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Abstract User simulation is widely used to generate artificial dialogues in order
to train statistical spoken dialogue systems and perform evaluations. This paper
presents a neural network approach for user modeling that exploits an encoder-
decoder bidirectional architecture with a regularization layer for each dialogue act.
In order to minimize the impact of data sparsity, the dialogue act space is com-
pressed according to the user goal. Experiments on the Dialogue State Tracking
Challenge 2 (DSTC2) dataset provide significant results at dialogue act and slot
level predictions, outperforming previous neural user modeling approaches in terms
of F1 score.

1 Introduction

Developing statistical Spoken Dialogue Systems (SDS) requires a high amount of
dialogue samples from which Dialogue Managers (DM) learn optimal strategies. As
manual dialogue compilation is highly resource demanding, an usual approach is to
develop an artificial user or User Model (UM) from a small dataset capable of gen-
erating synthetic dialogue samples for training and evaluation purposes [19]. UMs
are designed in a way that they receive an input from the DM and return a coherent
response. A consistent model is expected to maintain coherence throughout the di-
alogue and to imitate the behavior of real users. Also, some degree of variability is
desired in order to generate unseen interactions.

There have been several user modeling proposals in the literature. Initial ap-
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proaches [6, 13, 14] used N-grams to model user behavior, but were not capable
of capturing dialogue history and, thus, lacked coherence. Subsequent efforts to in-
duce more coherent UMs were proposed by [20, 17]. However, these methods often
required a large amount of hand-crafting to infer the dialogue interaction rules.

Several statistical UM approaches have tried to reduce the amount of manual
effort required while maintaining dialogue coherence. In [15] Bayesian Networks
were used to explicitly incorporate the user goal into the UM. A network of Hidden
Markov Models (HMM) was proposed in [5], each HMM representing a goal in the
conversation. A hidden-agenda where the user goal is predefined as an agenda of
constraints and pieces of information to request to the system and updated at each
dialogue turn was presented in [18]. Other approaches have proposed the use of in-
verse reinforcement learning [2], exploiting the analogies between user simulation
and imitation learning.

Recently, a sequence-to-sequence neural network architecture has been proposed
[12] for user modeling. Taking into account the whole dialogue history and the goal
of the user, this method predicts the next user action as a sequence decoding of dia-
logue acts. Despite proven to be a promising approach, it suffers from data sparsity
when it comes to represent dialogue acts at slot value level.

This paper proposes to model the user as an ensemble of bidirectional encoder-
decoder neural networks. The dialogue history is encoded as a sequence instead of
a single vector to avoid the information loss caused by compression [3]. Before the
decoding process, an additional layer is used to learn regularization parameters that
are applied to the encoded sequence in order to improve the generalization of the
model. Each user dialogue act is trained in an independent network and an ensemble
is constructed by joining all expert networks to predict the user action for each turn.
In order to address the data sparsity problem, both system and user dialogue act
representations are compressed at slot value level according to the user goal. This
representation allows the slot level information to be included in the network during
the training process, and thus, represents the dialogue interaction logic with finer
granularity.

The paper is structured as follows: Section 2 introduces goal oriented SDS and
explains how dialogue act representations are compressed according to the goals set
in the dialogue scenario. Section 3 describes the proposed neural network architec-
ture in detail. Section 4 presents the experiments carried out on the DSTC2 dataset.
Finally, Section 5 summarizes the main conclusions and sets guidelines for future
work.

2 Compressing Goal Oriented Dialogue Acts

Statistical approaches to dialog management require a large amount of dialog sam-
ples to train the involved models. Human-to-human dialogues are generally used
to train open domain dialogue systems. However, for goal oriented human-machine
interaction a common practice to obtain controlled dialogue samples is to assign the
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users a scenario to fulfill through the dialogue [10, 8]. Such scenario may contain
diverse goals to complete by the user and other relevant information for the upcom-
ing interaction.

As explained in [18], the dialogue goal G = (C,R) can be represented as a set
of constraints C to inform and values to request R that the user needs to fulfill
through the interaction. Table 1 shows a dialogue scenario given in the Dialogue
State Tracking Challenge 2 (DSTC2) corpus used in the experimental section of this
paper, where C = (food = international ,area = north) and R = (address, phone)
are given explicitly. The constraints and requests of the goal have a direct correla-
tion with the user’s intention at semantic level. User-system interactions are usually
represented through dialogue acts (DA) [7, 1, 4], denoted by intention tags (e.g. in-
form, request, confirm) which can contain information objects known as slots, with
their corresponding values.

Table 1 Example scenario of a restaurant domain corpus and its goal representation

You are looking for a restaurant in the north part of town
Description: and it should serve international food. Make sure you get
the address and phone number.

Constraints: Food: International
Area: North
Requests:  Address
Phone

The following example shows an utterance annotated using the dialogue act
schema: inform and request are the dialogue acts; food, area, address and phone
are slots while international and north are slot values. Note that there can be dia-
logue acts without slots and that not all slots need to have a specific value.

I want a restaurant that serves international food in the north.
Give me it’s address and phone number.
DA Representation: inform (food=international, area=north) & request (address, phone)

Utterance:

The main problem of the dialogue act representation is the huge amount of pos-
sible slot values. For example, in the DSTC2 corpus, the system can inform of more
than 90 food values and 100 restaurant names. Assuming the slot values returned
by the system are relevant to the user only if they match a constraint set in the dia-
logue scenario, every slot value can be replaced with an is_goal or not_goal token,
depending on whether or not they match the given constraint values. Following this
assumption, the possible values of the food slot can be reduced from more than 90
to only two.

Table 2 shows how the slot values of an interaction represented at dialogue act level
are compressed according to the user goal constraints given in Table 1. As it can be
seen, this assumption has a direct impact in the dialogue act representation schema,



4 Manex Serras, Maria Inés Torres and Arantza del Pozo

narrowing down each slot to just two values. As a result, slot value level information
can be included in dialogue act representations for user modeling purposes, avoiding
excessive sparsity and with small information loss.

Table 2 Dialogue act interaction example, compressed according to the user goal

Original Interaction Compressed Interaction

System: request( area ) System: request( area )

User: inform( area = north , food = international) User: inform( area = is_goal , food = is_goal )

System: expl-conf( food = italian ) System: expl-conf( food = not_goal)

User: negate( )&inform( food = international ) User: negate( )&inform( food = is_goal )

System: offer(restaurant)&inform(area = north, food=international)| System: offer(restaurant)&inform(area = is_goal, food=is_goal)
User: request(address, phone) User: request(address, phone)

3 Regularized Bi-directional LSTM User Model

The neural network architecture proposed for user modeling is a bidirectional
encoder-decoder with a regularization layer. It encodes the dialogue history in a
sequence both forward and backward and exploits a regularization mechanism to
set the focus only on the relevant sections of the encoded sequence.
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Fig. 1 Neural network architecture proposed for user modeling
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As shown in Fig 1, the input to the network is a concatenation of the user goal
set in the dialogue scenario G and the sequence of system dialogue acts until the
current turn ¢, DAL = (da?,da!, ...,dd.). G is represented as a 1-hot encoding of the
slots given as constraints and requests in the dialogue scenario. The output of the
network is a prediction of the user dialogue act at the current turn da’,. Note that
while system dialogue acts change turn by turn, the initial goal representation re-
mains the same throughout the dialogue.

The encoding layer is composed of a bidirectional Long Short Term Memory
(LSTM) [9], whose output is the dialogue history encoded as hg forward and as hy,
backward.

The applied regularization mechanism requires to learn the weight vectors « for
each row of the encoding matrix H = [h¢, hp]. Being H; the i-th row of the en-
coding matrix, the vector ¢ is calculated as o; = o(W,H;), where W, are the pa-
rameters of the Regularization Layer and o the sigmoid function. Once H and « are
known, the encoded sequence is regularized by the element-wise product as follows:
Reg = ae ® H. This operation will override the non-relevant values of the encoded
sequence .

Decoding is then applied to Reg through another bidirectional LSTM, which out-

puts forward and backward decoding vectors d} and dj at turn r. These vectors are
finally concatenated and processed by the output layer with a sigmoid activation
function, from which the user dialogue act at the current turn dda/, is predicted.
The proposed model uses an expert network for every possible user dialogue act, so
the architecture in Fig 1 is replicated for each dialogue act of the user. As a result,
the final user model is an ensemble of networks, each of which predicts the slots
of a specific user dialogue act as shown in Fig 2. A dialogue act is triggered when
the corresponding network of the ensemble returns any value above an individual
threshold 6 set in the development phase (€.g. i, form for the inform dialogue act ).
The final output is the combination of dialogue acts given by the ensemble of neural
networks.

Input Output
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/ Decoding LSTM :,
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G®DA — 5

Request Network erequest
Regularized Encoding-  —> [0,1,0,... ,1,0]
Decoding LSTM }
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Fig. 2 Ensemble of Dialogue Act networks from which dd/, is predicted
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4 Experimental Framework

4.1 Dialogue State Tracking Challenge 2

The presented neural user model has been tested on the Dialogue State Tracking
Challenge 2 (DSTC2) corpus. The second edition of the DSTC series [8] was fo-
cused on tracking the dialogue state of a SDS in the Cambridge restaurant domain.
For such purpose, a corpus with a total of 3235 dialogues was released !. Amazon
Mechanical Turk was used to recruit users who would interact with a spoken dia-
logue system. Each user was given a scenario similar to that described in Table 1,
which had to be completed interacting with the system. The goals defined in such
scenarios followed the agenda approach of [18]. As a result, the constraints and re-
quests of the user goal are explicitly annotated for each dialogue in the corpus. Table
3 summarizes the user dialogue acts of the DSTC2 corpus with their slots. Note that
many dialogue acts do not have related slots and that the slots of the Request di-
alogue act have no value. Table 4 include all the informable slots in the DSTC2
corpus and some examples of their possible values.

Table 3 Dialogue acts that the user can trigger in the DSTC2 corpus

User Dialogue Act Related Slots

Acknolwedge Null

Affirm Null

Bye Null

Confirm Area, Food, Price Range, Restaurant

Deny Area, Food, Price Range, Restaurant

Hello Null

Help Null

Inform Area, Food, Price Range, Restaurant

Negate Null

Repeat Null

Request Alternatives Null

Request More Null

Request Area, Food, Price Range, Restaurant,
Phone, Address, Signature, Postcode

Restart Null

Silence Null

Thankyou Null

! http://camdial.org/~ mh521/dstc/
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Table 4 Possible slot values for the Inform, Confirm and Deny dialogue acts

Informable Slots |Possible Values|Examples

Restaurant Name 113 Nandos, Pizza Hut, ...

Food Type 91 Basque, Italian, European, ...
Price Range 3 Cheap, Moderate, Expensive
Area 5 North, west, south, east, centre

The train/development/test set partitions of the corpus have been used to train,
validate and test the proposed methodology. The development set has been used to
set the thresholds (6, form, - - -, Orequest) and to control overfitting based on early
stopping. The test set has been used to carry out final evaluation in terms of Preci-
sion, Recall and Fl1-score as in [12, 19, 5, 16]. These metrics allow comparing the
dialogue acts of real and simulated users, measuring the behavior and consistency
of the model.

4.2 Experiments and Results

This section describes how the ensemble of networks was trained on the DSTC2
corpus and shows the results achieved, both at dialogue act and slot levels.

Training was done using mini-batch learning; having a dialogue N turns, the total
batch is of size N and each input is the sequence of system dialogue acts until turn
t < N. For gradient descent, the Adam [11] optimization method was used with a
fixed step size of 0.001. No dropout nor weight penalties were employed. The loss
function was computed using the squared error for multiple slot output dialogue
acts (e.g. inform, request) and cross-entropy for single output dialogue acts (bye,
acknowledge). Each layer of every dialogue act network had 256 neurons. The indi-
vidual threshold 6 for each dialogue act network (6 orm; -, Opye) s set using the
development set. In order to set the threshold’s value for each dialogue act, a grid
search is done to maximize the individual F1 score.

Table 5 shows the Precision, Recall and F1 score achieved by the proposed model
with and without regularization on the DSTC2 development and test sets at dialogue
act level. For comparative purposes, results presented by [12] in the first reported
neural user modeling approach are included, which outperformed previous bigram
and agenda-based approaches. As it can be seen, the proposed method significantly
improves the F1 score of the simulated user model. The improvement is justified
by the increase of overall network complexity and the exploitation of compressed
slot value level information for user dialogue act prediction. Also, the regularization
mechanism slightly improves the generalization capability of the user model, so its
regularized version has been used in the rest of the experiments.
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Table 5 Overall results at dialogue act level

Bi-directional LSTM |Regularized Bi-directional LSTM |Sequence-to-one [12]
DSTC2 Dev |Precision 0.69 0.70 -
Recall 0.71 0.72 -
Fl 0.70 0.71 0.37
DSTC2 Test|Precision 0.68 0.71 -
Recall 0.71 0.73 -
FI 0.69 0.72 0.29

Table 6 summarizes the results achieved for each user dialogue act. As it can
be seen from the table, the proposed simulated user is capable of modeling high
frequency dialogue acts with ease, but struggles when it comes to low frequency
ones. Despite a neural network is trained using the whole corpus for each dialogue
act, there are some cases where there is still not enough data to make any prediction.

Table 6 Results for each user dialogue act

Dev. set Test Set

Speech Act|Apparison|Predicted|Prec|Rec[F1 |[Apparison|Predicted [Prec[Rec|F1
Ack 0 0 0 0 0 9 0 0 0 0
Affirm 144 129 0.73 0.65 0.69(|601 677 0.70 0.79 0.75
Bye 526 528 0.82 0.82 0.82(|1169 1082 0.85 0.78 0.81
Confirm |39 0 0 0 0 46 0 0 0 0
Deny 4 0 0 0o 0 4 0 0 0o 0
Hello 18 0 0 0 0 39 0 0 0o 0
Inform 1647 1696 0.80 0.82 0.81] (4685 4456 0.85 0.82 0.83
Negate 68 62 0.51 0.47 0.49(|261 217 0.46 0.38 0.42
Null 385 480 0.15 0.19 0.17{|746 1335 0.10 0.18 0.13
Repeat 7 0 0 0 0 8 0 0 0 0
Reqalts 275 326 0.37 0.44 0.40(|649 842 0.36 047 0.41
Reqmore |1 0 0 0 0 1 0 0 0 0
Request 1043 1093 0.77 0.81 0.78](2243 2299 0.80 0.82 0.81
Restart 3 0 0 0 0 7 0 0 0 0
Thankyou |510 531 0.79 0.82 0.81|1125 1101 0.80 0.78 0.79

Table 7 shows overall results achieved at slot value level. As expected, perfor-
mance decreases given the finer granularity of the task but still remains high consid-
ering the extra complexity involved.

Table 7 Overall results at slot value level

Dataset Precision|Recall [F1
DSTC2 Dev| 0.60 0.63 [0.62
DSTC2 Test| 0.60 0.64 [0.62
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Finally, Tables 8 and 9 show a more exhaustive evaluation of the two dialogue
acts with highest impact on the DSTC2 corpus: Inform and Request, at compressed
slot value and slot level respectively.

Table 8 Inform dialogue act results at compressed slot value level

Development Set Test Set
Inform acts |Slot value |Count Predicted |Prec|Rec [F1 |Count|Predicted |Prec|Rec |F1
Food is_goal 509 719 0.54 (0.76(0.63|1472 1970 0.60 {0.80(0.69
not_goal 299 204 0.39 (0.26/0.31(809 |775 0.4510.43(0.44
Area is_goal 423 454 0.67 (0.72(0.70{1071 |1042 0.70|0.680.69
not_goal |21 0 0 0 |0 115 |0 0 0 |0
Price range |is_goal 375 342 0.75(0.69(0.721908  |833 0.720.67|0.70
not_goal |16 0 0 0 |0 116 |0 0 0o |0
This Don’t care|231 308 0.610.81{0.70{767 |898 0.59 [0.69(0.64

As it can be seen in the table, the simulated user achieves good results informing
slot values set as goals in the initial scenario, but suffers from heavy degradation
when it comes to inform those that are not defined as such.

Table 9 Request dialogue act results at slot level

Development Set Test Set
Requested Slot|Count|Predicted |Prec|Rec [F1 |Count|Predicted |Prec|Rec |F1
Food 92 56 0.66(0.40(0.5 |134 |140 0.51]0.53|0.52
Area 40 21 0.71]0.38(0.49|113 |36 0.75]0.24|0.36
Pricerange 90 62 0.64]0.44(0.52|115 |93 0.62(0.50(0.56
Address 421 |549 0.62]0.81(0.70|939 |1154 0.68]0.84(0.75
Phone 426 498 0.64]0.75(0.69|986 {999 0.72]0.73(0.72
Postcode 94 80 0.7510.64|0.68(219 |163 0.83]0.610.70
Signature 2 0 0o (0 |0 10 0 0o (0 |0

In relation to the behavior of the user model with regard to the Request dialogue
act, the correlation between high F1 scores and the requested slot occurrence is
clear; the higher the slot occurrence, the better the F1 score.

5 Conclusions and future work

This paper has presented a neural user model for goal oriented spoken dialogue
systems. The proposed approach employs a sensible way to exploit slot level infor-
mation without adding unnecessary sparsity to the representation. The ensemble of
bidirectional encoding-decoding networks is capable of exploiting the full dialogue
history efficiently and the regularization technique slightly improves the general-
ization capability of the model. These changes provide significant results both at
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dialogue act and slot level predictions, outperforming previous neural user model-
ing approaches in terms of F1 score.

Future work will require refining the presented architecture, so that it can model
low-occurrence dialogue acts and slot values more precisely. The approach should
also be tested on additional goal oriented dialogue datasets. The proposed simu-
lated user model will be compared against other user modeling approaches, when
it comes to training and evaluating statistical spoken dialogue systems. In addition,
having real users evaluate the generated policies shall provide useful insights about
the modeling capabilities of the network.

References
1. Nicholas Asher and Alex Lascarides. Indirect speech acts. Synthese, 128(1):183-228, 2001.
2. Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, and Olivier Pietquin. User

simulation in dialogue systems using inverse reinforcement learning. In Interspeech 2011,
pages 1025-1028, 2011.

3. Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder—decoder approaches. Syntax, Semantics
and Structure in Statistical Translation, page 103, 2014.

4. Mark G Core and James Allen. Coding dialogs with the damsl annotation scheme. In AAA/
fall symposium on communicative action in humans and machines, volume 56. Boston, MA,
1997.

5. Heriberto Cuayahuitl, Steve Renals, Oliver Lemon, and Hiroshi Shimodaira. Human-
computer dialogue simulation using hidden markov models. In Automatic Speech Recognition
and Understanding, 2005 IEEE Workshop on, pages 290-295. IEEE, 2005.

6. Wieland Eckert, Esther Levin, and Roberto Pieraccini. User modeling for spoken dialogue
system evaluation. In Automatic Speech Recognition and Understanding, 1997. Proceedings.,
1997 IEEE Workshop on, pages 80-87. IEEE, 1997.

7. Michael Hancher. The classification of cooperative illocutionary acts. Language in society,
pages 1-14, 1979.

8. Matthew Henderson, Blaise Thomson, and Jason Williams. Dialog state tracking challenge 2
& 3 handbook. camdial. org/mh521/dstc, 2013.

9. Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

10. Lluis F. Hurtado, David Griol, Emilio Sanchis, and Encarna Segarra. A Statistical User Sim-
ulation Technique for the Improvement of a Spoken Dialog System, pages 743—752. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

11. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), pages 1-13, 2015.

12. El Asri Layla, He Jing, and Kaheer Suleman. A sequence-to-sequence model for user simula-
tion in spoken dialogue systems. In Interspeech, 2016.

13. Esther Levin, Roberto Pieraccini, and Wieland Eckert. A stochastic model of human-machine
interaction for learning dialog strategies. IEEE Transactions on speech and audio processing,
8(1):11-23, 2000.

14. Olivier Pietquin. A framework for unsupervised learning of dialogue strategies. Presses univ.
de Louvain, 2005.

15. Olivier Pietquin and Thierry Dutoit. A probabilistic framework for dialog simulation and
optimal strategy learning. IEEE Transactions on Audio, Speech, and Language Processing,
14(2):589-599, 2006.



Regularized Neural User Model for Goal Oriented Spoken Dialogue Systems 11

16.

17.

18.

19.

20.

Silvia Quarteroni, Meritxell Gonzalez, Giuseppe Riccardi, and Sebastian Varges. Combining
user intention and error modeling for statistical dialog simulators. In INTERSPEECH, pages
3022-3025, 2010.

Verena Rieser and Oliver Lemon. Cluster-based user simulations for learning dialogue strate-
gies. In Interspeech, 2006.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young. Agenda-
based user simulation for bootstrapping a pomdp dialogue system. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Companion Volume, Short Papers, pages 149-152. Association
for Computational Linguistics, 2007.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and Steve Young. A survey of statistical
user simulation techniques for reinforcement-learning of dialogue management strategies. The
knowledge engineering review, 21(02):97-126, 2006.

Konrad Scheffler and Steve Young. Probabilistic simulation of human-machine dialogues. In
Acoustics, Speech, and Signal Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE Inter-
national Conference on, volume 2, pages 111217-111220. IEEE, 2000.



