
Dynamic Markov Logic Networks
as a knowledge base for

cognitive technical systems

Thomas Geier

Universität Ulm
Institut für Künstliche Intelligenz

17. Oktober 2011

Overview

Motivation

Markov Logic Networks

Inference in Markov Logic Networks

Dynamic Markov Logic Networks

What is the purpose of a knowledge base?

Representing the knowledge of the system!

I the single purpose of knowledge (for a technical system) is to
form a basis for selecting an action

I action is used in the most general form, representing anything
that escapes the technical system by the means of an actuator

I knowledge that does not influence the behavior is redundant
— it can be removed without any effect to the outside

Motivation

Knowledge
Base

Perception

Planning Dialog

How must the knowledge of a cognitive technical
system look like?

1. It is uncertain.

2. It is symbolic.

3. It is dynamic.

4. It is flexible.

I the system is interacting with a natural environment

I parts of the environment are not observable
(e.g. the emotional state of user)

I input can be imperfect
(failing sensors, poor classifiers, wrong user input)

How must the knowledge of a cognitive technical
system look like?

1. It is uncertain.

2. It is symbolic.

3. It is dynamic.

4. It is flexible.

I knowledge must be accessible / symbolic

I thus, its meaning can be expressed in natural language

I e.g., you cannot simply connect a neural network to the GUI
— you must do this through a label giving a meaningful
interpretation to the output

How must the knowledge of a cognitive technical
system look like?

1. It is uncertain.

2. It is symbolic.

3. It is dynamic.

4. It is flexible.

I the state of the environment changes

I thus the knowledge has to be “updated”

I a future state strongly depends on a past state

How must the knowledge of a cognitive technical
system look like?

1. It is uncertain.

2. It is symbolic.

3. It is dynamic.

4. It is flexible.

I the model must be flexible and easy to extend

I it should not be fixed to a certain task

How can we fulfill these criteria?

1. It is uncertain.
employ a probabilistic model

2. It is symbolic.
the state is factored into symbolic variables

3. It is dynamic.
time is represented explicitly

4. It is flexible.
state variables are predicates over objects

How can we fulfill these criteria?

1. It is uncertain.
employ a probabilistic model

2. It is symbolic.
the state is factored into symbolic variables

3. It is dynamic.
time is represented explicitly

4. It is flexible.
state variables are predicates over objects

How can we fulfill these criteria?

1. It is uncertain.
employ a probabilistic model

2. It is symbolic.
the state is factored into symbolic variables

3. It is dynamic.
time is represented explicitly

4. It is flexible.
state variables are predicates over objects

How can we fulfill these criteria?

1. It is uncertain.
employ a probabilistic model

2. It is symbolic.
the state is factored into symbolic variables

3. It is dynamic.
time is represented explicitly

4. It is flexible.
state variables are predicates over objects

Probabilistic models

I the possible states of the world form a probability space Ω

I a probability (mass) function P : Ω→ [0, 1] represents
the belief of the system about what the true state might be

I possible world states assigned a higher probability
are more likely the true state

Learning new facts means making observations

I observations are used to condition the distribution

P ′(x) = P(x | e) =
P(x , e)
P(e)

I observations change the belief of the system
(they hopefully improve it, making the true state more probable)

How to handle state?

I instead of having a very large set of states Ω = {s1, s2, . . . }

I we can express the state by multiple random variables.
Informally Ω = X1 × X2 × X3 × · · · × Xn

(obtaining a multivariate distribution)

I and assign meaning (labels) to those variables:
X1 = true means “the user is at her desk”,
X2 = true means “the user is tired”

How to handle time?

I conditioning a probabilistic model on a fact
with probability zero is not possible

I contradictory observations can be made when time progresses
I the user is at her desk
I the user is away

I unless time is represented explicitly
I the user is at her desk at 4pm
I the user is away at 5pm

Relational models

I a relational model contains objects
14:32, 14:45, u#1, iPhone, iPod

I and relations between them
touches(Time,User,Device)

I inserting objects into relations forms atoms (or propositions)
touches(14:32,u#1,iPhone), touches(14:45,u#1,iPod)

I dependencies can abstract over objects using variables
touches(t,user,device) => near(t,user,device)

I thus relational models can scale with the number of objects

I time has not to be built-in but can be expressed freely using
time-dependent predicates

Markov Logic Networks

I Markov Logic Networks 1 (MLNs) are a probabilistic,
relational model

I dependencies are expressed through first-order logical formulas

I as such they fulfill all presented requirements

1Matthew Richardson and Pedro Domingos. “Markov logic networks”. In: Machine
Learning 62.1-2 (2006), pp. 107–136. ISSN: 0885-6125. DOI:
10.1007/s10994-006-5833-1

http://dx.doi.org/10.1007/s10994-006-5833-1

An example — users and devices

An informal description of a model about interface devices and users.

I if a user touches a device, she is near the device

I if a user is near a device, she can probably see it

I if a user is near a device, she will probably still be near the device
later

An example — Markov Logic Networks

The same model formalized as a Markov Logic Network.

touches(t,user ,device) => near(t,user ,device).

1.0 near(t,user ,device) => sees(t,user ,device)

4.0 near(t,user ,device) => near(t+1,user ,device)

Definition: Syntax of Markov Logic Networks

I a Markov Logic Network L is a set of weighted first-order logical
formulas

L = {(fi ,wi) | i 6 n, fi ∈ FOL,wi ∈ R}

I the formulas can use predicates from sorted logical language and
constants from a given constant domain

Sytnax of MLNs — logical language example

I the logical language defines which propositions can be expressed

Predicate near(Time ,Person ,Device)

Predicate touches(Time ,Person ,Device)

Predicate sees(Time ,Person ,Device)

I objects can be categorized into sorts or types
(Time, Person, Device)

MLNs require a finite set of constants

I in addition to the weighted formulas one need to give a finite set
of constants for each sort

I using as constants
Time = {0,1}, Person = {u#1}, Device = {iPod,iPad}

one obtains the atoms for near(Time,Person,Device):
near(0,u#1,iPod), near(0,u#1,iPad),

near(1,u#1,iPod), near(1,u#1,iPad)

I putting the constants in all valid combinations into the predicates,
one obtains the set of all ground atoms (the Herbrand base)

Interpretations are possible worlds

I in logics, an interpretation maps atoms to truth values

I an interpretation can be seen as a possible world state that
defines the truth of every proposition

I MLNs express the uncertainty over which possible world state is
the true world state as a probability distribution over
interpretations

A MLN Defines a Distribution Over Interpretations

I given a formula with free variables, a grounding assigns a
constant to each free variable

I given an interpretation x , let ni(x) be the number of true
groundings of formula fi under x

I then a MLN defines the following probability distribution over
interpretations

P(x) =
1
Z

∏
i

exp(wini(x))

A closer look at the example

touches(t,user ,device) => near(t,user ,device).

1.0 near(t,user ,device) => sees(t,user ,device)

4.0 near(t,user ,device) => near(t+1,user ,device)

I line 1: a full-stop marks a deterministic formula

I line 2: the odds of seeing a device
when being near it are 1

exp(−1.0)+1 ≈ 0.73

I line 3: the odds of remaining in the vicinity of a device
in one time step are 1

exp(−4.0)+1 ≈ 0.98

The equivalence of formula weights and log-odds of the formula being
true is only given when formulas do not share atoms.

Some properties of MLNs

I degeneration to first-order logic when using infinite weights

I no uncertainty over the numbers of objects

I formula weights can be either specified or trained from data-sets

Inference over MLNs

There are two common inference tasks for MLNs

1. find the most probable interpretation given some evidence e
(MAP or MPE)

arg max
x

(P(X = x | e))

2. compute the marginal probabilities for some z event
(assigning to variables Z ⊆ X) given some evidence e (MAR)

P(Z = z | e) =
∑

x∈∼{Z}

P(X = x | e)

During the rest of the talk we focus on computing marginal
probabilities.

Incorporating uncertain evidence

I a multivariate probability distribution can only be conditioned on a
certain/sure assignment to a variable

I this means an observation can be “near(15,u#1,iPad) is true”

I observations obtained from classifiers can be uncertain:
“near(15,u#1,iPad) is true with a certainty of p”

I we can express this by adding this formula
with w = ln(p

1−p) to the MLN:
w near(15,u#1,iPad)

Two ways to infer: MCMC and belief propagation

I inference on MLNs is usually done on an undirected graphical
model obtained through grounding all formulas and predicates2

I then every algorithm for inference on graphical models can be
used

I these algorithms usually fall into two categories
I message passing / belief propagation
I Markov Chain Monte Carlo methods

I won’t give further details on these algorithms

2with recent trends towards lifted inference

Expressing dynamics with MLNs

I predicates can be made dynamic by adding a time index

I DMLNs are general enough to be used to express Dynamic
Bayesian Networks with discrete variables

I in this way dynamic Markov Logic Networks (DMLNs) have
already been applied in classification tasks

I Adam Sadilek and Henry Kautz. “Recognizing Multi-Agent
Activities from GPS Data”. In: Proceedings of the 24th AAAI
Conference on Artificial Intelligence. 2010, pp. 1134–1139

I S. Tran and L. Davis. “Event modeling and recognition using
markov logic networks”. In: Computer Vision–ECCV 2008 (2008),
pp. 610–623

Which inference task for dynamic, probabilistic models
is needed?

I filtering means predicting the current state of the world based on
past observations

I smoothing means predicting past states in addition (new
observations can make past predictions more accurate)

-5 -4 -3 -2 -1 0 1 2

state:

time:

now

smoothing

filtering

I for an application in a cognitive technical system
we focus on filtering

The offline approach to filtering/smoothing in DMLNs

I ground the DMLN from the start up to the current time step and
infer on this graph

I this is the way DMLNs have been applied in the literature for
dynamic classification tasks

I this includes the smoothing task and can only applied offline

Online filtering in DMLNs

I we need a method to reuse information gained from inference for
the previous time step

I one existing work describes an approximate online inference
algorithm for message passing3

I how to make online inference for MCMC methods is less clear

I we propose temporal slice inference as an approximative online
inference method for DMLNs, working with any inference
algorithm for MLNs

I Thomas Geier and Susanne Biundo. “Approximate Online
Inference for Dynamic Markov Logic Networks”. In: to appear at
ICTAI. 2011

3A. Nath and Domingos. “Efficient Belief Propagation for Utility Maximization and
Repeated Inference”. In: Proceedings of the 24th AAAI Conference on Artificial
Intelligence. 2010, pp. 1187–1192

Temporal Slice inference for DMLNs

I idea is similar to the factored frontier algorithm for DBNs4

I it approximates the distribution over the last time step by the
marginal probabilities of the variables

I performs only a forward pass over the network, since no
smoothing is required

4K. Murphy and Y. Weiss. “The factored frontier algorithm for approximate
inference in DBNs”. In: Proceedings of the 17th Conference on Uncertainty in AI.
2001, pp. 378–385

Temporal Slice inference for DMLNs (2)

I for each successive pair of time steps, have a temporal slice MLN
spanning only these (like a two-step DBN)

I carry over information from the last slice networks by marginal
probabilities over single random variables

-4 -3 -2 -1 0

marginals

marginals

marginals

unrolled

sl
ic

e
ne

tw
or

ks

Temporal Slice inference for DLMNs (3)

I example slice for t = 43

touches (43,user ,device) => near(43,user ,device).

1.0 near(43,user ,device) => sees(43,user ,device)

4.0 near(42,user ,device) => near(43,user ,device)

w1 touches (42,u#1,iPod)

w2 touches (42,u#1,iPad)

...

I w1 = ln p1
1−p1

with p1 the marginal probability of
touches(42,u#1,iPod) during the slice for t = 42

I the marginals of the slice MLN can then be inferred using any
algorithm calculating marginals for MLNs

Approximation error of temporal slice networks

Exact filtering

Temporal slice network filtering

Smoothing

CPU time for temporal slice inference algorithm

Plots show the CPU time for approximate filtering using temporal slice
sampling compared to exact filtering, unrolling the complete network;
running on an artificial MLN with random evidence; against number of
time steps.

0 2 4 6 8 10 12

10−1

100

101

Time Step

C
P

U
Ti

m
e

(s
)

Gibbs normal
Gibbs slice

0 2 4 6 8 10 12

10−1

100

101

102

103

Time Step

C
P

U
Ti

m
e

(s
)

MCSAT normal
MCSAT slice

Online DMLN knowledge base for a companion system

I a module containing the online inference engine has been fitted
with a Semaine connection

I it can handle exact observations (with uncertain observations
planned)

I it answers queries for marginal probabilities of single atoms

Future work

I add continuous variables

I further improve inference methods for DMLNs (lifted inference,
error-bounded approximation)

I extending and evaluating the model to support output channel
selection (together with B3)

I incorporating uncertain observations from classifiers
(together with C5) to recognize complex actions

I a MLN constructed via “expert knowledge” can give hints as to
when certain actions are applicable and thus improve
classification

I it allows to incorporate knowledge gained from other sources
independently of the trained classifier

Das Ende

Thank you for your attention.

The example as a factorgraph

I the distribution defined by a MLN can be represented by a factor
graph

I atoms are variable nodes

I ground formulas are factor nodes; connected to the atoms they
contain

near(0,u1,d1)

touches(0,u1,d1)

sees(0,u1,d1)

near(1,u1,d1)

touches(1,u1,d1)

sees(1,u1,d1)

Figure: The factor graph for the example MLN.

Why Gibbs sampling cannot handle deterministic
dependencies

Assume a distribution over two binary random variables with the
following probabilities.

a ¬a

b 0.5 0
¬b 0 0.5

Starting in state a, b the Markov chain produced by Gibbs sampling
will never escape because it would have to temporarily enter a state
with probability 0.

Excursion: Dynamic Bayesian Networks

DBNs are probabilistic, multivariate, dynamic models.

X1

X2

X3

t t+1 0 1 2 3
two-step BN unrolled DBN

How to handle state? (2)

I DBNs “scale in time”

I but like BNs, DBNs are a propositional model, i.e., one has to
specify each state variable

I a DBN about a person and her iPhone is difficult to extend to
a DBN about a person and her iPhone and her iPod

I this is even though iPhones and iPods are very similar

I one needs to create new variables and new dependencies
between them

The Markov Chain Monte Carlo method

Given a MLN L and its corresponding distribution PL.

I we want to compute the marginal probability
for some atom a being true

I if we can obtain enough independent samples from PL then we
can estimate PL(a = true) by the frequency over the samples

I MCMC aims to obtain samples from PL by constructing a Markov
chain whose stationary distribution equals PL

Gibbs sampling as a simple MCMC algorithm

Gibbs sampling works the following.

1. choose a starting interpretation randomly

2. choose an atom randomly

3. resample its truth value given the rest of the interpretation

4. repeat with 2

Gibbs sampling cannot handle deterministic dependencies arising
from hard formulas.

Handling deterministic dependencies with MCSAT

MCSAT improves over Gibbs sampling in handling deterministic
dependencies.

I MCSAT is a different MCMC algorithm

I MCSAT re-samples every atom in every step by using slice
sampling

I as a subroutine it uses the SampleSAT algorithm to sample
uniformly from the satisfying interpretations of a CNF formula

I in contrast to Gibbs sampling MCSAT is able to jump between the
modes of the distribution easily

Obtain all groundings of a formula

I the formula touches(t,user,device) =>

near(t,user,device) contains the free variables
t,user,device

I a grounding of a formula assigns a constant to each free variable

I a possible grounding of the presented formula is
touches(0,u1,d2) => near(0,u1,d2)

How to make a choice — The principle of maximizing
expected utility

How to make decisions based on uncertain knowledge?

1. have a set of possible actions A

2. assign a utility to each state/action pair

u : A× S → R

3. the utility ua for action a is then a random variable

4. choose the action a with the largest expected utility

a = arg max
a ′∈A

E [ua ′]

Evaluation Domains

I Dynamic Smokers

1.0 smokes(t,x) => cancer(t,x)

1.0 friends(t,x,y) =>

(smokes(t,x) => smokes(t,y))

3.0 friends(t,x,y) => friends(t+1,x,y)

3.0 smokes(t,x) => smokes(t+1,x)

I Simple Social Force

2 at(t+1,a,x) =>

at(t,a,x-1) v at(t,a,x) v at(t,a,x+1)

1.5 !(at(t,a1,x) AND at(t,a2,x))

Grounded Slice Network

now

−2 −1 0 1

	Motivation
	Markov Logic Networks
	Inference in Markov Logic Networks
	Dynamic Markov Logic Networks
	Appendix
	
	
	
	
	
	
	

