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Abstract—Platform as a Service (PaaS) eases cloud deploy-
ment by automating placement decisions, scaling, and mainte-
nance of the infrastructure. Yet, most PaaS offerings restrict
network support to HTTP so that applications needing other
protocols can hardly be deployed. COSCAnet is a PaaS-cloud
network layer that virtualizes the well-known socket interface
for UDP and TCP. Thus, legacy applications and protocol
implementations can be reused in a PaaS cloud, and most of the
typical network restrictions of PaaS can be released. COSCAnet
also supports scale-out of applications. Our evaluations show that
COSCAnet is not only more flexible but also has lower overhead
and higher throughput compared to typical setups, while having
only low demands on the underlying network infrastructure. As
a result, COSCAnet is a leap forward towards more flexible PaaS
systems that support arbitrary application protocols.

I. INTRODUCTION

Platform as a Service (PaaS) [1] provides the highest abstrac-
tion layer to run own applications in the cloud. It lowers the
burden of entrance to the cloud as customers do not have to
maintain virtual machines and their platform software (e.g., an
application server) [2]. Such platforms supply customers with
a predefined environment consisting of programming-language
support and well-defined APIs. They typically abstract from
cloud characteristics such as underlying infrastructure, dy-
namic placement, scaling, and pay-per-use accounting [3].

Recently, cloud computing has become attractive for a
growing number of application domains. Many of them re-
quire highly flexible and high-performance networking [4],
[5]. However, we observed two issues that hinder current
PaaS solutions from broader usage. (i) While PaaS does not
actually specify the level of abstraction, current PaaS solu-
tions usually limit communication to an application-specific
request-response scheme (i.e. HTTP). Thus, PaaS clouds have
became tailored to a specific application type (i.e. web ap-
plications) and cannot be used for applications needing other
protocols. Examples are virtual desktop applications1 (e.g.
RDP), multimedia conferencing applications (e.g. SIP, RTP),
game servers using proprietary protocols2, e-mail servers (e.g.
IMAP), servers for bulk data provision (e.g. FTP), instant
messaging servers and directory services. (ii) Restricting com-
munication to an application-specific protocol makes it easier
to route network traffic on application level. Providers often
use modified web servers as proxies and load balancers (e.g.

This work was partially supported by the Ernst Wilken Foundation Ulm.
1e.g. http://www.moka5.com
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Nginx). Yet on huge setups, Layer 7 load balancing is rather
complex and does not scale, especially when using SSL [5].

This paper presents COSCAnet, a unique approach for a
PaaS network layer (NaaS) that supports elastic applications
but still provides a standard socket interface. These allow
cloud applications to use arbitrary application protocols on
top of UDP and TCP. Yet, COSCAnet also provides basic
but protocol-independent mechanisms for scale-out. It further
isolates traffic of different tenants and has integrated pay-
per-use accounting. Our solution is efficient and has low
hardware requirements on network components. This allows
us to operate COSCAnet not only with professional network
appliances but also with typical low cost commodity hardware.

The next section will present related work. Section III in-
troduces the COSCAnet concepts whereas Section IV presents
implementation aspects. Before we conclude, we evaluate
COSCAnet and compare it to other cloud setups in Section V.

II. RELATED WORK

In recent years, several academic and industrial cloud com-
puting platforms have been developed. Google App Engine3,
Amazon Beans Talk4 and Cloud Foundry5 are popular PaaS
platforms. They allow to host servlet-based Java applications,
but restrict applications to communicate solely with HTTP.

Current IaaS (Infrastructure as a Service) solutions provide
more comprehensive network support. Customers deploy their
software in terms of virtual machine images, but have to do
many administrative tasks such as application reconfiguration
for seamless scaling, which is after all a complex task. Hard-
ware virtualization technologies such as Xen [6] and KVM
are normally used to provide an isolated environment for each
application. Hardware virtualization consumes a considerable
amount of resources with respect to CPU and memory, which
directly impacts the number of services that can effectively
be consolidated onto a single physical machine [7]. It is also
subject to significant performance penalties with respect to
networking [8] and unstable TCP/UDP throughput [9], [10].
Thus, special network solutions for virtual machines try to
optimize network performance [11], [12], e.g. by offloading
TCP functionality such as acknowledging [10] and congestion
control [13]. Other approaches completely outsource network

3http://appengine.google.com
4http://aws.amazon.com/elasticbeanstalk
5http://www.cloudfoundry.com



processing [14]. Besides performance issues, virtual machines
(VM) provide low-level network access that raises security
concerns when VMs of different tenants are in the same
network. Tseng et al. [15] isolate traffic by assigning each
user its own VLAN tag. In contrast, COSCAnet virtualizes
network access on network level (Layer 3). It conceptually
isolates tenants by binding virtual sockets to separate virtual
application addresses and uses firewall rules.

Yet another approach is SDN (Software Defined Networks).
A popular specification is OpenFlow [16] where the data path
of a switch consists of a flow table and an action associated
with each flow entry. One option is to forward packets to
an external controller to determine more complex routing
decisions. OpenFlow, however, requires Openflow-compliant
hardware. COSCAnet proposes a network layer for appli-
cations (i.e. virtualized sockets) that provides PaaS features
such as transparent network elasticity. It could, however, use
Openflow in its low-level network architecture.

III. THE COSCANET APPROACH

COSCAnet is a novel and flexible network layer for PaaS
clouds. We identified four principle requirements: (i) The
network layer should be as transparent as possible for cloud
applications. It especially needs to provide a standard interface
that does not restrict the way applications may communi-
cate. (ii) COSCAnet should smoothly integrate with typical
cloud network architectures and be effective with cheap COTS
hardware. (iii) COSCAnet should support multi-tenancy and
thus isolate network traffic of different tenants. (iv) To enable
migration and scale-out of applications, applications should be
addressed in a location-transparent way.

The main component of COSCAnet is a middleware layer
that manages communication on behalf of applications. It
provides standard sockets for UDP and TCP6 that enable
applications to implement arbitrary protocols on top. With
the help of a dedicated network component, e.g. a router or
network appliance, COSCAnet ensures that incoming requests
are routed to one of many worker nodes of an application,
which achieves elasticity. COSCAnet was designed as part of
the run-time layer of our PaaS platform COSCA [17]. However,
as it was developed as a self-contained library, COSCAnet and
its concepts can also be used in other cloud environments.
In the following, we briefly describe the main concepts of
COSCAnet that are (i) virtual sockets, (ii) routing mechanisms
based on virtual application addresses, (iii) elasticity, (iv) state-
aware communication, and (v) isolation and accounting.

A. Virtual sockets

The COSCAnet middleware provides ordinary sockets to
the application. These have exactly the same interface as
sockets of the operating system, but are enriched by cloud-
compliant functionality. While an application can rely on pure
socket communication, the middleware manages distribution
and cloud features, e.g., request routing and elasticity.

COSCAnet sockets can be seen as virtualized sockets. They
first virtualize addressing. In a general network setup, each
computing node is associated with its individual IP address.

6Other transport protocols could be added.

Instead, COSCAnet introduces and manages so-called virtual
application addresses that address applications and services
rather than nodes. In the simplest case, each application gets
its own virtual application IP address. Services offered by a
cloud application can thus be accessed regardless of the node
on which the service is provided. Applications, in turn, can
transparently operate on their IP address by opening arbitrary
ports, even the same port several times in different application
instances. With such a decoupling, a PaaS platform is able
to achieve location transparency and deploy an application on
arbitrary nodes. It can also be used to implement scale-out as
we will see later. In order to reduce the number of IP addresses,
we also support IP addresses shared among applications. Thus,
multiple applications—typically of the same user—can open
ports on the same virtual application IP address (e.g. a web
server on Port 80 and an FTP server on Port 21).

B. Routing

Generally, redirecting packets and connections can be done
on link, network, transport or application layer of the
ISO/OSI model. Current solutions operate either on applica-
tion layer (PaaS) or on link layer using hardware emulation
techniques (IaaS) (cf. Section II). In our approach, we use
IP routing techniques (network layer) to redirect packets on
the transport layer, in our case UDP and TCP segments.
Redirecting on this layer has two major benefits. (i) It provides
a maximum of generality since Internet applications commu-
nicate via IP and its transport protocols. Thus, there are no
restrictions on application protocols. (ii) IP, UDP and TCP
are low-level packet-based protocols that cause little state and
generate low parsing overhead in routers. To supply TCP and
UDP sockets, we do not need to emulate an entire network
device. Instead, our virtualized sockets use original sockets
from the operating system implementing the underlying net-
work stack and communicate with an external router about
routing decisions.

Whenever a new virtual socket is created and bound to
the virtual application address, the router is informed about
the new endpoint and its node’s physical address. The router
forwards incoming packets for a virtual address to the regis-
tered physical endpoint where it is delivered to the application.
A closing socket de-registers the endpoint. COSCAnet also
ensures that packets from the application appear as being sent
from the virtual address and port number. In total, this achieves
location transparency, as only COSCAnet has to deal with
physical addresses.

C. Elasticity

For elasticity, a PaaS system starts the same application
instance on multiple nodes, e.g., according to load parameters.
COSCAnet is entirely transparent to this procedure but helps
to implement it for arbitrary application protocols. Whenever
an application component binds a socket to a port number
already in use by another component of the same application
on a different node, COSCAnet assumes that both components
help each other for load balancing by elasticity. The second
component will not get an error message, instead a second
physical endpoint is created and the router stores a second
alternative route for incoming packets. Routing is done with



transport-layer knowledge. Thus, packets of the same TCP
connection are always forwarded to the same node.

For efficient scaling, one option is a round robin algorithm
to distribute packets, but this method is not aware of the
varying workload of nodes. For example, if two nodes host an
instance of a particular application, their workload may vary
due to their unique set of other hosted applications. We thus
use a weighted round-robin scheme that is aware of the current
system workload. For that, our virtual sockets calculate the
appropriate weights either via a predefined metric such as CPU
utilization in per cent, the CPU run-queue length, or a custom
application-specific metric (e.g. current request rate arriving at
an HTTP web application). In order to avoid continuous weight
updates on the router, we introduce a fuzzy-logic scheme with
three different load values (i.e. low, medium and high). Only
when the load changes from one value to the other does the
middleware update the weight correspondingly at the router.
COSCAnet can thus map the typical, dynamic load of cloud
computing nodes to routing decisions where less loaded nodes
will get more requests.

D. State-aware communication

State within application instances may potentially interfere
with forwarding requests to one of multiple virtual sockets. As
already mentioned, packets of the same TCP connection are
automatically routed to the same target. Furthermore, virtual
sockets support persistent routing decisions for TCP and UDP
based on the external address and configurable for individual
ports or entire applications. We realize this by using stickiness
capabilities of routers.

Web applications that use sessions are a typical use case.
The state of a web session is stored only in one of the instances,
and the router ensures that packets from the same session are
always forwarded to this instance. Stickiness can be released
after a defined time of inactivity. For web applications this
timeout should typically correspond to the session timeout.
Alternatively, applications can support state transfer between
instances, in case clients get connected to another instance. For
such applications, connection persistence is not a necessity but
an optimization avoiding state transfers.

E. Isolation and accounting

Cloud platforms typically host lots of applications in the same
cluster. Even worse with respect to security, they often execute
applications of various customers on a single node. In order to
isolate individual users, security regulations become important.
Our virtual sockets achieve isolation by restricting application
access to their assigned virtual application IP address. Explicit
binding to other IP addresses will be denied. Furthermore,
firewall features within virtual sockets restrict the usage of
ports. To enforce security constraints, however, further support
of the run-time environment is required (e.g., in Java, the use of
a security manager that disallows reflection is a must [17]). An
optional accounting module in our virtualized sockets captures
the amount of traffic transferred through the network.

IV. IMPLEMENTATION

We have implemented our approach for commodity Linux sys-
tems. For native applications, we implemented a shared object

that transparently overwrites standard sockets with COSCAnet
sockets (i.e. via LD_PRELOAD). We also implemented our
virtualized sockets as a platform-independent bootstrap library
for Java. For both cases, application code does not need
to be modified. Thus, virtual sockets are easy to integrate
into a runtime environment that loads legacy applications.
When applications require more sophisticated control of virtual
socket creation, e.g., different parts of the same application
should get their own IP address, we also provide Java socket
providers that can be loaded (e.g. via setSocketFactory()).
COSCAnet sockets internally use standard sockets reusing the
protocol stack of the operating system.

A. Routing and Routing Providers

Implementation of the COSCAnet routing can be done in two
different ways, using NAT or direct server return. In both
cases, either a software-based router (i.e. a dedicated node) or
a professional hardware load-balancer appliance can be used.

A first setup uses Network Address Translation (NAT).
Incoming packets arrive at the NAT router and are forwarded
to physical endpoints according to the established translation
rules at socket-binding time. Cloud nodes and their physical
endpoints have private IP addresses. Unlike traditional NAT
routers, the COSCAnet router may have multiple NAT entries
for the same virtual address and implements load awareness
as described in Section III-C. The NAT router pretends to
have all virtual application IP addresses of cloud applications.
Incoming packets are inspected on IP and transport level
to identify the applicable NAT entries. Packets from virtual
sockets have to pass the NAT router in order to get their sender
address translated to the virtual application address.

Direct server-return is a more optimized and thus our
preferred setup. A direct-return controller pretends to have all
virtual application IP addresses, by answering ARP requests,
whereas nodes may have one or more virtual IP addresses,
but do not answer on ARP requests. Incoming packets arrive
at the direct-return controller that forwards them according
to the routing rules established at socket-binding time. It
implements elasticity and load awareness. Forwarding requires
just the replacement of the MAC address so that the packet
will arrive at the targeted node which is located in the same
subnet. As the targeted node maintains an interface for the
virtual application IP addresses of its virtual sockets it can
immediately send packets in return without involvement of the
direct-return controller. This is especially useful as responses
are typically much larger than requests. The controller will
thereby not become a bottleneck with respect to bandwidth.

In order to use different routers, controllers and load
balancers, COSCAnet comes with different routing providers,
small modules communicating with the router. As we designed
the routing-provider API as generically as possible, it should
be easy to develop providers for other load balancers. As
software-based routers have recently attracted interest due to
the availability of low cost multi-core CPUs [18], [19], [20],
we propose a provider for them. For commodity setups, we
implement two Linux kernel routing providers—one with a
direct server-return algorithm and one for NAT. On the router
a daemon process listens on a dedicated network socket for
incoming requests that assign and manage virtual application



IP addresses and their routes. For packet redirection, we use
Linux Netfilter, which is well-known and highly mature (e.g.,
the IP Virtual Server Netfilter module which has been part of
the Linux kernel since 2004). Routing providers also manage
the address assignment on the computing node, e.g. binding
a socket on direct return leads to the configuration of a
virtual interface with the virtual application IP address and
without responding to ARP requests. For high performance
setups, our LTM provider fully integrates F5 BigIP LTM series
load balancers into a COSCAnet setup. The provider uses an
SSH connection for an on-the-fly configuration of appropriate
routing rules.

B. Socket Primitives

In order to retain socket semantics, COSCAnet intercepts
socket primitives. Application start-up and socket creation
do not affect cloud routing unless the application binds the
socket to a port and address. When an application binds its
first socket, COSCAnet manages reachability of the virtual
application IP address. It assigns the address at the NAT
router or the controller that has to respond to appropriate
ARP requests. Thus, incoming packets will arrive there first.
For a direct-return setup each node also has to configure a
virtual interface of the application address. In any case of
binding and unbinding, COSCAnet creates and destroys the
appropriate forwarding rule as discussed in Section III-B. At
application termination COSCAnet shuts down the acquired
interfaces down. Other socket operations do not require any
interception by COSCAnet.

On bind, COSCAnet checks whether the port is available.
Firewall-like rules provided for each application or virtual
application IP address can restrict available ports. COSCAnet
allows for binding TCP server sockets of multiple instances
of the same application to the same port, leading to multiple
forwarding rules in the router enabling scalability. As UDP
sockets can be used for incoming and outgoing datagrams,
COSCAnet allows for binding to the same port in multiple
instances. However, stickiness policies in the router will direct
incoming datagrams to the same instance. Thus, applications
using UDP sockets for client-side operations should not ex-
plicitly bind to a port and thus get an individual port.

V. EXPERIMENTS

In this section, we empirically evaluate our COSCAnet proto-
type. Although a major advantage of COSCAnet is to support
arbitrary TCP- and UDP-based protocols, we limit our evalu-
ation to HTTP request workloads in our experiments as this
allows us to compare our approach with other cloud platforms.

Setup: We use Quad Core machines with an
IntelTMXeonTMCPU E3-1220 at 3.1 GHz and 16 GB DDR3
RAM. The operating system is Ubuntu 12.04.2 (64-bit server
edition). All machines are connected to a gigabit switched
network. Our Native setup represents a typical non-virtualized
server; clients being directly connected to the server via a phys-
ical network. OpenStack is a IaaS setup that uses KVM virtu-
alized instances. To keep performance impact at a minimum,
we use large instances (m1.large) with four virtual CPUs.
We tuned standard configuration in this setup by enabling
a virtio paravirtualization driver, and use a bridged network
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(no quantum). Further, we consider three non-virtualized PaaS
setups with a load balancer running on an additional machine
equipped with two network devices. The first represents current
state-of-the-art PaaS using Nginx as HTTP load balancer. As
COSCAnet can use different routing providers, we evaluate
two of them: (i) direct server-return as COSCAnet-D, and (ii)
the NAT-based setup as COSCAnet-N.

Experimental Methodology: We use httperf [21] to gener-
ate synthetic HTTP workloads. On the server side, we run a
Jetty 2.0.4 servlet container that serves our test servlet. Each
experimental result is averaged over 10 runs. Between the
single tests, we wait until all connections have been completely
torn down (i.e. pass the TIME WAIT state and no longer
appear in /dev/net/tcp).

Experiment H1 Sequent HTTP requests: In this exper-
iment, we establish a single TCP connection (i.e. HTTP
persistent connection) and generate a series of HTTP requests.
On the client side, we measure the time to process 100 requests
with sizes between 16 and 4096 kByte (Fig. 1). The logarith-
mic y-axis indicates the time the 100 requests take. Basically,
we observe two phenomena: (i) The overhead introduced by
the configurations notably differs, while (ii) the performance
converges to native configuration for larger request sizes. In
web setups, however, smaller request sizes are more likely
and thus imply larger differences. COSCAnet-D introduces
only marginal overhead (up to 4%). It benefits from the direct
server-return topology that uses a very fast remapping with
no need to modify packets. MAC addresses just have to be
replaced for forwarding as destination nodes have sockets
bound to an application’s IP address. The return path does not
need any mapping at all. COSCAnet-N introduces considerably
higher overhead (up to 11%) as it needs to inspect and modify
incoming and outgoing packets. Application-level proxying
(Nginx) causes the highest overhead (up to 114%). As the
proxy has to forward HTTP requests and responses, messages
traverse the entire protocol stack two more times compared to
previous setups. Our hardware virtualization setup OpenStack
causes an overhead of up to 44%. It is introduced mainly
due to hardware virtualization and scheduling between the
guest and host system when sending packets (measurements
on Eucalyptus and KVM-only provide us similar results). Yet,
it lacks scaling capabilities that might be realized via a NAT-
based controller or an HTTP proxy which would introduces
further overhead as became obvious from the previous results.
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Experiment H2 Downloading 10 kByte: This experiment
simulates multiple clients downloading web pages. For each
client request, we open its own TCP connection. The experi-
ment sends requests in a variable rate and observes the rate of
arriving responses. Figure 2 shows the result for a 10 kByte
page. The dotted line represents the theoretical maximum of
requests/s7. We observe that all COSCAnet variants reach the
maximum of 11060 requests/s. We observe 6307 requests/s
(57%) in the OpenStack setup, and 8362 requests/s (76%)
in the Nginx setup. The latter generated high CPU load on
the load-balancer node. The experiment shows that COSCAnet
can provide an optimum process rate for a fully-fledged PaaS
system that is able to relinquish virtualization.

VI. CONCLUSION

Due to the emergence of cloud computing, new types of
applications are moving to the cloud. Future cloud applications
will require highly efficient and flexible network support
that complies with typical features of cloud computing. We
introduced our COSCAnet approach that uses a network virtu-
alization on IP level disburdening network support from most
restrictions. It abstracts from many cloud characteristics such
as placement decisions and supports PaaS-like features such
as pay-per-use, elasticity and location transparency. By using
virtualized sockets, cloud users do not have to rewrite their
application in order to benefit from cloud mechanisms. Our
prototype contains router software and preloadable libraries
for Java and C/C++ that could be integrated into existing PaaS
platforms. It shows throughput rates known from native setups
and can overcome typical bottlenecks at load balancers by
using direct server-return techniques. For HTTP applications,
we measure a significantly higher HTTP request rate than in
established cloud setups. Thus, COSCAnet widens the cloud
for new types of applications.

In future work, we plan to extend our solution for sup-
porting live migration of existing TCP connections. Coupled
with existing thread migration approaches [22] we want to
migrate applications with long-term network connections. As
future cloud architectures are expected to support dependabil-
ity, we are also working on extensions for fault-tolerance. In
conjunction with migration support, COSCAnet could provide
TCP connection handover to manage a transparent switch of
computing nodes, e.g. in a replicated setup [23].

7TCP handshake and teardown, protocol header as well as Ethernet check-
sum, preamble, interframe gap and maximum transfer unit are considered.
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