
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Reproducible Evaluation of a Virtual Node System
D3.2.9

Due date of deliverable: November 30th, 2008
Actual submission date: December 4th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.4

Responsible institution: ULM
Editor & and editor’s address: Jörg Domaschka

Abt. Verteilte Systeme
Universiät Ulm

James-Franck-Ring O-27
89069 Ulm

Germany

Version 1.0 / Last edited by Jörg Domaschka / December 4th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 01/11/2008 Jörg Domaschka ULM Structure
0.1 02/11/2008 Jörg Domaschka ULM Introduction
0.2 03/11/2008 Jörg Domaschka ULM RMI
0.3 03/11/2008 Jörg Domaschka ULM Configuration,Middleware Layers
0.4 04/11/2008 Jörg Domaschka ULM Middleware Adapter,Join Protocol
0.5 05/11/2008 Jörg Domaschka ULM Example
0.6 05/11/2008 Jörg Domaschka ULM Group Communication,XOS
0.7 25/11/2008 Jörg Domaschka ULM Update, reviewer comments
0.8 29/11/2008 Jörg Domaschka ULM Update, reviewer comments
0.9 30/11/2008 Jörg Domaschka ULM Update, reviewer comments

0.10 04/12/2008 Jörg Domaschka ULM spell checking

Reviewers:
Ales Cernivec (XLAB) and Arenas Alvaro(STFC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

3.2.4 Design and implementation of a virtual node system ULM∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This document is the sequel of Deliverable 3.2.5 and discusses the evaluation of
the Virtual Nodes framework since M18. During that phase we mainly focused
on the usability of the infrastructure so that a large part of this document deals
with the user view on Virtual Nodes. There are three user roles: users who start
a system using Virtual Nodes such as administrators. They have to know, how to
configure the framework. Then, there are developers that use the features of the
framework to build a fault-tolerant application and need to know how to use the
API of the Virtual Node middleware layer. And finally, there are middleware de-
velopers that want to integrate Virtual Nodes in their middleware system and need
to know the low-level features of the framework. Apart from the user view we
present the current state of a performance evaluation and discuss shortcommings
in the group communication systems we currently use.

1

Contents
1 Introduction 3

2 Configuration 4

3 Providing Middleware Layers 6
3.1 Adapter Concept . 7
3.2 Client-Side . 8
3.3 Server-Side . 9
3.4 Administration Methods . 10

4 The Java RMI Interface 11
4.1 Overview . 11
4.2 Local and remote objects . 12
4.3 Exporter Class . 13
4.4 Hiding Methods . 15
4.5 Performance Optimisations . 16
4.6 Summary . 16
4.7 Example . 17

5 Join Protocol 18
5.1 Problem Statement . 20
5.2 Sketch of Solution . 21

6 Group Communication 22

7 Performance Evaluation 22

8 Relevance to XtreemOS 23

9 Conclusion 23

2

1 Introduction

The purpose of Virtual Nodes is to help the programmers to replicate services for
both performance and fault-tolerance reasons. The main target we are aiming at
is to minimise the effort by (a) maximising the reusability of existing replication-
unaware code and by (b) making replication issues as far as possible transparent
to the service developer. At the same time, it shall be easy to make use of Virtual
Nodes for the programmer of an application and for a developer of a replicated
distributed service. For that reason the Virtual Node software written in Java is
provided as a library developers can link to their programmes.

As we aim for supporting different kinds of applications, we provide multiple
replication strategies. Furthermore, we allow the composition of the replica group
to change at runtime. The reasons for that are on one hand to ensure that long
running services do never lose their fault-tolerance guarantees which would be
reduced in case of node failures. On the other hand, when replication is used
for performance reasons, it might happen that the current number of nodes is not
sufficient to answer all requests. In both cases, new replicas have to be integrated
in the current group of replicas.

As decribed in Deliverable 3.2.5 [3] and shown in Figure 1 the Virtual Node
infrastructure is composed of four parts. A middleware layer and the replication
layer, which come with a client-side and a server-side part each. The functionality
of the replication layer is covered by D3.2.5. In this document we mainly focus
on the user view that requires a discussion of the middleware layer. Regarding the
replication layer, we only present changes happened since the last deliverable.

In order to increase the ease of use for the user, we first have to define who
can be a user of our framework. We were able to identify three user roles: users
who simply start a system using Virtual Nodes such as administrators. They have
to know, how to configure the framework. Then, there are developers that use the
features of the framework to build a fault-tolerant application and need to know
how to use the API of the Virtual Node middleware layer. And finally, there are
middleware developers that want to integrate Virtual Nodes in their middleware
system and need to know the low-level features of the framework.

The remainder of this document is structured as follows. In Sections 2 to 4 we
discuss the different user views: configuration of the system, the framework’s low-
level API, and how to build applications using the Virtual Nodes RMI middleware
layer. Section 5 sketches a join protocol for multithreaded replicas, followed by
a discussion of the group communication systems of Virtual Nodes in Section 6.
In Section 7 we discuss the current state of a performance evaluation. This paper
concludes with a discussion on how Virtual Nodes can be used in XtreemOS. All
sections contain a discussion of future work and open issues, if any.

3

Appl.

Replication Framework

Client MW

Client Repl

Server MW

Server Repl

Impl.

Middleware

Layer

Replication

Layer

Client
Replica/

Server

Figure 1: Virtual Node Architecture

2 Configuration

Virtual Nodes is a highly configurable replication infrastructure. The replication
core provides a variety of configuration options for group communication, request
scheduling, client-replica communication, and replication protocol. Apart from
the fact that the system has to have a way to be configured at all, we want it to be
easily configurable.

Basically, there are three ways to configure a system: at compile-time, at start-
up time, and at run-time. We have extended the compile-time configurability
from Deliverable 3.2.5 to a start-up time configurability. We did that by pro-
viding a proxy class for each configurable element that encapsulates the respec-
tive configurable entity. Thus, for the schedulers there is a SchedulerProxy,
for the replication protocol there is a ReplicationProxy, etc. All of those
proxy classes take a Configuration in their constructors that contains the
system configuration. Configuration maps each of the configurable entities
to a ConfigurationOption. As not all entities have the same configuration
options, ConfigurationOption is an interface that has to be implemented
by a class specific for the entity. Thus, there is an SchedulerConfigura-
tionOption for schedulers, a ReplicationConfigurationOption for
the replication protocol and so on. The base classes are shown in Figure 2.

A Configuration is created by the constructor shown in Figure 2. If it
is required to read the configuration from a file or string, this has to be realised

4

public enum ConfigurableEntity { G_COM, PROT, SCHED, C_COM}

public interface ConfigurationOption {}

public final class Configuration {

public Configuration(Map<ConfigurableEntity, ConfigurationOption>) {
/∗ ... ∗/

}

public final ConfigurationOption configForEntity(ConfigurableEntity){
/∗ ... ∗/

}
}

Figure 2: Configuration class

external to the Configuration class. We chose this approach, as we want
the configuration to be data format independent. If (de)serialisation is required,
configuration parsers can be implemented. Virtual Nodes come with a parser that
creates a Configuration from a string object, as we use a stringified repre-
sentation to send the configuration over wire.

In some cases the options provided by the approach sketched so far, are not
sufficient to handle the variety of configurations. This is especially true, if there
are different configurations not only depending on the ConfigurableEntity
such as scheduler or replication protocol, but also within a common entity. For
instance this is true for the group communication system (GCS). As Virtual Nodes
do not come with their own GCS, they have to use existing ones, that use different
approaches regarding their configuration. For that reason we allow Configu-
rationOptions to contain so-called ConfigurationAddOns, information
that is specific for a certain instance of a configuration.

The current approach as presented here, only works as long as the list of con-
figuration options is static and does not change. As soon as users add arbitrary new
classes to replace or extend existing implementations or add new configurable en-
tities that are not contained in ConfigurableEntity, an architecture with
a sole configuration class might not scale anymore. Thus, we consider finding
a more powerful configuration mechanism as future work. The same holds for
making the system re-configurable, that is configurable at run-time.

5

Middleware

Adapter Impl

ClientBase

Replicated

Object Impl

Object

Adapter
calls

installs

calls

installs

calls

Client−Side

Middleware

Layer Impl

Middleware

Runtime

updates

calls
instantiates

AdminBase

calls
instantiates

calls

Middleware

Adapter

Replicated

Object
ClientAdmin

Server

Admin

calls<<interface>>

<<interface>> <<interface>>

Figure 3: Middleware-Core Interaction

3 Providing Middleware Layers

In its basic version the interaction of middleware layer and replication layer for
method invocation is straight forward: the middleware layer passes a method and
its parameters to the replication layer. This, in turn, transmits it to the server-
side replication layer that, in turn, invokes the server-side middleware layer in
a way consistent with the replication protocol. In this system architecture the
middleware layer defines how parameters are marshalled, i.e. which external data
representation shall be used, how methods are identified, e.g. based on names
in CORBA and signatures in Java RMI. Furthermore, the middleware layer also
defines how stubs look like, how they they are initialised and passed to other
machines, as well as how binding happens. This requires a callback mechanism
from the replication layer to the middleware layer. In the next section we will
explain why this is required and how this requirement can be satisfied in a generic
way.

Figure 3 sketches the classes and interfaces of the core framework and a
generic middleware layer as well as their interaction. The following sections dis-
cuss them in detail; refer to this figure for the global architecture.

6

3.1 Adapter Concept

The fact that the middleware layer decides how a stub is serialised and passed
to other nodes raises an interesting challenge. Basically, there are two different
ways how a middleware layer might serialise its stubs. The first one, used by
Java RMI, is to serialise entire objects and to deserialise them at the receiver-side.
The other one used by systems such as CORBA and ICE uses an external object
representation (IOR in the case of CORBA). Whereas the first approach serialises
the stub on demand, the second may not. A CORBA ORB for instance stores the
IOR and maps it to the stub. When the stub is passed on to another machine it
uses the mapped IOR. This works fine, as long as the information contained in
this data structure (IOR) does not change.

In the case of Virtual Nodes, however, this is not true any more due to replica
groups changing over time. The middleware layer is in charge of initialising the
replication layer, because the middleware layer is all a client application can inter-
act with. As the replication layer has to be able to communicate with the replicas
of the Virtual Node it is belonging to, there is the need to initialise it with contact
information. As the group of replicas is likely to change, it is advantageous to
use the latest information available. When a stub is serialised on demand this is
not a big issue, as the stub can pull the required information from the replication
layer. In case the middleware layer internally stores an external representation of
the stub new group information has to be pushed in the middleware system.

This gets us in a dilemma. The middleware layer knows about middleware
internals. The replication layer knows about changes of the replica group, but it
neither knows about middleware internals nor about the format the information is
represented within the middleware runtime: Thus, it cannot call a method at the
middleware layer and even if it could, this would destroy the genericity of our ap-
proach, as replication and middleware layer would become circularly dependent.

The middleware layer is responsible for initialising the replication layer. Dur-
ing this process we allow to pass a MiddlewareAdapter to the replication
layer. The replication layer will invoke the newMemberList method (c.f. Fig-
ure 4) at the MiddlwareAdapter everytime the replica group changes. The
adapter has the task of transforming the information of the MemberList to a
middleware internal data representation and of injecting this information into the
middleware runtime. Note that the adapter is required on both client and server-
side, as also the server might have to pass a stub/reference to the client. This is the
case when a method invocation returns this. Instead of serialising the object, a
stub is created and returned. An extensive discussion of the adapter concept and
its realisation can be found in [5].

7

public interface MiddlewareAdapter {
public void newMemberList(MemberList ml);

}

Figure 4: MiddlewareAdapter Interface

public class ClientBase {
public ClientBase(ObjectId, MiddlewareAdapter, MemberList);
public SingleReply sendCall(MethodId methodID, byte[] parameters);
public byte[] serialise();
public static ClientBase deserialise(byte[],MiddlewareAdapter);

}

Figure 5: ClientBase Interface

3.2 Client-Side

The interface the replication layer provides to the middleware layer at client side
consists of mainly two classes: ClientBase1 and AdminBase. The latter is
a Virtual Nodes-internal middleware layer for special methods required for ad-
ministrating the Virtual Node at run-time. We discuss administration methods in
Section 3.4

As shown in Figure 5 ClientBase is instantiated with an ObjectId2, a
MiddlewarAdapter, and a MemberList. ObjetId uniquely identifies the
Virtual Node this ClientBase instance is bound to. The value is created by
the first replica and has to be passed to the ClientBase during startup process.
MemberList is a set of replica addresses that ClientBase can connect to
for sending requests. This list is not static and can change over time by update
messages from the replica group [3].

The only method of ClientBase used for sending requests is sendCall.
It takes a MethodId and byte[] as arguments. MethodId3 is representation
of the methods that can be invoked at the Virtual Node. Middleware systems using
the core framework can extend this class in order to use their own way of repre-

1all classes mentioned in this section are in package eu.xtreemos.vnode.client unless
another package is specified.

2in eu.xtreemos.vnode.common
3in eu.xtreemos.vnode.common

8

public interface ReplicatedObject {
public boolean isReadOnly(MethodId) throws UnknownMethodException;
public Reply dispatch(MethodId, byte[]) throws UnknownMethodException;

}

public ViewContainer(MiddlewareAdapter){
/∗ ∗/

}

Figure 6: Server-side middleware interaction

senting methods. The byte[] parameter represents the marshalled arguments to
the method call. The content of both parameters is treated in a purely opaque way
by the replication layer, which does not try to interpret its content.

ClientBase is not serialisable. Instead it has to be brought up manually
by each clients willing to use it. The reason behind that is similar to the argu-
ments for the introduction of the MiddlewareAdapter. We do not know what
information the client stub can handle for transmission and in which format this
information has to be. However, any stub should be able to transmit a sequence
of bytes, so that we offer two methods for serialising the relevant information of
ClientBase to a byte array and initialising it from a byte array.

3.3 Server-Side

At server-side the interactions with the middleware layer are inverse to those at
client-side (c.f. Figure 6). The object that the replication layer sees has to imple-
ment the interface ReplicatedObject4. The replication logic will hand the
opaque information, that is parameters and method identifier to this object where
the message is finally processed and a Reply is returned. Furthermore, in order
to determine whether the execution of a request can be optimised the replication
logic has to know if a certain method is read-only, i.e. does not change the replica
state. For that purpose a ReplicatedObject has an additional method that
provides this information. If the middleware layer does not support this feature,
it is save to always return false here. All methods that deal with MethodIds
thrown an UnknownMethodException in case the middleware layer cannot
handle this MethodId for whatever reason. This exception will result in an error
returned to the client.

4in eu.xtreemos.vnode.server

9

public interface ClientAdmin {
public ReplicaId startNewReplica(MiddlewareAdapter adap);
public void shutdownReplica(ReplicaId id);
public void shutdownService();

}

public class ServerAdmin {
public Configuration getInstantiationCredentials();
public void shutdownReplica(ReplicaId id);
public void shutdownService();

}

Figure 7: Interfaces for Administration

Just as the client-side, the server-side also requires a MiddlewareAdapter.
This is handed over at replication layer initialisation and will finally be used in
ViewContainer that handles the current view the replica has on the replica
group. Each time this view changes the MiddlewareAdapter is invoked.

3.4 Administration Methods
Administration methods provide a means to configure and influence the system at
runtime. So far, only methods to add and remove replicas have been implemented.
Yet, it can be imagined to add methods for other purposes such as security, recon-
figuration, etc.

The admin methods are different on client and server-side. The main reason
for this is the goal to not burden the programmer with additional complexity. At
client-side the interface provides methods to start a new replica at the host this
method is called, to shutdown individual replicas and to shutdown the entire ser-
vice. The latter two methods are also available on server-side. However, starting
a new replica cannot happen at server-side. Thus, this method is not present in the
server interface. Instead, there is a method that provides a way for the client to get
the current configuration from the server, which is a prerequesite for starting the
new replica.

All those methods are implemented in the replication core and must not be
overridden by the middleware layer. Nevertheless, it is necessary that the middle-
ware layer offers the methods of ClientAdmin to the applications using it. In
consequence the middleware layer has to treat those methods specially at client-
side; it has to forward them to the AdminBase class in the replication layer
instead of processing it by itself and marshalling its parameters. It does not have

10

to provide support for them at server-side, as calls to them will be filtered out by
the replication logic before.

4 The Java RMI Interface
This section gives an description on how a middleware layer for Java RMI was
built and how it can be used. We start with a short description of the basic realisa-
tion techniques before we discuss a feature called local objects in the next section.
Afterwards, we discuss the Exporter5 class and how methods at server-side
can be hidden from the client. This section concludes with a summary on the
architecture and an example how to use this RMI layer.

4.1 Overview
For realising an RMI-compatible middleware layer on top of the Virtual Node core
we decided to prefer ease of use over performance. Our goal is to generate stubs
that are fully compatible to Java RMI and thus might be put in RMI registries.
Furthermore, client applications using an RMI object with the same interface can
be used without changes to the code.

We also decided to use the java.lang.reflect.Proxy to dynamically
generate client-side stubs. The use and generation of those is more expensive
than to generate stubs at compile-time. However, we do think, that this is a mi-
nor issue as replication per se is an expensive technique. The proxy accesses
the replication layer by an entity called ReplicationHandler that extends
java.lang.reflect.InvocationHandler. Furthermore, we use stan-
dard Java serialisation for parameter marshalling and unmarshalling.

Methods in Java are identified by their signature, that is their name and their
parameters. We exploit this signature to identify methods across address spaces.
Each method is identified by an identifier that contains the hash of the method
name and the deep hash of the array of parameter types. The probability of having
two methods with the same identifier in the same service implementation is very
small. If it happens, though, the clash will be recognised when the first replica is
instantiated, so that no undefined operations can take place at run-time.

Our implementation does not require the use of a middleware adapter, as RMI
stubs are serialised and deserialised with their state and not represented by an
external data structure.

Basically, a replicated service is like a remote object. That is, a stub is used
to invoke methods at a server which, in our case, consists of multiple replicas.

5all classes mentioned in this section are in package eu.xtreemos.vnode.rmi unless
another package is specified.

11

public interface LocalObject<T> extends Serializable {

public void setProxy(PrivateProxy _prox);
}

Figure 8: Local Object

All replicas run the same service implementation. A service may implement an
arbitrary number of interfaces all of which are by default accessible by the client.
However, in order to support a wide range of applications we have made some
extensions to the RMI model that will be discussed in detail in the next sections.
In short, these are the following.

• Besides the service implementation in a remote location, our services sup-
port so-called local objects, that implement functionality at client-side. This
is similar to AJAX Web technology and is a Java RMI mechanism of Shapiro’s
proxy principle [8] and comparable to fragmented objects [7] and distributed
shared objects [9].

• Methods in the service implementation can be declared to be ignored. As a
consequence they cannot be accessed remotely.

• Methods in the service implementation can be declared to be hidden. As
a consequence they cannot be accessed from clients, but from the stub and
the local object.

• Methods in the local object can also be declared to be hidden. As a conse-
quence they cannot be accessed from clients.

4.2 Local and remote objects

For the system to be able to export and replicate an object, we require simi-
lar to Java RMI that the class of this object implements an additional interface.
This interface, RRMI (replicated RMI), is a pure marker interface that extends
java.io.Serializable. We require that the object be serialisable so that
state transfer can happen without additional development efforts.

Apart from the implementation of the replicated object, the exporting process
supports an additional feature that has turned out to be useful in the past [2]: local
objects. Local objects are a part of the stub and can be used in order to provide

12

public static final<T> Object
exportObject(Configuration config,

RRMIObject service,
LocalObject<T> local)

throws ExportException;

Figure 9: RMI Exporter

local functionality that is logically part of the service to be called but whose im-
plementation does not make sense at server-side such as encryption, caching or
access to the local file system. We will discuss the benefit of such an approach
in Section 4.7. Objects that shall be used as local objects have to implement the
interface LocalObject shown in Figure 8. As a local object is part of the stub,
it has to be serialisable. Unlike remote objects, local objects can never be trans-
parent to their developer, so that there is not necessity to provide a simple marker
interface. In addition, a local object might just do some preprocessing and then
call the remote part of the service. For such a scenario the local object has to have
a reference to the request handler that invokes methods at the server-side. In our
approach this reference is realised indirectly via a PrivateProxy that will be
discussed in Section 4.4. One consequence of the intransparency of local objects,
we decided to have only one local object per stub, because this significantly eases
the implementation of the exporting process. Note that this approach does not
limit the developer, as it is still possible to use one local object as a facade [6] to
a set of other local objects.

4.3 Exporter Class

In this section we discuss how to export a service. We use the term export in a
way similar to Java RMI. When an object is exported two things happen. First
of all, an instance of the replication framework is initialised and the service to be
replicated is wrapped by it. Secondly, a stub is created that provides access to the
service.

Exporting is handeled by a class called Exporter that has a single public
method exportObject, which is shown in Figure 9. It takes a Configura-
tion an RRMIObject, that is, an object that can be exported, and a LocalOb-
ject. If exporting is not possible, it throws an ExportException; otherwise
it returns a proxy that can be used by the client application. All action that is
described in the following happens within this method.

13

The stub interface visible for a client is generated using the dynamic proxy of
Java. By default all interfaces of both remote and client object are used in order
to generate the proxy interface. Internally, the proxy uses the Replication-
Handler class. In its implementation it decides whether to pass calls to the
replication layer or to the local object. In order to avoid ambiguous configurations
we impose the following restrictions.

• There is no non-marker interface that can be implemented by both local
object and remote object. If we allowed such an environment, it would no
longer be clear whether to relay an invocation to remote or local object.

• There are no two methods with identical signature that may appear in local
and remote object. Here, again it would be impossible to have a unique
mapping from method to the location where those methods have to be exe-
cuted.

• Methods that conflict with the administration interface (c.f., Section 3.4)
are not allowed. ClientAdmin is automatically added to the proxy inter-
face. As it does have a fixed implementation on server-side it must not be
overridden, no matter on which side.

This approach is very restrictive; however, it seems reasonable at a first glance.
Yet, looking closer brings up a dilemma. As discussed above, the classes of both
remote object and local object have to be serialisable. This is not a problem, as
Serializable is a marker interface. However, objects implementing Exter-
nalizable are serialisable as well and should be supported. As this interface
comes with two methods it is not a pure marker interface anymore so that prob-
lems arise when both local and remote object implement it. Solving this dilemma
requires to recognise that the methods provided by Externalizable should
never be intended to be used remotely. Their sole purpose is to allow serialisation
which is a purely local event.

There are two approaches to solve this issue. The first one is to filter Exter-
nalizable by some hard coded filter rules. This approach is straight forward
and does not burden the programmer. On the other hand it is very inflexible, as
it does not allow for an easy extension when other interfaces with similar func-
tionality appear. An example of such an interface could be some local monitoring
entity.

Consequently, we decided to go for the second approach which uses Java an-
notations. We do allow methods in both locations to be marked by @Ignored
which means that the interface they are defined in will not appear in the proxy
interface seen by the client implementation. Marking does not happen within in-
terfaces or for entire interfaces, but happens per method of the implementation

14

of either local or remote object. We chose this approach, because of several rea-
sons: interfaces of the Java library cannot be used if methods have to annotated
in the interface. Interfaces cannot be re-used in another context once they are an-
notated, if interface definitions are subject to annotations. And finally, multiple
interfaces can define the same or equal methods with different annotations. This
would lead to conflicts, even if the implementation is most certainly unambigu-
ous. An important consequence of the way marking happens and the way proxies
are constructed, is that all other methods defined in the same interface as a @Hid-
den method do also have to be @Hidden. As this is a non-trivial restriction we
decided to throw an exception if only some methods of an interface are marked
with @Ignored.

Note that this does not effect the superinterfaces of this interface. In particular,
it is allowed that two non-marker interfaces A and B extend the same non-marker
interface C with the methods of A being @Ignored and those of B are not. This
is the case, because it is still possible to add B to the proxy interface. In contrast,
using @Ignored for the methods of C would require all methods of both A and
B to be @Ignored, because adding B to the proxy interface would automatically
add C, too, which shall not appear there.

4.4 Hiding Methods
The existence of local objects brings up another issue. There might be methods
at server-side that shall not be visible for clients, but for the local object. As-
sume, for instance, a local object that implements a file cache for a component
system such as OSGi [1]. If the file is available at client-side this file shall be
used, if not, it shall be loaded from the server. In consequence the client appli-
cation must not have the possibility to bypass the local caching mechanism. In
the system presented so far, the only way to ensure that this is not possible, is to
use the @Ignore annotation and exclude the method from the proxy seen by the
client. On the other hand, the local object has to have a way to call the server.
This might happen using the interface offered by the replication layer. Yet again,
this is a bad idea, as it would require the developer of the local object to know
about (de)serialisation and construction of message identifier and would require
to change all local objects when the interface to the replication layer changes.
We satisfy those contradicting needs by using an additional level of indirection
and by introducing a new annotation type. Instead of directly using the interface
to the replication layer, the local object uses another proxy. On server-side we
provide a new annotation @Hidden which removes the method from the public
proxy accessible by the client, but leaves it in the private proxy used by the local
object. Apart from that they are partially visible, the same rules hold for methods
annotated with @Hidden and those annotated with @Ignore. Summarising the

15

properties of private and public proxies:

• Both proxies use the same ReplicationHandler.

• None of them contains methods marked with @Ignore

• Private proxies do not offer the interface of the local object, because the
implementation can access those methods using this.

• Private proxies do contain server methods that are marked with @Hidden,
the public proxies do not.

• Private proxies implement the marker interface PrivateProxy, public
proxies implement the marker interface PublicProxy. This is for that
the ReplicationHandler is able to distinguish them.

4.5 Performance Optimisations
As discussed in Section 3 the replication layer queries the middleware layer about
the execution characteristics of a method. If the method is read-only some optimi-
sations will reduce the execution time. As there is no way to figure out automati-
cally whether a method is read-only, we do rely on the programmer to tell us. She
has to mark a method with @Readonly in order to switch on the optimisations.
At initialisation time, the RMI middleware layer will build up a cache containing
the identifiers of all read-only methods. This allows to answer the query quickly
without having to use reflection each time.

4.6 Summary
Figure 10 sketches the architecture of the RMI middleware layer presented in this
section. Furthermore, it shows how it is linked with the Virtual Node core. The
arrows denote invocation sequences. The client application is bound to a dynamic
proxy. This proxy offers all interfaces that are provided by the local object, the re-
mote object, and the admin interface indicated by the light green, the dark green,
and the red boxes. All invocations on the proxy result in a call to the Repli-
cationHandler. This entity decides whether this method invocation shall be
relayed to the local object, serialised for the replication layer, or the administrator
functionality in the replication layer is to be called. The local object has a proxy
on its own, the private proxy. Just as the public proxy, it offers the interface of the
remote object and access to the administration methods. However, in addition it
contains all methods that were @Hidden from the public interface (symbolised
by the blue box). It does not contain the interfaces of the local object, as those

16

Appl.

Public Service Interface (Public Proxy)

Local Object

Client−side Replication Layer

Replication Handler

P
ri

v
a
te

 P
ro

x
y

Admin Interface

(a) Client-side

Implementation

Dispatcher

Admin ImplObject Adapter

(b) Server-side

Figure 10: RMI Layer Architecture

can be referred to using this. At server-side the ObjectAdapter decides
whether an incoming call is for the admin interface. If so, it is passed to an entity
that implements the admin interface. Otherwise, the request is passed up to the
middleware layer. Of course the middleware layers at client and server-side have
to use the same prototcol in order to be able to work together. For the RMI imple-
mentation of the middleware layer, there is a Dispatcher object that receives
the call and decides which method to call. This method can either be from the
public or hidden interface. As the figure shows, none of the entities makes use of
methods that were marked by @Ignore and that are indicated by the very light
green boxes at the local object and the service implementation.

4.7 Example

In this section we give a short example that makes use of all the features presented
in the previous sections. Imagine a distributed version control system similar to
GIT6 with a local repository and a server-side repository. From a user point of
view access to both repositories should be possible by using a single service. As-
sume further that for fault-tolerance reasons the server repository shall be repli-
cated. A user works on her local repository, but can merge the changes in the local

6http://git.or.cz

17

public class RemoteRepository implements RRMIObject,
RemoteRepositoryHiddenInterface,
RemoteRepositoryPublicInterface {

@Readonly @Hidden
void checkout(String branch) { /∗ ... ∗/ }

@Hidden
void mergeChanges(FileList fl) { /∗ ... ∗/ }

String ls() { /∗ ... ∗/ }
}

Figure 11: Remote Object Interfaces

repository into the remote repository.
Realising such a system is easy with the means presented in the previous sec-

tions. We require a local object for access to the local repository and a remote,
replicated object for access to the remote repository. Fragments of the two classes
are shown in Figures 11 and 12. The remote object has three methods two of which
- checkout and mergeChanges - are hidden from the public interface, as they
have to be preprocessed by the client-side. Only ls() is publicly accessible. As
@Hidden methods have to be in an interface of their own the remote object im-
plements two different interfaces. The semantics of the checkout command is
read-only so that the method is annotated accordingly. The local interface has two
methods to preprocess the hidden remote methods. Both of them do some local
work such as generating directory structures or checking for local changes before
invoking the remote object. In addition serialising the entire local object including
all its file handles is not a good idea, as those handles do not have a meaning on
some other machine. For that reason we use the Externalizable interface
so that we can reset all values with a scope limited to the current location and
initialise them with the right values at the new location.

5 Join Protocol

This section presents a join protocol for adding new replicas to virtual nodes.
Its main concern is to present the challenges and a high-level view of how to

18

public class LocalRepository extends LocalObjectImpl
implements Externalizable,

LocalRepositoryInterface {

public void checkout(String branch, String toDir) {
/∗ some code ∗/
((RemoteRepositoryHiddenInterface) privateProxy).

checkout(branch);
/∗ some code ∗/

}

public void mergeChanges() {
/∗ find out which files have changed locally ∗/
FileList fl = ...;
((RemoteRepositoryHiddenInterface) privateProxy).

mergeChanges(fl);
}

@Ignore
public void readObject(){ /∗ ... ∗/ }

@Ignore
public void writeObject(){/∗ ... ∗/}

}

Figure 12: Local Object Interfaces

19

solve them. We do not present any proofs here, nor a discussion down to the
implementation level. These are subject to a technical report [4] that is currently
being prepared.

5.1 Problem Statement
Virtual Nodes aim at providing support for applications that require availability
and reliability. For long running applications this implies the need for being able
to add new replicas at run-time. Such a new replica has to get a recent, consistent
service state before it can answer requests. For that reason the serive state has to
be serialised at an existing replica and then to be transferred to the joining replica.
Virtual Nodes use two features that make joining new replicas difficult. First, we
do not assume a closed replica group. That is, any node can host a replica. The
location does not have to be known in advance, so that we cannot make any as-
sumptions where the next replica will be instantiated. In consequence it is not
possible to store data at all potential replica-locations before the service starts. In-
stead all state has to be obtained dynamically at run-time. Second, the framework
uses deterministic multithreading algorithms for allowing both determinism and
increased performance. This leads to several problems.

As replicas may join anytime, the requests for the service state may arrive at
an arbitrary point in time at the service. When the state request arrives at the
service, in general, multiple threads will be in execution7 with some of them be-
ing blocked in a wait call. As Java does not provide any means to serialize a
thread in execution it is not possible to serialise the state until all of them have
terminated. However, threads blocked in wait will not terminate until the corre-
sponding notify has been called. Thus, not starting new threads and waiting for
all running threads to terminate is not an option. Instead, we have to find a way to
let notify be called while at the same time, as few new threads as possible shall
be started. Furthermore, state transfer requests should be processed quickly, as
new replicas are likely to join in situations with a reduced reliability (e.g., when
an old replica has failed).

Summarising the arguments made so far, an algorithm for a join protocol has
to fulfil the following properties:

• It must not rely on statically defined locations of replicas.

• It has to deal with multiple and potentially blocked threads at all replicas

• The state has to be consistent. That is, it has to be a valid state and the
joining replica has to be able to figure out which client requests are part of
the state and which still have to be processed.

7where in execution means not terminated

20

• The downtime of the service has to be as small as possible.

• The latency experienced by the new node has to be as small as possible.

• New nodes need to have a means to propagate their contact information that
all replicas can update their view on the replica group.

• The view update has to happen at the same logical time at all replicas.

5.2 Sketch of Solution
Our approach to overcome blocked threads in the schedulers is to allow pend-
ing requests to be processed one-by-one until the waiting threads are resumed
and finally terminate. Note that there may exist bordercases which would never
allow all threads to be terminated at the same time. This happens for instance
when the only execution path to notify causes wait to be called. Another
non-terminating sequence occurs if always a blocking thread precedes a notifying
thread. However, we argue that those sequences and execution paths are seldom
in practice and can be implemented differently if the programmer knows where
the pitfalls of the system are. Yet, an entirely transparent approach to this problem
is considered future work.

The algorithm uses three different kinds of messages. GET_STATE is broad-
cast by the replica when it requests the service state. This message also contains
the replica’s contact information. As a reply it will eventually receive at least one
unicast SET_STATE message containing the state. Finally, after having installed
the state, the replica sends a GOT_STATE broadcast to trigger a view update.

In more detail, the sequence is as follows. The new replica (the joiner) sends
a GET_STATE message to all group members. The message contains the joiner’s
identifier and contact address. When a running replica processes this message
it switches into the one-by-one mode until the scheduler queue is empty. Then
the oldest replica serialises its state and sends it to the joiner via a SET_STATE
message. After the receipt of this message the joiner replies with a GOT_STATE
message which triggers the update of the replica group view at all replicas. The
protocol is straight forward only in the absence of failures and sequencial joins.
The technical report presents a more detailed discussion on how to handle replica
failures and multiple, concurrent joiners. Basically, the correctness relies on the
GCS feature that messages are in total order. We partition replicas in three groups
according to their state: full member, joiner, and potential joiner. In addition, we
order the members in each group by the logical time their last state message was
received. We call the position in the ordering the age of a replica; the technical
report shows that the join problem can be solved if there is exactly one oldest
replica at all times and that our protocol guarantees that.

21

6 Group Communication
Evaluation of the group communication systems described in D3.2.5 [3] has shown
that none of the two group communication systems, Jgroups8 and SPREAD9, we
planned to support is perfectly suited for replication with Virtual Nodes. Jgroups
lacks support for uniform multicast. That is, the sequencer might deliver and
process requests bypassing the ordering of the group communication. In conse-
quence this replica might have processed a request and also replied to it before
other replicas have even seen this request. If the sequencer replica has sent a re-
ply and crashes before the message was delivered to at least one other replica,
the client experiences a phantom update and might continue working on wrong
assumptions. This can not be tolerated in a fault-tolerance infrastructure.

Spread, in turn, does support uniform multicast, but lacks support for dynamic
replica groups. Machines that want to run Spread do have to run a Spread daemon
that has a static configuration of hosts that might join a communication group. It
is not possible to update the configuration without restarting the daemon. Such a
static configuration cannot be tolerated in a highly dynamic environment such as
peer-to-peer grid systems.

As a consequence we consider three options for future work. First, evaluate
how to extend Jgroups with uniform multicast. Second, evaluation of how to
change Spread so that it does allow dynamic composition of replica groups. Third,
investigation of how to support our own group communication system.

7 Performance Evaluation
Performance evaluation is still work in progress and will be subject to the sequel
of this document. The delay is caused by the fact that the code has not yet reached
a maturity level that would allow long running evaluations. Another cause for the
delay is that it is very time-consuming to set up a testbed that allows to evaluate
the effect of node failures. We clearly underestimated this issue.

Nevertheless, there are plans what tests Virtual Nodes should be stressed with.
First of all, we want to evaluate the overhead induced by the replication frame-
work. That is, we have a test with a single replica that is accessed via the RMI
middleware. Then we compare the results to accessing the same service via stan-
dard Java RMI. In a second test we want to evaluate the scalability of the Virtual
Node system in LAN. We start with a single replica and increase the number from
test to test until the overhead prevents that any work can get done. We do that test
for each replication strategy implemented. Another test will evaluate scalability

8www.jgroups.org
9www.spread.org

22

in WAN. Then we want to investigate the down time caused by the failure of a
single replica depending on the replication strategy and the network environment.
Finally, the performance of the join protocol shall be measured.

This set of test run will give a good overview on the performance of Virtual
Nodes. It will show when to use the framework and when to use other techniques.

8 Relevance to XtreemOS

As future work, we consider mainly the investigation of the feasibility of an in-
tegration of Virtual Nodes with other components in XtreemOS. Candidates for
such an effort would be CDA and RCA of WP3.5, the JobManager of WP3.3
and a XATI front-end for Virtual Nodes so that all services using XATI as their
middleware layer can be subject to replication.

This integration requires a careful analyses of the services’ code in order to
find locations that use code that is not deterministic. This code has to be replaced
by a deterministic implementation. As there is no general approach to make im-
plementations deterministic we have to evaluate that on a per-case basis.

9 Conclusion

In this deliverable we mainly discussed the user view on the system. We pre-
sented details that are relevant to the three different roles we were able to iden-
tify for users. For administrators we discussed how to configure the framework.
For application developers we explained how to access the features of the Virtual
Node RMI middleware layer. And for middleware developers we sketched how to
integrate Virtual Nodes into their middleware system.

Regarding the replication layer we presented an approach to a state transfer
protocol that allows to add new replicas to a running system in spite of multi-
threading withing the replicas. We discussed weaknesses of current open-source
group communication systems and identified ways how to overcome them. Fi-
nally, we presented the current state of a performance evaluation and discussed
the relevance of Virtual Nodes to the rest of XtreemOS.

References

[1] OSGi Alliance. Osgi service platform, core specification 4.1, 2007.

23

[2] P. Baumann. Konzeption und Implementierung einer dezentralen und fehler-
toleranten Versionsverwaltung. Studienarbeit SA-I4-2006-16, Universität
Erlangen-Nürnberg, December 2006.

[3] J. Domaschka. D3.2.5: Design and specification of a virtual node system,
November 2007.

[4] J. Domaschka. A join protocol for actively replicated, multithreaded systems.
Technical Report to be published, Institute of Distributed Systems, Ulm Uni-
versity, Germany, 2008.

[5] J. Domaschka, A. I. Schmied, H. P. Reiser, and F. J. Hauck. Revisiting de-
terministic multithreading strategies. In Proceedings of the 9th International
Workshop on Java and Components for Parallelism, Distribution and Con-
currency (in conjunction with IPDPS 2007, Long Beach, CA, USA, March 26,
2007), 2007.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1995.

[7] F. J. Hauck, E. Meier, U. Becker, M. Geier, U. Rastofer, and M. Steckermeier.
A middleware architecture for scalable, QoS-aware and self-organizing global
services. In Proc. of the 3rd IFIP/GI Int. Conf. on Trends towards a Universal
Service Market, LNCS 1890, pages 214–229. Springer, 2000.

[8] Marc Shapiro. Structure and encapsulation in distributed systems: the Proxy
Principle. In Proc. 6th Intl. Conf. on Distributed Computing Systems, pages
198–204, Cambridge, Mass. (USA), May 1986. IEEE.

[9] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, 7(1):70–78, 1999.

24

