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Abstract—Elasticity is a key feature of current cloud com-
puting platforms. Dependent on their demand tenants can dy-
namically scale up and down their applications. To increase their
revenue, cloud providers are used to over-provision their clusters,
but they still have to reserve capacity to avoid that services
get unresponsive and cause SLO violation during bursts. In this
paper, we propose CLOUDFARM, a PaaS architecture with an
adaptive SLO-based resource management mechanism. It intro-
duces new flexible SLAs backed with a respective development
model and management interface for end-user services. According
to their SLAs and the price tenants pay, services can be selectively
downgraded to overcome short-term peaks, e.g. while preparing
for scale-out. Providers can deploy services optimistically and
thus maximize their data center utilization and revenue.

I. INTRODUCTION

With cloud computing, many unrelated applications of differ-
ent tenants run on a shared third-party infrastructure. Applica-
tions can exploit elasticity, i.e. they can additionally demand or
release resources. Technically this requires a cloud provider to
measure current and to estimate future workloads of applica-
tions. When resources are allocated to applications too lavishly
the provider wastes potential profits, since spare resources can
be further leased. However, when resources are not sufficient
during unexpected bursts (i.e. due to breaking news), services
may become unresponsive. As there is no perfect estimator
that predicts future workloads, cloud providers are currently
obliged to reserve spare capacity for services, in the hope that
they can handle spikes and bursts caused by unusual events.
Spare capacity on both their nodes and in their cluster as a
whole, however, hinders providers to fully utilize their clusters.

In this paper, we present a new SLO-based resource
management for cloud platforms. Dependent on the price a
tenant pays, a new set of SLOs allows that applications and
services run degraded for a limited time period. For tenants
these SLOs are obviously cheaper. Providers in contrary get
a possibility to bridge short-time peaks or to prepare for fur-
ther provisioning (e.g. scale-out, migration) causing additional
start-up time when a burst persists. We propose an application
model in which applications have different modes. Each mode
provides a different QoS level and consumes different amount
of resources. Our integrated resource scheduler executes ap-
plications in adequate modes to fully utilize computing nodes
but also avoids overload situations. It distributes resources
adaptively dependent on the SLAs customers have contracted
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with the provider and the actual application behavior. In our
approach, we use priority-driven capacity reservation and shar-
ing mechanisms known from soft real-time theory. Customers’
applications with expensive contracts will be degraded rarely,
whereas cheaper contracts are used to balance spikes. The
contribution of this paper is twofold: (i) We introduce a real-
time–based resource management for PaaS platforms. (ii) In
combination with a new set of SLOs we propose an algorithm
to overcome short-time workload peaks. Providers thus can
over-provision resources even more since now they have the
means to balance bottleneck situations very quickly.

The remainder of this paper is organized as follows: Before
Section III introduces CLOUDFARM, Section II provides the
background about the technology we use. Section IV presents
related work. Finally, we conclude in Section V.

II. BACKGROUND

Within our CLOUDFARM architecture, we use OSGi as a
component-based application model that we extend by both
resource management and cloud features.

Initially, OSGi supports software components (i.e. bundles)
and manages their life-cycle using a standardized model [18].
Bundles can be installed, updated, and removed at runtime
without needing to restart the entire platform. Thus, the OSGi
operation model perfectly matches long running server applica-
tions that should remain reconfigurable and updatable. Bundles
can contain libraries, applications or services which can be
shared along with other components. A central service registry
allows for service provisioning while code dependencies are
transparently managed by the platform.

A. COSCA

COSCA [11] is our Java-based PaaS platform that can host
multiple OSGi-based applications on shared third-party hard-
ware. For deployment and management, it supports a concept
of applications that are composed of multiple bundles. As
deploying unrelated applications on a single node requires
separation, the COSCA platform provides isolated OSGi-like
environments for each application, so called Virtual Frame-
works (VF). These are very lightweight and aware of the
mapping of bundles to applications (i.e. they only wire bundles
of the same application). Since multiple frameworks can run in
the same JVM, creating a VF generates a very low footprint.
COSCA can thus host multiple applications on a single host
without using an additional IaaS layer that causes further



overhead. To separate applications, the platform uses different
approaches on both module and service layers.

COSCA frameworks on multiple nodes form a distributed
PaaS system. It is the distributed character and the fact that
applications can be split across multiple COSCA instances that
enables the platform to handle applications whose hardware
requirements exceed the resources of one physical node, e.g.,
when the node does not have enough memory. This allows
us to address fine-grained load balancing and scalability on
component level [12]. For that purpose a COSCA application
does not consist only of a set of OSGi bundles, but includes a
detailed application description. This specifies an application
address, firewall settings and stickiness settings for network
routing. It can link system services such as a (distributed) file
system and configure mount points and number of file system
replicas. The deployment descriptor can also influence scaling
behavior of single components. For on-demand configuration,
a web interface assists in automatically creating and altering
application descriptors.

During deployment of an application, COSCA analyses
interdependencies between bundles and clusters them in a
way that the coupling between clusters is minimized. When
two components share code directly on module-level aside
of service calls, COSCA treats them as one unit during
distribution. For stateful components, COSCA has stickiness
interaction policies. In particular, different clusters are not
allowed to have shared state, but have to interact solely through
services. Each cluster is then deployed widely independent
from other clusters.

B. ARTOS

ARTOS [17] extends OSGi with a resource-centric runtime
model which allows fine-grained planning and distribution of
computational capacities. Its goal is to investigate scheduling
and adaptation mechanisms for platforms that have to cope
with a dynamic set of unknown applications. Our prototype
supports applications with soft real-time requirements and
uses RTSJ.1 Fig. 1 depicts our framework architecture. Beside
support for traditional OSGi bundles, the framework provides
a special model for applications that are subject to the ARTOS
resource management. Our model allows a platform-controlled
adaptation on application level to accomplish optimal resource
provisioning and application runtime performance. This is
essential especially for overload situations where resources
have to be traded in a deliberate and fine-grained manner. Fur-
thermore, ARTOS observes long-term behavior of applications,
in order to suppress recurring resource reconfigurations caused
by cyclic computational bursts for example.

a) ARTOS application model: The primary aspect of
ARTOS is that applications support multiple predefined op-
erating modes with different computational complexity and
resource consumption. In fact, we assume that at any time
there is a dynamic set of n concurrently running applications
A1, A2, ..., An and for each application Ai there is a set of
modes Mi,1,Mi,2, ...,Mi,mi

∈ Mi. Each application further
consists of a set of tasks which may also implement different
modes (e.g. with different periods, deadlines and costs). In that
manner, an application mode manifests as a configuration of
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Fig. 2: ARTOS Scheduling Model

task modes which can be switched dynamically. In general, a
higher application mode has a higher demand of computational
resources Ri,j (e.g. CPU costs) but therein the application
delivers a better quality — e.g. a better resolution of a video
codec or a higher amount of information provided by a web-
site. The delivered quality is formalized by application-specific
utility functions Ui(Mi,j) given by the application developers.
Each function is normalized as a relation of quality benefits
between the different application modes. Each application Ai

contains a mode Mi,0 with Ri,0 = 0 and Ui(Mi,0) = 0 which
corresponds to the application being temporarily stopped.2
Adding such a mode ensures that there is always an optimal
resource distribution. For further discussion on conceptual and
technical mechanisms for the realization of operating modes,
we refer to [17]. Furthermore, applications can be weighted
by users or the framework itself with an importance factor
ai. These factors affect most obviously each applications
prominence during the resource distribution process.

b) ARTOS resource management model: ARTOS in-
volves a three-stage hierarchical scheduling model, which
is depicted in Figure 2. An application-local Task-Scheduler
activates tasks3 via a sophisticated priority shifting mechanism
implementing an Earliest Deadline First (EDF) policy. The
Task-Scheduler monitors tasks’ actual costs and gathers sta-
tistical information about their execution, e.g. jitter, deviation,
burst occurrence and potential burst cycles. This information
is then fed to a higher-level Application-Scheduler.

2Application tasks are blocked in a consistent state with infinite deadlines.
3Currently we assume periodic tasks, but aperiodic tasks can be handled

too by the use of periodic execution servers (e.g. deferrable servers).



Each separate application is encapsulated by a Constant
Bandwidth Server (CBS) [2] and thereby isolated from all
other applications. A CBS emulates a virtual CPU with lower
speed that serves a set of tasks. In ARTOS each CBS (applica-
tion) receives a fraction Bi,j (bandwidth) of global resources
corresponding to the currently estimated demands of the hosted
tasks for a certain interval of time Pi,j (server period). The
server period is computed as the super-period (lcm) of tasks
periods for the currently active application mode. Accordingly,
the bandwidth is computed as Bi,j = Ri,j/Pi,j , i.e. the
interpolated and aggregated task costs per server period. Given
a particular CBS bandwidth and the estimated task costs we are
able to perform application-local feasibility analysis based on a
(virtual) processor demand estimation within Pi,j . In this way,
the platform can even detect unfulfillable requirements of the
tasks and cancel the respective application mode if required.

The Application Scheduler activates the CBS according to
their server periods following again an EDF policy. When the
reserved budget of a CBS is exhausted, the server is preempted
giving room for servers that still have capacities. On this way,
bottlenecks are kept localized to their origins and do not affect
unrelated applications. However, inflating applications are not
condemned to immediately suffer from weaker performance.
When reserved budgets are not consumed, spare resources are
automatically reallocated to current hot spots by a capacity
sharing mechanism (CASH) [6]. Moreover, CASH delays
coarse-grained reconfigurations until total resource exhaustion.

In case of a permanent overload condition, sharing spare
capacities is not sufficient. A System-Scheduler has to compute
a new global resource distribution. For a given set of applica-
tions and their finite sets of modes, we establish the resource
distribution by merely identifying the optimal configuration of
active application modes according to their estimated band-
width requirements Bi,j . In extreme cases, ARTOS may even
deactivate applications. This can be described as an optimiza-
tion problem which aims to maximize the gained utility so
that the total system resource boundary R is preserved. The
problem statement [17] is generally summarized as:

Find a selection J = {M1,j1 ,M2,j2 , ...,Mn,jn},
maximizing

∑n
i=1 ai ·Ui(Mi,ji) ,

subject to
∑n

i=1Bi,ji ≤ R.

Our actual knapsack-based solution is independent of the
nature of the utility functions and always calculates an optimal
solution in a single run. At each iteration step the algorithm
recurs over every feasible combination of modes (including the
zero-modes Mi,0) and chooses a partial solution with maximal
utility for the next step. The complexity of the entire solution
depends on the number of applications and their modes.

Two tables, u and J, are used as data structures for
the computation. For i ∈ {1, 2, ..., n}, r ∈ {0, 1, ..., R} and
Mi,ji ∈Mi let

u(i, r) =
∑n

i=1
ai ·Ui(Mi,ji)) (1)

denote the maximum utility such that
B1,j1 +B2,j2 + . . .+Bi,ji ≤ r. Let further

J(i, r) = {M1,j1 ,M2,j2 , ...,Mi,ji} (2)

be an optimal selection satisfying the given constraints. Table
u(i, r) vividly contains the maximum possible utility for the
first i applications and a total system resource boundary of r,
as J(i, r) holds the selection which led to the gained maximum
utility.

The tables are initialized with u(0, r) = 0 and
J(0, r) = ∅ for all r = 0, 1, ..., R. For i ∈ {1, 2, ..., n}
and r ∈ {0, 1, ..., R} the following recursion applies:

u(i, r) = max
Mi,j∈Mi

{u(i− 1, r −Bi,j) + ai ·Ui(Mi,j)} (3)

while with

J(i, r) = J(i− 1, r −Bi,j) ∪ {Mi,j} (4)

an optimum realizing selection is given. Checking if r −Bi,j

is non-negative and therefore still resides within the tables
ensures observation of the constraint

∑n
i=1Bi,ji ≤ R. This

definition allows for the formulation of the algorithm in pseudo
code (see Algorithm 1).

Algorithm 1 OPTIMIZATION ALGORITHM

1: for r = 0→ R do
2: u[0][r]← 0, J [0][r]← ∅
3: end for
4: for i = 1→ n do
5: u[i][0]← 0
6: for r = 1→ R do
7: max← 0
8: for Mi,j ∈Mi do
9: b← u[i− 1][r −Bi,j ] + ai ·Ui(Mi,j)

10: if b > max then
11: max← b
12: J [i][r]← J [i− 1][r −Bi,j ] ∪ {Mi,j}
13: end if
14: end for
15: u[i][r]← max
16: end for
17: end for
18: return J [n][R]

In our experiments we used precomputed utility values for
application modes, which were normalized and delivered all
at once to the optimization algorithm. On this way, no further
invocations of Ui(Mi,ji) were necessary during optimization.

As the knapsack problem is known to be NP-complete, no
algorithm which computes the exact solution can be expected
to run in polynomial time. However, dynamic programming
provides a pseudo-polynomial time algorithm. Since the num-
ber of computed values in u(i, r) is n ∗ (R + 1) and for
every entry there are at most mmax = maxi∈{1,2,..,n}{|Mi|}
modes, the described algorithm runs in pseudo-polynomial
time. However, if all involved numerical values are kept within
reasonable ranges, this should not constitute a serious problem.
For example, the value denoting the total system resource
boundary R can be set to any non-negative integer value. It is
obviously beneficial for the computing time to keep R — and
therefore the resource requirements Bi,j for the modes of the
applications — small. The increase of computing time with a
larger R was evaluated in [17].
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Figure 3 depicts the function of the System-Scheduler in a
feedback loop which periodically observes the current resource
distribution and workload in the platform. In certain situations,
when total available resources R are overstrained or the
platform configuration changes—e.g. due to modified user
preferences, application arrival and departure, available spare
capacities for potential higher modes—the System-Scheduler
may decide to compute a new modes configuration. This is
done by solving the previously described problem online via
the knapsack-based algorithm. The result of the optimization
is the selection of operating modes J to which applications
have to be dynamically switched following an activation policy.
Conversely, if the platform has spare resources Rslack = R−∑n

i=1Bi,ji , the System-Scheduler examines the applications
for potential modes Mi,j ∈ Mi with a higher utility and
resource demands that will fit into Rslack. As any “better”
mode will be automatically considered by the optimization
algorithm, the System-Scheduler merely has to recompute a
new optimal configuration J in order to exploit the slack.

c) Implications: Our proposed application management
model enables an optimal resource distribution which produces
the best possible overall quality in the platform with respect to
available resources and actual demands. Especially in overload
conditions applications can be degraded pro-actively and in a
controlled manner to fit to the platforms available resources.
Giving the platform enough space to calibrate its scheduling
parameters according to theory deadline misses can be avoided.
In reality tasks jitter and the system has to dynamically
adapt to it. When for example a new application is activated
its demands are first approximated. Thereby, the platform
selectively activates different application modes Mi,j until they
are estimated well enough, but this may even be delayed if
bottlenecks occur. A good estimation means for example that
the deviation of the estimated task costs converges to a stable
value which covers a desired amount actual task costs plus a
dynamic jitter-dependent security buffer (see [17]). After initial
approximation a new optimal configuration is realized in the
platform with the gathered knowledge.

ARTOS involves several approximation mechanisms for
applications resource demands, e.g. exponential smoothing,
standard deviation or a quantile applied for the measured task
costs, each of them defining a set of peculiar parameters.
Adjustments of these factors have intense implications on the
approximation quality with respect to jitter sensitivity, adap-
tation speed, burst detection etc. Since cost approximations
directly affect resource reservations they strongly impact on the
overall system performance. The online trade-off between the
several approximation results needs to be examined in future
work. However, the important point is that any of the used
techniques tries to cover a certain percentage of tasks measured
costs in order to detect changing or abnormal application
behaviour. The latter denotes a hint for the potential need of
a system reconfiguration.

(a) hypervisor-based (b) CLOUDFARM

Fig. 4: Resource Management

III. CLOUDFARM’S RESOURCE MANAGEMENT

CLOUDFARM combines aspects of ARTOS and COSCA
allowing us to increase the utilization of cloud-computing
nodes. The use of mechanisms known from soft–real-time
systems helps us in both, monitoring and controlling resources
of cloud applications.

a) Framework Model: Application encapsulation using
VMs provides a coarse-grained approximation of different
application profiles purposed to meet applications’ dynamic
resource demands and requirements (c.f. Fig. 4a). Unlike a
hypervisor-based approach, CLOUDFARM introduces a fur-
ther abstraction level by using Virtual Frameworks for each
application (c.f. Fig. 4b). Such a deployment provides two
major advantages. First, it is very lightweight compared to
a typical virtual machine approach and thus provides us the
necessary flexibility for fast reconfigurations. Second, due to a
PaaS set-up, it provides the possibility to involve applications
during degradation (e.g. by switching the video codec). In
our architecture, from the resource scheduling point of view,
VFs are entities subjected to resource reservations and have
multiple modes Mi,j , just like ARTOS applications (see Sec-
tion II-B). Thus, we can automatically monitor and control
resource reservations on VF granularity. When the platform
detects a bottleneck, we can use two strategies to overcome
short-term peaks. (i) Our component-based approach enables
rewiring of components and can thus select a component with
lower resources consumption. (ii) Alternatively, we can also
switch execution mode of a single component on degradation.
In the latter, only one or more key components have to support
execution modes influencing the whole application. We also
propagate decisions from the bottom resource management
layer to the application as events to give the opportunity to
perform further platform reconfiguration if necessary. Fur-
thermore, the resource management mechanisms in CLOUD-
FARM adopts merely the one of ARTOS as described in
Section II-B.

b) SLOs Metrics and Mappings: SLOs are part to
Service Level Agreements (SLAs) and name objectively mea-
surable conditions for services such as system response time
and availability. When monitoring resources, cloud platforms
typically use metrics from the operating system to determine
node workload (CPU load in percent, length of run queue,
etc.). These are, however, coarse-grained average values for a
given time period without the guarantee that the provider does
not violate SLAs during spikes. To our best knowledge there is
no reliable and standardized mapping between (SLO-defined)
cloud-metrics (e.g. availability and response time) and runtime
parameters of the underlying platform. First of all, such map-



pings are application and platform specific, i.e. a mere increase
of global resources does not necessarily lead to a reliable in-
crease of application performance and SLO-conformity. Even
with a higher amount of available resources their distribution
still establishes in an uncontrolled and unpredictable best-effort
manner [4]. Second, cloud platforms lack abstract definitions
of execution and performance models on application and
system-level respectively. There is no way for the system to
determine if an intervention, e.g. a resource reconfiguration,
gains a positive effect on application performance, let alone to
control that effect in a fine-grained manner for occurring hot-
spots. With our proposed resource-management approach for
CLOUDFARM we fill that gap through a further abstraction
level and metrics. It gives cloud providers the opportunity to
(prematurely) react on and control SLO-violations. Thus, a
provider is able to optimize its resource utilization and costs for
individual compute nodes and the overall data center as well.
In the following we will give some examples of performance
metrics and their mapping to runtime parameters supported by
our proposed model.

In CLOUDFARM, we combine cloud SLOs with our
proposed application modes where they can define both the
quality level of an application and non-functional properties.
Quality level specifies the time an application runs in a specific
mode (e.g. at least 90% of the time in non-degraded mode
Mi,j). Additionally, tenants can choose from different pricing
models (e.g. bronze, silver, gold) at deployment, where appli-
cations running in a higher level will be degraded later, e.g.
they are rated with a higher weight factor ai. Non-functional
properties define parameters such as response time (e.g. below
100 ms) and availability (e.g. 99 %). Our resource management
algorithm uses these values to calculate degradation, elasticity
and migration decisions.

c) Discussion: In cloud computing clusters, we see
scenarios for both local and cluster-wide resource manage-
ment. In situations where multiple applications of different
tenants are running on the same host, providers usually have
to leave spare capacity in order to handle unexpected peak
loads and bursts. CLOUDFARM can manage local resources
of computing nodes and can transiently degrade application
to lower execution modes with regard to their SLA level.
If a peak load persists, it uses more heavy-weight features
such as migration or scale-out. The resource usage in cloud
platforms globally also varies. In order to utilize spare capacity
when there is low demand (e.g. during night), we can deploy
applications with cheap SLAs running with low priority (ai).
These applications utilize spare capacity but are very likely
degraded for absorbing peaks. When there are bottlenecks, we
can degrade these applications even to Mi,0. Thus, they will be
stopped, but keep their state for later resumption when capacity
is available again.

d) Case study: response time optimization: In our case
study, we use a web server hosting web pages that might be
delivered in various quality levels regarding their embedded
advertisements [1]. In a lower degraded mode, personalization
or advertisements could be disabled leading to lower request
processing costs and prices for the tenants respectively. Cer-
tainly, running in degraded modes will decrease the revenues of
the tenant but in consequence the tenant can use a cheaper SLA
on deployment, e.g. an SLA that guarantees an 80% execution

without degradation. An according SLA would involve a clause
about response time, e.g. the provider guarantees a maximal
processing time for each website request of Q milliseconds.

Existing mechanisms (c.f. Section IV) do not guarantee a
strict but a median response time observance, and they mostly
focus on effects like system responsiveness and noise sensitiv-
ity due to control parameter adjustments. In our example we
present a simple mechanism derived from real-time theory,
which allows us to test for strict SLA-compliance e.g. on
each request arrival or departure. Given a concrete application
resource budged, e.g. Rapp = application CBS budget, the
test can be repeated until a service level is found in which
all pending requests can meet the deadlines dictated by the
response time SLA. If all tests fail, another strategy can be
used e.g. to selectively reject requests.

From a real-time system’s point of view, the scenario can
be modeled as a dynamic set of n aperiodic tasks (requests),
with unpredictable (sporadic) inter-arrival times ri, measured
average costs ci,j (for each processing mode j) and relative
deadlines di = ri + Q. For simplicity we assume that the
requests are processed in FIFO order and all have the same
priorities, but reordering according to any eligibility metric
is also obvious. According to this model, feasibility of the
current task set denotes compliance with the SLA’s response-
time clause, since a deadline miss is equal to SLA violation for
the respective request. A simple feasibility test, e.g. based on
Buttazzo’s instantaneous load [5] definition, would check for
exceeding 100% CPU utilization on certain load step points t,
i.e. on inter-arrival of new requests:

ρ(t) = max
i
ρi(t), with ρi(t) =

∑
dk≤di

ck(t)

di − t
.

Hereby, ck(t) denotes the remaining computation time of task
k, with a deadline less or equal than the one of task i. Since the
test is done on each new request arrival, an overload condition
(i.e. ρ(t) ≥ Rapp) is detected before an actual SLA violation.
Now tasks can be switched to lower modes to fit optimally
into Rapp.

Depending on the inter-arrival rate of requests and their
actual costs in different modes, a point may be reached where
degradation cannot avoid SLA violation. We want to remind
that our technique helps to smooth transient spikes until e.g. a
new application instance is spawned. In case of a total overload
we can even stop applications temporarily, selectively violating
SLAs related to availability.

e) Case study: multimedia streaming application: Our
application modes can also directly influence algorithms in
services, e.g. video encoding quality in a streaming server.
Running in a high mode, it can use a highly efficient video
codec whereas on degradation it can either change parameters
of the codec (e.g. the resolution or the frame rate) accordingly
or switch to another video codec consuming lesser resources.

A video encoder typically processes chunks of sampled
data periodically within an encoding loop. Depending on the
peculiarity of the data, the complexity of the encoding process
may vary. Consequently, this may lead to varying processing
costs (jitter) for each encoding period. If jitter is small enough
and resources are sufficient, these variations may cause slight
variations in the quality of the generated picture (due to a



limited encoding buffer per data chunk). Otherwise, if jitter is
high and encoding complexity increases rapidly (e.g. a stronger
movement in the video scene), in the absence of complexity
degradation mechanisms and fine-grained resource control this
may lead to frame drops possibly violating a potential frame
rate SLA-clause for the application. In fact, processing costs
can increase even in a way that they become unfulfillable for
the desired encoding loop duration and according frame rate.

Fig. 5: Bursting Application Sample

Resource estimation within our proposed scheduling model
in Section II-B continuously computes standard deviation (SD)
of task costs for a number of preceding task periods (history).
In our experiments we used a history depth of 1024 samples,
which results in a relatively stable but sluggish approximation
of tasks costs. Figure 5 shows an example of an artificial
periodically bursting application. It depicts measured and com-
puted values for tasks demands, standard deviation and jitter.
Standard deviation is a measure for tasks resource demands
which are interpolated and aggregated as Ri,j for a given CBS
period. For burst detection we use a 2σ margin which covers
95.45 percent of the expected task execution costs, if these
costs are distributed normally. Of course tasks costs do not
have to be distributed normally, but here we use the doubled
standard deviation to detect outliers from a relatively constant
resource consumption. If the actually measured task costs
exceed the latest SD-value for one or more task periods, then
we have detected a potential application burst. For example
our artificial application in Figure 5 bursts every 10 periods
with tenfold costs. If a burst persists, our System-Scheduler
may decide to degrade the application to a lower quality level,
i.e. to resize the video picture to a lower resolution though
preserving the frame rate predefined by the SLA-clause. This
in turn may give another VFs and running applications hosted
on the same platform node the opportunity to scale up their
quality (see Section II-B). On the contrary, depending on the
priority ai of the video streaming application, the scheduler
may pin the application to the actual bursting mode, in order
to give the according Task-Scheduler a chance to update its
approximation. This in turn may lead to degradation of another
applications running on the same node.

If an application burst recurs periodically (e.g. a peri-
odic movement within an video-observed manufacturing line),
CLOUDFARM is able to detect the burst period time span
t based on a combination of FFT- and autocorrelation-based

algorithms integrated within our scheduling framework. In that
case, the System-Scheduler can decide if it should perform
coarse-grained reconfigurations on each burst occurrence, fol-
lowing tasks real resource demands for an optimal resource
distribution. If otherwise the burst occurrence rate t violates
a tolerated intermediate reconfiguration time, the scheduler
may decide to use an upper bound of the burst costs (e.g.
“Burst” in Figure 5) for application bandwidth computation,
in order to suppress further cyclic reconfigurations. The latter
case would prefer configuration stability at the cost of sub-
optimally utilized resources. However, since we have capacity
sharing (CASH) enabled on CBS-level, conservative reserva-
tions covering burst values would be compensated and the
accrued slack resources between the bursts would be balanced
across all applications.

IV. RELATED WORK

Virtual machines provide one way for resource management
and isolation (i.e. IaaS). Cloud providers such as Amazon and
Rackspace offer a variety of instance types with different CPU,
memory and I/O performances. To react to changes in load, dif-
ferent auto-scale mechanisms can spawn new VM instances in
a pre-defined size. As prediction of the size of a VM is not an
easy job, Sedaghat et al. [19] propose a mechanism to replace a
current set of virtual machines with a different set to optimize
the price/performance ratio. Compared to CLOUDFARM these
approaches are coarse-grained. Since spawning a new virtual
machine is time and resource consuming, it should be done
rarely. In consequence, providers have to leave enough spare
capacity to be able to react to peaks in load, even if these are
transient and have short duration. performed Some hypervisors
(e.g. VMWare ESXI) even provide resource management by
dynamic activation of VMs to different share levels. When
resources are insufficient, an administrator may specify that a
certain VM may use a higher resource proportion as another
less important one. Although this model is not as flexible
as the proposed one and is based on statically predefined
values for different resource levels, it constitutes a possible
abstraction model for dynamic resource management. Amazon
EC2 Spot Instances provide a way to run virtual machines
depending on resources available in the cluster. As Amazon
may terminate such an instance, it leads to a complicated
app model. Customers have to use checkpointing [20] or any-
time algorithms which results in a limited set of use cases.
Furthermore, apps have no confidence about their reached
quality, whereas in our mode-based approach the platform is
able to dictate certain application quality levels.

Macias et al. [16] propose several rules for maximizing
revenue for cloud providers by establishing a flow between
market and resource layers. Amongst others they name variable
prices (as a function of the offer/demand), resource over-
provisioning, and selective SLA violation. In the latter, the
provider can selectively violate some of the SLA for minimiz-
ing the economic impact, certainly, with a conflict between
short-term benefit and mid-term losses. Goudarzi et al. propose
an heuristic algorithm for SLA-based resource allocation for
multi-tier applications in cloud computing [9]. They use pro-
cessing, memory requirements, and communication resources
to optimize resource allocation and total profit of the system.
For management purposes, they introduce a Bronze and Gold
SLA, where only the latter provides guaranteed response time.



Andrzejak et al. [3] developed a probabilistic model that
answers the question of how to bed given SLA constraints.
Unexpected termination of cloud applications, moreover, leads
to a complicated application model. Again, customers have to
checkpoint their applications leading to specialized use cases
(e.g. worker nodes in Map Reduce [7]) and uncertain quality.

Zhu et al. [21] propose a control-theory–based approach
for adapting controllable parameters of cloud applications
online via a feedback loop. This method is reciprocal to our
approach since we trade both utility and resource demands of
application modes against each other in order to produce the
best overall resource configuration. Zhu et al. further neglect
overheads typically arising from continuous parameter changes
(e.g. data re-encoding), while our approach tends to delay
reconfigurations as long as possible via a resource sharing
algorithm. Imprecise Computations (IC) [15] is a soft real-
time scheduling model with tasks consisting of mandatory
and optional parts. In general, IC-based solutions also suffer
from configuration instability as in every reservation period
the execution of optional parts is re-decided.

A similar work to our proposed scheduling model has been
done in the scope of the ACTORS FP7 European project [8].
While their work focuses on multi-core scheduling, our re-
source management investigates the implications of different
resource approximation techniques on configuration stability
aiming at seldom application reconfigurations. Besides, we
target at the automatic detection of cyclic application bursts
in order to suppress cyclic reconfigurations.

Web content adaptation for response time optimization is
not a novel idea. Realization mechanims have been already
discussed by Abdelzaher et al. [1]. A control theoretical
approach QACO [13] distributes a dynamically adjusted re-
source quota optimally among a number of pending requests.
The result is a best-quality configuration of request service
levels observing a response time set-point. However, control
steps are solely based on an averaged input variable without
consideration of job deadlines. Since processing and response
time fluctuations can compensate each other the algorithm
is unable to guarantee strict but a mean observance of the
response time SLO. In [14] Klein et al. examine adaptive
adjustment of controller parameters which decide upon the
execution of optional application parts in varying load and
resource contention situations. They show that while a more
steady controller better observes a desired response time, the
system recovers more slowly from load peaks.

V. CONCLUSION

Although today’s cloud providers use over-provisioning, they
have to reserve spare capacity to be able to react to peaks
or bursts. In this paper, we propose SLO-based resource
management that helps avoiding SLA violation even in fully
utilized clusters. Our mode-based execution model can adapt
the execution of applications with regard to both, the free
capacity in the cluster and the SLO they have. CLOUDFARM
manages resource reservations for different applications in
an elastic cloud platform according to their actual resource
demands and predefined SLOs.

In future work, we plan to further support tasks with real-
time requirements and to address availability in cloud SLOs

by adding support to handle faults [10].
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