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Abstract

We introduce a measure for the computational complezity of individual instances of a
decision problem and study some of its properties. The instance complezity of a string z with
respect to a set A and time bound ¢t, ic'(z : A), is defined as the size of the smallest special-
case program for A that runs in time i, decides z correctly, and makes no mistakes on other
strings (“don’t know” answers are permitted). We prove that a set A is in P if and only if
there ezist a polynomial t and a constant ¢ such that ic'(z : A) < ¢ for all z, and if A is
NP-hard and P # NP, then for all polynomials t and constants c, ic'(z : A) > cloglz| for
infinitely many z. Observing that K'(z), the t-bounded Kolmogorov complezity of z, is roughly
an upper bound on ic'(z : A), we proceed to prove that if A is NP-hard and EXPTIME #
NEXPTIME, then for any polynomial t there ezist a polynomial t’' and a constant ¢ such that
for infinitely many z, ic*(z : A) > K*(z) —c. If A is EXPTIME-hard, then the same result
holds without any assumptions. We also prove that there is a set A € EXPTIME such that
for some constant ¢ and all z, ic™*P(z : A) 2 K**® (z) —2log K" (z) — ¢, where exp(n) = 2"
and exp'(n) = cn2®” 4 c.
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1 Introduction

There are two principal views of what causes the computational intractability of decision problems.
The “distributional” view holds that the yes- and no-instances of a difficult problem are distributed
in some very irregular manner, and feasible algorithms can only determine simple distributions.
This is the prevalent view in complexity theory, where the asymptotic behaviour of algorithms
is emphasized. An alternative view is suggested by the intuition that also individual problem
instances can be inherently hard, i.e., hard independent of any particular algorithm used to decide
the problem. Such ideas of “instance complexity” have been discussed by, for instance, Hartmanis
in [10].

One proposed approach to studying this dichotomy has been via the notion of complexity
cores, introduced by Lynch in [19]. Let us consider decision problems encoded as sets of strings. A
(polynomial) complezity core for a set A is a set C such that for every algorithm M that decides A,
and every polynomial {, M needs more than ¢(|z]) time on all but finitely many z in C. Thus, one
could plausibly interpret a complexity core as an inherently hard collection of problem instances.
It is known that any recursive set not in P has an infinite polynomial complexity core [19], and
that NP-complete sets have cores whose density, i.e., the number of strings of each length in the
core, is not bounded by any polynomial function [24]. In recent years, complexity cores have been
subject to extensive study (for an overview, see [5]).

Unfortunately, no useful formulation of the idea of single instance complexity can be derived
from the notion of a complexity core. Because of the “all but finitely many” provision in the
definition, any finite variation to a core is still a core, and the provision cannot be removed because
any finite set of instances can be decided in constant time by table look-up. This possibility of
patching algorithms by finite tables is the main difficulty in formulating a satisfactory notion of
single instance complexity.

However, the difficulty can be overcome by taking also the sizes of algorithms into account.
Here we propose the following approach. Consider the class of Turing machines that on each input
can output either 1 (accept), 0 (reject), or L (don’t know). A machine M in this class is consistent
with a set A if for all inputs z such that M(z) # L, M(z) =1 if and only if z € A. Given a set
A and a time bound ¢, the {-bounded instance complezity of z with respect to A is defined as

ic'(z : A) = min{|M| : M is consistent with A, timey(y) < t(ly]) for all y, and M(z) # L}.

Actually, the |M| here, “the size of Turing machine M”, is not a well-defined notion, and the
definition should really be framed in terms of programs to some fixed, sufficiently efficient universal
machine. In the body of the paper we will use the correct definition, but the above suffices for
purposes of discussion. '

Technically, our definition is obviously inspired by the notion of Kolmogorov complexity [9, 16,
17), which provides a measure for the complexity of an individual string. Recall that the t-Jounded
Kolmogorov complezity of a siring z is defined (roughly) as

K*'(z) = min{|M| : timepr(}) < t(|z]), and M(A) = z},

where ) denotes the empty string. There is also an interesting variant of this, introduced by Sipser
in [27):

KD'(z) = min{| M| : timepr(y) < t(Jy}) for all y, and M(y) = 1if and only if y = z}.

Observe that KD'(z) < K'(z) for all ¢ and z.



Although formally similar, the issues addressed by the instance complexity and Kolmogorov
measures are rather different. The Kolmogorov measures are concerned with the complexity of
a string z as such, whereas the ic measure indicates the complexity of determining whether a
given string z has a certain property A — although Sipser’s D measure can be viewed also as a
special case of instance complexity, because i'D'(z) = ic'(z : {z}). An early variant of Kolmogorov
complexity that is somehow close in spirit to instance complexity is Loveland’s uniform complezity

K(A;z) [18]. (A time-bounded version of this is discussed in [14].) In our notation, Loveland’s
definition can be formulated as:

K(A;z) =min{|M|: forally <z, M(y) # L, and M(y) = 1iff y € A}.

In the following, we first in Section 2 formulate the proper definitions of instance complexity and
related notions. Then, in Section 3, we map out some elementary properties of the new measure.
For instance, we show that a recursive set A is in P if and only if there exist a polynomial ¢ and
a constant ¢ such that ic*(z : A) < ¢ holds for all z. We also give a simple characterization of
complexity cores in terms of instance complexity, and consider the behaviour of the ic measure
under polynomial time reductions.

In Section 4 we study the very interesting class of sets

IC[log, poly] = {A : for some constant ¢ and polynomial ¢, ic'(z : A) < clog|z]+ ¢ for all z}.

We show that for any polynomially self-reducible [21, 26] set A, and also for any set that is <§_,,-
hard for NP, A € IC[log, poly] is possible only if A € P. We also relate the new class to the advice
complexity classes P/log and P/poly defined by Karp and Lipton [13] by showing that

P/log € IC[log, poly] < P/poly.

Thus, our result about the instance complexity of self-reducible or NP-hard sets is a provable
improvement to Karp’s and Lipton’s result that SAT € P/log if and only if P = NP.

In the most fundamental Section 5, we study the existence of intrinsically hard problem in-
stances. Note that Kolmogorov complexity provides an upper bound for instance complexity,
because size KD'(z) is sufficient to recognize, by table look-up, the string z. Thus, an instance
z may be considered to be “intrinsically hard” with respect to a problem A and time bound ¢, if
the value of ic'(z : A) is close to K D(z). Intuitively, this means that no method for deciding any
subproblem of A in time t can do substantially better on z than simply treat it as an individual
special case, and store a description of z in a table. Let us put forth the following very strong
conjecture: for all appropriate time bounds ¢, if a set A is not in DTIME(t), then A has infinitely
many intrinsically hard instances, in the sense that there exist a constant ¢ and infinitely many
z such that ic'(z : A) > KD'(z) — c. As partial support for this conjecture, we prove in
Section 5 that if EXPTIME # NEXPTIME, then for any set A that is <?_,,-hard for NP, and
for any polynomial ¢ there exist another polynomial t' and a constant ¢ such that for infinitely
many z,ic’(z : A) > K ¥(z) — c. For EXPTIME-hard A, the same result holds even without the
assumption EXPTIME # NEXPTIME. Another result in Section 5 shows that there exists a set
A € EXPTIME such that for some constant ¢ and all z,

ic™P(z : A) > K"xp’(z) - 2log Kexp'(”) -G

where exp(n) = 2" and exp’(n) = cn2" +c. As a corollary, we obtain that all EXPTIME-complete
sets have exponentially dense sets of instances with a similar property.
Section 6 provides a brief summary and suggests some further research directions.



2 Preliminaries

We consider decision problems coded as sets of strings over the alphabet £ = {0,1}. The length
of a string £ € " is denoted |z|; A denotes the empty string. We define a pairing function on
strings as follows: given strings z,y, let the binary representation of |z|, without leading zeros,
be by ...b; then (z,y) = b1d; ...bxbx10zy. Clearly both the pairing function, and the associated
projection functions can be computed by multitape Turing machines in linear time, and there is
some constant 7 such that for all z, |(z,y)| < |z] + |y| + 2log|z| + = 1.

An interpreter is a deterministic Turing machine M with two input tapes (a “program” tape
and a “real input” tape) and an arbitrary number of work tapes, one of which is a designated
output tape. The input and output tape alphabets of M are £. M accepts its input if at the end
of a computation, the output tape contains the string “1”, rejects if the output tape contains a
“0”, and is undecided if the computation does not halt or if at its end the output tape contains
something else — we denote both of these outcomes generically as “1”. The partial mapping from
£° x £° to =° computed by M is denoted M(p,z), and the time requirement of M on inputs
(p, z) is denoted timeas(p, z). The partial mapping computed by M on a fixed program string p
from Z® to T° is denoted f:," (z). Program p is total (w.r.t. interpreter M) if f};" (z) # L for all z.

For a set of strings A, A(z) denotes the characteristic function of 4, i.e.,, A(z) = 1ifz € A
and A(z) =0 if z &€ A. For b € {0,1}, we denote M(p,z) ~ b (read M(p, z) is consistent with b)
if M(p,z) = bor M(p,z) = L. In particular, for a set A and strings p,z, M(p, ) ~ A(z) means
that if M(p,z) # L, then M(p,z) = 1if and only if z € A.

Definition 2.1 Let M be an interpreter, A a set of strings, and ¢ a function on the natural num-
bers. A string p is an (M, t)-program for A if for all strings y, timear(p, y) < t(Jy]) and M(p,y) =
A(y). Program p decides z if M(p,z) # L. The t-bounded instance complezily of a string z with
respect to A using M is defined as

ichs(z : A) = min{|p| : p is an (M, t)-program for A deciding z}.
If no (M, t)-program for A decides z, icj;(z : A) is taken to be infinite.

Definition 2.2 Let M be an interpreter, t a function on the natural numbers, and z a string.
A string p is an (M,t)-program for producing z if timey(p,A) < t(|z|) and f;"()\) = z. The
t-bounded Kolmogorov complezity of x using M is defined as

K (z) = min{|p| : p is an (M, t)-program for producing z}2.
If no (M, t)-program produces z, K};(z) is taken to be infinite.

The fundamental property of these notions is that they can actually be defined very robustly
by means of a universal interpreter.

Theorem 2.1 (Invariance) There ezists an interpreter U such that corresponding to any other
interpreter M there is a constant ¢, such that for all sets A, time bounds t and strings z,

icz;(:::A) < icy(z:A) +e,
K§(z) < Kh(@)+e,

where t'(n) = ct(n)logt(n) + c.

1 All the log's in this paper are to base 2. For the purpouses of this paper, it is convenient to define log0 = 0.
20nly this version of Kolmogorov complexity is used in the body of the paper.



Proof. See (9, 16, 17]; this is the standard result on the invariance of time-bounded Kolmogorov
complexity, using the efficient Hennie-Stearns simulation (see {11, Sec. 12]) of multitape machines
by two-tape machines. O

Because the complexities obtained using U essentially minorize the complexities obtained using
any other interpreter, we define absolutely the t-bounded insiance complezily of z with respect to
Aasic'(z : A) =icy(z : A), and the t-bounded Kolmogorov complezity of z as K'(z) = K} (z).
We then call a (U, t)-program p simply a t-program, and denote f,(z) = fpu(z), and timey(z) =
timey (p, z).

We define the deterministic time complexity classes with respect to programs on U, not ar-
bitrary Turing machines. This results in slightly nonstandard definitions for the more sensitive
classes, but has no effect on classes such as P, EXPTIME, etc. Let us denote L, = fp“(l). Then

DTIME(t(n)) = {L, :timey(z) < ct(]z]) for some constant c},
P = [JDTIME(n® +c),
c>0
EXPTIME = | JDTIME(2™ + ).
>0

In order to guarantee that the classes DTIME(t), as defined above, are closed under the Boolean
operations and simple transformations on £*, we assume w.l.o.g. that the programming system
determined by U is efficiently closed under Boolean operations and composition. By this we mean
that there exists a constant v such that for any pair of everywhere halting programs p, g there
exist programs pU g, —p, and po ¢ such that

1, if fo(z) =1, or f(z) = L and fe(z) =1,

foue(z) = 0, if fp(z)=0, or fo(z) =L and f4(z) =0,
1, otherwise;
1, if fo(z) =0,

f-p(z) = 0, if fo(z)=1,

1, otherwise,
frog(z) = fp(fq("’))»

and

lpUgl < lpl+ gl + 2logip| + 7.
|-pl < |p|+2loglpl+7,
lpoql < Ipl+lgl+2loglp| + 7,

time,(z) +vlpU ql, if fo(z) # L,
time,(z) + timeg(z) + vlpU gl, if fp(z) =L,

timey(z) + 7[-pl,
time,(z) + timep(fo(z)) +7lpoql.

timepuq ()

IA

time,(z) <
<

timepoq ()

Such structure can be imposed on the programming system by using a pairing function similar to
the one described above to encode pairs of elementary programs, together with some information
as to how the pair is to be interpreted. The operations can naturally be iterated; in particular,
we define

pLUpr...Upr =prU(p2U...(Px-1Upx)-- )

w



An important property of this iterated union is that for any fixed set of programs p,,. .., ps,

timep,up,..up, () = O(lr?ia.é‘(k timep, (z)).

3 Elementary Properties

Using table look-up, the Kolmogorov complexity of a string is easily seen to be an upper bound
on its instance complexity with respect to any set.

Proposition 3.1 For any time constructible function t, there exists a constant ¢ such that for
any set A and siring z, ,
ic! (z: A) < K'(z) +¢,

where t'(n) = ct(n)logt(n) + c.

Proof. Given a time constructible ¢, consider an interpreter M that works as follows: on input
({(6,p),y), where b € Z,p € *,y € *, M simulates U(p, A) for t(|y]) steps. If U(p, A) halts in
this time with output y, M outputs b and halts, otherwise M outputs A and halts. Clearly there
is a constant d such that for any b, p, and y, M halts in time bounded by #(|y|) + d. Let then A
be any set, and z a string. Let b = A(z), and let p be a minimal length t-program for producing
z. Then (b, p) is an (M,t + d)-program for A deciding z, and so

iz A) < |3, p) < 1+ [pl+ 7 = K*(z) + 7 +1.

By invariance (Theorem 2.1), then, there is a constant ¢, independent of A and z, such that
i (z: A) < K'(z) +¢,

where t'(n) = ct(n)logt(n) +c. O

The notion of instance complexity allows for very simple and elegant characterizations of many
fundamental complexity-theoretic properties, as the following examples show.

Proposition 3.2 A sel A is in P if and only if there exist a polynomial t and a constant ¢ such
that for all z, ic'(z : A) < c.

Proof. Assume first that A is in P. Let t' be a polynomial and p a t’-program such that for
allz, z € Aif and only if U(p,z) = 1. Let ¢ = x o p, where x is a constant-time program such
that fy (1) =1, fy(y) = 0 for y # 1. Then U(q,z) = ‘A(z) for all z, and there is a constant d
such that |¢| < |p| + d and time,(z) < t/(]z]) + 2log|p| + d for all z. Hence, denoting ¢ = |p| +d,
t(n) = t/(n) + 2log|p| + d, we obtain that ic*(z : 4) < |g| < ¢ for all z.

Conversely, assume that there are a polynomial ¢ and a constant ¢ such that for all z,
ic!(z : A) < c. Then among the finitely many programs of size at most ¢ there is a set, say
P1,-.-, Pk, of t-programs for A, such that for every z, U(p;,z) # L for at least one i € {1,...,k}.
But then p=p; U...Up; is a total O(t)-program for A, witnessing that A€ P. O

Definition 3.1 Let A be a recursive set. A set C is a polynomial complezity core for Aif C is
infinite, and for every total program p for A and polynomial ¢, time,(z) > t(|z|) for almost all z
in C (i.e., for all but finitely many z in C). A set A is p-immune if it is a polynomial core for
itself, and bi-immune if both A and A are cores for it.



.The notion of a polynomial complexity core was defined by Lynch [19] and further studied by
various authors in, e.g., [7, 24]. The idea of immunity was transported from its original recursion
theoretic setting (cf. [25, §8.2]) to complexity theory by Flajolet and Steyaert in [8], although
the idea was already anticipated by Chaitin in [6]. Bi-immunity was introduced by Balcdzar and
Schéning in [2]. We obtain the following characterizations:

Proposition 3.3 Let A be a recursive sel.

(i) A set C is a polynomial complezily core for A if and only if for every polynomial t and
constant c, ic'(z : A) > ¢ for almost all z in C.

(ii) The set A is p-immune (bi-immune) if and only if for every polynomial t and constant c,
ic'(z : A) > ¢ for almost all z in A (resp. °).

Proof. Let us prove part (i); part (ii) then follows as a corollary. Assume first that for some
polynomial ¢ and constant ¢ there are infinitely many z in C such that ic'(z : A) < ¢c. Then among
the finitely many t-programs for A of size at most ¢ there must be at least one, say g, for which
U(q,z) # L for infinitely many z in C. Let p4 be some fixed total program for A. Then p = qUp4
is a total program for 4, and for infinitely many z in C, timey(z) < timey(z) +7|pl = o(t(Jz1)),
showing that C cannot be a polynomial core for A.

Conversely, assume that C is not a polynomial core for A. Then there exist a total program p
for A and a polynomial ¢ such that for infinitely many z in C, timep(z) < t(|z[). By adding a step
counter, one can easily construct from p an interpreter M such that for some polynomial t’ and
all z, timear (X, 2) < t'(Jz]), M(A,z) =~ A(z), and if timey(z) < {(|z]), then M(A z) # L. Then
for infinitely many z in C, ic},',(:c : A) = 0, and by invariance there exist a polynomial t” and a
constant ¢ such that for these z, ic‘”(:c :A)<e. O

Although the ic measure appears to be uncomputable (this is actually an open question), for
recursive sets it can be approximated arbitrarily well. Let us define a bounded instance complexity
measure as follows:

bic'(z : A) = min{|p|: U(p,z) # L, and
for all y, |y| < |z, timey (p, y) < (ly}) and U(p,y) ~ A(v).}

Clearly bic'(z : A) < ic'(z : A) for all 4, t, and z. Also, if there is a total T-program for
A, and both t(n) and T(n) are time-constructible and nondecreasing, then bic’(z : A) can be
computed in time O(n2"T(n)). (Note that if {(n) = w(T'(n)), then ic'(z : A), and hence also
bic'(z : A), is bounded by a constant.) For any function r on the natural numbers, let us denote
r~}(n) = min{k : r(k) > n}.

Proposition 3.4 For any nondecreasing lime constructible function r(n) > n, there is a constant
¢ such that for all A, nondecreasing t(n) > n, and z,

ict'(z : A) < bic'(z: A)+ 7 (lz]) + ¢,
where t'(n) = ct(n)logt(n) +c.
Proof. Let r be as stated, and consider an interpreter M that computes the following®:

U(p,y), ifly| <r(n),
M({n,p),v) ={ A, Y otherwise.

3Here, and also later in this paper, we occasionally equate natural numbers with their binary representations
without leading zeros. Note that in this representation, |n| < logn + 1.
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Such an interpreter can easily be constructed so that for some small constant d, timeas((n, Phy) <
d(ly] + timey (p, y)). Given then 4, ¢, and z, let p; be a minimal length bic'-program for A deciding
z, and let p= (r~!(|z|), pz). Then M(p,z) = U(pz,z) # L, and for all y, M (p,y) = A(y) and

timens (p, y) < d(lyl +t(ly])) < 2d¢(ly])

Thus,

ic3i(z:4) < Ipl=1(r" (Iz]), P2
< Ir () + lpel + 2log I~ Iz +
< bic{z: A) +r7M(|z)) + 7+ 3.

The result follows by invariance. O

We conclude this section with a simple, but very useful proposition on the behaviour of the ic
measure under polynomial time reductions.

Proposition 3.5 Let f be a <§_,,-reduction from a set A o a set B (more precisely, let f be the
function mapping a string = to the one siring queried in the reduction for z). Then there exists a
constant ¢ such that for any polynomial t there is a polynomial t' such that for all z,

ic"(:z : A) <ic'(f(z) : B) +c.

Proof. A <§_,,-reduction from a set A to a set B consists of two polynomial time mappings
f:Z° =X and b: L — I, such that for all z, z € Aif and only if B(f(z)) b(z). Assume that
in the case under consideration, both of these mappings can be computed in time bounded by a
nondecreasing polynomial r(n). Let M be an interpreter implementing the following algorithm:

M(q,z):

compute y = f(z),b = b(z);
compute z = U(q,y);

if z = 1L, then output A,
else if z = b, then output 1,
else output 0.

Let ¢ be any polynomial and z any string; w.l.o.g. assume that ¢ is nondecreasing. It can be
seen that if q is a t-program for B deciding j’(z) then g is also an (M, t")-program for A deciding
z, where t(n) = r(n) + t(r(n)). Hence 1cM(z A) <ic'(f(z) : B) for all z. But by invariance,
there is a constant c, indefendent of t and ¢”, such that for all z, ic (x A) < ict (z A) +¢c,
where t'(n) = ct”(n)logt”’(n) +c¢c. O

4 Sets with Logarithmic Instance Complexity

Recall that the class P can be characterized as the class of sets with constant-bounded instance
complexity (w.r.t. polynomial time bounds); on the other hand, the instance complexity of any
set can grow at most linearly. In this section, we study the class of sets with logarithmically
bounded instance complexity. Our main result is that any polynomially self-reducible set [21, 26)
can have logarithmic instance complexity only if it is in P. Consequently SAT, and by application

ta



of Proposition 3.5, any NP-hard set, can have logarithmic instance complexity only if P = NP.
We also show that our class of sets lies properly between the advice complexity classes P/log and

P/poly introduced by Karp and Lipton in [13], and is incomparable with the class P/lin.
Let us define, for functions s(n),t(n),

IC[s(n),t(n)] = {A:ic'(z: A) < s(n) for all z},
IC[log, poly] U{IC[c logn + ¢,t(n)] : constant ¢, polynomial t(n)}.

A set A C L is polynomially self-reducible [21, 26] if there exist a well-founded partial order* <
on £°, and a polynomial time deterministic oracle Turing machine A/, such that M with oracle
A recognizes A, and M on any input z queries only strings that strictly precede z in the order
<. (For definitions of oracle machines and related notions see, e.g., [1].) Moreover, we require
that if £g > z; > --- > z is a descending chain in the query ordering, then k < r(|zo]), and
|z;] < r(|zo]) for every i=1,...,k.

Theorem 4.1 Let A be a polynomially self-reducible set. Then A € IC[log, poly] only if A € P.

Proof. Let M be the self-reducing machine for A, and let r be the associated chain-bounding
polynomial. Assume that there are a constant ¢ and a polynomial ¢ such that for all z € °,
ic'(z : A) < clog|z]| +c. We claim that the following recursive procedure is then a polynomial
time algorithm for deciding memebership in A:

on input z:

set 1 := {p: |p| < clogr(|z|) +c};
return decide(z).

decide(z):

for every p € I, try to compute U(p, z) in t(|z|) steps;
if this fails, set 11 := II — {p};

sei o= {pel:U(p,z)=0},
I :={pell:U(p,z) =1}

if Il = @ then return 1,

else if I1; = @ then return 0,

else compute a := reduce(z);

ifa =1 then
set IT:=II — Mo,
return 1;

else
set T:=11 -1I,,
return 0.

4 A partial order < is well-founded if there are no infinite descending chains z¢o > 71 > 22 = - -, where z; > z,
means z, X z; and 7, # z,.



reduce{z):

simulate M on input z;
whenever M queries a string y,
compute an answer to the query
by recursively calling decide(y);

if M accepts z, then return 1,

else return 0.

To verify the correctness of the algorithm, consider a computation of it on an input z. Note
that, by the assumption A € IC[clogn + ¢,#(n)], and the polynomial boundedness of the query
chains, the variable II initially contains a set of polynomially many programs p such that for any
string y queried by M during the computation, and for the original input z, there is some p € II

such that time,(y) < t(|y|) and U(p,y) = A(y). By induction on the recursion depth of the
computation, one can then show that:

(i) whenever either one of the procedures decide(y) and reduce(y) returns a decision on whether
a string y belongs to A, that decision is correct;

(ii) not-programs for A are ever deleted from II, so it is actually true throughout the computation
that the programs in I cover all the relevant strings, in the sense described above;

(ii1) any call to either one of the procedures terminates.

The correctness of the algorithm follows from (i) and (iii); (ii) is an auxiliary observation needed
for the induction.

To see that the computation actually terminates in polynomial time, note that whenever a call
to decide(z) results in both the sets Iy and II; becoming nonempty, the algorithm proceeds down
a query chain, until at some level no further recursion is needed. Backing up from this point, the
algorithm is able to eliminate at least one incorrect program from II. Hence within a polynomial
time of any moment that the routine decide(z) obtains an ambiguous answer from II, at least one
offending program from II will be deleted. Since II contains only polynomially many programs in
the beginning, eventually decide(z) will obtain only unambiguous answers, and the procedure will
terminate in polynomial time. O

Corollary 4.2 Assume P # NP, and let A be a set that is <§_,,-hard for NP. Then A ¢ IC[log, poly].

Proof. By theorem 4.1, SAT € IC[log, poly] only if P = NP. Let us assume that some <} _,,-hard
set A is in IC[log, poly]; we show that this implies that also SAT € IC[log, poly]. Let ¢ be a
constant and t a polynomial such that for all z, ic'(z : A) < clog|z| +¢c. Let f be a <5 i

reduction from SAT to A, and let d be a constant such that |f(¢)| < |¢|¢ for all 4. Then, by
Proposition 3.5, there exist a polynomial ¢’ and a constant ¢’ such that for all ¢,

ic' (¢ : SAT) < ic'(f(¢): A)+¢'
< clog|f(#)l +¢
< cdlog|d|+ ¢
< loglg| + ¢,

where ¢’ = max{cd,c'}. O
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Inter?stingly, we can show that the class IC[log, poly] is located properly between the advice
complexity classes P/log and P/poly introduced by Karp and Lipton in [13]. Thus, Theorem 4.1

yields a provable strengthening of Karp’s and Lipton’s result that SAT € P/log if and only if P =
NP.

Definition 4.1 (Karp, Lipton) Let f be a function on the natural numbers. A set A belongs

to the class P/f if there exist another set B € P and a function A : N — I~, such that for all n,
[h(n)| € f(n), and for all z, z € A if and only if (z, h(|z])) € B. We define

P/log = UP/clogn,

c>0
P/lin = UP/cn,
c>0
P/poly = UP/n‘.
>0

Theorem 4.3 (i) P/log C IC[log, poly] C P/poly;
(i) P/n € IC[log, poly);
(iii) I1C[log, poly] € P/n¢ for any fized ¢ > 0.

Proof. (i) Given A € P/log, let B € P and h : N — L7, [h(n)] < clogn, be such that
for all z, A(z) = B((z,h(|z]))). Let M be an interpreter that on input ({n, z}, z) outputs the
value B((z, z)) if |z| = n, and X otherwise. Clearly, for some polynomial ¢ and all z, |z| = n,
ichy(z : A) € [n|+ clogn +2login|+7 = lO(log n). By invariance, then, there exist a polynomial
¢ and a constant ¢ such that for all z, ic* (z : A) < ¢’ log|z| + ¢. Hence A € IC[log, poly).

Let then A be a set in IC[log, poly], and let ¢ be a constant and ¢ a polynomial such that for
all z, ic*(z : A) < clog|z| + ¢; w.L.o.g. assume that ¢(n) > n®logn. For any given n, let py,...,pk
be a listing of all the t-programs for A of size at most clogn+c. Thenp=p U...Upsisa
program for A such that U(p,z) # L for all z, |z| < n. For the size of p, we obtain the bound

k k
bl < S Ipil+23 loglmil + kv

i=1 i=1
< 2°n°(clogn +c+ 2log(clogn +c¢) +7)
= O(n‘logn),

and for its time complexity the bound

k
Z time,, (z) + k7v|p|

i=1

2°n°(t(n) + 7lpl)
O(n°t(n)).

timep(z)

IA

I IA

For a given n, let p{") denote the program defined above, and let r be a polynomial bounding
the running times of all such p(™). Define h(n) = p(™, and let B({z,p)) = 1if U(p,z) = 1in r(|z])
steps, and 0 otherwise. Then clearly h and B satisfy the conditions of Definition 4.1 for showing
that A € P/poly.
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(ii) To see that P/n ¢ IC[log, poly], let A be a set that for each n contains exactly one string z
of length n, and this z is such that K'(z) > n. (Here K(z) denotes the standard time-unbounded
Kolmogorov complexity of z.) Clearly A € P/n; to show that A ¢ IC[log, poly], assume to the
contrary that there are a constant ¢ and a polynomial ¢ such that for all z, U(p;,z) = A(z) in
time t(|z|) for some program p. for A, |pz| < clog|z| + c. Let M be an interpreter implementing
the following algorithm:

M({n,p), )

for all z, |z] = n, do:
simulate U(p, z) for t(n) steps;
if in this time U(p,z) = 1,
then output z and halt.

Now if £ € A, |z| = n, then M((n,p:),)) = z, and so Kp(z) < |(n,p:)| = O(logn). Hence,
by invariance, also K(z) = O(logn). But by the construction of A, for large enough z this is not
possible. (In fact, doing the argument in a little more detail shows that for every polynomial ¢,
ic'(z : A) > |z| = 2log|z| for almost all z € A.)

(iii) Let some ficed ¢ > 0 be given; for simplicity, assume that ¢ is an integer. We show how to
construct by diagonalization a set A such that A € IC[log, poly], but A € P/f for any f(n) < n°.
Let By, Bs, ... be some enumeration of all sets in P in which every set appears infinitely often. At
stage n of the construction, we diagonalize against basis set B, and all advice strings w, |w| < n¢,
as follows. Let £" denote the set of strings of length n; w.l.o.g. assume that 2* > n°. Let
zy,Z2,...,Z2~ be an enumeration of the strings in £" in lexicographic order, and let S, denote
the set {z1,22,...,za<}. For each string w, |w| < n¢, let A, = {z € S, : (z, w) € B,}. Since S,
has 2"° different subsets but there are fewer than this number of sets A, there is some A(™) C Sa
such that A®™) s 4, for all w, |w| < n°. Define A as the union of the A(™) sets from each stage,
A= Upzo A®.

By construction, A ¢ P/n¢; let us show that A € IC[log, poly]. Consider an interpreter M
implementing the following algorithm:

M({(n, (k,d)), z):
if |z| # n then output XA and halt;
let z = z; in the enumeration of £";

if i > n¢ then output 0,
else if i = k then output d, else output .

Given an z such that |z] = n, and z = z; in the enumeration of £, define

- (n, (k, A(k)))r if k£ <nf,
Pz = { (n, (0, 0)), itk > ne.

Clearly there is some (low-order) polynomial ¢ such that for every z, p: is an (M, t)-program for
A deciding z. Moreover, for z such that |z| = n,

lpzl < Inl+ [n®]+ 1+ 2log|n| + 2log|nf| + 27
= O(logn).

The result follows by invariance. O



Corollary 4.4 (1) P/log C IC[log, poly] € P/poly;

(11) P/lin € IC[log, poly] and 1C[log, poly] € P/lin. O

5 Hard Instances

In this section, we prove two theorems concerning the existence of instances whose instance com-
plexity is close to their Kolmogorov complexity. Before presenting the first theorem, on intrinsically
hard instances for NP-hard and EXPTIME-hard sets, we introduce a new “structural complexity”
property.

Definition 5.1 Let ¢ be a time bound. A set S is t-coverable within a set A if there i1s a set
E € DTIME(¢) such that ANS C E C A. A set S is almost {-coverable within A if there is a set
E C A E € DTIME(t), such that for any other E' C A, E' € DTIME(t), the set (E/ — E)N S is
finite.

The notion of almost t-coverability i1s a generalization of the notion of almost t-immunity
discussed (for polynomial t) in [22], and under the name “non-t-levelability” in [23]. A set A is
almost -immune if it contains a DTIME(t) subset E that is maximal in the sense that for any
other B C A, E' € DTIME(t), the set E' — E is finite. Hence A is almost ¢-immune if and only if
it is almost t-coverable within itself.

A set A is paddable if there is a polynomial time computable function pad(z, y) such that for
any strings z,y, pad(z,y) € A if and only if z € A. A is honestly paddable if for some constant k,
lpad(z, )| = (|z| + |y|)*/* for all z,y. Ais linearly paddable if for some constant k, k=*(|z|+|y]) <
|pad(z,y)| € k(|z| + |y|) for all z,y. We note that many natural NP- and EXPTIME-complete
sets are linearly paddable (e.g., the NP-complete set SAT, and the EXPTIME-complete set of
circular attribute grammars [12]). )

The main rationale for Definition 5.1 lies in the following result, essentially due to Hartmanis
[9]. For functions s(n),t(n), define

K[s(n),t(n)] = {z: K*(z) < s(]z])}.

Lemma 5.1 (Hartmanis) If EXPTIME # NEXPTIME, then K[clogn,n®] is not t-coverable
within SAT, for any constant ¢ > 2 and polynomial t.

Proof. Using the honest (in fact, linear) paddability of SAT, it is easy to show that for any ¢ > 2,
the set SAT N K[clogn,n®] is <P,-hard for the class of tally sets in NP. If there is a set £ €
DTIME(t) C P such that SAT N K[clogn,n®] C £ C SAT, then in fact SAT N K[clogn,n] € P,
and so there cannot be any tally sets in NP - P; hence EXPTIME = NEXPTIME [4]. O

One can of course also show that if A is honestly paddable and <? -hard for EXPTIME, then
ANKlclogn,n,c> 2, is <P -hard for the class of EXPTIME tally sets. Since tally sets provably
exist in EXPTIME — P, this establishes without any assumptions that A’[clogn,n®] cannot be
t-covered within A for any polynomial ¢.

By our next lemma, we can improve the above results from “not ¢-coverable” to “not almost
t-coverable” for any linearly paddable set A.
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Lemma 5.2 Let A be a linearly paddable set. Then for all sufficiently large constants ¢ and
polynomials t, K'[clogn,n®] is t-coverable within A 1f and only if it is almost t-coverable within A.

Proof. The “only if” direction is trivial. To prove the “if” direction, we apply a construction
from [23]. Let A4 be a linearly paddable set, with a padding function pad(z, y) that is computable
in time O((|z| + |¥])"), and is such that k~!(|z| + [y|) < |pad(z,y)| < k(Jz| + |y|). Consider a
function f(z) defined as f(z) = pad(z, 1%*I*!). Clearly f(z) can be computed in time O(|z|"), and
has the property that |f(z)| > 2|z|. For definiteness, let us assume w.l.o.g. that f = f, for some
program p such that time,(z) < |z|" for all z.

Assume, for a contradiction, that for infinitely many ¢, d, K[clogn,n®] is almost n%coverable
within A, but not n%-coverable within A. Choose some c,d with this property large enough so
that

n
Pl + clog 5 + 2loglpl +7 < clogn,
n

c LAY c
— = &
(3)°+(5) +7clogn < %,

and d > I. Let E be a maximal partial DTIME(n?)-cover (as per Definition 5.1) for K =
K(clogn,n?] within A. Since K is not n-coverable within A, the set (A N K') — E is infinite.
Consider astring z € I, z # A, and let ¢ be a program of size at most clog |z| that computes z

from A in time |z|. Then the image y of £ under f = f, can be computed from A by the program
pogq, for which

lpogl < Ipl+cloglz|+2loglp| + 7,
timepog () < 2I°+ Jz|' +7lpogl.
Since |y| > 2|z|, it follows from our assumptions on ¢ that also y € K[clogn,n®] = K. Hence for
any z € AN K, z # A, the set
E:= {I, f(I)! f(f(f)), i }
is an infinite subset of A N K. Moreover, there is a program that decides whether a string y is in
E: in time O(|y|'log|y]) = O(ly|%), so E. € DTIME(n4). By the maximality of E, then, E; — E

is finite. In particular, for each of the infinitely many z € (AN K) — E there is a y, |y| > |z, such
that y € (AN K) — E and f(y) € E. Hence, the set

B={y:y¢E, f(y) €E}

contains infinitely many strings that are in AN K but not in E. But B is a subset of A (because
y € Aifand only if f(y) € A), and B € DTIME(n?) (by the closure of DTIME(n?) under Boolean
operations and the fact that |f(z)| = O(|z|)); this contradicts the assumed maximality of E. O

Now we can state and prove our first main theorem.

Theorem 5.3 Let A be a recursive set, and let s(n),u(n), and t(n) be nondecreasing functions
such that 2°(™) u(n), and t(n) are time constructible. Assume that the set K[s(n), u(n)] is not
almost t-coverable within A. Then for any time constructible ¥'(n) = w(n2°(™)(t(n) 4 u(n))), there
ezisis a constant ¢ such that for infinitely many z,

ic(z: A) > I\"”(.r) —c,

where t"'(n) = ct’(n) logt'(n) + c.
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Proof. In outline, the argument is as follows. Let p be any program for A, and 7 a time bound.
Let u7(p) denote the set of strings for which p is “r-minimal” in the following sense:

#7(p) = {z:U(p, z) # L, timey(z) < 7(Jz]),
U(q,z) = L for all ¢ < p that are 7-programs for A.}

Note that if x € p”(p), then ic"(z : A) > |p|.

Assume then that p is a dt-program for A for some constant d > 1, and that u%(p) has infinite
intersection with the set A" = K'{s(n), u(n)]. We show that in this case p can be turned, with a
constant ¢ increase in size, into a t"-program for producing some string z € pd"(p) N K, for some
1 < d' < d. For such an z, it is then the case that

K(2) < lpl+c <ic(z: A) + e Cict(z s A) +c.

To conclude our result, we finally argue that if K is not almost t-coverable within A, there must
exist infinitely many O(t)-programs p for A such that the associated u?'(p) N K sets are infinite.

Let ps be some fixed total program for A, and let M be an interpreter implementing the
following algorithm:

M(p, A):

forn=0,1,2,... do:
for all y, |y] < s(n) do:
for to(n) = t'(n)/n2°(")*! steps, try to do the following:

in u(n) steps, try to compute z = U{y, A);
if time runs out or |z| # n, go to next y;

let ty(n) = to(n) — u(n);
ford=1,2,...,/ti(n)/t(n), do:
for \/t1(n)t(n) steps, do:

in dt(n) steps, try to compute U(p, z);
if time runs out, go to next d;
if U(p,z) = L1, go to next y;

in the remaining time, try to do the following:
for all ¢ < p do:
if timey (g, z) < dt(|z]) and U(q,z) # L
then check, in lexicographic order, that
for some string z either timey(q, z) > dt(]z]) or

U(g,2) £ U(pa, 2)-

if the last check can be successfully completed,
then output z and halt.

Observe that if M(p,A) halts and prints out some string z, then it does so in at most
|z]2:U=D+14(|z|) = ¢/(|z]) steps. Hence for any such z, K},(z) < |pl. Morec?ver, if pis a dt-
program for A deciding z, then the check done in the innermost loop of the algorithm ensures that
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forsome d’, 1 < d’' < d,no ¢ < pcan be a d’t-program for z; thus z € p“"(p) and icd"(.t : 4) 2 |pl
Hence, by invariance there is a constant ¢, independent of z, such that

K'(z) < Kyx)+e < lpl+e
< itz A)+ec < icd(z:A)+e,
where t"(n) = ct'(n)logt'(n) + c.

Let us then show that the computation M(p,A) indeed does halt for any p such that p is

a dt-program for A and p%(p) N K is infinite. Note that since t,(n) = w(i(n)), the function
Vt1(n)/t(n) tends to infinity, and so for large enough n, the appropriate value of d is always
tried out in the second-innermost loop of the algorithm. For each of the finitely many ¢ < p
that are not dt-programs for A, there is some string z, such that either timey(q, z4) > di(|z,|) or
U(q,24) # U(pa,z,). Let 8 be a nondecreasing function such that time,,(z) < 8(]z]) for all z,
and let

no = max{|z,| : ¢ < pis not a dt-program for A}.

Then the time required to complete the minimality check in the innermost loop is, for |z| = n,
O(27(dt(n) + 27+ (di(no) + B(no)))) = O(t(n)).

But the time available for the check is \/?,(n)t(n) — dt(n) = w(t(n)), so for some sufficiently large
z € p®(p)NK the test will be successfully completed, and z printed — unless some z’ € p“"(p)ﬂ!\f ,
d’ < d, gets printed first.

It remains to be shown that if K = K[s(n), u(n)] cannot be almost t-covered within A, then
there will be infinitely many programs p of the desired type. Assume to the contrary that there
is some po such that for any constant d > 1 and any p > po that is a dt-program for A, the set
p¥(p) N K is finite. Let qy,...,qx be all the O(t)-programs for A up to, and possibly including,
po. Define go = q1 U...Uqx. We claim that then L,, = fq‘ol(l) almost t-covers K within A.

Clearly fg,(z) =~ A(z) for all z, and by the efficient closure under union of our programming
system, timeg, (z) = O(t(|z|)). Hence L , C A, and L,, € DTIME(t). Assume, for a contradiction,
that for some program r such that L, C A and time,(z) < dt(]z|) for some constant d > 1, there
are infinitely many strings in (L, — Lg) N K. W.lo.g., assume that f.(z) = L forallz ¢ L,.
Then r is a dt-program for A such that for infinitely many z € K, U(qo,z) = L but U(r,z) # L.
Each of these z € AN K belongs to u%*(r') for some dt-program r' for A, po < r' < r. Hence there
must exist some dt-program r' for A, po < r' < r, such that u%(+') N K is infinite. But by the
definition of pg, this is impossible. O

For brevity, let us say that a set A has p-hard instances if for any polynomia! t there exist
a polynomial ¢/ and a constant ¢ such that for infinitely many z, ic'(z : A) > K*(z) —c. The
theorem immediately implies the following corollaries:

Corollary 5.4 If EXPTIME # NEXPTIME, then SAT has p-hard instances.
Proof. By Lemma 5.1, Lemma 5.2, and Theorem 5.3. O
Corollary 5.5 Any linearly paddable EXPTIME-complete set has p-hard instances.

Proof. By the discussion following Lemma 5.1, Lemma 5.2, and Theorem 5.3. O

We can translate these results upwards using the following lemma:
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Lemma 5.6 If A has p-hard instances, and A <}_,, B, then B has p-hard instances.

Proof. Assume that A has p-hard instances, and let f be a <§_,,-reduction from A to B (precisely,

f is the fugction map‘ping'a string z to the string queried in the reduction for z). Observe that
beca.u§e f is polynomial time computable, there is a constant e such that for any polynomial u
there is a polynomial u’ such that for all z,

R (f(z)) € K¥%(z) +e. (1)

This follows from the efficient closure under composition of our programming system (or also just
by invariance).

.To show that B has p-hard instances, fix some polynomial t. Then, by Proposition 3.5, there
exist a polynomial ¢’ and a constant ¢ such that for all z,

ic"'(z : A) <ic'(f(z) : B) +ec.

The assumption that A has p-hard instances, on the other hand, implies that for some polynomial
t” and constant d, there exist infinitely many z such that

i (z: 4)> K () - d.
Combining these, we see that for infinitely many z,
ic'(f(z) : B) > K (z) — (c + d). (2)

Applying now inequality (1), we obtain that for some polynomial ¢’ and constant e, and for
infinitely many z, .

ic'(f(z) : B) > K* (f(z))—(c+d+e).
Our result is complete, when we observe that inequality (2) implies that for the infinitely many
z's we are considering, there must also be infinitely many different values of f(z). O

Corollary 5.7 IfEXPTIME # NEXPTIME, then any set that is <8 _i-hard for NP has p-hard
instances.

Proof. By Corollary 5.4 and Lemma 5.6. O
Corollary 5.8 Any set that is <} _,,-hard for EXPTIME has p-hard instances.

Proof. By Corollary 5.5 and Lemma 5.6, and the fact that linearly paddable EXPTIME-complete
sets exist. O

Our second main theorem, and its corollary concern the existence of dense sets of relatively
hard instances for sets in EXPTIME.

Theorem 5.9 There ezisis a sel A € EXPTIME such that for some constant ¢ and all z,
P (z : A) > K (z) — 2log K (z) — c,
where exp(n) = 2" and exp’(n) = cn2?" +c.

Proof. The set A is constructed by a “weighted diagonalization” (20, 29] over all 2" time
bounded programs. The construction proceeds in stages corresponding to all strings £ € £°, in
lexicographic order. Initially A =@, and it is then decided at stage z whether z € A.

Conceptually, each program p is initially assigned a weight of w(p) = 2-(pl+1) At each stage
z of the construction, some set I1 of the programs are “alive”; initially, the set II contains all
programs. In the course of the construction, the weights of sonie programs are increased, but at
the same time programs are eliminated from II so that at all stages, Zpen w(p) < 1. (Note that
this is true in the beginning.) The algorithm for stage z is as follows:
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let n = |zf;
set Mo:={pe€l:|p|<n,U(p,z)=0in 2" steps},
N :={pel:|p|<nU(p,z)=1in2" steps};
set wo := ), w(p),
w) = Zpeﬂl UJ(p),
if wg > wy, then
set A:= AU {z};

set I1 := I — Ilp;

for every p € I}, set w(p) := 2w(p)
else

set I1:=11 - IIy;

for every p € I, set w(p) := 2w(p).

Clearly A € EXPTIME. (In fact, computing the construction up to stage z, |z| = n, can be
done in time O(23"); by invariance, there is then a total O(n23")-program for A.) Note also that
the upper bound on the total weight of programs in I is maintained: at each stage, a total weight
equal to min{wp, w)} is added, but before this, a set of programs with total weight equal to or
greater than this has been eliminated.

Let M) denote the set of programs in II at the completion of stage z, and let IT = N, 0.
We claim that

(i) if p is a program for A, then p € II; and
(i) if p € I, then the set E(p) = {z : |z| > [p|, timey(z) < 2/*!} has at most 2|p| + 1 members.

To see (i), assume that p ¢ II. Then p must have been eliminated from II at some stage
z. But by construction, then, U(p,z) # A(z). For (ii), note that for every z, |z| > |p|, such
that U(p,z) = A(z) in 2/! steps, the weight of p is doubled. Because the initial weight of Ip| is
2-CIPI+1) "and the total weight of all programs is bounded by 1, this doubling can occur at most
2|p| + 1 times.

Consider then an interpreter M that on input ((k,p), A) outputs the lexicographically kth
string z in E(p), whenever E(p) contains at least k strings, and does not halt otherwise. Such an
M can easily be implemented so that when M halts with output z, then timeys((k,p}, ) < 92l
Since k < 2|p| + 1 for every p € Il and z € E(p), it follows that in this case

|k] < logk + 1 <log(2|p| +1)+ 1 < log|p| + 3,
and hence

aln
Kt (2) |(k, p)| < 1k[+ [p| + 2log [K| + =

<
< Ipl +log|p| + 2loglog|p| + (m + 7).

By invariance, then, there is a constant ¢ such that forallpe I, z € E(p),

K™(z) < |p| + 2log Ip| + ', (3)

where T(n) = ¢'n2?" + ¢’. Let ¢ > ¢’ be a constant such that for all strings z,

lz] > K (2) - 2log KP'(z) — ¢, (4)
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where exp’(n) = cn2® + c. Note that because ¢ > ¢’ and exp’(n) > T(n), by (3) it is also true
that for all p € I, z € E(p),

K*®'(z) < |p| + 2log|p| + c. (5)

Let then z be any string, and let p be a minimal length exp-program for A deciding z. To
establish our result, we need to consider two cases.

(i) If [] < |pl, then by (4),
ic™*P(z : A) = |p| > |z] > K% (z) — 2log K**P'(z) — c.
(1) If |z| > |p|, then z € E(p), and (5) easily implies that

ic™?(z : A) = [p| > K*¥'(z) ~ 2log K¥'(z) —c. O

Let £(") denote the set of strings of length at most n. A set of strings C is ezponentially dense
if there is a constant ¢ > 0 such that for all n > 2, |CN Z(™)| > 2"°. Combining the construction
in the previous proof with techniques from [2], we obtain the following corollary.

Corollary 5.10 For every EXPTIME-complete set B there ezist an ezponentially dense set of
strings C and a constant ¢ such that for every polynomial t and almost all x € C,

ic'(z : B) > K***'(z) — 2log K***'(z) — c,
where exp’(n) = cn2%" +c.

Proof. 1t follows by Proposition 3.3 (ii) that the set constructed in the previous proof is bi-
immune. In fact, the diagonalization can easily be interleaved with a construction from {2] to
obtain a set that is strongly bi-immune, a condition implying that every <? -reduction from A to
any other set is one-to-one almost everywhere. Let B be any EXPTIME-complete set, and let
f be a reduction from A to B. Then f is almost everywhere one-to-one, and consequently the
set C = f(T") is exponentially dense. Furthermore, we may assume that f is length-increasing,
because all EXPTIME-complete sets are related by length-increasing reductions 3, 28], honestly
paddable EXPTIME-complete sets exist, and reductions to honestly paddable sets can always be
made length-increasing.

By Proposition 3.5, there is a constant c; such that for almost all z € Z°, and hence for almost
all f(z) € C,

ic®*P(z : A) < ic*(f(z) : B) +c1. (6)

By the properties of A, on the other hand, there is a constant ¢a such that for all z,
ic*P(z 1 A) > K" (z) - 2log K=" (z) — ¢, (7)

where exp”(n) = ca2n22" + c,.
Let then p be a program computing the reduction f = f, in time bounded by a nondecreasing
polynomial r. Denote c3 = |p| + 2log|p| + 7. Given any string z € T, let ¢ be a minimal size
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program for producing z in time exp”(|z|). Then the program poq produces f(z) = y, and we
obtain the following size and time bounds:

lpogl < Ipl+lql+2loglpl +7

lg| + 3
Kexp"(|z|)+ ca,

timepog(A) < exp”(lzl) + r(lz]) + (lgl + c3)
< exp”(Jy]) + r(lyl) + const - y|
< cqexp”(Jul),

for some constant c4. Let us denote ¢ = cyc2 and exp’(n) = en2®® 4 c. Because f is almost
everywhere one-to-one, we see that for almost all f(z) € C,

Ko (f(z)) € K% (2) + ca. (8)

Combining inequalities (6), (7), and (8), and observing that the function k-2 log k is monotonically
increasing for k > 4, we then obtain the result that for any constant ¢ > ¢, +c2 + max{c3, 6} and
for almost all y = f(z) € C,

ic'(y: B) > K" (y) — 2log K*P'(y) —c. O

6 Conclusion and Further Research

We have introduced a program-size based measure for the complexity of individual instances ofa
decision problem, and studied the properties of this new notion. The most fundamental questions
here concern the existence of instances with high instance complexity, relative to their Kolmogorov
complexity. We are putting forth an “instance complexity conjecture”, which attempts to formalize
the intuitive idea that problems are hard if and only if they have infinitely many intrinsically hard
instances. Formally, the conjecture states that if a set A is not in the class DTIME(t), then for
infinitely many strings z, the t-bounded instance complexity of z with respect to A is within a
constant of the ¢’-bounded Kolmogorov complexity of z, where t' = O(t logt).

The results in Section 5 of this paper provide support for this conjecture, and come fairly
close to proving it in the case of many natural intractable sets. Obviously, any further results on
the conjecture would be extremely interesting — including any results pointing in the opposite
direction.

From past experience, resolving the conjecture should be within reach in the limiting, recursive
case. Precisely, one would like to prove or disprove the following: for any recursively enumerable,
nonrecursive set A4, there exist a constant ¢ and infinitely many strings z such that

ic(z : A) > K(z) —c,
where ic and K denote the time-unbounded versions of instance complexity and Kolmogorov
complexity, respectively. Surprisingly, even this seems to be a nontrivial problem.
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