describes how this
graph can be transformed so it can be used in the mapping software GED-MAP [1].

Availability: github.com/thomas-buechler-ulm/gedmap
Contact: thomas.buechler@uni-ulm.de

1 Introduction
The mapping software GED-MAP is capable of aligning reads to a reference graph with a relatively low con-
sumption of space and memory [1]. A central innovation of this tool is integrating small genomic variation in the
sequences of the node labels rather than adding separate nodes for every variant. In its first published version
the demanded input for the graph construction was a reference sequence in FASTA format and a enumeration
of variations in Variant Call Format (VCF).

This year, a significant development has occurred with the introduction of new reference graphs by the
Human Pangenome Reference Consortium [5]. These graphs were build from haplotype assemblies from 47
genetically diverse individuals and are available in Graphical Fragment Assembly (GFA) format. Using this
new graph as reference for read mapping is highly interesting. Nevertheless, an inherent obstacle is encountered;
the reference graph, as it stands, lacks compatibility with the GED-MAP software. This incompatibility is based
on the divergent nature of the underlying graph model. As a response to this challenge, this technical report
elaborates a transformation process that enable the usage of the HPRC graph in GED-MAP.

2 Basic Definitions
This section provides the definitions used in this report. The first is the sequence graph, which is a simple way
to represent a set of sequences in a graph.

Definition 1 (Sequence Graph) A directed node labeled graph, with a set of nodes V , a set of edges E ⊆ V 2

and a labeling function l : V 7→ {A,C,G, T,N}∗, that maps each node to a sequence called label.

Definition 2 (Walk) Given a labeled graph G = (V,E). We call a sequence W = (x1, . . . , xn) of nodes a
walk in G, if: (xi, xi+1) ∈ E for 1 ≤ i < n. We call n the length of the walk W . The label of a walk
l(W) = l(x1) . . . l(xn) is the concatenation of the labels of the nodes in the sequence. The size of W equals the
size of its label, ||W || = |l(W)|.

A sequence graph represents all sequences that are labels of walks in the graph. (Respectively, all sequences
that belong to a walk from a source to a sink in the graph.) A more general concept is the bidirected sequence
graph, in which the nodes can be traversed from different direction to describe the two strands of the DNA.
Note: The HPRC graph is a bidirected sequence graph.

1

Definition 3 (Bidirected Sequence Graph) A modified sequence graph, in which nodes have two orien-
tation {+,−}. Every edge also indicates in which orientation the nodes are approached. Therefore, E ⊆
(V × {+,−})2. If a node is approached in ‘+’-orientation its label will be read in forward direction. If a node
is approached in ‘−’-orientation the reverse complement of the label will be read.

Bidirected sequence graphs allow an smoother representation of inversion. The graph used in GED-MAP is
an EDS graph. To define them we first shortly define the elastic degenerate string (EDS).

Definition 4 (EDS) Originally, a sequence of sets of strings [2]. A string matches an ED string, if it can be
partitioned to a sequence (of the same length as the EDS) of strings in a way that each string appears in the
corresponding set. In [1] it is defined, analogously to regular expressions that only allows ‘grouping’ and ‘or’.
E.g. AT (G|C)TTA is an EDS. (In set notation: {AT}{G,C}{TTA}.)

Definition 5 (EDS Graph) A sequence graph, in which the labels are ED strings.

The EDS graph can represent small variation (often called bubbles) in the ED strings, which means it may
need fewer nodes than a sequence graph while preserving the overall structure. Roughly spoken, a bubble is
a enclosed subgraph that represents small variants (i.e. single nucleotide polymorphisms, etc.). We formally
define the term ‘bubble’ in the following definitions.

Definition 6 (Walk from u to v) We call Walk W = (x1, . . . , xn) in the Graph G = (V,E) a walk from u to
v if, (u, x1) ∈ E and (xn, v) ∈ E. If (u, v) ∈ E, then the empty sequence ϵ is a walk from u to v.

Definition 7 (Bubble between u and v) We say, there is a bubble of width t between u and v if:

• Any walk from u to a sink includes v.

• Any walk from a source to v includes u.

• The largest walk from u to v has a maximum size of t.

We denote a bubble B = {W1, . . .Wk} by the set of walks between u and v. The parameter t ensures the locality
of the variations the bubble represents.

Definition 8 (Classification of bubbles)

• Concatenation: B = {ϵ}, in this case u has only one successor v and v has only one predecessor u.

• SNP: For all W ∈ B : ||W || = 1.

• Indel of node x: B = {ϵ, (x)}.

3 Transforming the HPRC graph
To use the HPRC graph as reference in GED-MAP, one has to transform the bidirected graph to an EDS graph.
This can be done by firstly transforming the graph to a sequence graph and then repeatedly detecting bubbles
in the graph and replace them by nodes with EDS labels. The following process describes this procedure in
more detail.

3.1 Transforming a bidirected graph to a directed graph
To transform the bidirected sequence graph to an ‘equivalent’ sequence graph we have to get rid of the orientation
of the edges while maintaining the represented sequences. For this reason, we will need to add new nodes in
some cases. For each node v of a given bidirected sequence graph, one the following four cases applies:

(A) there is no edge connected to v,

(B) all edges connected to v approach v in ‘+’-orientation,

(C) all edges connected to v approach v in ‘−’-orientation or

(D) some edges approach v in ‘+’-orientation and some edges approach v in ‘−’-orientation.

For nodes of case (A) or (B) we do not change anything. If case (C) applies to a node v, we replace its label
be the reverse complement and change the orientation of all edges connected to v to ‘+’. If case (D) applies to a
node v, we add a new node v∗ to V , with l(v∗) equals the reverse complement of l(v). All edges that connect to
the ‘−’-orientation of v will be replaced by edges that connect to the ‘+’-orientation of v∗. After these changes
all orientations on edges will be ‘+’, and therefore can be omitted.

2

3.2 Representing bubbles as ED strings
To make use of the regex-like notation of the EDS graph, we will have to identify bubbles in the sequence graph
and replace them with ED strings. This section explains this process in more detail.

3.2.1 Finding bubbles in a sequence graph

The method of detecting bubbles is split into several algorithms. The first (Algorithm 1) checks if there is a
bubble between two nodes u and v. This is done be a depth first search starting at u, that keeps track of
the walk size s. If we see v, we do not further expand this path. If an observed walk size is greater than the
threshold t, or a sink is detected there is no bubble between u and v. Hence, the algorithm outputs false.

Algorithm 1 Bubble between u and v

Input: u ̸= v ∈ V , Maximum size t.
Output: true, if there is a bubble of size ≤ t between u and v.
1: function BubbleBetween(u, v, t)
2: S ← empty stack
3: push (u, 0) to S ▷ S contains the end and size of all observed walks
4: while S not empty do
5: (e, s)← Q.pop()
6: if e ̸= v then
7: if e is a sink ∨ s > t then
8: return false
9: end if

10: for all (e, x) ∈ E do
11: push (x, s+ |l(x)|) to Q ▷ extend the current path with x
12: end for
13: end if
14: end while
15: return true
16: end function

The second algorithm (Algorithm 2) determines, if there is a bubble starting at u. Therefore, the algorithm,
starts a random walk at u. For each node v of the walk, the first algorithm is called to check, if there is a bubble
between u and v. If so, the algorithm terminates. If the size of the random walk is > t or the walk reaches a
sink, there is no bubble starting at u. Applying this algorithm to all nodes of the graph is able to detect all
bubbles.

Algorithm 2 Bubble start u

Input: u ∈ V , Maximum size t.
Output: true, if there is a bubble of size ≤ t starting at u.
1: function BubbleStart(u, t)
2: e← u ▷ Current end of the walk
3: s← 0 ▷ Current size of the walk
4: while true do
5: if e is sink ∨s > t then
6: return false
7: end if
8: e← arbitrary successor of e
9: s← s+ |l(e)|

10: if BubbleBetween(u, e, t) then
11: return true
12: end if
13: end while
14: end function

3.2.2 Transforming a sequence qraph to an EDS graph

To transform the sequence graph to an EDS graph, we check for each node, if there is a bubble starting at this
node. If this is the case, we replace the nodes of the bubble by a new node, representing the bubble in the EDS.

3

Algorithm 3 outlines this procedure. The EDS string that describes a bubble is defined in following definition.
An example how a bubble is transformed is shown in Figure 1.

Definition 9 (EDS label of a bubble) Let B = {W1, . . . ,Wk} be a bubble between u and v. The EDS label
of this bubble is l(B) = u

(
l(W1) | . . . | l(Wk)

)
v. (Special case: if the bubble classifies as concatenation, then

l(B) = l(u)l(v).)

Algorithm 3 Transforms the sequence graph to an EDS graph
Input: Sequence graph G = (V,E), threshold t for bubble sizes.
1: for all u ∈ V do
2: if BubbleStart(u, t) then
3: Determine the bubble B between u and v.
4: Add a new node b with EDS label l(B) to V .
5: The predecessors of b are the predecessors of u and the successors of b are the successors of v.
6: remove v, u, and all nodes in the bubble B from V .
7: (Repeat this iteration of the for loop for u.)
8: end if
9: end for

Figure 1: Replace a bubble by a single node with an EDS label

4 Experimental evaluation
The original CHM13 reference graph from the HPRC [5] has over 85 million nodes. Of these, 69 million nodes
are only visited in ‘+’-orientation, 9 million nodes are only visited in ‘−’-orientation and less than 7 million
nodes are visited in both orientations. A few thousand are not connected to other nodes. Furthermore, the
graph contains fewer than 180 thousand sources and 280 thousand sinks.

In this graph the described methods first add about 7 million nodes for reverse complements and then
detect 38 million bubbles (with width t ≤ 50). The bubbles can be divided in 19.4 million SNP, 14.7 million
concatenations, 2.6 million Indel and 1.7 million other bubbles. The transformed graph has about 6.4 million
nodes. On a single thread on an AMD EPYC 7742 processor with 256 GB RAM this transformation took less
than 20 minutes. One might wonder, why so many ‘simple’ concatenations occur. This is because the addition
of a new node for a reverse complement may cause several concatenations. An example is depicted in Figure 2.

Figure 2: First: add a node for the reverse complement of v and adjust edges. Then detect bubbles and
concatenate the paths.

Performing the mapping experiments of [1] with the HPRC CHM13 graph as reference requires about 25%
more resources (time and memory) than using the graph generated from the linear reference with the list of
variations.

5 Known Issues
The proposed method possesses certain limitations that do not hinder its utilization, but provide opportunities
for further optimization.

Nesting According to the definition, there can be bubbles inside other bubbles and this could lead to nested
ED strings. Since GED-MAP does not support nested ED strings, we omit such bubbles. (To be more precise,
if the program ignores all detected bubbles, that contain a node with ED string as label.)

4

Ambiguousness of the output The order in which the nodes of V are processed in Algorithm 3 affects the
output of the transformation. At nested bubbles for example, the representation will be different if the inner
bubble will be detected a) before or b) after the outer bubble, see Figure 3. Either way the output graph will
represent the same sequences and has fewer nodes than the input graph.

Figure 3: Nested bubbles. Depending if u or A is processed first, the resulting graph is more like a) or b).

Unobserved paths Using the graph without the path information can generate walks that were not observed
before. To handle this, one would have to check the observed paths instead of performing a breadth first search
in Algorithm 1 and take a existing path instead of a random walk in Algorithm 2. We did not use path
information, to have a more generic approach and because GED-MAP does not use path information as well.
Figure 4 depicts an example.

Figure 4: Unobserved paths added. Colors represent observed paths. The path ‘uT v’ did not exist before.

Small nodes remaining The basic idea of this transformation is to omit nodes with small labels and represent
them the ED strings of longer labels. However, not all small nodes do lie in enclosed bubbles. It could sometime
be worth to separate paths as shown in Figure 5. But this report does not give an answer on how this can be
done.

Figure 5: Small nodes remaining: Both graphs represent the same paths. The graph on the right would be more
appropriate to use in GED-MAP. Unfortunately, the presented method cannot detect this transformation.

Program output The alignment will be given Sequence Alignment Map (SAM) format. This format provides
the sequence and starting position of the alignment. Traditionally this was a position on the linear reference.
The HPRC graph defines the position on the linear reference for many nodes. For these nodes GED-MAP will
output these ‘traditional’ positions. If the alignment starts at a node, that has no defined reference position,
GED-MAP outputs the node number and the offset from the on this node, where the alignment starts. A
perhaps better solution would be using the Graph Alignment Format (GAF) in the output.

6 Conclusion
In summary, the transformation of the bidirected sequence graph into an EDS graph, as described in this
technical report, has been successfully integrated into GED-MAP (available on github.com/thomas-buechler-
ulm/gedmap). This transformation led to a remarkable reduction of over 90% in the number of nodes of the
HPRC reference graph. However, certain subgraphs still contain multiple small nodes closely connected, as
e.g. depicted in Figure 5. These subgraphs, especially when aligned with GED-MAP’s focus on graphs with
longer node labels, may slightly impact the program’s performance. The mapping process with the transformed

5

HPRC graph currently requires approximately 25% more time and space than the one utilizing the graph
generated from the linear reference and variation list. Further optimization might be possible by incorporating
path information in definition of bubble, which could potentially further decrease the node count and optimize
mapping speed. We acknowledge the need for such refinements and are working towards even more efficient
versions of GED-MAP.

References
[1] Thomas Büchler, Jannik Olbrich, and Enno Ohlebusch. Efficient short read mapping to a pangenome that

is represented by a graph of ed strings. Bioinformatics, 39(5), 2023.

[2] Costas Iliopoulos et al. Efficient pattern matching in elastic-degenerate texts. In Language and Automata
Theory and Applications, volume 10168 of LNCS. Springer, 2017.

[3] Daehwan Kim et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nature Biotechnology, 37(8), 2019.

[4] Brice Letcher et al. Gramtools enables multiscale variation analysis with genome graphs. Genome biology,
22, 2021.

[5] Wen-Wei Liao et al. A draft human pangenome reference. Nature, 617(7960), 2023.

[6] Jouni Sirén et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes.
Science, 374, 2021.

6

