
TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY 1

Middleware layers for the Virtual Nodes Replication Framework

Jörg Domaschka
E-mail: joerg.domaschka@uni-ulm.de

F

1 INTRODUCTION

The Virtual Nodes replication framework is a software tool that helps replicating legacy and new applications easily. Hence, it
may serve as an important building block for reliable and available systems. Tailored towards support for distributed services,
the framework consists of a client-and a server-side part. Additionally, it exhibits a separation between a replication layer (core)
and a middleware layer that mediates between the client application and the replication layer on client-side; and between the
replication layer and the service implementation on server-layer.

The entire architecture is sketched in Figure 1. The core of the framework has already been presented elsewhere [1], [2], [3], as
have the general requirements towards and implementation of the middleware layers and the message flow. In this document
we present the realisation of two different middleware layers on top of the Virtual Nodes core layer.

The core functionality of the middleware layer in the Virtual Nodes framework differs from client-side to server-side. On the
client-side, it has to realise binding and remote access to the service, both in a replication-unaware manner. On the server-
side, it has to translate incoming requests to calls to the service instance. Client- and server-side have to agree on a consistent
marshalling of request parameters and response values. Furthermore, the Virtual Nodes framework requires each middleware
layer to define its own method identifiers.

In an extended scenario, the middleware layer has to offer the same context to the service and client implementation as the
original middleware would. While it is basically possible to re-implement a middleware layer from scratch that is API-compatible
to an existing middleware system, it is more efficient to integrate support for Virtual Nodes in an existing middleware system
and to tweak the affected parts of the system. A middleware system is Virtual Nodes-enabled, if it can be used with fragmented
objectssuch as Aspectix [4]. In a nutshell, this requires the possibility to inject code in the client-side stub so that Virtual Nodes
takes over all communication issues.

In the Virtual Nodes design it is the object adapter that accesses the middleware layer on server-side via well defined interfaces.
We present the object adapter in Section 2. This design reflects the intention that the replication layer shall be independent from
any middleware details and vice-versa. Yet, in some cases, it is necessary to feed back information from the replication layer to
the middleware layer. The Virtual Nodes system introduces middleware adapters for that purpose. We discuss them in Section 3.

Starting from the experience of integrating early versions of Virtual Nodes in a CORBA environment [5], [6], we successfully
implement a middleware layer for Java RMI [7] and the Distributed XtreemOS Interface (DIXI) [8]. We briefly sketch these two
middleware layers in Section 4 and Section 5.

2 THE OBJECT ADAPTER

The object adapter module is a thin layer of abstraction that isolates the replication protocol module from the middleware layer.
This allows modifying the interaction of the replication layer with the middleware layer without having to update all available
implementations of replication protocols and vice-versa. A thread that shall invoke the replicated service first passes through
the object adapter, from there to the middleware dispatcher, and only afterwards to the service. The object adapter supports
fully asynchronous invocation processing. In consequence, a thread that invokes the middleware layer does not necessarily have
to produce a reply. Instead, the reply may be triggered by any other thread. This functionality is for instance used in the DIXI
middleware layer (c.f. Section 5). The object adapter module controls access to the invocation cache and steers the serialisation
of the application state. Yet, it does not perform the actual serialisation.

The replication layer of the Virtual Nodes framework has no direct access to the service implementation. In consequence, state
serialisation of the service implementation can only happen mediately via the dispatcher in the middleware layer. The same
is true for deserialisation. Yet, at deserialisation the replication layer cannot deserialise the dispatcher, because the replication
layer is unaware of the concrete middleware implementation it shall be linked to. For that reason, the object adapter stores a
middleware-specific serialisation handler. During state serialisation, the object adapter first serialises its own data such as the
invocation cache and then delegates the serialisation of the dispatcher module and the service implementation to the serialisation
handler. Similarly, during initialisation after state transfer, the object adapter first re-establishes its own state and then uses the
handler to create the dispatcher module and service implementation.

The serialisation handler is middleware-specific. Thus, it is the middleware layer that decides on the prerequisites the service
implementation has to fulfil with respect to state transfer. Options include using getter and setter methods as required by
the CORBA standard, to use Java serialisation for the service implementation, or to allow the definition of application-specific
serialisation handlers.

• J. Domaschka is with the Institute of Distributed Systems, Ulm University, Germany; and with iTransparent GmbH, Nürnberg, Germany.

originally published November 1, 2011, last revised August 29, 2012. It is currently under further revision.



2 TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY

replication framework

middleware

layer

replication

layer

replica/server node

service

impl.

client

app.

client node

server-side

middleware

server-side

replication logic

client-side 

middleware

client-side 

replication logic

Figure 1: Architecture of the Virtual Nodes framework

publ ic i n t e r f a c e Repl i ca tedObjec t {
publ ic void invoke ( MethodId , byte [ ] , ReplyCallback ) ;
publ ic boolean isReadOnly ( MethodId ) ;

}

Figure 2: Interface of ReplicatedObject

Implementation: The object adapter communicates with the middleware layer using the interface shown in Figure 2.
ReplicatedObject contains two methods, one for middleware dispatcher and one for the method repository.
invoke(...) calls the dispatching module. The dispatcher executes parameter unmarshalling, method identifier mapping,

and invokes the service implementation. MethodId denotes which method to call, while byte[] contains the serialised
parameters. By the method information, the dispatcher determines how to interpret the information in the byte[] parameter.
ReplyCallback is a callback handler from the replication protocol. The middleware layer has to use it to trigger the processing
of the reply.
isReadOnly(MethodId) provides access to the method repository module and allows the replication layer to retrieve infor-

mation about the read-only characteristics of the methods.

3 THE MIDDLEWARE ADAPTER

In many object-oriented middleware systems object references to remote objects may be passed from one node to another.
Knowing the middleware system being used, a node that receives such a reference is able to interact with the remote object
referenced by the remote reference. Basically, there exist two ways how a middleware layer may serialise its object references.
The serialisation approach, e.g. used by Java RMI, serialises the stub object at sender-side. At receiver-side, the stub is re-created
by deserialisation. All information that was contained in the stub object at the sender, is also contained at the receiver. The
mapping approach, applied by systems such as CORBA and ICE1, uses an external object representation; IOR in the case of
CORBA. Whenever a stub object is to be serialised, the middleware runtime maps it to an object reference. At the receiver, the
middleware runtime interprets the information contained in the reference and creates a stub object from it. Both approaches
work fine when the object reference is static and does not change.

In the replicated scenario the replica group changes over time due to replica failures and restarts. Jointly with the replica
group, the object reference has to change. In the serialisation approach the object reference changes automatically when the state
of the stub object changes. Hence, the object reference is always up-to-date as long as it is contained in the stub object. In the
mapping approach, the middleware runtime may have to change the mapping of a stub object to the object reference according
to the composition of the replica group. In turn, this is only possible, if the middleware runtime notices changes of the replica
group.

In the Virtual Nodes framework, only the replication layer is responsible for managing the reference to the replica group. In
order to support middleware systems that follow a mapping approach, the replication layer requires a mechanism to inform the
middleware system that its internal state shall be updated. Clearly, the implementation of such a mechanism cannot be generic
for all middleware systems, but is dependent on how the middleware stores its mappings and assembles its object references.
For that reason, we introduce an adapter entity, that is capable of transforming group changes to updates in the middleware

1. http://zeroc.com/



TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY 3

runtime. The adapter is middleware-specific and installed at the initialisation of the replication layer. It keeps object references
up-to-date and at the same time replication and middleware layer well separated.

Even though our argumentation so far focusses on the client-side, the adapter is required on the server-side as well, because
the server may have to pass an object reference to the client. This is, for instance, the case when a method invocation to the
service object returns this. Instead of marshalling the service object, the middleware layer has to return an object reference. At
server-side, the middleware adapter is managed by the membership module. An extensive discussion of the adapter is subject
to earlier work [6].

Implementation
An adapter has to implement the MiddlewareAdapter interface. The replication layer will invoke the newMemberList(MemberList)
method at the MiddlwareAdapter every time the replica group changes. The adapter has the task of transforming the
information of the MemberList to a middleware-internal data representation and inject it into the middleware runtime. Thereby
it not necessarily required that the core of the middleware system can interpret the data, it is only required that the data be
transferred in an opaque way.

4 JAVA RMI LAYER

Java RMI is the remote method invocation mechanism provided by the Java specification. Thus, it is the first choice for distributed
Java programmes. In the following paragraphs we first show how Java RMI works. Then, we present the Java RMI layer for
the Virtual Nodes framework. Finally, we discuss differences and open issues.

4.1 Java RMI
Java RMI allows a programmer to export any object in the system. The only restriction is that this object implements the
RemoteObject interface. All methods of that object that stem from an interface extending RemoteObject are available via
remote method invocation. During the export process, the RMI runtime creates a stub object for exported object. The stub
contains every information required to contact the exported object. Thus, in order to access the object from a remote host, it is
required to copy it to that host. Java allows any kind of propagation to copy the stub. The suggested way, however, is to use
the RMI registry. When exporting the object, the programme may also want to start a registry on the local machine and store
the stub in that registry using a named key. Applications using the stub can connect to the registry and retrieve a copy of it.

There are two possible ways to create the stub class. The first one is to statically generate it using the rmic compiler. The
second one is creating it on the fly. Since, Java 5 the latter approach is the preferred one. Dynamic creation makes use of the
Java dynamic proxy. This special class can be fed with a number of interfaces and creates an object that implements all of these
interfaces and contains all their methods. All calls to any of these methods end up in an invocation handler object. For RMI there
is a special invocation handler, RemoteInvocationHandler that has to be initialised with details on the location of the object.
When exporting an object, the exporter analyses all available interfaces and chooses the ones that extend RemoteObject. Then,
it creates a unique identifier for the object and initialises a RemoteInvocationHandler with that data. Finally, it creates a
dynamic proxy using the selected interfaces and the create handler.

When a RMI invocation is to take place, this is only possible if all parameters and the return type are serialisable. Accordingly,
they are serialised and then transferred to the server-side, together with the object identifier and a method identifier. Java RMI
identifies methods according to their name and parameter list. On the server-side, the RMI framework searches the matching
object, deserialises the parameters, and uses reflection to invoke the method. The return value takes the opposite direction. It is
important to notice that all data is transferred by-value. That is, if the remote object changes the state of the parameters, these
modifications are not reflected on the client-side. There are two exceptions to that rule. When caller and callee reside within the
same JVM the invocation does not copy any values. Furthermore, if a parameter or return value is itself exported as a remote
object, it is not passed by-copy, but by-value.

4.2 Overview
For realising an RMI-compatible middleware layer on top of the Virtual Nodes replication layer we provide a customised exporter
that creates dynamic proxies with a replication layer-aware invocation handler. All dynamic proxies implement the Remote
interface, so that it can be added to RMI registries. For marshalling and method identification we use the same approach as
the standard RMI implementation. Similar to Java RMI, the dispatcher on server-side uses reflection to invoke the service. Our
implementation does not require the use of a middleware adapter, as all relevant information is contained in the invocation
handler. The exporter is only used to create the first replica. All other replicas are created using the administration interface.

Besides the standard RMI features, the RMI middleware layer comes with a number of extensions. In addition to remote ser-
vices, our stubs support so-called local objects, that implement functionality at client-side. This is similar to AJAX web technology
and implements functionality comparable to fragmented objects. Furthermore, methods in the service implementation can be
declared to be ignored. As a consequence, they cannot be accessed remotely. Moreover, methods in the service implementation
can be declared to be hidden. As a consequence, they cannot be accessed from clients, but from within the stub and the local
object.

Remote Methods: In contrast to the RMI system, we do not require that an exported service implements a dedicated
interface. This allows to export arbitrary objects without modifying the code. In particular, existing RMI objects can be exported
using the Virtual Nodes framework.



4 TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY

publ ic i n t e r f a c e LocalObject<T> extends S e r i a l i z a b l e {

publ ic void setProxy ( PrivateProxy prox ) ;
}

Figure 3: Local Object

publ ic s t a t i c f i n a l<T> Object
exportObjec t ( Object serv ice , LocalObject<T> l o c a l ) throws ExportException ;

Figure 4: RMI Exporter

Local Objects: A local object is logically part of the service, but physically part of the stub. It is useful to implement local
functionality that is useless at server-side such as encryption, caching, or access to the local file system. Objects that shall be used
as local objects have to implement the interface LocalObject shown in Figure 3. We require that any local object be serialisable.
Hence, it is possible to send it to other hosts. Unlike remote objects, local objects can never be transparent to their developer, so
that it is not necessary to provide a simple marker interface. In addition, a local object might just do some preprocessing and
then call the remote part of the service. For such a scenario the local object has to have a reference to the request handler that
invokes methods at the server-side. In our approach this reference is realised indirectly via a PrivateProxy.

We allow only one local object per stub. This is not a restriction per se, as the development of such an object is not transparent.
Hence, this approach does not limit the developer, as it is still possible to use one local object as a façade [9] to a set of other
local objects. On the other hand, it significantly eases the implementation of the exporting process.

Exporter Class: Exporting an object with the Virtual Nodes framework is similar to Java RMI. An object is exported via the
Exporter class. During the export process two things happen. First, the Exporter initialises an instance of the replication
framework that wraps the service to be replicated. Secondly, it creates a stub that provides access to the service.
Exporter has a single public method exportObject (c.f. Figure 4). It takes a Configuration an Object, and a LocalObject.

That is, an object that can be exported, and a LocalObject. If exporting is not possible, it throws an ExportException,
otherwise it returns a stub object. All action that is described in the following happens within this method.

The Exporter generates a stub interface from the object. By default it uses all interfaces of both remote and local object
and creates a dynamic proxy. In addition, it adds ClientAdmin to the proxy interface. That is, all administration methods are
directly offered to the user of a service. From an invocation to the proxy object, the handler has to be able to figure out which
method invocations are remote method invocations, which of them concern administration methods [1], and which are for the
local object. In order for the mapping to be unique, we impose the following restrictions on the method interfaces.

First, local and remote objects must not implement the same interface unless it is a marker interface. Methods that conflict
with the administration interface are not allowed in either object. That is, the remote object must not override methods from
the ClientAdmin or ServerAdmin interface. The local object must not override methods from the ClientAdmin interface.
Finally, remote and local object must not contain methods with the same signature. The Exporter extracts all interfaces, checks
all these conditions and creates an instance of ReplicationHandler. From the interfaces and the handler, it creates a dynamic
proxy that is returned to the caller.

State Transfer: In order to support the state transfer we use the following approach. If the exported object is serialisable,
and the user does not provide a serialisation handler, as the middleware layer provides its default serialisation handler. The
default handler uses Java serialisation to serialise the object prior to state transfer. If the object is not serialisable the Exporter
enforces that a serialisation handler be installed. If standard serialisation does not work, the deployer of the service can specify
a serialisation handler. The handler is saved in the stub object and copied from one node to another. Hence, the handler has to
be serialisable itself.

Dispatcher: The dispatcher implementation is straight forward. Parameters are de-serialised and the return value is dese-
rialised just as in the RMI implementation. Here, two issues require special care. If a parameter is a stub to the service to be
invoked, it has to be replaced with the service reference. Similarly, if the service reference is to be returned to the client, it has
to be replaced by a stub object.

In contrast to the RMI implementation the dispatcher does not have to check whether a stub parameter has its object exported
in the same JVM or an return value is another exported object. These cases cannot happen in the current Virtual Nodes prototype,
as only one exported object per JVM is possible.

We realise read-only methods by annotations. Every method in the exported object that is annotated with @ReadOnly in the
service implementation yields read-only behaviour at replica-side. The dispatcher uses reflection to inspect the object’s methods
and to check for the annotation. This is done after during export or after state transfer. The information is then cached in the
dispatcher implementation.



TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY 5

Ignoring Methods: The restriction imposed on the methods contained in local object and remote object allow to provide
useful services. However, they render several behaviours more cumbersome than necessary. In the following we discuss such
situations and provide a solution.

We require that the local object be serialisable. At the same time we provide serialisation support for the remote object, if it is
serialisable as well. As Serializable is a marker interface this does not impose any restrictions. However, this does not hold
for Externalizable. This interface adds two methods to Serializable, so that it is not a pure marker interface any more.
Hence, problems arise when both local and remote object implement it. Obviously, the methods provided by Externalizable
are not intended to be used remotely. Their sole purpose is to allow serialisation which is a purely local event.

There are two approaches to solve this issue. The first one is to filter Externalizable by some hard coded filter rules. This
approach is straight forward and does not burden the programmer. On the other hand it is very inflexible, as it does not allow
for an easy extension when other interfaces with similar functionality appear. An example of such an interface could be some
local monitoring entity.

Consequently, we decided to go for the second approach which uses Java annotations. We do allow methods in both locations
to be marked by @Ignore which means that the interface they are defined in will not appear in the proxy interface. Marking
does not happen within interfaces or for entire interfaces, but happens per method of the implementation of either local or
remote object. We chose this approach, because of several reasons: interfaces of the Java library cannot not be used if methods
have to be annotated in the interface. Furthermore, interfaces cannot be re-used in another context once they are annotated,
if interface definitions are subject to annotations. And finally, multiple interfaces can define the same or equal methods with
different annotations. This would lead to conflicts, even if the implementation is most certainly unambiguous. An important
consequence of the way marking happens and the way proxies are constructed, is that all other methods defined in the same
interface as a @Ignore method do have to be @Ignored as well. If this is not the case an exception is thrown during exporting.

Note that this does not effect the superinterfaces of the interface. In particular, it is allowed that two non-marker interfaces B
and C extend the same non-marker interface A with the methods of B being @Ignored and those of C are not. This is the case,
because it is still possible to add C to the proxy interface. In contrast, using @Ignored for the methods of A would require to
@Ignore all methods of both B and C.

Hiding Methods: The existence of local objects brings up the issue that methods at server-side shall be invisible for the clients,
but visible for the local objects. This is similar to the administration interfaces where getInitialisationCredentials()
is only visible for the replication layer at client-side, but not for the client application. Assume, for instance, a local object that
implements a cache for a sub-set of methods. If the data is available at client-side it shall be used, if not, it shall be loaded
from the server. In consequence, the client application must not have the possibility to bypass the local caching mechanism. In
the system presented so far, the only way to ensure that this is not possible, is to use the @Ignore annotation and exclude the
method from the proxy seen by the client. On the other hand, the local object has to have a way to call the server.

This might happen using the interface offered by the replication layer. Yet again, this is a bad idea, as it would require the
developer of the local object to know about (de)serialisation and construction of message identifier and would require to change
all local objects when the interface to the replication layer changes. Therefore, we create a private proxy for the local object,
whereas the client application uses a public proxy. Both proxies may differ in the methods they contain. This functionality is
realised by a new annotation for the service implementation. Annotating a method as @Hidden removes it from the public
proxy, but leaves it in the private proxy used by the local object. Apart from their modified visibility properties, the same rules
hold for methods annotated with @Hidden and those annotated with @Ignore.

4.3 Discussion

Figure 5 sketches the architecture of the RMI middleware layer and presents how it is linked with the Virtual Nodes replication
layer. The arrows denote invocation sequences. The client application is bound to a dynamic proxy object. This proxy offers all
public interfaces provided by the local object (light green), the remote object (dark green), and the administration interface (red).
All invocations on the proxy result in a call to the Virtual Nodes-aware invocation handler. This entity dispatches calls to the
local object, the replication layer, or the administration layer. The local object has a private proxy. It offers access to the public
and hidden (blue box) methods of the of the remote object and access to the administration methods. It does not contain the
interfaces of the local object, as those can be referred to using this. As both proxies automatically implement the Remote
interface, they can seamlessly be put into RMI registries.

At server-side calls to administration methods are filtered by the client thread [1]. Otherwise, they reach the object adapter
module and from there the dispatcher in the middleware layer. The dispatcher uses reflection to dispatch to the method call.

All interaction with the RMI middleware layer happens synchronously. That is, a client application blocks for the invocation
either to return or to throw an exception. Moreover, the middleware dispatcher blocks until the return value of the invocation
is available. In case the method throws an exception, the exception is treated as the reply and sent to the client where it is re-
thrown. Further details on the RMI layer including serialisation support, exporting, and marshalling are subject to the technical
report [10].

Clearly, the requirement to add annotations violates the requirement of replication unawareness. In order to avoid having to
modify the implementation service object, it would be beneficial to support a configuration-based notation of hidden, ignored,
and read-only methods. The support for persistent configuration in the Virtual Nodes framework allows an easy and transparent
implementation for that mechanism.



6 TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY

Appl.

Public Service Interface (Public Proxy)

Local Object

Client−side Replication Layer

Replication Handler
P
ri

v
a
te

 P
ro

x
y

Admin Interface

(a) Client-side

Implementation

Dispatcher

Admin ImplObject Adapter

(b) Server-side

Figure 5: RMI Layer Architecture

Message Bus Stage

Communication Stage

AEM Services

MINA

Abstract2WayStage

E

M

XOSd

Figure 6: A view of the SEDA stack inside the XOS Daemon

5 DIXI LAYER

A central design element of the XtreemOS grid operating system [11] are the so-called core nodes. One of the basic tasks of a
core node is to manage the central infrastructure of the grid including the execution and monitoring of jobs and the reservation
of resources. In XtreemOS, all those tasks are executed by the Application Execution Management (AEM) daemon. Due to their
central role in the system, the services that run on core nodes must not fail. Thus, the use of replication is beneficial for them.
In particular this is true for the Job Manager and the Reservation Manager.

The implementation of AEM is based on the DIXI library [8] .
In the following paragraphs we first present an overview on AEM, DIXI services, and the DIXI communication infrastructure.

Then, we discuss the challenges for integrating such a system with the Virtual Nodes framework. Finally, we conclude with a
report on the current status and future tasks to be carried out.

5.1 AEM and DIXIi Overview

DIXI [8] is based on the Staged Event Driven Architecture (SEDA) pattern [12]. The core of DIXI is a stage machine that ties
together the stages running inside a single DIXI instance. Furthermore, DIXI defines an endpoint per DIXI instance that can be
used to send messages to services running in that instance. Messages in DIXI are transferred between stages as event objects.
AEM is a DIXI instance with a pre-defined set of stages and services and a particular wiring. Figure 6 shows the standard
set-up of a SEDA stack inside an AEM instance. The key property of AEM is that stages are organised in a star topology with
the Message Bus Stage as the centre. The Message Bus Stage (MBS) functions as a central message dispatcher and router within
a single DIXI instance. Messages and events that have to be transferred to other instances are routed to the Communication
Stage. In turn, the Communication Stage also receives messages and relays them to the MBS.



TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY 7

Even though DIXI allows stages to implement arbitrary communication patterns every stage implementation used in the AEM
uses a request-response pattern. That is, for each ingoing request event, a reply event is generated. Yet, requests are not the only
events that reach a service stage. Replies to nested invocations are processed as if they were requests. Yet, they do not generate
a reply event.

Even though the communication in typical SEDA systems is asynchronous and hence very loose, all services in the AEM
stack provide certain properties. In particular, the reply event to a request event is not generated before all replies to nested
invocations have been processed. Furthermore, clients block until they receive a reply. Thus, a client never has two concurrent
requests. Messages (events) are characterised by an identifier that is created as a random number. Corresponding request and
reply events carry the same identifier.

5.2 A Virtual Nodes Middleware Layer for AEM

Integrating DIXI/AEM into a Virtual Nodes environment is at the same time integrating Virtual Nodes into a DIXI/AEM en-
vironment. This is due to the fact that DIXI does not provide a clear separation between communication and middleware
functionality. Furthermore, being a container that hosts multiple services, the replication of one of these services shall not
have any effect on other non-replicated services. In the following we sketch the architecture of our integrated approach. We
only present implementation details where required. The realisation of a transparent integration is aggravated by the fact that
messaging and addressing in DIXI does not happen transparently.

Addressing and Messaging: DIXI does not exactly support the concept of a remote method invocation. Instead, messages
are send and received. The semantics of whether the message is a request, a reply, or something different is implied from the
service implementation. For our integration we exploit the fact that all services run in AEM use the request-response interaction
pattern. Further, all requests use ServiceMessage as event type, while replies use CallbackMessage. This coincidence allows
us to logically map DIXI message types to Virtual Nodes message types.

DIXI does not support the concept of multicast addresses. Yet, it defines an Address interface that is implemented by the
SingleAddress class. However, all elements of the system only make use of the interface type, so that we can simply introduce
a new implementing class ReplicaAddress that contains the SingleAddress of multiple nodes.

Replication Stage: As the MBS is the central entity in the system and concerned with message routing, we extend its
implementation by sub-classing and make the sub-class replication aware. We call the sub-class Replication Stage. Whenever the
Replication Stage receives a message whose target address is a ReplicaAddress it hands the request to the client interface stage.
Furthermore, the Replication Stage provides mechanisms for state transfer and initialisation of the system.

Client Interface Stage: The client interface stage is a system-wide stage that handles all requests to replicated entities.
Therefore, it keeps a ClientBase per service. It dispatches incoming request to the respective ClientBase and dispatches
the received reply to the MBS.

Service Access: As DIXI nodes communicate exclusively using the Communication Stage, we implement a custom external
communication module that is capable of receiving DIXI messages and transforming them into Virtual Nodes messages. In order
for the communication module to be able to receive messages it has to be registered as an own stage in the DIXI stack. Similarly,
the communication module takes replies from the Virtual Nodes runtime and sends them as DIXI replies to the caller of the
method.

Dispatcher: Similar to the RMI dispatcher, the DIXI dispatcher has the task to transform an incoming Virtual Nodes-message
to DIXI message the service can use. Yet, due to the staged architecture the DIXI dispatcher has additional tasks.

First, the service is a stage on its own. In consequence, it comes with its own threads and interaction can only happen via
its income queue. Thus, in order to realise consistency of service stage, the stage either may have only one thread processing
updates or the deterministic scheduler has to schedule the stage threads as well. In a first step we let the dispatcher configure
the service stage such that it only uses a single thread and configure the system to perform sequential scheduling. In a second
step, we extend the scheduler to support priority transfer between threads.

Second, the dispatcher is responsible for intercepting all events generated by its service. For that reason, it functions as an
outgoing queue for the service. Inspecting the kind of event, it can decide whether to generate a Virtual Nodes reply or a nested
invocation. For nested invocations local information has to be stored before the message is re-directed to the Replication Stage.

Third, replies for nested invocations have to be treated special. As all replies are executed as requests, the reply has to be
injected in the system when it is received. This task is executed by the dispatcher. Yet, as replies may be available before the
request was sent, the thread executing the reply, has to be blocked until the request was sent.

The flow of messages and data for a single request is shown in Figure 7. As one can see, messages arrive at the Replication
Stage using the regular DIXI stack. Here, they are not directly handed over to the service implementation, but have to pass the
replication infrastructure. In the DIXI receiver the request is wrapped into a Virtual Nodes message and relayed to the replication
protocol. From there, it eventually reaches the middleware layer (dixi dispatcher) where the DIXI message is unwrapped and
then inserted in the in-queue of the service implementation.

Nested Invocations to External Services: Nested invocations addressed to replicated entities are handled by the Virtual
Nodes infrastructure and the implementation of the dispatcher. However, in DIXI/AEM environments it can happen that a
nested invocation targets a singular service. This is due a special capability of the system architecture. Jobs, for instance, are
run on resource nodes where replication is not applicable. If the node crashes, the job is lost. For that reason, our prototype
implementation requires that such invocations do not fail.

System Set-up: Figure 8 sketches the communication stack that is used in replicated scenarios. The Replication Stage handles
messages that target replicated as well as singleton services. Messages that are not directed towards replicated services just pass



8 TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY

Service Implementation

Abstract2Way Stage

Dixi Dispatcher

Vnode Infrastructure

DixiReceiver

Seda Stack

byte[] : CallbackMessage

CallbackMessage(

 Reply(CallbackMessage)

)

CallbackMessage

Request(CallbackMessage)

byte[] : ServiceMessage

ServiceMessage(

  Reply(ServiceMessage)

)

ServiceMessage

External communication

Existing in vnode implementation

Existing in AEM implementation

Middleware layer

Parameters
Return value/

Exception

Reply(CallbackMessage)

Abstract2Way Stage

v
n
o
d
e
 s

ta
g
e

Figure 7: Message and data flow in an integrated version on server-side

Communication Stage

MessageBusStage

Abstract2Way Stage

MINA

non−replicated

AEM services

...

...

Abstract2Way Stage

non−replicated

AEM services

Replication Stage

vnode 

Stage

vnode

Stage
...

Figure 8: Modified communication stack for replication support

through this stage without any modifications. For messages directed to replicated services there are two options. If the message
is issued by a client, and thus not yet replication aware, it is passed on to a replica stub stage where the message is modified to
fulfil replication requirements. In any case, it is relayed to Dixi receiver stage of the respective service. Of course the approach of
handling client requests is only resilient to node failures when the request origin from local clients. This is ensured by the way
an AEM-extension that treats addresses of replica groups. Requests from remote hosts are directly forwarded to their respective
stage.

5.3 Discussion
This section has shown how Virtual Nodes can be integrated into a staged environment. Due to the fact that DIXI/AEM is research
software and lacks essential features of a message-passing middleware such as error detection and re-sending of messages, the
current prototype that results from the integration efforts is not usable in erroneous environments.

Nevertheless, due to the integration we gained some positive insights on the Virtual Nodes framework. The strong dependency
of DIXI/AEM on nested invocations has proven that the capabilities provided by Virtual Nodes are robust and generic enough.
Supporting the staged design added functionality to the deterministic schedulers. Yet, it has also shown that Virtual Nodes are
relatively heavy-weight when multiple replicated instances shall be supported within a single virtual machine. Here, it would
have been beneficial to have only one instance of the framework for all replicated services. We consider that issue as future
work.

6 SUMMARY

In this document, we have presented the middleware layer of the Virtual Nodes framework. We have discussed how it is tied to
the replication layer via the object adapter module and the way the middleware layer can influence state transfer. We further
presented middleware adapters as an approach for the middleware layer to retrieve information about group changes. For some
middleware systems, this is an essential feature to keep object references up-to-date.

Afterwards, we have sketched the implementation of two different middleware layers. One to wrap the synchronous, RMI-
based Java remote method invocation infrastructure. The other one to provide replication for the core services running on an
XtreemOS core node. The DIXI middleware and communication framework is stage-based and widely asynchronous.

Realising replication for two such different middleware systems with the same replication logic is beyond everything found
in related work. The fact that it has been possible to seamlessly integrate replication support into both systems shows that the
initial design goals of the Virtual Nodes replication framework have been satisfied. Furthermore, it is a strong indication that
operation-driven replication in invocation-oriented systems is orthogonal to middleware concerns and client applications.



TECHICAL REPORT VS-R16-2011, INSTITUTE OF DISTRIBUTED SYSTEMS, ULM UNIVERSITY, GERMANY 9

REFERENCES

[1] J. Domaschka, “A comprehensive and flexible approach to transparent replication of java services and applications,” Ph.D. dissertation,
Fakulät für Ingenieurwissenschaften und Informatik, Universität Ulm, Germany, 2012, submitted.

[2] J. Domaschka, C. Spann, and F. J. Hauck, “Virtual nodes: a re-configurable replication framework for highly-available grid services,” in
Middleware (Companion), F. Douglis, Ed. ACM, 2008, pp. 107–109.

[3] J. Domaschka, “Extended version of a Virtual Nodes system,” Institute of Distributed Systems, Ulm University, James-Franck-Ring O-27,
89069 Ulm, Germany, XtreemOS Deliverable D3.2.14, 2009.

[4] F. J. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckermeier, “AspectIX: A middleware for aspect-oriented programming,”
in Workshop ion on Object-Oriented Technology, ser. ECOOP ’98. London, UK: Springer-Verlag, 1998, pp. 426–427. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646778.706221

[5] H. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck, “Fault-tolerant replication based on fragmented objects,” in Distributed Applications
and Interoperable Systems, ser. Lecture Notes in Computer Science, F. Eliassen and A. Montresor, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4025, pp. 256–271.

[6] J. Domaschka, H. P. Reiser, and F. J. Hauck, “Towards generic and middleware-independent support for replicated, distributed objects,”
in Proceedings of the 1st workshop on Middleware-application interaction: in conjunction with Euro-Sys 2007, ser. MAI ’07. New York, NY, USA:
ACM, 2007, pp. 43–48. [Online]. Available: http://doi.acm.org/10.1145/1238828.1238839

[7] S. M. Inc, “Java remote method invocation specification,” 2004.
[8] M. Arta, “Distributed XtreemOS infrastructure (DIXI),” XLAB d.o.o., Pot za Brdom 100, SI-1000 Ljubljana, Slovenia, XtreemOS Deliverable

D3.2.17, March 2010.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented software. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1995.
[10] J. Domaschka, “Middleware layers for the virtual nodes replication framework,” Institute of Distributed Systems, Ulm University, Germany,

Tech. Rep. VS-R16-2011, December 2011.
[11] M. Coppola, Y. Jégou, B. Matthews, C. Morin, L. P. Prieto, O. D. Sánchez, E. Y. Yang, and H. Yu, “Virtual organization

support within a grid-wide operating system,” IEEE Internet Computing, vol. 12, pp. 20–28, March 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1399091.1399259

[12] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-conditioned, scalable internet services,” SIGOPS Oper. Syst. Rev.,
vol. 35, pp. 230–243, October 2001. [Online]. Available: http://doi.acm.org/10.1145/502059.502057


