
COSCAnet-FT: transparent network support
for highly available cloud services

Steffen Kächele
Institute of Distributed Systems

Ulm University, Germany
Email: steffen.kaechele@uni-ulm.de

Franz J. Hauck
Institute of Distributed Systems

Ulm University, Germany
Email: franz.hauck@uni-ulm.de

Abstract—More and more applications move to the cloud, even
critical systems that need high availability. In current clouds,
faults can be handled for stateless HTTP applications. Other
protocols and stateful applications cannot be supported. Highly-
available stateful services could use active replication, but it
typically needs client-side code for supporting complex totally-
ordered multicasts. This paper first presents a transport-level
router as a service in the network that transparently multicasts
TCP traffic to actively replicated service instances. Second, it
demonstrates the integration of this concept into a PaaS cloud
as a value-added service to customers so that applications can
be replicated on demand. Finally, an evaluation of our prototype
shows reasonable throughput, latency and recovery time.

I. INTRODUCTION

Today’s cloud platforms provide scaling features that involve
many physical nodes which makes the advent of a failure in
one of them very likely. Although a lot of research has been
done, current cloud platforms still lack comprehensive and
transparent support for fault tolerance. Recent cloud outages,
however, underpin that there is a need for fault-tolerance
mechanisms in the cloud. For high availability, current clouds
have support for stateless services that store state in a shared
backend storage. The service itself can be deployed with mul-
tiple instances on different nodes. A load balancer dispatches
incoming requests among them. In case an instance fails the
load balancer can focus on the remaining instances and the
service remains available. A client, however, may experience
a failed connection, but can proceed after a retry [11].

If faults should be entirely transparent to clients, or applica-
tions are allowed to maintain state, state-of-the-art replication
mechanisms can be used. With passive or primary-backup
replication a client interacts with a primary instance, whereas
additional instances stand by and get more or less state updates.
This is not appropriate for highly available services because it
needs a time-consuming fail-over to another primary in case
of faults. With active replication clients communicate to all
replicas at the same time [12]. For a stateful service, it is
modelled as a set of state machines [15]. Each state machine
gets the same input and executes the same deterministic state
transitions. Thus all replicated state machines come to the
same conclusions and answers to client requests. If one of the
replicas fails others are immediately available to finish current
and future client requests. Unfortunately, most replication
mechanisms need client-side code that cooperates in recov-
ering from faults, addressing the primary or implementing

a totally ordered multicasts to all replicas. Thus, standard
client software, e.g., mail clients and Web browsers, cannot
be used. Besides, there is currently no support for this kind of
replication in standard cloud systems.

The first contribution of this paper is a concept that
implements a transparent and totally ordered group commu-
nication between a client and an actively replicated service,
by multicasting and aggregating an ordinary TCP connection.
Client software and communication stacks do not need to be
changed. Central is a network component, a transport-level
router or router for short. At each replica all data arrives in
the same order and same chunks, so that a deterministic run-
time environment can support the state-machine replication
approach. Such an environment is out of the scope of this
paper, but previous work like the Virtual Nodes Framework,
the deterministic Java suite Dj and deterministic scheduling
could be used [5]. As this router can fail, special care is taken
that its state is kept minimal and can be quickly restored by a
backup component in case of failures.

Our second contribution is an implementation for TCP
named COSCAnet-FT and integrated into our COSCA PaaS
cloud [9], [10]. COSCA offers OSGi-like run-time environ-
ments and supports elasticity and migration of bundles of-
fering OSGi services. COSCAnet-FT supports a value-added
service as ordinary OSGi applications can be transparently
replicated on demand providing high availability. COSCA
already provided replication for stateless applications by its
scalability and load balancing concepts. With COSCAnet-FT
this is extended to actively replicated services that can be
transparently accessed by arbitrary TCP-based protocols, e.g.
IMAP, SMTP, LDAP, RTSP, SIP and HTTP. Also stateless
applications benefit as there are no more connection failures,
even in case of a failure of the router. Finally, this paper
will present a couple of relevant measurements in order to
evaluate our concepts. These show that COSCAnet-FT implies
low overhead, good throughput and fast recovery.

The next section presents the related work. Section III
discusses how to integrate fault-tolerance mechanisms into a
cloud network layer. Before Section V concludes, we evaluate
our approach in Section IV.

II. RELATED WORK

To enable state machine replication a lot of group com-
munication protocols have been published that dependably
deliver messages to a group of replicas in a total order.978-1-4799-5804-7/15/$31.00 c© 2015 IEEE

Defago et al. [4] states about 60 protocols each having its
pros and cons, each implemented on application layer. Thus
a client has to implement the specific protocol required by
the service. This ties client and service together and does
not allow generic clients, e.g. email clients for IMAP servers.
Also an additional session layer [6] on top of TCP requires
software on the client. COSCAnet-FT goes one step further by
transparently integrating totally ordered group communication
into a standard transport level protocol (TCP), an approach
that perfectly matches today’s cloud setups.

FT-TCP [1], ST-TCP [13] and ER-TCP [16] propose
primary-backup architectures. For recovery they use a logger,
but traffic logging may generate a lot of data. HydraNet-
FT [17] provides a replicated primary-backup architecture,
where only the primary responds to the client. To ensure atom-
icity and message ordering, they establish an acknowledgement
channel from backups to the primary. Their implementation
requires modifications on server side of the TCP/IP protocol
and the process management. HydraNet-FT also requires that
server applications be aware of replication (i.e. modified)
and invoke special system calls. Furthermore, they use mes-
sage encapsulation that can slow down the network. T2CP-
AR [2] is designed for active replication but internaly uses a
primary-backup architecture with a significant failover effort.
To intercept traffic on the backup node, they use a broadcast
mechanism on link layer extended by a traffic recorder installed
on the gateway. Both mechanisms lead to an architecture that is
not scalable in large setups and the gateway is a single point
of failure. Although there have been proposed solutions for
fault-tolerant TCP, they all show significant failover behaviour.
COSCAnet-FT in contrast proposes fully active replication for
significantly faster recovery that does not need any checkpoint-
ing, state update or logging.

III. TRANSPORT-LAYER GROUP COMMUNICATION

In this section, we present how we transparently integrate
group communication for active replication on transport layer.
A transport-layer router multicasts and aggregates TCP con-
nections. Eventually this router can be integrated into a scal-
able cloud system. We consider replicas that run self-contained
services and do not store state on a shared medium. Our
failure model is crash-stop. This means that in case of a
failure a replica will no longer participate in client and inter-
replica communication. Furthermore for the network layer it
is no longer relevant what state the replica has; this may even
have diverged from the authoritative state of the life replicas.
Recovery however can take place on higher level, e.g. in
cooperation with a recovery manager on application level.

Before we focus on our approach, we briefly summarise
COSCAnet [11], the network and transport layer mechanisms
of our PaaS cloud COSCA [9]. In COSCA each application
gets an individual virtual IP address. COSCAnet’s network-
and transport-layer router forwards datagrams addressed to a
virtual IP address to the right node. The mapping is main-
tained by COSCAnet so that applications are independent
of the node’s IP address, and thus can even migrate. Nodes
and the network-layer component cooperate so that outbound
datagrams carry the correct sender address. This mechanism is
also used to implement scalability and elasticity by allowing
multiple nodes to host instances of the same application, each

: >
: >

router

OS OS

router

C-FT

SR
cloud

OS

C

Fig. 1. Client-server interaction in COSCAnet-FT.

having the same virtual IP address. The COSCAnet router then
works as a transport-layer load balancer that correctly routes
established TCP connections. Details can be found in [11].

A. Architecture

In a non-replicated setup a client initiates a TCP connection
to a single server, sends requests and receives responses.
State-machine replication and active replication use multiple
simultaneously working replicas to tolerate faults. Instead of a
typical group communication protocol, COSCAnet-FT imple-
ments a transparent multicast TCP connection with multiple
replicas. Server-side code is supposed to look like standard
server code using TCP sockets. Socket access, however, is
intercepted and managed by COSCAnet-FT, whereas the client
side is completely unchanged. We currently consider only
client-initiated TCP connections as they are used for most
server applications. We further assume that behind the server-
side sockets there is either an application with a deterministic
behaviour or a run-time environment that takes care that in case
of no failures all replicas will do exactly the same execution
and invoke the same operations with the same data at the
sockets in use. This part is outside of the scope of this paper,
but is addressed for example in [5].

A totally-ordered multicast based on TCP as described
above could be implemented either on client side, server side,
in-between (i.e. in the network), or by a combination of these.
As client-side should be unaware and server-side only is not
dependable enough, COSCAnet-FT is based on mechanisms
inside the network combined with some server-side help.
Like COSCAnet, the COSCAnet-FT architecture introduces
a transport- and network-layer router (in the following called
router for short) that takes care of client-side transparency and
the group-communication semantics (cf. Fig. 1).

TCP connections could end in the router and the router
could have its own communication with the replicas. This
approach is what is used in current TCP-level load balancers,
e.g. HAproxy. Towards replicas we could even use a special
protocol, as with server-side help the application endpoint
could still look like an ordinary socket. Terminating and
proxying of connections, however, introduces another single
point of failure in the network. When the proxy crashes, the
previous connection endpoint is no longer available and may
sent confusing ICMP or transport layer packets during the
crash. Instead, COSCAnet-FT uses standard TCP on client and
server side, the router just forwards datagrams. On the replica
side we use an almost standard operating system but intercept
socket access to cooperate with the router. Beside replicating
server instances, the router can also be replicated to achieve
high availability. We will discuss this later in Sections III-C
and III-D. With COSCAnet-FT, similar to COSCAnet, each
replica has the same virtual IP address that serves as identifier
for the entire group, making life easier for the router.

B. TCP-based totally-ordered multicast

Totally ordered multicast is typically defined for particular
messages sent to a group. Communication has to ensure three
properties (rephrased from [7], [3]): (i) If a message m is
delivered to one replica, then all correct replicas eventually
get m. (ii) For any message m, every replica gets m at most
once, and only if m was previously sent by a client. (iii) If
replica r1 and r2 both get message m and m′, then r1 gets m
before m′, if and only if r2 gets m before m′.

Totally-ordered multicast with TCP could be implemented
by multicasting each individual segment to the replicas. How-
ever, this has serious performance drawbacks, as data can only
be delivered to application or sockets respectively when all
other correct replicas will deliver this data too. That is why
COSCAnet-FT heavily optimises multicasting by exploiting
inherent properties of TCP. In principle COSCAnet-FT has
to achieve the following four properties: (i) TCP connection
requests from clients have to be delivered to all correct replicas
in the same order, so that determinism at replicas can be
achieved. If one correct replica cannot accept the connection
none of the correct replicas shall accept it. (ii) Incoming data
chunks have to be delivered to all correct replicas. As TCP
is stream-oriented and reliable all correct replicas will get the
same data in the same order. However, the stream data have to
be delivered in the same chunks at all replicas, even though the
network may deliver the data in different portions (fragmented,
combined or scattered). (iii) Outgoing data chunks should be
consistent even when coming from all replicas. Outgoing data
is supposed to be deterministic by assumption. For our failure
model it is even possible to immediately forward the first
outbound data chunk to the client. This helps to maintain
performance. (iv) Closing the connection is supposed to be
deterministic. All replicas will close the connection at the
same connection state. A closing request from the client is
multicasted to all replicas in the same way as data.

On a technical level, COSCAnet-FT has to maintain these
properties by considering all possible situations on the TCP-
layer without compromising determinism and without intro-
ducing additional faults. Special care has to be taken for
handling TCP ACK and RST messages and the case the
client is entirely disconnected. The following sub-sections will
address this issue and describe the details of COSCAnet-FT.

C. Multicast routing, inbound data

COSCAnet-FT extends a NAT-based routing, having a map-
ping for each replica. Network traffic, i.e. IP datagrams, to a
particular service is forwared to all of its replica processes pi
by the router. This packet replication is transparent to transport
protocols (e.g. TCP). We first concentrate on data forwarding
whereas connection establishment is handled in Section III-E.

In order to preserve determinism when using replication, a
group communication has to ensure that input on all replicas
is exactly the same. Mapped to TCP streams, all segments
have to arrive in the same order, be delivered in the same
chunks to the application and must be reliably forwarded to
the replicas. TCP already takes care of message ordering with
the use of sequence numbers which also works in a replicated
setup. However, applications on different replicas may receive
a different amount of data as result of a single read-call. This

may happen when seg1 arrives earlier than seg0 on a replica.
Due to ordering, a read call on this replica may return the
content of both segments. For deterministic read-calls, we
return at exactly a single segment at once for a single read.
Replicas record the size of incoming segments for that purpose.

TCP uses acknowledgements and re-transmissions on trans-
port level for a reliable data transport. Thus, best effort trans-
mission on lower layer is sufficient for reliable transmission of
streams. COSCAnet-FT basically exploits this property by just
multicasting incoming segments to all replicas. With regard
to transmission errors, the connection between a client and
multiple replicas has two different sections. The link (c, r)
directly influences all replicas and thus can behave as a usual
best effort link that may drop packets. The links (r, pi) in
contrast have to provide guarantees for packet delivery. Both
lost and reordered packets between the router and the replicas
potentially lead to non-determinism, because input will be no
longer the same for each process (pi). This directly influences
handling of TCP acknowledgement messages of replicas. In
principle the router could forward the first ACK, but then
has to make sure that all other replicas can certainly get all
data without the help of the client. This would require to
store segments in the router that are not yet acknowledged by
all replicas. In order to keep router state minimal ACKs are
collected from replicas and only forwarded when all replicas
have acknowledged the same incoming data. This ensures that
we can use the TCP re-transmission mechanism to ensure that
all replicas get all segments. Naive usage can, however, lead to
non-determinism, because TCP can repackage segments on re-
transmission. In the unlikely case of a lost segment on the link
(r, pi), replicas can get segments in different length, leading
to inconsistency. Our router thus stores the length of segments
sent by c until they have been acknowledged by pi∀i and can
repackages them if there is a discrepancy on re-transmission.

A bigger issue for determinism is a client crash. Even in
the case of an abnormal connection termination, COSCAnet-
FT has to take care that each replica has read the same
amount of data before the connection termination will be
forwarded to application level. When not all replicas had
received the full amount of data (e.g. in the unlikely case of
lost segments on (p, ri)) and the client crashes, the replicas
will remain in different states. Via acknowledgements, the
router can determine if all replicas have received the same
amount of data. To come over the discrepancy, all replicas
will save received segments for a certain time period. The
router can recover data from one replica and transfer it to
another. Thus, all replicas can be update to the same state
before the connection terminates. To keep segment caching to
a minimum, the router periodically sends cleanup messages.

Some of the mechanisms described in this section, cause
state in the router which will be lost during a crash. This
applies for the position in the stream to which replicas have
acknowledged segments and the segmentation of the messages
stream in the direction of the replicas. We run a daemon on the
replicas where a new router instance can collect information
about the current state during initialisation.

D. Traffic aggregation, outbound data

For outbound data the link (pi, c) can be considered as a many
to one mapping. A strategy to aggregate data is to wait for all

replicas before sending data to the client. A single replica,
however, can significantly slow down the whole connection
when it has performance issues. Even worse, when a replicas
crashes data communication gets stopped until the crash has
been detected and the replica has been removed from the
replica group. Such a behaviour contradicts our intention to
support highly available services. As we use a deterministic
execution of replica processes we can forward data as soon
as we receive it from one replica. Duplicate data of further
replicas, will be detected and filtered by the client stack,
but to avoid unnecessary data transfer the router takes care
that each data is only transferred once. A side effect of this
strategy is that the router has to deal with replicas that are in a
previous state. In particular this applies for acknowledgements
sent by the client. The router has to ensure that it forwards
acknowledgements only to those replica that already sent the
respective data. The router therefore saves the stream position
of any replica and modifies acknowledgement numbers to
match the current state of the replicas. As the information for
the position in the message stream will get lost due to a crash
on the router, the router can fetch the current stream position
(seq(pi)) after a reboot from the respective replica instance.

During a client crash its stack may either send FIN (appli-
cation terminated), RST (unexpected reboot) or no message at
all (system freeze). For client consistency it is important that
all replicas have sent and received the same data before the
connection terminates. The router takes care that all replicas
will receive the stream until the same position, and broadcasts
the position up to which each replica has to write to before it
can signal a connection abort to its application.

To implement congestion control, TCP uses a sliding
window mechanism. In a replicated setup advertised windows
of clients can be simply replicated to the replicas, but the
windows of replicas have to be aggregated. The router saves
the window size last seen of each replica. When an acknowl-
edgement is sent to the client, the window is set to the smallest
value collected from the replicas. Similar to the information
belonging to the position in the message stream, window size
(rcvwin(pi)) of the replicas are affected during a crash and
can be recovered from the replicas by the new router instance.

TCP uses timestamps for congestion control and for pro-
tection against sequence number wrap around [8]. On each
TCP segment, an endpoint adds its local timestamp and
replies the timestamp last received from the remote side. TCP
timestamps are required to be monotonically increasing, but in
a scenario with multiple replicas, the mix of timestamps from
different replicas may highly confuse the client. As timestamp
synchronisation across replicas is very complex, we unify the
timestamps on the router. Before sending segments to a client,
we replace the original timestamp with a timestamp of the
router giving the client a basis independent of the replicas. As
the client will then use the timestamp of the router in its echo
reply, we also adapt echo reply timestamps before forwarding
them to the replicas. During router recovery of a crashed
router, a new instance has to take care that forwarded segments
include monotonically increasing timestamps. Otherwise, the
client will drop them. The router can extract timestamps of a
connection of incoming segment. If the router has to forward
segments before it gets incoming segments, it can temporarily
remove timestamps until it learns them from the client.

Due to consolidation introduced in this section, the router
can use a passive failure detection. The router can remove non-
responding replicas. Also FIN and RST segments from only
one replica are an evidence for a crash.

E. Connection establishment and modification of FT groups

Security features of TCP such as random starting sequence
numbers hinder a straightforward establishment of a TCP
connection with multiple replicas. During connection setup,
our router intercepts SYN segments being sent from the client
and assigns additional information to the segments such as the
initial sequence number. The replicas use this information to
alter the TCP stack after connection setup. Before forwarding
the SYN-ACK to the client, the router waits for all replicas
sending a SYN-ACK. The following connection flow can be
proceeded as usual. When a replica does not respond, the client
will thus repeat the SYN which will be patched by the router
with the same sequence number. After n re-transmissions
without an answer the router will treat a replica as crashed
and remove it from the replica group. During connection setup,
the router has state, namely the sequence number determined
for an established connection, but the router can recover this
information from the replicas. An additional socket replication
mechanisms allows adding replicas to an existing connection.

IV. IMPLEMENTATION AND EVALUATION

In our evaluation, we use four commodity Pentium E5300 ma-
chines (m1...m4) with 4 GB RAM all connected via a gigabit
network. The replias m2 to m4 run the server application. m1

runs as router with two network interface cards connecting the
internal network with the outside. Similar to COSCAnet [11]
it uses virtual addresses to address applications. A netfilter
module implements our extended NAT routing technique. For
replacement of timestamps and acknowledgement numbers,
the module includes optimized routines for differential TCP
checksum calculations. For a deterministic data delivery to
server applications, a netfilter module on the replicas records
the size of incoming TCP segments. A middleware intercepts
read-calls from user space and returns exactly the amount of
one IP packet on a single read. An additional kernel modul
supports the manual set up of TCP connections. We use four
different setups. Native represents a standard setup where the
client directly connects to a single replica via a gigabit Ethernet
switch. The NAT/n setups use our replicated server architecture
with n replicas. NAT/1 does not add fault tolerance. We use it
to measures the overhead of introducing a NAT router. NAT/2
and NAT/3 measure the overhead of replication using two and
three server replicas. We call these configurations LAN setups.
We also use WAN setups where the client connects via the
Internet. In these setups the client is connected via a DOCSIS 3
connection with 32 Mbps downlink and 1 Mbps uplink. Round
trip time between client and the NAT router is about 10 ms.

In our latency experiment we use the lat tcp test of
the lmbench suite 3.0a [14]. We run its echo server on our
replicas. After a warmup, we measure the round trip time of
an 1 byte payload data using TCP. A single lat tcp run uses
700 echo replies to determine the average round trip time.
We use multiple iterations and use the average of 50 runs of
lat tcp (cf. Table I). The test does neither include connection
establishment nor tear down. In the native setup, we measure

TABLE I. LATENCY FOR IN REPLICATED CONNECTION

experiment setup latency overhead

latency (LAN) native 0.0999 ms ± 0.0473 –
NAT/1 0.1996 ms ± 0.0406 99.8%
NAT/2 0.1997 ms ± 0.0806 99.9%
NAT/3 0.2000 ms ± 0.0698 100.1%

latency (WAN) native 10.428 ms ± 356.301 –
NAT/1 10.532 ms ± 180.664 1.0%
NAT/2 10.556 ms ± 306.161 1.2%
NAT/3 10.638 ms ± 284.742 2.0%

a latency of 0.1 ms. We explored that just adding an additional
switch significantly increases latency. The use of a NAT router
(i.e. NAT/1) doubles latency (0.2 ms) due to an additional
hop. Adding further replicas to the architecture only adds a
marginal overhead (100-200 ns) since replicas can process
requests in parallel. We observe that the overhead of adding
a NAT infrastructure (99.8 %) in a LAN setup is quite high.
In cloud computing settings, however, WAN setups are more
likely, where we measure an overhead between 1 and 2%.
Replication does not add significant overhead in those setups.

In our throughput experiment, we download a 10 MB
file from a web server and measure the time the download
takes including connection establishment and tear down (cf.
Table II). In the fail free period, the native setup can saturate a
1 Gbit/s link (100 %). We calculate further experiments relative
to it. In the NAT setup, throughput decreases to 97.5 %. Adding
an additional replica to the architecture decreases throughput
to 49.8 %. The main reason is a bottleneck at the internal
network connecting the router with the replicas. The router
has to receive and aggregate the output of n replicas until
it can forward it to the client. Thus, the internal network
has be n times faster than the connection to the client. As
a consequence, throughput decreases to 32.6% in NAT/3. To
overcome the bottleneck in the internal network a 10 Gbit/s
network can be used. This situation however is mostly given
in a WAN setup. Table II shows that we were able to almost
saturate the client connection in all WAN settings. In the
second part of the experiment, we simulate a crashed replica
during transfer. We disconnect the network cable of the first
replica instantly after starting the download. Thus, after about
5 MB transferred data, the first replica will no longer be
available. In contrast to the experiments done before, we only
use one test run per setup. We further skip the native setup and
NAT/1 because they do not provide fault tolerance. For NAT/2
and NAT/3, we see that in a crashed situation throughput is
higher than in a fail free period. The reason it the switch from
NAT/2 to NAT/1 and NAT/3 to NAT/2 respectively that reduces
the traffic on the internal network interface.

V. CONCLUSION

We presented an approach to transparently integrate group
communication for active replication on transport layer. A
special router maps addresses and multicasts TCP segments to
a group of replicas. Replicas can be added and removed at any
time. Our prototype is implemented as value-added service that
may be integrated into future PaaS clouds so that applications
can be replicated on demand. Our evaluation shows reasonable
throughput and latency during fail-free periods. In order to
saturate client connections, however, active replicas require a
fast backend network. Currently, COSCAnet-FT only supports

TABLE II. DATA TRANSFER OF 10 MB

experiment setup bandwidth per cent

fail free (LAN) native 109.7 MB/s ± 1.6 100 %
NAT/1 107.0 MB/s ± 0.9 97.5 %
NAT/2 54.61 MB/s ± 1.7 49.8 %
NAT/3 35.76 MB/s ± 2.5 32.6 %

fail free (WAN) native 4.00 MB/s ± 0.02 100 %
NAT/1 3.97 MB/s ± 0.03 99.5 %
NAT/2 3.98 MB/s ± 0.07 99.6 %
NAT/3 3.98 MB/s ± 0.03 99.5 %

crashed (LAN) NAT/2 74.4 MB/s 67.8 %
NAT/3 45.9 MB/s 41.8 %

TCP but we work on extending it to other transport protocols.
We also plan to compare content and thus extend our solution
to cope with and detect Byzantine Faults. It may even be
extended by support for scalability.

REFERENCES

[1] Alvisi et al. Wrapping server-side TCP to mask connection failures. In
Proc. of the 20th Ann. Joint Conf. of the IEEE Comp. and Comm. Soc.,
volume 1 of INFOCOM, pages 329–337. IEEE, 2001.

[2] N. Ayari, D. Barbaron, Laurent Lefevre, and P. Primet. T2cp-ar: A
system for transparent tcp active replication. In 21st Int. Conf. on Adv.
Inf. Net. and App., AINA, pages 648–655, 2007.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, March 1996.

[4] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comp. Surv., 36(4):372–421,
2004.

[5] J. Domaschka. A Comprehensive and Flexible Approach to Transparent
Replication of Java Services and Applications. Dissertation, Fak. für
Ingenieurwiss. und Inf., Universität Ulm, August 2012.

[6] R. Ekwall, P. Urban, and A. Schiper. Robust TCP connections for fault-
tolerant computing. In Proc. of the 9th Int. Conf. on Par. and Distrib.
Sys., pages 501–508, 2002.

[7] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Ithaca, USA, 1994.

[8] V. Jacobson, R. Braden, and D. Borman. RFC1323: TCP extensions
for high performance, May 1992.

[9] S. Kächele, J. Domaschka, and F. J. Hauck. COSCA: an easy-to-use
component-based PaaS cloud system for common applications. In Proc.
of the First Int. Workshop on Cloud Comp. Platf., CloudCP, pages 4:1–
4:6. ACM, 2011.

[10] S. Kächele and F. J. Hauck. Component-based scalability for cloud
applications. In Proc. of the 3rd Int. Worksh. on Cloud Data and Platf.,
CloudDP, pages 19–24. ACM, 2013.

[11] S. Kächele and F. J. Hauck. COSCAnet: virtualized sockets for scalable
and flexible PaaS applications. In Proc. of the 6th IEEE/ACM Int. Conf.
Utility and Cloud Computing, UCC. IEEE, 2013.

[12] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[13] M. Marwah, S. Mishra, and C. Fetzer. Tcp server fault tolerance using
connection migration to a backup server. In Proc. of the Int. Conf. on
Dep. Sys. and Netw., DSN, pages 373–382. IEEE, 2003.

[14] L. W McVoy and C. Staelin. lmbench: Portable tools for performance
analysis. In USENIX Ann. Techn. Conf., pages 279–294. CA, 1996.

[15] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comp. Surv., 22(4):299–319, 1990.

[16] Z. Shao, H. Jin, B. Cheng, and W. Jiang. ER-TCP: An efficient fault-
tolerance scheme for TCP connections. In Parallel and Distr. Process.
and Appl., volume 3758 of LNCS, pages 139–149. Springer, 2005.

[17] G. Shenoy, S. K. Satapati, and R. Bettati. Hydranet-ft: Network support
for dependable services. In Proc. of the The 20th Int. Conf. on Distr.
Comp. Sys., ICDCS, pages 699–, DC, 2000. IEEE.

