

GESELLSCHAFT DEUTSCHER CHEMIKER

Elektrochemie: Herausforderungen an die Lehre in der Chemikerausbildung

(http://www.bunsen.de/)

Rudolf Holze
Institut für Chemie, Technische Universität Chemnitz, D-09107 Chemnitz http://www.tu-chemnitz.de/chemie/elchem

Anorganische Chemie

Werkstoffkunde

Oberflächenwissenschaft

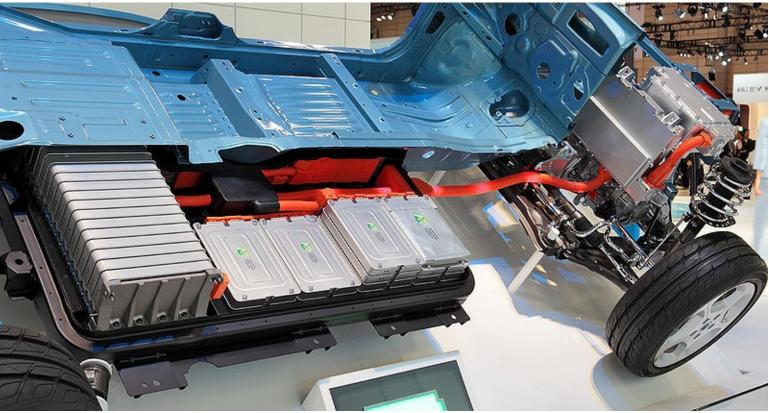
Physikalische Chemie

Elektrochemie ist

Analytische Chemie

Organische Chemie

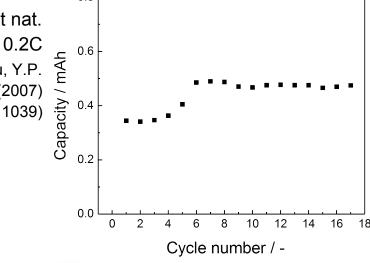
Materialwissenschaft

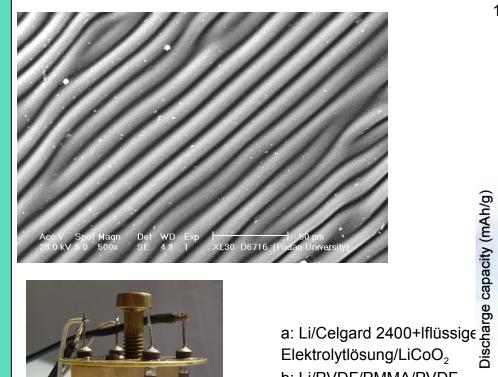

Energietechnik

Biochemie

Elektrochemische Energietechnik: Lithiumionenbatterie

Elektrochemische Energietechnik: Natrium-Schwefel-Hochtemperaturakku

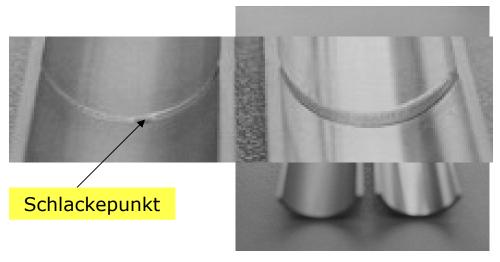

6 MW/48 MWh NGK Natrium-Schwefel-System, Ohito, Japan, load-leveling



Elektrochemische Materialwissenschaft: Gelierte Elektrolyte für Lithiumionenbatterien

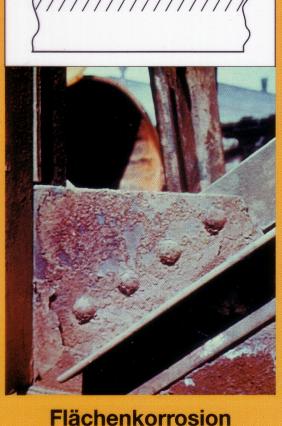
REM-Aufnahme einer getrockneten Membran von PMMA und PVDF.

Zyklenverhalten einer Zelle mit nat. Graph./GPE/LiCo_{1/3}Ni_{1/3}Mn_{1/3}O₂bei 0.2C (H.P. Zhang, P. Zhang, M. Sun, H.Q. Wu, Y.P. Wu, und R. Holze, Z. Phys. Chem. 221 (2007)


200 180 160 120 100 80 60 40 20 50 60 70 80 90 100 110 120 130 30 40 Cycle number

b: Li/PVDF/PMMA/PVDF Sandwich membrane/LiCoC (3..4.4 V)

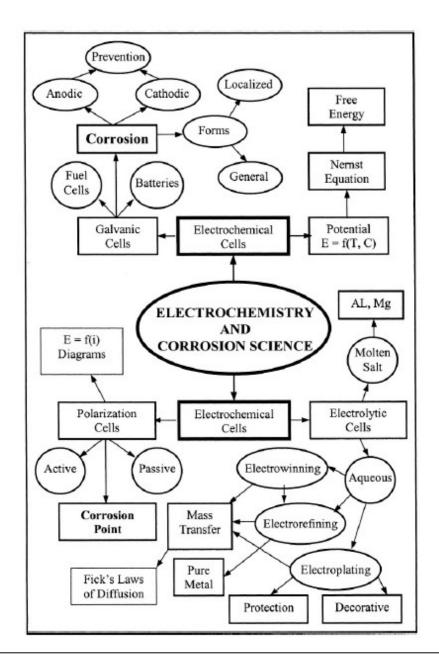
Elektrochemische Oberflächentechnik: Elektropolieren



Quelle: Dockweiler

Elektrochemische Oberflächentechnik: Korrosion

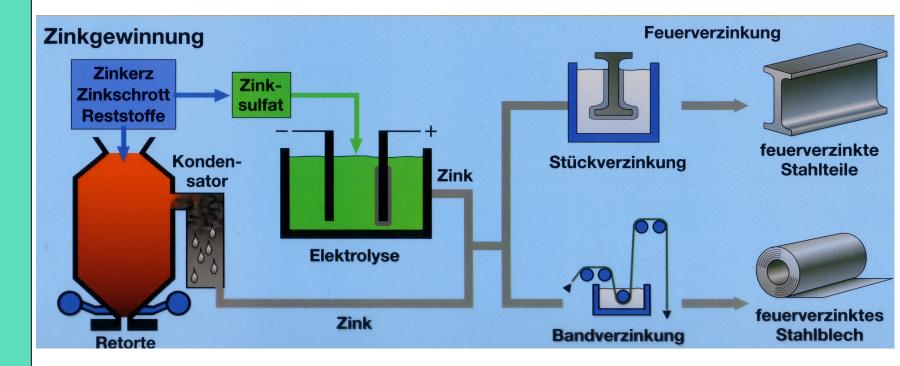
Unerwünschte Korrosion



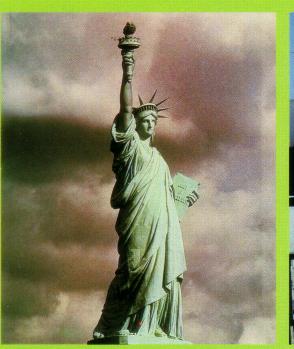
Inte

Interkristalline Korrosion

Lochkorrosion



Aus: N. Perez: Electrochemistry and corrosion science, Kluwer Academic Publisher, New York 2004



Elektrochemische Oberflächentechnik: Korrosionsschutz durch Feuerverzinken

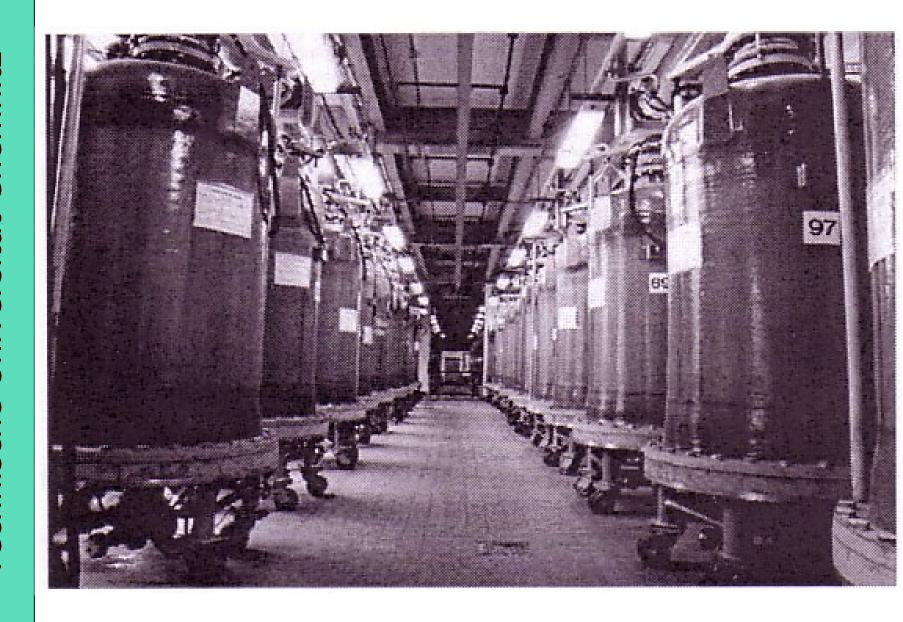
Erwünschte Korrosion

Kupferpatina

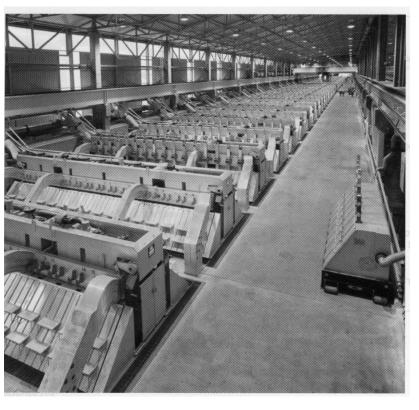
Aluminiumoxid

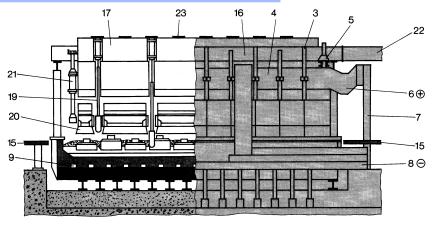
Zinkpatina

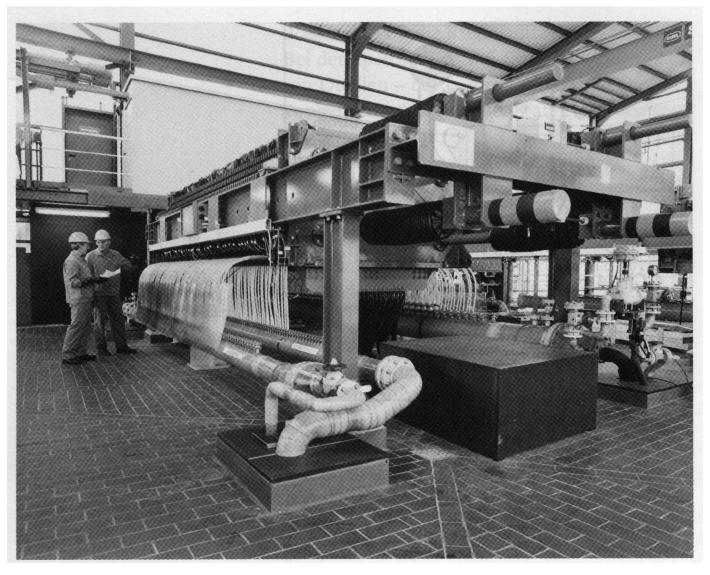
Elektrochemische Analytik: Blutzuckersensor



Amperometrie mit Glucose-Oxidase


Elektroorganische Synthesen:




Elektrochemische Grundstoffproduktion: Aluminiumgewinnung

Sunndal, Norwegen. Foto: Hydro-Aluminium

Salzsäureelektrolyse mit Sauerstoffverzehrelektroden

Abbildung 09: Wertschöpfungskette der Batterie

Die Wertschöpfungskette startet mit Batteriematerialien, d. h. auch mit chemischen Innovationen

Materialien	Komponenten	Zellen	Batterien
Graphite	Anoden	Pouch Zelle	Batterlen
Metalloxide	Kathoden	Rundzelle	Batterlemodule
Polymere	Separatoren	Prismatische Zelle	
Salze	Elektrolyte		
Ruße	Slegelbänder		
Cu/Al Follen	Verpackungen		
Lösungsmittel	StromableIter		

für diese Schlüsseltechnologie gedeckt werden kann. Dazu müssen bis 2015 insgesamt 360 Mio. Euro in die akademische (155 Mio. Euro) und berufliche (205 Mio. Euro) Ausund Weiterbildung investiert werden. Die Intensivierung der vorwettbewerblichen Forschung an den Hochschulen – z.B. durch den Ausbau der industriellen Gemeinschaftsforschung (IGF), der Hightech-Strategie und der IKT 2020 – wird zur praxisorientierten Ausbildung des wissenschaftlichen Nachwuchses und zur Vernetzung von Wissenschaft und Wirtschaft beitragen. Bereits vorhandene Bildungsaktivitäten werden kurzfristig mit

Aus: Zweiter Bericht der Nationalen Plattform Elektromobilität

 Das Fachgebiet Elektrochemie/Batterieforschung weist im internationalen Vergleich die größten Defizite auf.

Aus: Zwischenbericht der NPE AG 6 – Ausbildung und Qualifizierung

80iger Jahre



Curriculum B. Sc. Chemie JLU Gießen

Sem.	Modul	Inhalte zur Elektrochemie		
1	Allg. Chemie (VL + Ü) 6 CP	Grundlagen der Elektrochemie: Elektrolyse; galvanisches Element; Nernst-Gleichung		
1	Praktikum Allg. Chemie (P + S) 6 CP	Versuche zu Grundlagen der Elektrochemie: Konzentrationsketten; galvanisches Element		
2	PC 1 (VL + Ü) 7 CP	Ionenwanderung; schwache und starke Elektrolyte; Festelektrolyte; EMK; elektrische Dipolschicht; elektrochem. Potential; Elektrodenpotential; Halbzellenspannung; Stockholmer Konvention; Diffusionspotential; λ-Sonde		
3	Praktikum PC 1 (P + S) 5 CP	Versuche zu: Leitfähigkeit starker und schwacher Elektrolyte, Ostwaldsches Verdünnungsgesetz, Strom-Spannungs- Kennlinien, Temperaturabhängigkeit der EMK		
4	-/-	-/-		
5	PC 3 (VL + Ü) 6 CP	Butler-Volmer-Gleichung; Transportprozesse + Anwendung auf die elektrochem. Kinetik; Elektrokatalyse		
6	Praktikum PC 2 (P + S) 6 CP	Versuche zu: Butler-Volmer-Gleichung; Zyklovoltametrie; Diffusionspotentialen; Permittivität		
ILICTLIC LIE	USTUS-LIERIG- Physikalise			

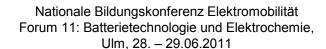
VL: Vorlesung, Ü: Übung, S: Seminar, P: Praktikum

Anlage 2: Modulbeschreibung zum Studiengang Chemie mit dem Abschluss Bachelor of Science

Basismodul

Modulnummer	BA-PC3	
Modulname	Physikalische Chemie 3: Kinetik und Elektrochemie	
Modulverantwortlich	Professur Physikalische Chemie, Professur Physikalische	
	Chemie/Elektrochemie [Kinetik: jährlich wechselnd]	
	Professur Physikalische Chemie/Elektrochemie [Elektrochemie]	
Inhalte und	Inhalte:	
Qualifikationsziele	Vorlesung "Kinetik"	

Vorlesung "Elektrochemie"


- Phasengrenzen und geladene Teilchen
- Elektroden und Elektrolyte
- Elektrochemische Kinetik
- Methoden der experimentellen Elektrochemie

Technische Universität Chemnitz

Curriculum M. Sc. Chemie JLU Gießen

Sem.	Modul	Inhalte zur Elektrochemie	
1	Elektrochemie I (VL + Ü) 6 CP	Thermodyn. und kin. Grundlagen (Elektrolyte, Elektroden, Zellen); Grenzflächenphänomene; Exp. Methoden zur Charakterisierung von Elektrolyten, Elektroden und Zellen; Anwendungsgebiete: Batterie- und Brennstoffzelltechnologie, Sensorik, Korrosion, etc.; Elektrochemie und Festkörperchemie	
2	Elektrochemie II (VL + Ü) 6 CP	Zusammenfassung benötigter thermodyn., kin. und methodischer Kenntnisse; Brennstoffzellen; Batterien (insbesondere Lithiumionenbatterien); Photoelektrochemische Zellen; Allg. Grundlagen von elektrochem. Energiewandlern und -speichern im Zusammenhang mit Energienetzen; Materialien für elektrochem. Energietechnologien	
3	Elektrochemie III (P + S) 6 CP	Versuche zu: elektrochem. Thermodynamik und Kinetik; zu wichtigen elektrochem. Anwendungen (z. B. Brennstoffzellen, Batterien, Sensoren, Korrosion, Photoelektrochemie, etc.); Grundlegende Modelle zur Auswertung von elektrochem. Messungen	
4	-/-	-/-	
	USTUS-LIEBIG- Physikalisch- UNIVERSITAT GIESSEN VL: Vorlesung, Ü: Übung, S: Seminar, P: Praktikum Chemisches □Institu		

Kurzfristige Aufgaben und Ziele:

- Bestehende materialwissenschaftlich/chemisch/elektrochemische Master-Studiengänge auf Energiespeicherung/-wandlung als Option ausrichten
- Bei günstigem fachlichem Umfeld Master-Studiengänge einrichten, dabei auch an "Seiteneinsteiger" (berufsbegleitend) denken
- Fortbildungsangebote der Fachgesellschaften ausbauen (postgraduale Kurse wie z.B. ZSW/Ulm zu Batterien, DECHEMA und GDCh zu Elektrochemie, geschlossene Kurse (z.B. Uni Gießen)

Mittel- und langfristige Aufgaben und Ziele:

- In Chemie-Bachelorstudiengängen Elektrochemie nach Möglichkeit als eigenständige Vorlesung (um die Bedeutung abzubilden) einbauen
- In der praktischen Ausbildung bereits im Bachelorstudium nach Möglichkeit die Breite der Elektrochemie wiederspiegeln

