SFB/Transregio 62 "A Companion Technology for Cognitive Technical Systems"

- Postgraduate Seminar, 18.05.2009 -

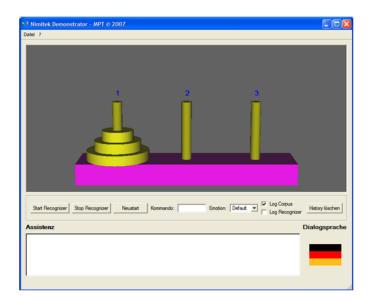
Adaptive Dialogue Management in Human-Machine Interaction

Milan Gnjatović

gnjatovic@iws.cs.uni-magdeburg.de

Department of Knowledge Processing and Language Engineering
Otto-von-Guericke-University Magdeburg

May 18th, 2009


- Research in the domain of affective computing is usually primarily concentrated on detection of emotional user behavior.
- However, less attention is devoted to another important research question:
 - How to enable dialogue systems to overcome problems in the interaction related to affected user behavior?
- This talk addresses the latter question.

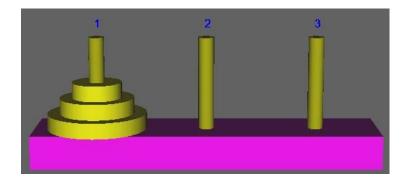
• We introduce an approach to adaptive dialogue management:

- We discuss theoretical considerations, ...
- ... and exemplify them for the NIMITEK prototype spoken dialogue system for supporting users while they solve problems in a graphics system.

The dedicated task:

the Tower of Hanoi puzzle.

Designing an adaptive dialogue strategy


The main idea:

The system should dynamically adapt its dialogue strategy according to the current state of the interaction.

• The state of the interaction is a composite of five interaction features:

- 1. the state of the task,
- 2. the user's command,
- 3. the focus of attention,
- 4. the state of the user,
- 5. the history of interaction.

- Tower of Hanoi puzzle:
 - the state of the task is defined by the positions of the disks.

- More generally, the state of the task is observable:
 - it can be explicitly defined and evaluated with respect to how it corresponds to expected final state.

Six types of users' commands:

- valid command (i.e., the instructed move is allowed according to the rules of the puzzle),
- ❖ illegal command (i.e., the instructed move violates the rules of the puzzle),
- semantically incorrect command (e.g., the user instructs a non-existing move, etc.),
- help command (i.e., the user explicitly asks for support),
- switching between interface languages (German or English),
- * unrecognized command (e.g., not recognized by the speech recognition module, etc.).

The focus of attention:

• in each moment of the interaction, the focus of attention is placed on the currently most salient entity from the interaction domain.

An example:

solving the Tangram puzzle.

• The sequence of the subject's commands:

- In the first command, the subject selects a Tangram piece.
- Afterwards, she instructs only actions that should be performed over the selected piece without explicitly referring to the selected piece itself.

• Utterances produced by the subject are elliptical:

she omits to utter information that is already known by the system and, in the same time, brings new information in the focus of attention.

• We introduced a model of attentional state on the level of the user command:

- we use it to process user's commands of different syntactic forms,
- (the model is not discussed in more detail here)
- in each moment of the interaction, the focus of attention is placed on the currently most salient entity from the interaction domain.

- Three emotional states of the user:
 - negative, neutral and positive.
- The question:
 - what the non-neutral user states exactly represent in the given scenario?
- To find an answer:
 - evaluation of the NIMITEK corpus with respect to its emotional content.

The NIMITEK corpus of affected user behavior in human-machine interaction is available for research purposes upon request.

- Phase 1 Data-driven evaluation:
 - 6 evaluators (3 German native speakers and 3 non-German speakers),
 - evaluators were advised to introduce labels according to their own perceptions.
- Introduced labels:

nervousness interested confused disappointed pleased surprised anger fear insecure accepting boredom joy thinking contentment sadness neutral stressed impatient

Phase 2 – Evaluation with predefined labels:

- 5 evaluators (native German speakers),
- evaluators used labels from the ARISEN model.

Introduced labels	Classes	
anger, nervousness, stressed, impatient	Annoyed	
fear, insecure, confused	Retiring	negative
sadness, disappointed, accepting, boredom	Indisposed	
joy, contentment, pleased	Satisfied	
thinking, surprised, interested	Engaged	positive
neutral	N eutral	

- Negative state: the user is ...
 - frustrated due to problems that occurred in the interaction,
 - discouraged because she does not know how to solve a given task,
 - or there is a lack of interest in the user's attitude to solve the task.
- Positive state: the user is ...
 - motivated to solve the task and/or
 - satisfied with the development of interaction.

Interaction feature 5: The history of interaction

- The history of interaction:
 - collects relevant information related to the interaction from its beginning.
- Every time when a new event arises in the interaction, a new entry is added in the history of interaction, containing:
 - current values of other interaction features,
 - description of the currently applied dialogue strategy,
 - time of making the entry.

Designing an adaptive dialogue strategy

- The main idea:
 - ❖ The system should <u>dynamically adapt</u> its dialogue strategy according to the current state of the interaction.
- Dynamical adaptation of the dialogue strategy is determined by three decision making processes:
 - When to provide support to the user?
 - What kind of support to provide?
 - How to provide support?

Dialogue strategy

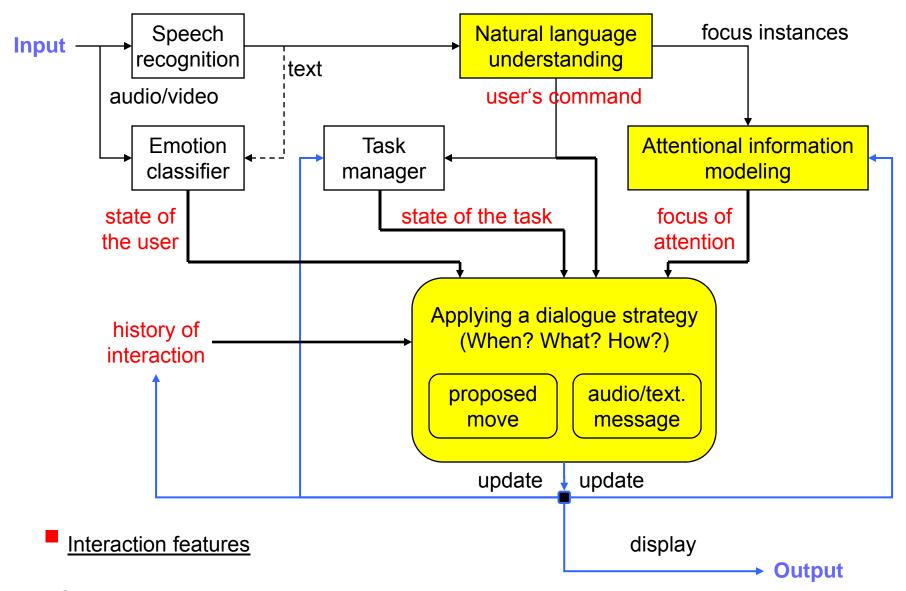
Decision 1: When to provide support to the user?

- The user does not understand the rules of the puzzle.
- The user does not know how to solve the puzzle.
- The user's instruction cannot be recognized.
- The user explicitly asks for support.
- The user is inactive.
- etc.

Decision 2: What kind of support to provide?

- Task-Support: related to the task itself,
 - e.g., explaining the rules of the puzzle and helping to find its solution.
- Interface-Support: related to the interface language,
 - e.g., helping to formulate a valid command.
- User-Support: related to the engagement of the user,
 - e.g., motivating a discouraged or apathetic user.

Decision 3: How to provide support?


- The manner of providing support is determined by the state of the user.
- A user in negative emotional state needs a more informative support.
- An example: user instructs a wrong move.

... just a warning might be enough ...

... the next correct move should probably be proposed ...

- We addressed the research question:
 - How to enable dialogue systems to overcome problems in the interaction related to affected user behavior?
- We introduced an approach to adaptive dialogue management in human-machine interaction...
- ... and exemplified it for the NIMITEK prototype system.

However, underlying concepts are designed to be task-independent.

Conclusion

Thank you for your attention!

http://wdok.cs.uni-magdeburg.de/