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Abstract In personal assistant dialog systems, intent models are classifiers that iden-
tify the intent of a user utterance, such as to add a meeting to a calendar, or get the
director of a stated movie. Rapidly adding intents is one of the main bottlenecks
to scaling — adding functionality to — personal assistants. In this paper we show
how interactive learning can be applied to the creation of statistical intent mod-
els. Interactive learning [10] combines model definition, labeling, model building,
active learning, model evaluation, and feature engineering in a way that allows a
domain expert — who need not be a machine learning expert — to build classifiers.
We apply interactive learning to build a handful of intent models in three different
domains. In controlled lab experiments, we show that intent detectors can be built
using interactive learning, and then improved in a novel end-to-end visualization
tool. We then applied this method to a publicly deployed personal assistant — Mi-
crosoft Cortana — where a non-machine learning expert built an intent model in
just over two hours, yielding excellent performance in the commercial service.

1 Introduction

Personal assistant dialog systems are increasingly a part of daily life, with examples
including Microsoft Cortana, Apple’s Siri, Google Now, and Nuance Dragon Go.
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Fig. 1 Processing pipeline used for personal assistant dialog systems. First, utterances which are
spoken are converted to text. Intent detection and entity extraction/resolution are then performed
on the text. The resulting intent and entities are used to select and call a function. This function
optionally updates an internal dialog state, then produces a response. The cycle can then repeat.

Figure 1 shows a high-level pipeline for these systems. First, spoken input is rec-
ognized using an open-domain automatic speech recognizer (ASR) and converted
to words, such as “Am I free today at noon?”. This step is skipped if input is pro-
vided by text. Next, the input words are processed by intent detectors to infer the
user’s intent, such as READFROMCALENDAR. In parallel, entity extraction identi-
fies utterance substrings that contain entities such as the date “today” or “noon”, and
entity resolution maps those substrings to canonical forms such as 2014-09-11
or 12:00:00Z-08:00:00. Finally, a function is called that takes the intent and
entities as input, optionally updates an internal state, and produces a response as out-
put. The cycle then repeats. Although variations exist — for example, intent detec-
tion and entity extraction/resolution may be done jointly — these are the high-level
components of personal assistant dialog systems.

To add new functionality to state-of-the-art commercial systems, only certain
stages of the pipeline need to be modified. On the one hand, the ASR service gen-
erally remains unchanged, because the coverage of modern ASR platforms is quite
broad. Also, it is often the case that the function calls to produce a response are
already available — for example, on most mobile phone platforms, APIs already
exist for manipulating a user’s calendar information. On the other hand, adding a
new intent almost always requires building a new intent detector model. New entity
extractors are only sometimes needed, because many entity types can be re-used for
new intents: for example, the intents to read, write, and delete an appointment from
a calendar all share the same entities: times, dates, locations, and so on.

In sum, quickly building new intent detector models is the key step in adding new
functionality to a personal assistant dialog system. Yet building new intent detec-
tors is often a slow process. One reason is that typically many people are involved,
requiring coordination and scheduling. For example, a data engineer collects ut-
terance data that contains instances of the target intent; a user experience designer
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creates a labeling instruction document that explains the new intent; a crowd-source
engineer creates a crowd-sourcing task where workers apply the labeling instruc-
tions to data; and a machine-learning expert uses the data to build an intent detection
model. Another problem is that issues with the definition of the intent often surface
only at the end of the process when model performance is measured, requiring the
whole loop to be repeated. Overall, the entire process can take weeks.

In this paper we introduce a new method for building intent detector models that
reduces the time required to a few hours. The work is done by a single person, who is
an expert in the domain of interest, but is not an expert in machine learning. The key
idea is to use interactive learning [10], which interleaves intent definition, active
learning, model building, model evaluation, and feature engineering (described in
detail in Section 3).

This paper is organized as follows. The next section reviews intent detection and
related work, then section 3 introduces interactive learning and explains how it is
applied to building a single intent model. Section 4 presents an evaluation, then
section 5 introduces and evaluates an end-to-end tool that enables developers to
correct any stage of the intent/entity processing pipeline. Section 6 describes a live
deployment in Microsoft Cortana of an intent model built using interactive learning.
Section 7 briefly concludes.

2 Background and related work

Intent detector models are classifiers that map from a sequence of words to one
of a set of pre-defined intents — for example, from “Am I free this afternoon” to
READFROMCALENDAR, which is one of the pre-defined intents [16, 14]. A typical
domain like calendaring has on the order of a dozen intents. In this paper, a binary
classifier is trained for each intent, which allows new intents to be built and tested
independently, facilitating extensibility across domains. Intent i is a model of the
form Pi(y|x), where x are the words in the utterance, and y is a binary variable
where y = 1 indicates that the intent is present in the utterance and y = 0 indicates
not. For a given utterance x and a set of intents I , the most likely intent i∗ can be
selected as:

i∗ = argmax
i∈I

Pi(y = 1|x) (1)

Out of domain utterances i =∅ — i.e., those which match none of the intent detec-
tors — can be explicitly modeled with a background model P∅(y = 1|x).1

The model itself can be estimated in a variety of ways, such as boosting [9],
support vector machines [5], or deep neural networks [8] among others — and the
focus of much past work has been to maximize performance (accuracy, F-measure,

1 This approach assumes that the scores are directly comparable. In this paper, the classifiers are
not guaranteed to produce comparable scores, but since only a handful of classifiers are used and
their calibration is similar enough, this mis-match will not be a practical problem. We’ll return to
this point in the conclusion.
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etc.) given a fixed dataset. The approach described in this paper admits any model
class which can be trained rapidly, but for simplicity we have used regularized log-
linear models. Features will be words, n-grams of words, or other simple lexical
features such as the length of the utterance.

The approach in this paper focuses on maximizing performance for a given time
budget, where time can be spent on labeling or feature engineering. The primary
time-budget approach taken in past work has been active learning [15, 13]. Active
learning starts with a small seed set of labeled data instances, from which an initial
classifier is trained. This classifier then scores a large set of unlabeled instances.
A selection rule then draws instances based on their scores. For example, the rule
might draw examples for which the classifier shows greatest uncertainty — e.g.,
a score of 0.5. As more instances are labeled, the classifier is re-trained, and the
process is repeated. As compared to random sampling, active learning has been
shown to have much better time efficiency — i.e., active learning requires fewer
labels than random sampling to attain the same level of performance. By contrast,
in this paper, we apply interactive learning.

Enabling non-experts to quickly build data-driven dialog systems is a long-
standing goal in the research literature [4, 7, 3]. Unlike past efforts, this work draws
on a massive set of utterances from a deployed commercial personal assistant, and
builds upon interactive learning, described next.

3 Interactive learning

Interactive learning (IL) is a method for efficiently building classification models,
where classifier definition, labeling, model building, and evaluation are all inter-
leaved and done by a single developer [10]. Like active learning, IL is suitable when
unlabeled data is abundant but labeling is expensive, as in our case. IL incorporates
active learning but extends it substantially.

IL requires a large database of unlabeled data instances, such as webpages,
emails, or (in our case) text of utterances to a personal assistant. The database must
contain positive instances, although these instances may be very rare. Personal as-
sistant logs often do contain utterances expressing intents which aren’t currently
implemented, because the functional scope of commercially-available personal as-
sistants is continually growing and thus not well understood by all users. This allows
intent detectors to be built in advance of functional implementation, at least for in-
tents expressed at the first turn (logs are unlikely to contain subsequent utterances
for functionalities that don’t yet exist).

A developer begins with a general idea of the classifier they want to build. In
our case these will be binary classifiers — in our case, detecting utterances which
correspond to a particular intent. For IL we use a tool created in Microsoft Research
called ICE, which stands for Interactive Classification and Extraction, and is shown
in Figure 2.
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Fig. 2 ICE (Interactive Classification and Extraction): Tool at Microsoft Research for interactive
learning [10]. In the top center, the developer can enter a search term or a score from which to
sample. Utterances are shown in the central panel. Their scores under the current model are shown
to the left of each utterance. The red (False) and green (True) bars indicate their suggested label by
the model, which can be changed by clicking. The performance of the model is shown in the bottom
panel, including confusion matrices, precision-recall curves, and area under the curve (AUC) as a
function of how many labels have been entered. Features can be added and edited on the left.

The developer starts working by searching for data instances using textual search
terms based on their domain knowledge. For example, they might issue searches
like “calendar” or “my schedule”. The searches yield results which the developer
then labels. Labels can be positive, negatives, or a special “don’t know” label.

After each label is entered, all the labels are randomly divided between a training
and test set, and a model is built on the training set, excluding the “don’t know”
labels. This model is then used in 3 ways. First, all of the instances labeled so far
can be displayed graphically, showing the distribution of scores, giving an overview
of performance. Second, when the developer searches for new instances, the model
is used to propose labels. This accelerates labeling and also gives an indication of the
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performance of the model on unseen data. Third, each time the model is rebuilt, it is
applied to all of the unlabeled data, which allows the developer to draw samples of
unlabeled instances at a particular score. Setting a value near 0.5 will draw instances
most perplexing to the classifier, similar to active learning. Setting a high or low
value searches for false-positive or false-negatives.

Past work has shown that domain experts (here, developers) can readily provide
additional words that can be used as features [11], and that those words improve
machine-learning performance [12]. Therefore, in ICE, the developer can populate
a list of individual words or phrases which the developer believes will be important
in the domain, like “my calendar”, “am i free”, “appointment”, etc. Finally, the
developer can provide classes that pertain to the domain, such as days of the week:
Monday, Tuesday, etc. After a feature is edited (by adding or removing a phrase),
enabled, or disabled, the model is re-built in a few seconds, and the train and test
sets are re-scored. This allows the developer to experiment with different word-
based features and immediately see the effects. The developer can also opt to use all
observed words/n-grams as features.

As labeling progresses, the developer moves freely between evaluating and im-
proving the model. Evaluation is done by looking at the distribution of scores on
labeled instances and the scores assigned to new instances. Improvement is done
by adding more labels or editing the features. In addition, in response to the data,
the developer may decide to alter the definition of the classifier — i.e., the labeling
guidelines they are following — and revise labels accordingly. For example, the de-
veloper may decide that “Show me my calendar” should be a different intent than
“Am I free at 3 PM?” when previously they’d been grouped together.

To our knowledge, this work is the first to apply interactive learning to the task
of building intent detectors for dialog systems. As compared to the traditional ap-
proach which requires about half a dozen staff, IL requires just one person, and that
person need not be an expert in machine learning — therefore our hypothesis is that
IL will result in substantial time savings over the traditional approach. Active learn-
ing addresses the labeling step in the traditional approach — and has been shown
to reduce effort at that step — but still requires the same number of roles as the
traditional approach.

4 Building intent detectors with interactive learning

As a first test of applying interactive learning to intent detection, we loaded 25M
raw utterances from Microsoft Cortana into our IL tool. For typed utterances, the
log contained the text entered; for spoken utterances, the log contained the output
of the (possibly erroneous) speech recognizer. Utterances likely to contain personal
or identifying information were excluded.

We then applied ICE to build three intent detectors in the movies domain:

• MOVIESDIRECTEDBY: The user is requesting to find all movies directed by a
named person, for example “What movies did Stanley Kubrick direct?”
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Fig. 3 Cumulative effort (time) for building the MOVIERUNTIME intent with interactive learning.

• WHODIRECTED: The user is requesting the name of a director for a named
movie, for example “Who directed The Matrix?”

• MOVIERUNTIME: The user is requesting the duration of a named movie, for
example “How long is Gone with the Wind?”

The first two intents were built to gain familiarity with the IL tool and as a result
the effort duration was not carefully logged. The last intent was built under con-
trolled, carefully logged conditions. The developer added bag-of-n-gram features,
specific n-grams like “director”, “movie”, and “who directed”, and also a class con-
taining all movies names found in Freebase.2

The effort expended (in minutes) is shown in Figure 3. For MOVIERUNTIME, la-
beling 600 utterances required 90 minutes. Note that the marginal time per utterance
declines sharply: the first 100 utterances required 28 minutes, whereas the last 100
utterances required 9 minutes. This illustrates the benefits of interactive learning:
early in labeling, the developer is manually searching for utterances to label, the
model is unable to suggest labels, and more feature engineering is required; later in
labeling, the model can be used to select utterances to label and can often propose
accurate labels, and the features are stable so little feature engineering is required.

We then evaluated the performance of all three intent detectors on held-out data.
Precision is straightforward to evaluate: the models were run on randomly ordered
unseen utterances; the first 150 utterances scored above a threshold were manually
labeled. Results are shown in Table 1. The precision ranged from 81% to 93% for
the three intents developed.3

Unlike precision, recall is infeasible to measure, since each intent appears very
infrequently in the data, so accurately estimating recall would require labeling

2 www.freebase.com
3 The held-out test set excluded utterances which appeared in the training set, whereas in actual de-
ployment, utterances in the training set may re-appear. Therefore, these are conservative estimates
which could underestimate performance.
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Table 1 Effort and precision for three binary intent classifiers

Intent Effort Number of labels Test set size Precision

MOVIESDIRECTEDBY 180 minutes∗ 1121 150 93%
WHODIRECTED 180 minutes∗ 1173 150 89%
MOVIERUNTIME 90 minutes 600 150 81%

∗ Estimate

100Ks or millions of utterances. As a basic check, 150 unseen utterances were cho-
sen at random, were scored using the MOVIERUNTIME intent detector, and manu-
ally labeled. None were found to contain the MOVIERUNTIME intent, and the model
scored all below the threshold.

The false-positives for the MOVIERUNTIME intent were examined by hand. The
main cause of errors was that the n-gram “how long is” refers to many types of
queries, and many words in English are titles of movies, making some instances
difficult to classify. For example, in the utterance “How long is Burger King open”,
the words “Burger” and “King” are both titles of movies, but “Burger King” is not
related to movies in this context. This was one consideration in developing a second
tool to explore and correct end-to-end operation, described next.

5 Improvement through end-to-end testing

The results in the previous section showed that it is possible to use interactive learn-
ing to quickly build a single intent detector with good precision, so we next set about
building an end-to-end tool for testing and system improvement. Labeling and cor-
recting end-to-end interactions allows developers to view and debug interactions as
they will be experienced by users — i.e., developers can decide on intermediate la-
bels for stages in the pipeline based on the response to the user. The design of the
tool is to visualize the end-to-end processing done for an utterance. If the developer
sees any errors in the pipeline, they can correct the output of any processing stage,
and the remainder of the pipeline is immediately re-run using those corrections as
the revised input. Once the whole pipeline has been checked and the correct an-
swer is output at the end of the pipeline, the developer can save the labels, which
stores labels for every component of the pipeline. The end-to-end tool also allows
the developer to type in an utterance, which handles the case where variations of the
target intent don’t (yet) appear in the logs. This enables the developer to bootstrap
intent models when sufficient example utterances do not yet exist. A screenshot of
our tool is shown in Figure 4. In the upper left, the developer types in an utterance.
The utterance is then scored by all of the available intent detectors — in our case,
three — then performs entity identification, and calls a function which produces a
response.
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Fig. 4 End-to-end labeling tool. The developer enters an utterance in the upper left. The intent
detectors and their scores are shown below that. The bottom left shows entity extraction and res-
olution. Finally, the resulting function call is shown in the upper right, and the system response is
shown at middle right. Errors detected at any stage of the pipeline can be corrected and are prop-
agated forward; once the whole pipeline produces the correct answer, the developer clicks Save
Labels, which also clears the display so the developer can enter another utterance. The developer
can also Retrain models and Commit to ICE which stores the new models and labels in the cloud.

In this first experiment, we explored the rather limited question of whether it
was possible to improve a single intent model using this end-to-end tool. We began
with a working calendar dialog system with 2 intents: READFROMCALENDAR and
WRITETOCALENDAR. We then asked a developer to create a new binary intent
detector, DELETEFROMCALENDAR, in the ICE IL tool (not in the end-to-end tool).
The devleoper labeled 470 instances in 60 minutes. On a held-out test set of 3M
unlabeled utterances, using a decision threshold of 0.5, the model retrieved 114
utterances, of which 88% were correct — i.e., the precision was 88%. In the results
below, this model is denoted “IL”.

Next, the developer began using the end-to-end tool, with all 3 intents and 2
entity extractors. The developer examined 33 utterances in 30 minutes, and the la-
bels collected were used to update all of the intent and entity models, including the
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Table 2 Precision and utterances retrieved for DELETEFROMCALENDAR intent on a test set of
3M unlabeled utterances.

Method Total effort Number of labels Precision Utterances retrieved

IL 60 minutes 470 88% 114
IL+E2E 90 minutes 503 88% 134

DELETEFROMCALENDAR intent model. The updated model (denoted “IL+E2E”)
for DELETEFROMCALENDAR was run on the same held-out data used with the
baseline (IL) model as above; we adjusted the threshold so that it achieved the same
precision as the baseline (IL) model developed in isolation (88%). At this precision,
the IL+E2E model retrieved 134 sentences — an increase of 18% compared to the
baseline model, which was statistically significant at p = 0.004 using McNemar’s
test. These results are summarized in Table 2.

This analysis shows that the recall of the model increased for a fixed precision,
which in turns means that the F-measure increased. As above, the intent is very rare
in the data, so calculation of exact values for recall (and thus F-measure) are not
possible.

While it is clear that the end-to-end tool yielded an increase in performance of the
intent models, in future work we’d like to evaluate the time efficiency compared to
the ICE IL tool in Sections 3 and 4. It is clear that the number of utterances per unit
time in the end-to-end tool (33 utterances in 30 minutes) is lower than in the ICE
IL tool (470 utterances in 60 minutes); however we note that each labeled utterance
in the end-to-end tool produces labels for every intent model, entity extractor, and
entity resolver. Therefore it is likely that this end-to-end evaluation also improved
these models. We defer further evaluations to future work; rather, in the next sec-
tion, we continue investigating the performance of a single intent detector in a live,
public, large-scale personal assistant dialog system.

6 Interactive learning in production

In this section we report on preliminary results applying this technique to the live
Cortana service. Here we apply IL to the social conversation domain — i.e., social
utterances directed at the agent, such as “Cortana, where are you from?” or “Are you
married?”. The designer of this feature — who was not a machine learning expert
— developed a binary detector for the COMPLIMENT intent, including utterances
like “Cortana you’re great” or “That was pretty clever”.

The designer spent 135 minutes developing this classifier, labeling 2,254 utter-
ances, approximately half positive and half negative. This classifier was then de-
ployed into the production Cortana platform. A random sample of 144K utterances
from the production platform was then collected. The compliments classifier fired on
1,160 of these. These 1,160 utterances were manually labeled. Precision was mea-
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sured to be between 97.7% and 99.9%, with the variation due to how ambiguous
utterances like “that’s great” and “very nice” are counted, since these are compli-
ments in some, but not all, contexts. As above, an exact recall measurement is not
possible, but in a random sample of 512 utterances, 1 or 2 were compliments (one
was ambiguous). This implies an occurrence rate in the data of 0.2% – 0.4%; the
upper bound of the 95% confidence interval of the proportion 1

512 is 1.1% and 2
512 is

1.4%. The classifier fired on 0.8% of the utterances. These figures cannot be used to
compute recall but do suggest that the recall is reasonable, since the fraction of utter-
ances where the (high-precision) classifier fired is about equal to the occurrence rate
in a small sample, and not far from the upper limit of the 95% confidence interval.

By contrast, labeling 2,254 utterances selected uniformly at random (rather than
selected using the IL tool) is highly unlikely to produce a good model. Assuming
0.5% of utterances are compliments, then a uniform random sample would result in
0.005 ·2,254 = 11 positive labels. Learning a good classifier from 11 positive labels
and 2,243 negative labels would be hopeless.

7 Conclusions

Quickly building intent detectors is a major bottleneck for expanding the function-
alities of a personal assistant dialog system. In this paper, we have shown how in-
teractive learning can be applied to this problem. Intent detectors have been built in
three domains: movies, calendar, and social conversation. Each binary intent detec-
tor required 1-3 hours to build, and yielded good precision, in the range of 81% to
99%, without any obvious problems in recall.

In future work, we will tackle the problem of ensuring comparability of binary
classifier scores. Because classifiers produced with interactive learning (or active
learning) do not use a training set randomly sampled from the data, their scores
are all calibrated differently and are thus not guaranteed to be directly comparable.
With a handful of intents, this has not been a practical problem, but in the future
there could be 1000s or more binary classifiers running in parallel, with classifiers
being added, removed, or changed at any time. The problem of combining many
binary classifiers is well-studied in the machine learning literature and numerous
solutions exist [1, 2]; what remains to be done is evaluate their applicability to this
problem.

In future work we will also consider structured intents, where intents can be
composed of multiple relations like “Show movies directed by X and starring Y”
[6]. We anticipate binary detectors can be used to detect each relation; the open
question is how to compose the detected relations together into a structured intent.

Even so, this paper has illustrated the impact of interactive learning for intent
detection. The conventional process for labeling data and building a model has been
reduced from weeks to hours, while achieving very high precision. In the process,
the number of staff required has been reduced from a half dozen or so to one, and
that individual does not require machine learning expertise. We anticipate both of
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these contributions will help efforts to grow the functionality of personal assistant
dialog systems.
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