
Technical Report VS-R08-2010
Aspectix Research Team  |  Institute of Distributed Systems | University of Ulm, Germany
RAPIX
A plug-in based RIA 
for multimedia communication
Jan-Patrick Elsholz · Eduard Seibel · Franz J. Hauck

2010



Title Image: Antal, „Lautsprecher“, CC-Lizenz (BY 2.0), www.piqs.de
http://creativecommons.org/licenses/by/2.0/de/deed.de



RAPIX: A plug-in based RIA for
Multimedia Communication

Jan-Patrick Elsholz, Eduard Seibel, Franz J. Hauck
Institute of Distributed Systems

Ulm University, Germany
Email: {jan-patrick.elsholz,eduard.seibel,franz.hauck}@uni-ulm.de

Abstract—Multimedia communication like voice and video
calls over IP or Video on Demand grows in popularity today [1],
[2]. However, the development of such applications is a complex
and error-prone process, as only basic framework support is
available. In this paper we introduce RAPIX, a plug-in based
Rich Internet Application (RIA) that eases this development.
Furthermore, our web-based approach supports a wide range
of devices enabling even mobile phones for multimedia commu-
nication. We prove our concept with a prototype implementation
based on the Rich AJAX Platform [3] enriched with Adobe Flash
to support multimedia playback and access audio and video
capture from the web browser. This enables RAPIX to cope with
multiple, hot pluggable applications and takes the complexity
of the web browser integration off the application programmer.
Common functionality like window management, a notification
system, and a generic resource list are integrated as well.

I. INTRODUCTION

Multimedia communication becomes more and more
widespread in the mobile world; consider for example the
availability of Skype for mobile phones. However, such appli-
cations for the mobile market are mostly targeted at specific
hardware platforms like the iPhone. Several approaches have
been made to form a common base on all devices, e. g.
Android. Alternatively, a web browser is already available
on most devices today. Thus, RAP for Instant-X (RAPIX) is
a plug-in based Rich Internet Application (RIA), capable of
multimedia playback and access to client devices like webcam
and microphone. It offers a Java-only Application Program-
ming Interface (API) to hide the complexity of web browser
integration. All necessary visual components are transparently
created and automatically displayed. The application developer
writes exclusively Java code to deploy applications for RAPIX.
Furthermore, pluggable applications can be added to and
removed from RAPIX even at runtime. To enable this hot
pluggable integration, we use OSGi [4] in our prototype
implementation. RAPIX is based on the Rich AJAX Platform
(RAP) [3] enriched with Adobe Flash to enable multimedia
playback and device access. Furthermore, common functions
of applications for multimedia communication like a generic
resource list and a notification system are integrated into the
API of RAPIX. We advocate, that there are several advantages
of a RIA for multimedia communication over a native client.
First, the high availability of web browsers on a wide range of
platforms supports the platform independency and thus highly
eases application development. Second, applications can be

used worldwide from any web browser without installation
and maintenance issues. And third, the RIA has a consistent
look-and-feel across all devices and platforms, improving user
acceptance and orientation in the User Interface (UI).

The paper is structured as follows. First, we show related
work and categorise it related to placement of application logic
and access to system resources. Then, basic technology is
introduced. Section IV presents our prototype implementation
with device access, multimedia playback, a notification system
and a generic resource list. Finally, we conclude in Section V.

II. RELATED WORK

Many frameworks and different technologies support the de-
velopment of RIAs for multimedia communication. In Figure 1
we place those according to their access to system resources
and the residence of application logic. We distinguish the
latter in arrange from thin client to fat client. On a thin client
the application runs inside a web browser, whereas on a fat
client the application might run without any connection to the
Internet or even outside a web browser. The system resources
ascend from simple I/O to graphics processing unit (GPU),
each time adding the specific resource access to the others.

RCP

application logic

access to
systems resourcesGPU

file system

webcam and
microphone

thin client fat client

RAPIX

HTML,
CSS

BONDI

AIR

W3C Capture API

RAP GWT,
XML11

Flash,
Silverlight

HTML I/O

Fig. 1. RAPIX in comparison to related technologies.

In the lower left corner HyperText Markup Language
(HTML) [5] and Cascading Styling Sheets (CSS) [6] represent
the standard web client with access to screen and input values
like forms. Opposite in the upper right corner Rich Client



Platform (RCP) [7] represents applications running outside
of a web browser with full access to any hardware resource
and high interactivity with the user. The Java frameworks
RAP [3], XML11 [8] and Google Web Toolkit (GWT) [9]
offer tools to create web applications but no hardware access.
The web browser plug-ins Adobe Flash [10] and Microsoft
Silverlight [11] offer access to webcam and microphone using
proprietary protocols and programming languages. The capture
API [12] of the World Wide Web Consortium (W3C) com-
bined with HTML 5 [13], BONDI [14] and PhoneGap [15] are
JavaScript based APIs to access hardware on client devices like
mobile phones. The technologies Adobe Integrated Runtime
(AIR) [16], JavaFX [17] and Google Gears [18] make web ap-
plications available offline. Therefore, most of the application
logic resides on client side. Due to computational limitations
on mobile devices we focus on thin clients still capable of
accessing webcam and microphone. Thus, we merged RAP
and Adobe Flash to RAPIX.

III. BASIC TECHNOLOGIES

In the following section we describe basic technologies and
concepts our prototype is based on.

A. MVC

Our implementation follows the Model-View-Controller
(MVC) pattern [19]. A strict separation of presentation, data
access and business logic allows decoupling all three of them.
In our case, the view is based on RAP and implemented
partly in JavaScript, Adobe Flash, HTML and CSS, whereas
model and controller are exclusively written in Java. Thus,
we gain a loose coupling of components and a transparent
usage of different programming languages. This highly eases
development of pure Java applications and allows adaptation
of the View according to device capabilities, e. g. Tabbed
Document Interface (TDI) instead of the desktop metaphor
for mobile devices with small screens.

B. OSGi

OSGi [4] is a specification of a lean, Java-based component
framework defined by the OSGi Alliance. It offers life-cycle
management and automatic dependency resolution of compo-
nents at runtime. Components are standard Java archives con-
taining a manifest file for metadata. It is used to share common
functionality and libraries between components in terms of
imported and exported Java packages. Optionally, components
export and import services. They implement a regular Java
interface and are registered with optional metadata at a service
registry. However, the resolution of service dependencies is
left to the component developer. Therefore, OSGi provides
a service tracker for monitoring the availability of service
components. The OSGi implementation Equinox introduced
the extension point (EP) mechanism [20] as a declarative
plug-in concept for the Rich Client Platform Eclipse [21].
Similar to OSGi services, EPs support dynamic extension of
applications at runtime [22]. In contrast, EPs use XML decla-
rations to import and export the extension. Thus, an extension

registry and an extension tracker are provided by Equinox. The
OSGi specification later introduced a similar concept named
declarative services [23]. All of these mechanisms support the
development of highly dynamic applications. We focus on EPs
due to the usage in RAP.

C. Instant-X

Our idea is based on the multimedia middleware Instant-
X [24], [25]. It offers a service-oriented architecture (SOA)
based approach for the development of applications for multi-
media communication. Common functionality like data trans-
mission and signalling is encapsulated into services. This eases
the development of such applications. Furthermore, applica-
tions become independent of specific protocols by using the
offered APIs exclusively. Thus, applications, API and protocol
implementations are encapsulated into OSGi components.

D. RCP

The Rich Client Platform [7] is a framework for the devel-
opment of rich client applications. It derived from the Eclipse
project [21] and is based on OSGi. Amongst others, it offers
an abstract programming model for a graphical user interface
(GUI) based on the Standard Widget Toolkit (SWT) [26]
following the MVC pattern. This takes the cross-platform
burden off the application developer. The EP mechanism is
used to cope with the dynamic integration of applications at
runtime. However, web clients are not supported.

E. RAP

The Rich AJAX Platform [3] brings RCP [7] to the web
browser [27]. It is based on the open source Asynchrounous
JavaScript and XML (AJAX) [28] implementation Qoox-
doo [29] and enables the development of AJAX-enabled RIAs
like Gmail [30]. Similar to RCP, it offers an abstract Java-
only API [31] for the development of GUIs. Thus, it hides
the complex web browser integration from the application
developer [8]. No knowledge of HTML, CSS or JavaScript
is needed. Following the MVC pattern, multiple views are
allowed to access a single model. Therefore, it is possible to
use a single model for multiple users of a single application
as well. Also, RAP offers no support for multimedia commu-
nication.

F. RTMP

The Real Time Messaging Protocol (RTMP) [32] by Adobe
is a multimedia streaming protocol. It uses in-band control
messages for the playback in the Adobe Flash player. We
use the open source implementation Flazr [33] as server
side software to access the Adobe Flash based device API
(Section IV-A)

IV. IMPLEMENTATION

In this section we introduce the prototype implementation
of RAPIX. It is based on RAP and extended for multimedia
communication. In our prototype we use a desktop metaphor
with a taskbar (Figure 2, no. 1) and freely resizable windows
(Figure 2, no. 2) for each application. Any other window



Fig. 2. Screenshot of RAPIX.

management is possible and dynamically adjustable, e. g. one
tab per application as commonly seen on mobile devices.
Leaving details of the window management aside, we focus
on device access, multimedia playback (Figure 2, no. 3), our
notification system (Figure 2, no. 4) and a generic resource
list (Figure 2, no. 5).

A. Device access of webcam and microphone

The device access is based on Adobe Flash. We developed
a custom widget and integrated Adobe Flash into RAP.
This is done using the ExternalInterface of Action-
Script 3.0 [34] as a bridge between JavaScript and Adobe
Flash. Thus, it is possible to access microphone and webcam
on any device capable of running a web browser and Adobe
Flash.

1) Architecture for device access: Figure 3 shows the
architecture of the device access. The main idea is to use
proxies for all physical devices allowing simultaneous access
from multiple applications.

Application X wants to access the client’s microphone.
Thus, a proxy (A) is created. The hot plugged-in application
Y wants to access the same microphone and the client’s
camera. Another proxy (B) for the microphone and a proxy
(C) representing the camera are created. Proxies are created
by the session device manager, which is responsible
for all devices in a single session. Each session represents
one web browser displaying RAPIX as view of the MVC
model. A duplicated state machine on client and server side is
used to synchronise the device and its proxies. The server side
proxy is accessible through a Java-only API, hiding the con-
crete implementation. The multimedia stream from the client
device to the session device manager is of maximum
quality, enabling each proxy to scale to the appropriate formats
acquired by the application. In our prototype we utilise Adobe
Flash to implement this device access. Other implementations
like Microsoft Silverlight are possible as well.

application X

stream with
properties Acontrol

DeviceAPI

Flash implementation

microphone
state machine

camera
state machine

client

max maximum
stream quality

session device manager

application Y

camera(C)microphone(B)microphone(A)

webbrowser

HTTP (max)

microphone
/camera(A)

mic.
state

machine

camera
state

machine

Flash container

microphone(A)
Proxy

microphone(B)
Proxy

camera(C)
Proxy

server

...

generic interface

Fig. 3. Architecture of the device access

2) Duplicated state machine: In our architecture, the client
device and its proxies may be on different machines. Thus,
duplicated state machines synchronise the state machine of the
proxy with the current state of the client device. Additionally,
we implemented a kind of reference counting, as releasing a
proxy must not release the device. Figure 4 shows the states
of our duplicated state machine.

We identified six states for accessing client devices. First,
all available devices are discovered and synchronised with
the server. For each device its state machine is in INIT
state. Calling start acquires the appropriate device to be
used within RAPIX. This is represented by the OCCUPYING
DEVICE state. On success the state changes to REQUESTING
ACCESS. This is necessary due to security and privacy rea-
sons. The user of the client device has to permit its access
explicitly. If either of the latter state changes fails, we fall
back to the INIT state. Next, we try to establish the RTMP
connection between server and client in the CONNECTING
state. On success, we pass on to CONNECTED. Calling start
and stop in this state initiates and stops a maximum quality
stream represented by the SENDING STREAM state. For any
error or calling release transfers the state machine to the
INIT state. All related applications are informed and the
device is released.

3) Device API: Figure 5 shows how to access the micro-
phone from an application using RAPIX.

In line 1 we obtain the appropriate session device
manager for the client. Line 2 creates a proxy for the
microphone. In line 3 we get the multimedia stream of the



success

RequestingAccess

AccessDenied,
DeviceReleased, Error

AccessGranted

Connected

ConnectionFailed,
Error, DeviceReleased

success

start()

not available, error,
release()

DeviceNotAvailable,
DeviceReleased, Error

access denied, error, release()

INIT OCCUPYING
DEVICE

REQUESTING
ACCESS

CONNECTINGCONNECTED

timeout, error,
release()

success

release(), error

DeviceReleased,
Error

SENDING
STREAM

StreamStopped

StreamStarted

start()

release(),
error

event state transition

OccupyingDevice

stop()

Connecting

Fig. 4. Duplicated state machine of the device API.

1 DeviceManager dm = Dev iceManage rFac to ry . INSTANCE ;
2 Device microphone = dm . g e t D e f a u l t M i c r o p h o n e ( ) ;
3 St ream micSt ream = microphone . g e t S t r e a m ( ) ;
4 micStream . a d d S t r e a m L i s t e n e r ( new S t r e a m L i s t e n e r ( ) ){
5 vo id m e d i a P a c k e t R e c e i v e d ( S t r eamEven t e v e n t ){
6 / / e v e n t . p a c k e t c o n t a i n s a s t r e a m p a c k e t
7 . . .
8 }}) ;
9 micStream . s t a r t ( ) ;

Fig. 5. Example for accessing the microphone of a client device.

microphone and in line 4 we add a listener. To finally start
the transmission we call start in line 9.

B. Multimedia Playback

In this section we describe the architecture of the multime-
dia playback.

1) Architecture of multimedia playback: Figure 6 shows the
component-based implementation hidden behind our player
API.

An application streams audio and video data to a client.
Therefore, we use a custom widget in RAP to integrate Adobe
Flash. Due to the MVC pattern, we need a duplicated state
machine on the server and client side. The RTMP server Flazr
bridges between the Java world on the server side and the
Adobe Flash player on the client side. Controller events like
pause are sent to the server via RAP.

2) Player API: Figure 7 shows an example of how multi-
media is played back using our API.

In line 1 we create a Player through the factory. It is placed
in the given container. We start the player in line 2 and pass
incoming packets in line 4. Before these packets are played
back, they are first passed to the RTMP server Flazr and
transmitted to the custom Adobe Flash widget.

PlayerAPI

Flash implementation

client

state machine

FlashPlayer
custom widget

generic interface

ExternalInterface

state machine

FlashPlayer
custom widget

Flash container

webbrowser

audio video

audio/video
streams
over TCP

server

application

Flazr
RTMP server

HTTP

Fig. 6. Architecture of multimedia playback using Adobe Flash and Flazr.

1 P l a y e r p = P l a y e r F a c t o r y . c r e a t e P l a y e r ( c o n t a i n e r ,
c o n t a i n e r . g e t C o n t e n t P a n e ( ) , . . . ) ;

2 p . p l a y ( ) ;
3 . . .
4 p . r e c e i v e P a c k e t ( p a c k e t ) ;

Fig. 7. Multimedia playback example.

C. Notification System

Applications for multimedia communication normally run
in the background of the user until a communication request
arrives. Then, a notification typically pops up to interrupt the
user from the ongoing task. For example, an instant message
(IM) application is a small icon in the taskbar until a window
appears containing the incoming message.

1) Notification API: Figure 8 shows two possible notifica-
tions: The first is a status message at the bottom of a window.
The second is a popup message in the lower right corner of
the desktop.

1 / / s t a t u s
2 c o n t a i n e r . s e t S t a t u s ( ” Connec ted t o s e r v e r . ” ) ;
3
4 / / popup
5 N o t i f i e r n o t i f i e r = N o t i f i e r . g e t I n s t a n c e ( ) ;
6 N o t i f i c a t i o n n = n o t i f i e r . c r e a t e N o t i f i c a t i o n (

N o t i f i c a t i o n L e v e l . CRITICAL , ” C o n n e c t i o n
i n t e r r u p t e d . ” ) ;

7 n o t i f i e r . n o t i f y A l l ( ) ;

Fig. 8. Notification system example.

In line 2 we set the status message of a specific window. In
line 5 we obtain the notifier as singleton. We create a critical
notification in line 6 and send it to every web GUI attached
to this model. A notification with a high priority is displayed
longer and may displace others.



D. Generic resource list

Many multimedia applications use some sort of lists. Typi-
cally, an IM application offers a list of known buddies. Pres-
ence information is visualized by highlighting the appropriate
entries. Even Video on Demand (VOD) applications need a
kind of list. They list available movies. Thus, we integrated
a generic resource list into our plug-in based RIA offering
all kinds of possible usage. Following the MVC pattern,
the application developer simply takes care of the model
whereas the view is generated automatically according to the
dynamically adjustable window management of our plug-in
based RIA.

1) Resource list API: We demonstrate the application pro-
grammers view of our generic resource list for an IM scenario
in Figure 9.

1 R e s o u r c e L i s t l i s t = new R e s o u r c e L i s t ( ) ;
2 l i s t . add ( new L i s t I t e m ( ” u s e r A” , ” 1 9 2 . 1 6 8 . 1 7 8 . 2 0 ” ,

. . . ) ) ;
3 l i s t . add ( new L i s t I t e m ( ” u s e r B” , ” 1 9 2 . 1 6 8 . 1 7 8 . 2 3 ” ,

. . . ) ) ;

Fig. 9. Generic resource list example for an IM scenario.

In line 1 we create a new resource list. Two users A and
B are added in line 2 and 3. Additionally, their IP addresses
are stored in the list. Optionally, an icon and tool tips can be
passed as well. Our generic resource list supports the basic
operations create, read, update and delete (CRUD).

V. CONCLUSION

In this paper we present RAPIX, a RIA supporting hot plug-
gable applications for multimedia communication. In contrast
to related work, we focus on a web client with access to audio
and video capture. We present a prototype implementation
based on RAP enriched with Adobe Flash to gain access to de-
vices and enable multimedia playback from the web browser.
Furthermore, we offer windows management, a notification
system and a generic resource list. This is transparent to
the application programmer through a Java-only API hiding
the complexity of web browser integration. This highly eases
the development of multimedia applications. More than that,
it enables worldwide multimedia communication on nearly
any device with a web browser installed. In future work we
would like to replace Adobe Flash with HTML5 and the W3C
Capture API for device access on client devices. An evaluation
of our API shall reveal conceptional problems and missing
features.

REFERENCES

[1] Y. Wang, M. Claypool, and Z. Zuo, “An empirical study of realvideo
performance across the internet,” in IMW ’01: Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement. New York, NY,
USA: ACM, 2001, pp. 295–309.

[2] H. Verkasalo, “Empirical observations on the emergence of mobile
multimedia services and applications in the US and Europe,” in Pro-
ceedings of the 5th international conference on Mobile and ubiquitous
multimedia. ACM, 2006, p. 3.

[3] “Rich Ajax Platform,” http://www.eclipse.org/rap/, Eclipse Foundation,
2010.

[4] “OSGi Service Platform Core Specification,” The OSGi Alliance, Juni
2009.

[5] I. J. Dave Raggett, Arnaud Le Hors, “HTML 4.01 Specification,”
http://www.w3.org/TR/html4/, W3C, Dezember 1999.

[6] B. Bos, T. elik, I. Hickson, and H. W. Lie, “Cascading Style Sheets Level
2 Revision 1 (CSS 2.1) Specification,” http://www.w3.org/TR/CSS2/,
W3C, September 2009.

[7] “Eclipse Rich Client Platform,” http://www.eclipse.org/rcp/, Eclipse
Foundation, 2010.

[8] A. Puder, “A cross-language framework for developing AJAX applica-
tions,” in Proceedings of the 5th international symposium on Principles
and practice of programming in Java. ACM, 2007, p. 112.

[9] “Google Web Toolkit,” http://code.google.com/webtoolkit/, Google,
2010.

[10] “Adobe Flash Player,” http://www.adobe.com/de/products/flashplayer/,
Adobe Systems Inc., 2010.

[11] “Microsoft Silverlight,” http://www.microsoft.com/silverlight/,
Microsoft, 2010.

[12] I. K. Dzung D Tran, Ilkka Oksanen, “The Capture API,”
http://www.w3.org/TR/2010/WD-capture-api-20100401/, W3C, April
2010.

[13] I. Hickson and D. Hyatt, “HTML5 - A vocabulary and associated
APIs for HTML and XHTML (Editor’s Draft 13 November 2009),”
http://www.w3.org/TR/html5/, W3C, November 2009.

[14] “BONDI - An open source industry collaboration for widget and web
technologies,” http://bondi.omtp.org/, OMTP, 2010.

[15] “PhoneGap - Web-enable native mobile device functionality,”
http://www.phonegap.com/, Nitobi Inc., 2010.

[16] “AIR. Adobe Integrated Runtime for Rich Internet Applications,”
http://www.adobe.com/de/products/air/, Adobe Systems Inc., 2010.

[17] “JavaFX,” http://www.sun.com/software/javafx/, Oracle, 2010.
[18] “Google Gears,” http://gears.google.com/, Google, 2010.
[19] T. Reenskaug, “Models-views-controllers,” Technical note, Xerox PARC,

Dezember 1979.
[20] M. Henning and H. Seeberger, “Einfhrung in den Extension Point-

Mechanismus von Eclipse,” JavaSPEKTRUM, vol. 1, pp. 19–24, 2008.
[21] “Eclipse.org,” http://eclipse.org/, The Eclipse Foundation, 2010.
[22] N. Bartlett, “Eclipse extensions versus OSGi services,”

http://www.eclipsezone.com/articles/extensions-vs-services/,
EclipseZone, Febraur 2007.

[23] “OSGi Service Platform Service Compendium,” The OSGi Alliance,
August 2009.

[24] J.-P. Elsholz, H. Schmidt, S. Schober, F. J. Hauck, and A. J. Kassler,
“Instant-X: Towards a Generic API for Multimedia Middleware,” 12
2009.

[25] H. Schmidt, J.-P. Elsholz, and F. J. Hauck, “Instant-x: a component-
based middleware architecture for a generic multimedia api,” in Com-
panion ’08: Proceedings of the ACM/IFIP/USENIX Middleware ’08
Conference Companion. New York, NY, USA: ACM, 2008, pp. 90–92.

[26] “SWT: The Standard Widget Toolkit,” http://www.eclipse.org/swt/,
Eclipse Foundation, Februar 2010.

[27] F. Lange, Eclipse Rich Ajax Platform - Bringing Rich Clients to the
Web. Apress, 2008.

[28] J. J. Garret, “Ajax: A New Approach to Web Applications,”
http://adaptivepath.com/ideas/essays/archives/000385.php, adaptive
path, Februar 2005.

[29] “Qooxdoo. Open Source Ajax Framework,” 1&1 Internet AG, 2010.
[30] “Gmail: Google’s approach to email,”

http://mail.google.com/mail/help/intl/en/about.html, Google, 2010.
[31] “RAP Developer Guide,” http://help.eclipse.org/help33/nav/23, Eclipse

Foundation, 2010.
[32] Real-Time Messaging Protocol (RTMP) specification, 1st ed., Adobe

Systems Inc., April 2009.
[33] P. Thomas, “Flazr - A Java Implementation of Multimedia Streaming

Protocols,” http://www.flazr.com/, November 2009.
[34] “ExternalInterface - ActionScript 3.0 Language and Components Refer-

ence,” http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/
flash/external/ExternalInterface.html, Adobe, 2008.


