
Universität Ulm

Fakultät für Informatik

Relative Termination

Alfons Geser

Universität Ulm

Nr. 91-03

Ulmer Informatik-Berichte

^55%

ocwa0o

Relative Termination

Alfons Geser

Universität Ulm, FRG

Abstract

"Relative termination" is a property that generalizes both termination and

"termination modulo". In order to prove that a term rewrite Systemrelatively

termmates, one may reuse the common termination quasiordenngs. Further

proof methods become available by the Cooperation property. Relative

termination sets up new proof techniques for termination and confluence.

The usefulness of the notion of relative termination is finally demonstrated by

a proof of completeness for "reducednarrowing" and "normal narrowing",

two attractive variants of the narrowing procedura..

Zusammenfassung

"Relative Termination" ist eine Eigenschaft,die sowohl Termination als auch

"Termination modulo" verallgemeinert. Daß ein Termersetzungssystem

relativ terminiert, läßt sich etwa mit den bekannten Terminations-

Quasiordnungen beweisen. Weitere Beweismethoden erhält man durch die

Eigenschaft der Kooperation. Relative Termination ermöglicht neue

Beweismethoden für Termination und Konfluenz. Schließlich wird gezeigt,

daß unter der Voraussetzung der relativen Termination zwei naheliegende

Varianten der Narrowing-Prozedur vollständig sind, nämlich "reduced

narrowing" und "normal narrowing".

Acknowledgements

To all those who supported me in writing this dissertation, I owe a debt of gratitude. First of

all, I wish to thank Prof. Wirsing and Prof. Broy, who gave me the opportunity to write this

thesis, and who were cooperative Supervisors. I gratefully acknowledge a number of

conversations with my colleagues at the department andin the ESPRIT project 432, METEOR.

In particular, I am indebted to Heinrich Hußmann and Peter Padawitz, who introduced me to

the field of term rewriting. I wish to express my wärmest thanks to Alexander Bockmayr,

Dieter Hofbauer, and in particular, to Oliver Geupel, for their close Cooperation and their

repeatedly readingdrafts of this thesis. Thanks also to Deepak Kapur, Pierre Lescanne, Ursula

Martin, and the other members of the rewriting Community, for valuable advice.

For their moral Support, I am grateful to Thomas Beizner, Christian Lengauer, Thomas

Streicher, and Muffy Thomas. Thanks go to Monica Eckhardt and Victor Pollara for their

correcting my English. Finally, special thanks to my wife Eva-Maria for her patience and her

continuous encouragement.

This is a reprint of my doctoral dissertation at the Universität Passau in 1990. My present

address is:

Alfons Geser, Fakultät für Informatik, Universität Ulm,

Oberer Eselsberg, W-7900 Ulm, FRG.

Tel.:+49 731502-4118

Email: gesei@informatik.uni-ulm.de

Introduction and motivation 1

1. Basic term rewrite notions 7

1.1. Abstract relations 7

1.2. Terms, substitutions, and occurrences 8

1.3. Term rewrite Systems 11

1.4. Criticalpair criteria 13

1.5. No restrictions? 17

2. Termination, termination modulo, and relative termination 19

2.1. Relative termination—Definition and basic properties 19

2.2. Necessary syntacticconditions 22

2.3. Some termination quasiordenngs 25

2.4. How to prove relative termination 30

2.5. Relative tenmnation in restricted Systems 35

2.6. On thedescriptive power of relative termination 36
3. How to strengthen termination orderings 38

3.1. Termination inheritance 39

3.2. Lexicographic combination proofs 41
3.3. Commutation and related properties 45

3.4. Cooperation 48
3.5. Local Cooperation and strong Cooperation 50
3.6. Criteria for local Cooperation 52
3.7. Criteria for strong Cooperation, and their applications 59

4. Confluence criteria 65

4.1. Theroleofcoherence 66

4.2. Further localization 71

4.3. Ona confluence criterionofKlop 75
5. Applications ofrelative temünation 81

5.1.0rientedparamodulationandnanowing 81
5.2. Normal narrowing is not complete 86
5.3.Relative termination and reduced narrowing 88

5.4. A completeness result for normal nanowing 91

Summary 97
Extensions or: What has not been treated 98

References 100

Index 109

Onepage principle:

A specification that will not fit on one page of85 xll inch paper

cannot be understood.

MarkArdis

Introduction and motivation

This thesis dealswith a weakening of the notionof termination of a term rewrite System.

A termrewriteSystem is a (usually finite) set of rewriterules. A rule 1-»r allowsone to

replace any instance of the term 1 by the corresponding instance of the term r, in any
context Terairewriting hasits early roots in the work of [Church, Rosser36] on conflu

ence in the lambda calculus and [Herbrand 30] on unification. The classical work that

probably gave term rewriting its main impulse, is [Knuth, Bendix 70], in which a proce-
dure is given that solves the simple word problem in some equational theories. The
Knuth-Bendix procedure transforms a System of equations, that describes an equational
theory, into aconfluent and terminating term rewrite system. The termination property
ensures that every term has atleast one normal form, and that normal forms can safely be
computed. Confluence cares that normal forms, if they exist, are unique. In aconfluent
and tenninating term rewrite System, semantic equality can be decided by a syntactic
comparison of normal forms. Much work has been done todevelop the theory of conflu
ence and termination. Besides that, topics like automated theorem proving, equational
unification, and narrowing have been studied. The pure theory has been enriched by
equational rewriting, graph rewriting, and conditional rewriting. See [Dershowitz,
Jouannaud 89] for an overview and a list of references.

An algebraic (or equational) specification is a set of functions which is called the signa-
ture and a(usually finite) set of equations 1=r. For simplicity, we willuse an impover-
ished notion of algebraic specifications, where all formulas are unconditional equations,
and specifications are homogeneous ("single-sorted", without type Information).
Algebraic specification was studied starting in 1974 by Liskovand Zilles, and continued
by Guttag and the ADJ group. Nowadays there is abundant literature in that area, see

[Wirsing 90] for an introduction and a listof references. Briefly summarized, the alge
braic specification world negotiates with model semanücs of specification: A specification
is associated with a cenain class of modeis; a model is an algebra where every given

Introduction and motivation

equation holds in all contexts and under all instantiations. Term rewriting, in contrast, is

mainly concerned with technical issues of equational specifications. It assigns to an alge

braic specification, so to speak, an operationalsemantics. An algebraic specification is

turned into a term rewrite Systemwhere each equation 1s r is replaced by a rewrite rule

1-* r. In contrast to an equation, a rewrite rule may be used only in an oriented way,

from left to right.

It is a classical programming paradigm to develop Software in modules. [Wirsing et al.

83] introduces the basic notion of hierarchical specification, and shows that important

properties for a working modular approach are sufflcient completeness and hierarchy

consistency. These two notions on the one hand, and confluence and termination on the

other hand, are closely connected (see [Nipkow, Weikum 83] and [Kapur et al. 87] for

sufflcient completeness, and [Padawitz 88] for hierarchy consistency). This stresses the

need of a hierarchical treatment of confluence and termination.

Both confluence and termination are however, in general, not modular, i.e. a term rewrite

System RuS may fail to be confluentor terminating althoughits componentsR and S are.

In a series of articles, a special case has been studied: The two components R and S have

no common function Symbols; then RuS is also called the direct sunt of R and S.

Surprisingly, confluence of R and S entails confluence of RuS in this case ([Toyama

87b]). A number of counterexamples showed that the problem is far more difficult with

termination of direct sums ([Toyama 87a], [Ganzinger, Giegerich87], [Klop 87]). Still,

under some restrictions, terminationresults exist ([Toyama et al. 87], [Rusinowitch 87a],

[Middeldorp 89]).

Often RuS is nota direct sum. Consider forinstance thefollowing algebraic specification

ofqueues:

Example: (Queues)

Assume a primitive algebraic specification P of items to be given, and let Fp denote a set

of function Symbols that contains at least the functionSymbols occurring in P. P and Fp

may be unknown at thebeginning; thepair (Fp, P) mightbe seenas a parameter specifi
cation to the (parameterized) queue specification below. Let thesetof new function Sym
bols be

Fq =def {empty, app, bottom, upper, length),

where "empty" (empty queue) is a constant, "bottom" (bottom element of the queue),
"upper" (queue when thebottom element has been removed), and"length" areunary, and
"app" (append a token at the top of a queue) is a binary function symbol. Fp has to sat-
isfyFp n Fq = 0. Thefunctions in Fq arespecified by

-2-

Introduction and motivation

Q=def{bottom(app(x, empty)) -» x,

bottom(app(x,app(y, q))) -> bottom(app(y, q)),

upper(app(x, empty)) -» empty,

upper(app(x, app(y, q))) -» app(x, upper(app(y, q))),

length(empty) -» 0,

length(app(x, q)) ->s(length(q))}.

Q is a terminating rewrite System, ascaneasilybe shown. Is QuP a terminating rewrite

System, too?QuP is not a directsum, because 0 and s (zero and successor, respectively)

which occurin Q, may alsobe function Symbols in P. Certainly, it is necessarythatP is a
terminatingrewrite System. But even then it is not sure whether QuP also is. According

to a theorem of [Bachmair, Dershowitz 86], a sufflcient condition here is "P terminating

rewrite system and left-linear". This is not too stronga condition since most rewrite Sys

tems are indeed left-linear, i.e. the left hand side of each rule contains each variable at

most once.

But if we do not know whether P is a terminating rewrite System, can we still say some-

thing sensible about the termination behaviour of Q in connection with P? Yes, some-

times we can. For instance, we can ask whether P-steps can force infinitely many Q-steps

to occur.

•

The following small example shall illustrate what this amounts to: Let a and b denote

constants. Assume two term rewriteSystems RuS and RuS' tobe given by

R={a->b}, S = {b->a), S'={b-*b).

Both Systems are obviouslynon-terminating rewrite Systems, but S-rewrite Steps keep on

destroying the progress achieved by R-rewrite Steps, while S'-rewrite Steps finally (here:
immediately) preserve the R-normal form b. Even better, noRLfi '-derivation contains

infinitely many R-steps. Thiseffect has been called "relative termination" by Jan Willem

Klop in [Klop 87]. Now back to our example:

Example: (Queues, continued)

Is Q a relatively terminating rewrite Systemto P? A necessarycondition is "P left-non

erasing", i.e. each variable that occurs on the right also occurson the left of a rule from

P. (This condition is often presupposed anyway.) Again using Bachmair and

Dershowitz' theorem,we find that "Pright-linear andleft-nonerasing" is sufficient. P is

calledright-linear if no variable occurs twice on the righthandsideof arewrite rule. If P
is right-linear and left-nonerasing then Q-rewrite Steps occur only finitely oftenin aQuP-

rewrite derivation.

•

-3-

Introduction and motivation

RuS terminates if and only if R relativelyterminates to S and S terminates. This property

can be used to glue termination proofs together. Technically, this gluing corresponds to

the lexicographic combination of termination orderings, a technique which in [Ben-

Cherifa, Lescanne 86] has been shown useful for the polynomial Interpretation method.

"Relative termination" also generalizes the notion of termination modulo an equational

theory. We will regardan equational theory as therewriterelationgeneratedby the Sym

metrie closure E of a term rewrite System E. So we may take termination modulo E to be

the same as relative terminationto E. As the theory of "termination modulo" is compara-

tively well-developed ([Lankford, Ballantyne 77], [Huet 80], [Peterson, Stickel 81],

[Jouannaud, Munoz 84]), a crucial question is whether relative termination contributes

anything new to it. The answer is settled positively in this thesis: There are R, S, such
that R is a relatively terminating rewrite Systemto S, but neither is RuS a terminating

rewrite System,nor is R a terminating rewrite System modulo 5".

The article [Bachmair, Dershowitz 86] contains the first use and application of relative

termination in the literature. Following [Jouannaud, Munoz 84], it introduces commuta-

tion-like properties of rewrite Systems in order to derive termination orderings.

Independently [Bellegarde, Lescanne 86] coins the related notions of transformation or~

dering and Cooperation. As many examples have shown, the transformation ordering is

both powerful and easy to use. For instance, homomorphic interpretation orderings seem

to be basically transformation orderings.

As the first application of relative termination, [Klop 87] uses a criterion called "Splitting

effect" to prove confluence of RuS, where R terminates relative to S.

Building on the work reviewed above, this thesis is concerned with the following ques-

tions:

1) How do the notions of termination, termination modulo, and relative

termination correlate?

The three notions are related very closely. Termination of R is a special case of relative

termination of R to S, where S = 0. Moreover termination of R modulo E is the special

case of relative termination to E. On this aecount, one may expect that relative termination

satisfies some properties which are known from termination or termination modulo. For

instance, relative termination, like termination modulo, may be proven by termination

quasiordenngs. Conceptionally, relative termination re-integrates rewriting modulo into

classic rewriting theory.

4-

Introduction and motivation

2) What can relative termination contribute to termination proof tech-

niques?

Termination proofs may profit from relative termination in two ways.

The first approach uses the fact that relative termination of R to S is a necessary condition

for RuS terminating. Moreover, if S terminates, relative termination of R to S is even

equivalent to termination of RuS. So in order to prove termination of RuS, it may be

advantageous to proceed in two Steps: First prove that R relatively terminates to S, then

prove that S terminates. The underlying fundamental property of termination is that RuS

inherits termination from the termination of R and S when RuS is transitive.

The second approach establishes a relative termination result by the quasi-commutation

and Cooperation methods of Bachmair and Dershowitz, and of Bellegarde and Lescanne.

It moreover demonstrates that diese two methods are instances of a more general Coop

eration method that admits local Cooperation and strong Cooperation criteria, similar to the

local and strong criteria for confluence.

3) How can one prove confluence in the case of relative termination?

Since confluence proof techniques are known for termination and termination modulo,

this question is natural. In this thesis, the confluence proof, like in the termination mod

ulo approach, is attacked by a coherence property. This leads to a confluencecriterion for

RuS which is local with the exception of the confluence proof for S. In other words,

confluence proofs can be done hierarchically. In the confluence modulo approach, the

primitive theory may also be built-in. Then people also speak about the class approach. A

possibility for a class approach not requiring symmetry is sketched but not finished in

this thesis. Finally, if one aims at local diagrams even for S, then a new criterion called

strong coherence, in the spirit of strongconfluence, leads to a confluence result that gen-

eralizes Klop's confluence result.

4) Where eise does relative termination apply?

Wherever termination is needed, but termination of RuS is not available, relative termi

nation becomes an attractive candidate. Relative termination still provides an inductive or-

dering, which is the basis of an inductiveproof.The power of relative terminationon this

account is demonstrated in this thesis by two proofs of completeness of the normal nar

rowing procedura.

In summary, we are interested in relative terminationfor a number of reasons:

(1) Relative termination is a notion well suited to speak about the termination property.

-5

Introduction and motivation

(2) Termination "inherits" by relative termination. This is the basis of stepwise

("modular") termination proofs.

(3) Termination and termination modulo anequational specification are specialcasesof

relative termination.

(4) Relativetermination of R to S means thatthe ordering (R/S)+ is Noetherian. This or-

dering can be applied in various inductive proofs, for instance proofs ofconfluence.
(5) Techniques based on commuting diagrams define termination orderings (the trans

formation orderings) which are closely correlated with relative termination. These

orderings are interesting in their own right: They can be used to performdifficult

termination proofs.

The thesis is organized as follows:

The first chapter "Basic term rewrite notions" explains the working set of definitions,

Conventions, and basic results used later in the thesis. A definition of relative termination,

and its typical properties and proof methods are the subject of the second chapter

"Termination, termination modulo, and relative termination". The third chapter, "How to

strengthen termination orderings", touches theinheritance problem area, andredraws the

transformation ordering approach.

The remaining two chapters dealwith applications of relative tenmnation.Chapter 4, en-

titled "Confluence criteria", develops critical paircriteria for confluence of rewrite Sys

tems where a part of the Systemis relatively terminating to the rest.The thesis is finished

in chapter 5, "Applications of relative termination", with two results aboutcompleteness

of the normal narrowing procedura.

1. Basic term rewrite notions

This chapter contains some basic definitions which willbe used freely throughout this
thesis, and which are Standard in the rewriting Community. With one major exception:
Every binary relation on terms is called aterm rewrite System. We will plead for thisde-
cision; it has a basic impact on the whole thesis. For surveys on term rewriting in gen-
eral, see [Huet, Oppen 80], [Jouannaud, Lescanne 86], [Klop 87], [Dershowitz,
Jouannaud 89], [Avenhaus, Madiener 90].

The setof natural numbers will be denoted by N, its natural order by £n. Forconve-

nience, let us reserve the names i,j,k, 1, m and n for natural numbers. Whenever we

reservenames, we alsomean theirindexed, primed,or both indexed and primed variants.

1.1. Abstract relations

First, let us establish some notation for arbitrary binary relations R (over some implicit

universe U). We will sometimes drop the prefix "binary". Relations will preferably be

called Q, R, S, and T. Composition of relations is denoted by juxtaposition. We will use

infix notation t R t' in order to express that (t, Oe R holds. The inverse relation R-1 of

R differs from R by the exchange of left andright hand sides:

R'1 =def {(r,l). rRl).

The Symmetrie, reflexive, transitive, and reflexive-transitive closures of R are denoted by

R, Re, R+, and by R*, respectively.

Many properties of binaryrelations are of the form P c Q. This can also be expressed in

logic terms: For all t, t', if t P t' holds, then t Q t' holds. It is customary to represent

such a fact by a diagram. A diagram is a directedgraph, where nodes representobjeets (t

and O, and arrows represent their relations (P and Q). Black arrows denote premises ("if

t P t' ..."), and grey (elsewhere, dashed) arrowsdenote conclusions ("... then t Q t' ").

For instance, R is called confluent, if (R_1)*R* £ R*(R-1)* holds. In other words, R is

confluent if t(R_1)*R*t' implies tR*(R-x)*t' for all t, t'. In adiagram presentation

finally, R is confluent if

*
—B—*>

Chapter 1: Basic term rewrite notions

holds. The three definitions are perfectly equivalent Remember that moreover confluence
is equivalent to the Church-Rosser property: R* c R*(R-1)*.

R iscalled cyclic, if R+ isreflexive, and acyclic, if R+ is irreflexive. R is called/wirefy
branching, if for all t, the set {f. t R t'} of immediate descendants of t is finite. A
(finite orinfinite) sequence to, ti,t2,... suchthat tiRti+i holds for all i, is also called
an R-derivation, and is written to R ti R t2 R.... R is called terminating (or R termi

nates), if it admits no infinite derivations.

An object t is called (R-)normal, orin R-normalform, if there is no t' such that t R t'.
The setof all R-normal forms is denoted by NFr. The relation RNF ("R-normalization")
isdefinedby R1^ =def {(t, OeR*. t'eNFR}. The set of normal forms of an object t
is the set NFr(i) =def {f. t R1** t'}. If everyobject has a normal form, i.e. if for all t,
NFr(ö * 0 holds, then R is called normalizing. Remember that terminating relations are

normalizing, particularly.

A reflexive and transitiverelation is alsocalled a quasiordering, an irreflexive and transi

tive relation a Stridordering. Fora quasiordering andits inverse we will preferably use

the Symbols £ and £. The setdifference £N£ (a strictordering) willthen bedenoted by
>, andthe intersection £n£ (an equivalence relation) by the Symbol ~. In this thesis

we will use the attribute "Noetherian" for a strictordering to mean the same as

"terminating". A quasiordering £ willbyabuseof notation also be called Noetherian, if

its associated strictordering > is Noetherian. By abuse of notation, quasiorderings and

strictorderings will alsobe calledorderings.

1.2. Terms, substitutions, and occurrences

Let F denote a finite set, and X an infinite, countable set disjoint from F. We call ele-

ments of Ffunction Symbols, andelements of X variables. A function arity: F -> N as-

signs to function Symbols their arity. Function Symbols of arity 0 are also called con-
stants. The set of (finite) terms is the (e-)least fixpoint of the equation

Term = Xu U ({f} x Termanty(f))

feF

i.e. the least set that extends X and contains the tuple (f, ti,..., tn) if arity(f) = n and

ti,..., tn are in the set. Function Symbols may also be seen as functions which construct

terms, by

f: Termn -» Term,

f(ti tn) = (f,ti tn).

-8

Chapter 1: Basic term rewrite notions

This fact justifies the notation f(ti,..., tn) instead of (f, ti,..., tn), and gives rise to a
homogeneous algebra (Term, F) of terms andtheirbuilding functions. (Do not confuse

this with the notion of term algebra in the literature, which assumes X =0.) Forcertain

function Symbols, ad hoc mixfix syntax will be used, like for "+" in x+y, or for "-"

in -x. Superfluous parentheses will be omitted. We will preferthe names x, y, and z

for variables, a and b for constants, f, g, h, s, -, +,and * for unary and binary func

tion Symbols, and l,r, andt for terms.

Terms may be seen as particular trees where nodes are labelledby function Symbols or

variables. For instance, if f and g are binary, then t =def f(g(x, a), y) is a term that

may be depicted as

t =
/ \

g

/ \

For this reason, f is also called the iop symbol of the term t, and the terms g(x, a) and

y are called the first, second son, respectively, of t. Note that the equality sign "=" is

not a symbol from the object language (as is f, for instance) but a meta symbol which

we will use to indicate syntactic equality of terms. Anticipating later definitions, we will

deal with the following other "equalities" on terms:

1. equations as part of algebraic specifications (there we will write 1s r),

2. equations thatare to be solved (also called goals; we will write eq(t,O where "eq" is

a fresh function symbol), and finally,

3. the semantic equality, i.e. the congruence structure on terms which modeis the appli

cationdomain (denotedby =r, where R is the underlying term rewrite System).

Needless to say, diese equality notions must not be confused. Details will be explained

later.

The functions Var: Term -» p(X) and Func: Term -» #?(F) deliver the set of vari

ables (functions,respectively) thatoccurin a term; they aredefined in a straightforward

way:

Var(x) = {x}, Var(f(ti,..., tn)) = Var(ti) u ... u Var(tn),

Func(x) = 0, Func(f(ti,..., tn)) = {f} vj Func(ti) u ... u Func(tn).

If Var(t) = 0, then the term t is called ground. In our example, Var(f(g(x, a), y)) =

{x, y} and Func(f(g(x, a), y)) = {f, g,a}. The term f(g(x, a), y)) is not ground.

Chapter 1: Basic term rewrite notions

Occurrences are finite sequences of natural numbers. We will preferthe names u, v, and

w for occurrences. We will denote concatenation of occurrences by the dot notation,

e.g. in u.v for occurrences u and v. The empty occurrenceor top occurrence is de

noted by X. An occurrence may be seen as a path from the root of t down to a unique

nodeof t. An occurrence i.u means the occurrence u withinthe i-th son. In our ex

ample above, the occurrence 1.2 points to the node labelled by a. The subterm of t

whose root is identified by u this way, is denoted by t/u. The replacement of t/u,

within its context in t, by the term t', is denoted by t [u «- ti. Subterm and replace

ment are formally defined in a straightforwardway:

t/X = t, f(ti,...,tn)/i.u = ti/u,

t[A,<-t1 = t', f(ti,..., tn) [i.u <-ti = f(ti,..., ti [u <- f],..., tn) .

In our example above, t[l <- a] = f(a, y). That is to say: In order to replace the sub

term in t at occurrence 1 by the term a, one removes the subterm g(x, a) from t and

inserts a instead. The function Occ: Term -> p(N*) that assigns to a term itssetofoc
currences, isthe set of occurrences u for which t/u is defined The set oifunctional oc

currences, FOcc(t), isthe set of occurrences ueOcc(t) suchthat t/ueF, i.e. the set of

occunences labelled with a function symbol in t. We have in our example FOcc(t) =

{X, 1,1.2}. There is a partial ordering on occurrences, ih&prefix ordering

u %re u' <=>def there is anoccurrence v such that u.v =u'.

Taken as positions in a term, u <pre u' means that u is above u'.

A Substitution is an endomorphism a: Term -» Term, in the algebra(Term, F), i.e. it

satisfies the homomorphism property

a(f(ti,..., tn)) = f(a(ti),..., a(tn))

for each function symbol f. So a Substitution is already determined by its images of
variables, a fact that justifies the notation [ti/xi, t2/x2,...] for the Substitution which

maps xi to ti, X2 to t2, and so on. Substitutions will be denoted by small Greek let

ters, except X (empty occurrence), e (reflexive closure), and co (least transfinite ordi

nal number). In ordernot to confuse term construction with Substitution application, we
will write ta instead of a(t). The (functional) composition of substitutions a and % is

denoted by öx. Since composition is associative and extends application, parentheses

may be omitted in expressions, as in tA-ax. The subsumption quasiordering <sUb on

terms is defined by

t ^sub t' <=>def there is a Substitution a such that t' = ta.

A term ta is called an instanceof t (by a), or, more special than t. Vice versa, we say

that t is more general than ta, orthat t subsumes ta.

10

Chapter 1: Basic term rewrite notions

By abuse of notation, the domain of a Substitution a is the set

dorn a = {x€ X. xa * x},

its ränge is the set

ran a = KJ Var(xa).

xe dorn a

Idempotent substitutions, i.e. substitutions a where xöö = xa holds for all x, are char-

acterized by the property dorn onrano = 0. Bijective renamings are typical non-

idempotent substitutions. Substitutions are often specified on a finite subset W of X.

Sometimes W = Var(t) for some term t. It is known that every Substitution a with

dorn a c W can be representedon W as a composition of an idempotent Substitution \i

with a renaming p, i.e. Vxe W. xa = x|ip. (This is elsewhere written a = np [W].)

1.3. Term rewrite Systems

Let R denote abinary relation on terms. R is called closed under contexts, if for all terms
ti,..., tn, t', and for all feF where arity(f) = n,

(ti, t>R implies (f(ti,..., tn), f(ti,..., tj-i, t', ti+i,..., tn)) e R.

RiscdMed closed under instantiation,\f for all terms t,t', and substitutions a,

(t,OeR implies (ta,t'a)eR.

For proofs, we can profit from acharacterization of context closure:

Fact:

Ris closed under contexts if and only if, for all terms t,t', and occurrences ueOcc(t),

(t/u,t>R implies (t,t[u«-t1)eR.
D

(Recall from the previous section that t/u denotes the subterm of t at occurrence u, and
t[u <_ ti denotes t where the term t' replaces the subterm atoccurrence u. Closure

undercontexts is elsewhere also called F-stability or monotony, and closure under in-

stantiation is also called stability orclosure under Substitution.)

In order torepresent term reductions, people use (term) rewrite Systems, i.e. relations on
terms that are explicitiy given bya(not necessarily finite) set R of term pairs (1, r) which
are called rewrite rules, and are written 1-> r. In order to say that R contains a rule

l->r, we will write (1 -> r)e R. The rewrite relation ^ is the smallest relation that

extends R and is closed under contexts and instantiation. It will be used in infix notation:

117> t'. Aterm rewrite System Ris called aterminating, confluent, or finitely branching,

-11-

Chapter 1: Basic term rewrite notions

rewrite System, if its associated rewrite relation -^ is terminating, confluent, finitely

branching, respectively. Do not confuse the proposition "R is a terminating rewrite Sys
tem", inother words " -^ terminates", with the proposition "R terminates". Recall that
the Symbols j^e, -g»+, -g»* denote the reflexive, transitive, and reflexive-transitive clo-
sures of ^, respectively. Likewise, -gNF denotes the rewriting to (^-)normal forai.
For convenience, we will write *^- instead of ^-*, and so on. The congruence closure
of -g» is denoted by =r.

For technical purposes, we will sometimes use the notation t ^r) t', to denote that
"rewriting happens at occurrence u using rule 1-> r ", i.e. that there is a Substitution a

where t/u = la and t' = t[u<-ra]. In that case, t/u is called a redex for l-»r, and u

is called the redex occurrence for 1-» r in t. It is obvious that whenever t «> t' holds,

there are suitable u, 1, and r, suchthat t-j^»t' and (l-»r)eR hold.

Arule l-»r is called/^-/m^ör, if each variable occursat most once in 1, left-noneras

ing, if Var(l) 2 Var(r), i.e. every variable thatoccurs in 1 alsooccurs in r, and left-

nonisolating, if te X (the left hand side of the rule is not just a variable). Likewise, a

rewrite System R is called left-linear, left-nonerasing, or left-nonisolating, if all
(1 ->r)e R areso. 1-» r is called left-nonlinear, if it is not left-linear, left-erasing if it is

not left-nonerasing, etc. If 1—> r is left-linear, then r —> 1 is called right-linear, etc.

(Other authors also call a left-nonerasing rule left-non-annihilating or regulär, a right-
nonisolating rule non-collapsing or collapse-free.)

For example, the rule x*x-»x is left-nonlinear (since x occurs twice on the left hand

side) and right-isolating (x appears isolated on the right hand side). The rule x -» x+y is
both left-linear and right-linear (the variables x and y occur atmostonce oneach side),
but left-erasing (y appears on the right hand side, but not on the left hand side).
f(x) ->0 finally is right-erasing (because x disappears attheright hand side), both left-

linear and right-linear, and both left-nonisolating and right-nonisolating (the left hand side
begins with a (unary) function symbol f, and the right hand side is a constant 0, so
both sides do not consist of a variable only).

If the premise part of a diagram is described by the transitive closure -*+of a rewrite re

lation -», as is often the case, then it is advantageous to first prove adiagram which just
uses Single -»-Steps in its premise instead of -»-derivations of arbitrary length. Such a

diagram is called local. For localization, i.e. for reducing the proof of adiagram tothat of
its local counterpart, usuallycenain restrictions must be satisfied.

Since [Huet 80], it has become common to prove rewrite diagrams in two phases: The
purpose of the first phase is to localize thediagram. For this phase, onemaydo without
using typical rewrite notions (like substitutions, contexts, or occurrences), and without
using rewrite properties (like closure under contexts and instantiation). In other words,

-12-

Chapter 1: Basic term rewrite notions

therewrite relation maybe treated as an abstract binary relation. The rewrite notions and
rewrite properties are exploited in the second phase, where decidable, sufficient proper
ties are developed—the so-called critical pair criteria.

1.4. Critical pair criteria

The first phase provided us with alocal property of the form ^^£f. Even if R is a
finite rewrite System, its rewrite relation ^> is usually still an infinite relation, by context
and instantiation closure. In other words, the claim is to be shown for infinitely many
cases tfe-^t'. In order to obtain an effective test for the local property, the pairs (t,0
are grouped into two sets. The first set contains those (t, O where the redexes do not
overlap, which therefore can be solved by aStandard construction. In order to succeed
there, cenain syntactic restrictions must be obeyed. The second set assembles those
(t, f) where the redexes in t <g- -^ t' do overlap —the critical pairs. IfRand Sare fi
nite, then there are only finitely many critical pairs. Since the check for alocal property
needsto be done for the critical pairs only, it is effective.

Letusbegin with the notion of critical pair:

Definition: (overlap, criticalpair; [Knuth, Bendix 70])

Let 1-> r and g -» d be rewrite rules. Without loss of generality, assume that
Var(l -» r) n Var(g -» d) = 0, via appropriate renaming.

1. g overlaps 1 in u, if g is 0-unifiable with 1/ugX.

2. The pair (ra, Q[u <- d])a) ofterms is called acriticalpair of 1-» r above g-> d, if
g overlaps 1 in u, and a is the most general (0-)unifier of g and 1/u, i.e.
ga =(l/u)a and for all %where gx =(l/u)T, then %£Sub o\ Likewise ((l[u <- d])a, ra)
is calleda criticalpair of g -> d below 1->r.

3. Let Rand S denote rewrite Systems. The set ofall critical pairs ofrules from R above
or below rules from S is denoted by CP(R, S).

•

Note that according to this definition, 1/u may not be avariable. In contrast, g may well
be avariable (i.e. g-> d may be aleft-isolating rule). In the latter Situation the critical
pair isalso called avariable criticalpair.

Critical pair criteria are developed following awell known procedure. Because ofits
technical nature and its Standard form, it is worth trying to put the essence of critical pair
criteria into ascheme and toleave all special aspects as scheme parameters. The scheme is
asort ofproof skeleton that provides aproof "from the stock" when augmented by suit-
able syntactic requirements.

-13-

Chapter 1: Basic term rewrite notions

Next the general scheme of critical paircriteriais descnbed. The properties required for
•^ are usually trivially satisfied.

Theorem: (general criticalpair scheme)

Let R, S, andT denote (not necessarily finite) term rewrite Systems.Let

2. for all m, n€N, where

m>0, ifRisright-nonerasing,

m £ 1, if R is right-linear, and

n = 0, ifRis left-linear,

there jP •£» m<g- £ ^ holds,

3. for all m, neN, where

m >0, if S is right-nonerasing,

m ^ 1, if S is right-linear, and

n = 0, if S is left-linear,

there jP ^> m<g- c <f holds,
4. CP(R, S) C t* •

Then ^- ^ £ ^ holds.

Proof: ([Knuth, Bendix 70], [Huet 80])

We willdo the proof informally, although of course arigorous formal proof can bedone
(see for example [Huet 80]). Let t ^-£ t' be given. Now t ^> t' is to be proven. We
perform a case analysis on the positionsof u and v relativeto each other:

Case 1: u and v are incomparable, i.e. neither u%re v nor v <pre u holds.

Then we have the following Situation:

&4
The R-rewrite step and the S-rewrite Step commute. Premise 1cares for ^> <g- q ^ .

14

ss

Chapter 1: Basic term rewrite notions

Case 2: u %re v.

Without loss of generality, u =X, other cases follow immediately by context closure.

Let 1 denote the lefthand side of the applied rule from R. Now it has to bedistinguished
whether thereis an overlapwith L

Case 2.1: v«£FOcc(l), i.e. therules from R and S do notoverlap.

Then the Situation is like sketched in the following diagram:

R

IM

f n

R

5

•SS*
m

where m>0, if R is right-nonerasing,

m £ 1, if R is right-linear,

n = 0, ifRis left-linear.

Premise 2 cares that ^D^m^ £ ^

holds.

Case 2.2: ve FOcc(l), i.e. the rules from R and S overlap.

Then, by Huet's critical pair lemma, the pair (t, O is an instance of a critical pair from

CP(S, R). The good behaviour of the critical pair is ensured by premise 4, the critical
pair criterion CP(S, R) £ -^. Closure under instantiation cares that the pair (t, t")

works accordingly.

15-

Chapter 1: Basic term rewrite notions

Case 3; u £pre v.

like in case 2, with the following changes:

(l)u and v are exchanged,

(2) R and S are exchanged,

(3) -7p isreplaced by <^ ,

(4) "premise 2" is replaced by "premise 3",

(5)CP(R,S) is replaced by CP(R, S)"1.
•

Every time critical pairs are encountered in the literature, the proof is done more or less

according to the above scheme. Thanks to the "generalcritical pair scheme", we can now

successfuUy dodge all technical details, and need not write down any more criticalpair

proofs. The "critical" pairs where geX and u =X can actually be dropped since they

are already covered. Trivial critical pairs (r, r) e CP({1 -> r}, {1 -> r}) can often be ex-

cluded explicitiy, but they impose no problemanyway.

The premises 1,2, and3 in the critical pair schemeare responsible for the syntactic re-

strictions putontotherewrite Systems R and S. For instance, in a local confluence proof,
we have the settings R = S and -f = -^ * *«g. Here premise 1 means
•§» <r £ -j^* *<r . No syntactic restrictions are needed in this case. In aproof that S
strictly locally commutes over R_1, however, we have j> = -g* +<g-. (See section 3.3
for adefinition.) Here premise 2 for instance means j>n -^ m<g £ -g* +<g-. This
formula is not validin general; it needs m >0, i.e. it works only under the assumption
that R is right-nonerasing.

Known instances of the criticalpairscheme are:

(1) the Knuth-Bendix critical paircriterion ([Knuth, Bendix 70]). For finite and terminat

ingrewrite Systems R, thecheckwhether all critical pairs joinis adecision algorithm

for confluence.

(2) the strong confluence criterion ([Huet 80]),

(3) the "confluence modulo" approach ([Huet 80]). (The congruence class approach re

lies on equational critical pairs; this requires much more sophistication, and is not

treated here.)

(4) construction of forward closures ([Dershowitz 81]) and overlap closures ([Guttag et
al. 83]). Finally,

(5) commutation and Cooperation properties ([Bellegarde, Lescanne 86]; proper critical
pairs are excludedin [Bachmair, Dershowitz 86]). These criteria play a prominent

role in the framework of relative termination. See sections 3.6 and 3.7 for details.

16

Chapter 1: Basic term rewrite notions

1.5. No restrictions?

In the definition of a term rewrite System, we did not mention any such restriction as left-

nonerasing or left-nonisolating, although that is quite widespread in the term rewrite lit-

erature. A motive for these restrictions may be that a "neat" rewrite System satisfies them:

Every terminating rewrite System is both left-nonerasing and left-nonisolating. (See sec-

tion 2.2 in this thesis for details.) On the other hand, if one drops the restrictions (as in

[Padawitz 88], [Dershowitz, Jouannaud 89], [Hofbauer, Kutsche 89]), then every binary

relation on terms may be considered a rewrite System. If R is not definitely terminating,

one must be careful whether left-erasing and left-isolatingrules behave as intended. After

all, what could be a good reason for adoptingsuch a general notion? Among other things

it satisfies generalduality: Every termrewrite System R hasan oppositetermrewriteSys

tem R"1.

Suppose we are given a rewrite System R, and we want to ignore the orientation of the
rules, i.e. consider the Symmetrie closure R =def RuR-1 of R. If we forbid left-isolating
or left-erasing rewrite rules, then R couldnot be a rewrite System if R contained right-

isolating or right-erasing rules (because R_1 then contains forbidden rules). However,
manyrewrite Systems contain such rules. For instance, x+0 -» x is right-isolating, and

x*0-»0 is right-erasing.

Systems of term equations may be treated as if they were Symmetrie rewrite Systems.
Thus if E is a System of term equations, and (1, r)e E is an equation (elsewhere also

noted as 1s r or, by abuse of notation, as 1=r), then E is considered as a symmetry
closed set of rules 1-» r (i.e. the rule r -> 1 is alsoin E). So we need no particular no

tation for equational axioms. We can even represent E as E =def E for some suitable
rewrite System R.

By taking equational axioms as Symmetrie rewrite Systems, we mayconsider equational
rewriting as a special case (namely, the Symmetrie case) of rewriting. A comparison be-

tween equational rewriting andrewriting is possible, this way.

Another comfortable consequence of general duality is that critical pair criteria (defined in

the previous section) become applicable inamore general setting. Thequasi-commutation
criterion of [Dershowitz 81] enoneously assumed thatvariable critical pairs might be ne-

glected, because a critical pair lemma for restricted rules was used. By rule inversion,
however, unexpected left-isolating rules cameup. [Ganzinger, Giegerich 87] gavea cor-
rection. It turns out to be more elegant to admit left-isolating rewrite rules anyway. Only

littie additional technical apparatus has to be added, but on the otherhand, a criterion for

(R, S)-critical pairs applies also for (R"1, S)-critical pairs, for (R, S-^-critical pairs, and
for (R_1, S_1)-critical pairs. Suppose we have a theorem aboutrewrite Systems R and S

-17-

Chapter 1: Basic term rewrite notions

(which often will be the case later), then we may drop the conesponding theorem con-

cerning R_1 and S for example, because it is a trivial corollary.

It is all these simplifying effects which makes the general notion of term rewrite System

so compelling.

18-

2. Termination, termination modulo, and relative
termination

In this chapter, we define and investigate the notion of relative termination. Given two

relations R and S, we call R relatively terminating to S, if every RuS-derivation contains

at most finitely many R-steps. This is a generalization of "terminationmodulo" where S

is required to be Symmetrie. (Remember that we may consider Systems of term equations

as Symmetrie rewrite Systems.) On the other hand, relative termination is also a weaken-

ing of termination: If RuS terminates, then particularly R relatively terminates to S. It is

also a strengthening of termination: If R relatively terminates, then R terminates, particu

larly.This demonstrates that relative termination is a centralnotion in the study of termi

nation of rewriting, and that it deserves closer attention.

Because of the relationshipbetween terminationand termination modulo on the one hand

to relative termination on the other hand, it is interesting to ask how far their properties,

techniques and methods carryover to relative termination. In this chapter,we will show

thatnecessary conditions forrelative termination (except trivial boundary cases) fit those

known for termination and termination modulo, but are in general slightly more liberal.

Standard termination quasiordenngs canbasically be carried over to relative termination.

A characterization by meansof a termination quasiordering, as it is available for termina

tion modulo, is however far less obvious in the case of relative termination. The last sec-

tion in this chapter shows thatrelative termination is a proper extension of both termina

tion and termination modulo.

2.1. Relative termination — Definition and basic properties

Terminating rewrite Systems are valuable, for a number of reasons. For instance, every

rewrite strategy is safe, i.e. finally leads to a normal form. Recent overviews of termina

tion of term rewriting aregiven in [Dershowitz 85] and [Dershowitz 87]. Many interest

ing termrewrite Systems though, do notterminale. Some of them at leasthave a terminat

ing subset R of rules which is "robust" against the rest, S, of the rules in the following

sense: Application of R-rules with intermediate application of arbitrarily many S-rules is

finally blocked. Let us make this more precise:

19

Chapter 2: Termination, termination modulo, andrelative temnnation

Definition: ([Klop 87])

Let R and S denote binaryrelations. R relatively terminates (to S), if every (infinite)
derivation ti RuS t2 RuS ... contains onlyfinitely many R-steps. R is called a rela
tively terminating rewrite System toS, if -g» relatively terminates to g» .

D

The following example and further oneswillbe usedas runningexamples.

Example: (Set)

Let "a" and "b" denote two distinct constant elements. Now let an algebraic specification

of subsets of {a, b) be given thatdefines constants "true", "false", and0, and binary
functions "ins" (insertion ofelements) and "elem" (the membership relation e). Axioms

are provided by the two rewrite Systems R and S, as follows:

R =def {elem(x, 0) -> false,

elem(x, ins(x, s)) -»true,

elem(a, ins(b, s)) -» elem(a, s),

elem(b, ins(a, s)) -> elem(b, s)},

S =def {ins(x, ins(x, s)) -> ins(x, s), "left-idempotence"

ins(x, ins(y, s)) -> ins(y, ins(x, s))}. "left-commutativity"

R is a relatively terminating rewrite Systemto S. For instance, the derivation

elem(a, ins(b, ins(a, ins(a, empty)))) ^
elem(a, ins(a, ins(a, empty))) -g
elem(a, ins(a, ins(a, empty))) j> ...

is indeed infinite, but contains only one R-rewrite step.

•

Relative termination is closely connected with the following composed relation:

Definition: ([Bachmair, Dershowitz 86])

Therelation R/S =def S* R S* is called Rrelative to S.
•

The notation R/E is known as "R modulo E" from the case where E is Symmetrie.

Because the word "modulo" suggests that E is an equivalence relation, we prefer not to

use it for potentially unsymmetric S.

The (R/S)+-derivations can be seen as (RuS)*-derivations which contain at least one
R-step. The equality (R/S)+ = S*R(RuS)* will beuseful later. Letusadopt the con-

20-

Chapter 2: Termination, termination modulo. and relative termination

vention that the Operator "/" binds strenger than "u", and weaker than composition. So
forexample, RS/QuR means ((RS)/Q) uR.

Relative termination can now be characterized inseveral ways.

Fact:

Let Rand Sdenote binary relations. Then the following propositions are equivalent:

1. R/S terminates.

2. S*R terminates.

3.ForeveryRuS-derivation ti RuS t2 RuS ... there is neN such that after tn no
more R-steps occur.

4. R relatively terminates to S.

Proof:

(1=>2) S*RcR/S.

(2=>3)

By contradiction. Let ti RuS t2 RuS ... be an RuS-derivation such that for all ne N,

thereis at leastone R-step after th. Calltheposition where thenextR-step after tn takes

place, next(n), inother words, tn S* tnext(n) R tnext(n)+l holds. Since this construction
worksforall neN, there is an infinite sequence

ti S*R tnext(l)+l S*R tnext(next(l)+l)+l s*R -

contradicting the termination of S*R.

(3=>4)

Directly. Let ti RuS t2 RuS ... be a derivation such that there is no more R-step after

tn for some neN. Then it contains at most n R-steps, i.e. finitely many.

(4=>1)

By contradiction. Every infinite derivation ti S*RS* t2 S*RS* ... contains infinitely
many R-steps.

D

The equivalence of 1 and 4 will be used as a shorthand, and for orderings in inductive

proofs. A numberof helpfulproperties aboutrelative termination can immediately be de-
rived from these equivalences:

21-

Chapter 2: Termination, termination modulo, andrelative termination

Fact:

1.R+ C (R/S)+ c (RuS)+. So in particular,

RuS terminating implies R/S terminating, and

R/S terminating implies R terminating.

2. If R'gR, and S'gS, then R'/S'cR/S. So relative termination is closed under

subsets, i.e. if R relatively terminates to S, and R' c R, and S'cS, then R'

relatively terminates to S'.

3. (R / S)+ = (R / (S\R))+ = (R / (RuS))+, and so on. That is to say, only the part of

S matters that is disjoint from R.

The inclusions and implications in 1 are usually strict, i.e. there exist examples where

the converse is false:

Example:

1. ([Porat, Francez 86], simplified)

Let R =def {s(x)+y -» x+s(y)} and S =def {x+y -» y+x}. As we will prove in the

next two sections, R is a relatively terminating rewrite System,and S is not But R is not

a relatively terminating rewrite Systemto S, as the derivation

s(x)+x -£» x+s(x) -g» s(x)+x -g» ...

contains infinitely many R-rewrite Steps.

2. (Set, continued)

Recall the algebraic specification of subsets of {a, b) at the beginning of this section.
RuS is not a terminating rewrite System because we could provide an infinite RuS-

rewrite derivation. On the other hand, ^>/^> terminates, as we will prove insection 2.4.

D

2.2. Necessary syntactic conditions

Recall from the previous chapter that R is a terminating rewrite Systemonly if R is both

left-nonerasing and left-nonisolating. Now it is interesting to ask what is necessary for R

to be a relatively terminating rewrite System to a rewrite System S. An answer to this

question helps us to judge methods for relative termination, because we can distinguish

between unavoidable conditions and merely accidental, technically motivated conditions.
Forexample, if (f(x) —» f(y))e S and R is nonempty, then •£>/$» cannot beterminat

ing. On the other hand, any terminating rewrite SystemR even is a relatively terminating

rewrite System to S = {x -» x}. The necessary condition we will obtain, matches the

one given in [Jouannaud, Munoz 84] for termination modulo.

-22-

Chapter 2: Termination, tennination modulo, and relative termination

The proof that a condition is necessary, is usually done by contradiction. In order to dis-

prove termination, one may for example use the fact that a relation which contains cycles

is non-terminating. This can be relaxed to looping relations:

Definition: ([Dershowitz 81])

A rewrite relation —> iscaUod looping, if there are terms t,t', an occurrence u, anda

Substitution o\ such that both t -»+ t' and t'/u = ta. In other words, there is a

derivationwhere an instance of the first term appears as a subtermin the last one.

Fact: ([Dershowitz 81])

Arewrite System R whose rewrite relation -g» is looping, is a non-terminating rewrite

System.

D

Therewrite System R =def {x+y -> f(y+s(x))} for instance hasa looping derivation

x+x -f f(x+s(x)) tf f(f(s(x)+s(x)))

where u = l.l and a = [s(x)/x]. For this reason, R is not a terminating rewrite Sys

tem.

Now a left-erasing rewrite rule 1-> r always admits a looping derivation 1^ r[l/x]

where x denotes a variable that occurs in r but not in 1. A left-isolating rule x -> r

even is already a looping derivation. Sowehave thefollowing lemma:

Fact:

If R is a terminating rewrite System, then Ris left-nonerasing and left-nonisolating.
•

(This does not carry over tomany-sorted Systems. For instance if a has type B and f
is a function symbol from type A totype B, then {a -> f(x)} is a terminating rewrite
System although left-erasing. The candidate for an infinite derivation, a ->f(a) -»..., is

ill-sorted.)

For relative termination we have a similarproperty. First, we need one more (very un-

comfortable) technical notion:

Definition:

A rewrite rule l->r is calledright-nonduplicating, if leX and r/u = r/v = 1 imply
u = v. In words: 1-> r is right-nonduplicating, if 1 is not an isolated variable thatoc

curs more than once in r. ("right-nonduplicating" is a weakening of "right-linear" andof

"left-nonisolating".)

-23

Chapter 2: Termination, termination modulo, andrelative termination

Theorem: (necessary condition)

Let R be a relatively terminating rewrite System to S, and let R contain at least one rule

g->d where Var(d)*0. Then S is left-nonerasing and right-nonduplicating.

Proof:

Since R is a relatively terminating rewrite System, it is in particular a terminating rewrite

System. So we may already use the fact that R is both left-nonerasing and left-nonisolat

ing. We claim that the existence of any left-erasing or right-duplicating rule Q. -»r)e S

causes alooping derivation for •§>* -^. Without loss of generality, we may assume that

Var(R)nVar(S) = 0.

1. (for Symmetrie S, see [Jouannaud,Kirchner 86])

Assume that 1 -> r is left-erasing, i.e. that there is some x € Var(r) \ Var(l). Due to

the premises, there is at least one rule (g -> d)e R where ye Var(d) for some suitable

y. Moreover, y e Var(g) n Var(d) because R is left-nonerasing. Hence we have the

looping derivation 1 ^» r[g/x][l/y] ^> r[d/x]D/y].

Informally, the new variable in r •carries a copy of 1, which is preserved by the
R-rewrite Step. This is illustratedin the following diagram:

A'

2.

Now let (g -> d)e R, and let 1 -» r be right-duplicating, i.e. (x -» r)e S where

r/u = r/v = x and u*v. Call r' the term r' =def r[u«-d]. Then xeVar(rO because

r'/v =x. Thus we can construet the looping derivation g ^» r[g/x] ^> r'[g/x].

Informally, instantiating the variable x by g, one of the two copies of g can be used
for an R-rewritestep g-»d, and the other one to repeat the game.

24-

Chapter 2: Termination, termination modulo, and relative termination

D

In the case of Symmetrie S, the above conditions meet the ones mentioned in [Jouannaud,

Munoz 84] (without the above marginal restriction put on R): S is (bothleft- and right-)

nonerasing, and nonduplicating. The meritof relaxation to an arbitrary S is indicated by
the idempotence rule f(x, x) -> x: Idempotence is admissible in S straight away, but its

inverse x -> f(x, x) is not admissible (otherwise relative termination is lost).

2.3. Some termination quasiorderings

Now that the notion of relative termination is settled, and a necessary syntactic criterion is

available, we may Start to develop sufflcient criteria for relative termination. In proving

termination of rewrite Systems, termination quasiorderings play a fundamental role. See

[Dershowitz 87] or [Dershowitz, Jouannaud 89] for a comprehensive treatment. The

class of simplificationorderings is a well known subclass of terminationquasiorderings.

Among them the lexicographic recursive pathordering, and the polynomial Interpretation

ordering are worth mentioning. We will briefly describe these two orderings, where the

description of the lexicographic path ordering by means of a finite termrewrite System

with one hidden function is new.

A binary relation R terminates if andonly if its transitive closure R+ terminates. It is
therefore sensible to investigate Noetherian orderings (elsewhere alsocalledwell-founded

orderings), i.e. transitive and terminating relations. A Noetherian ordering on terms,
closed under contexts and instantiation, is called a termination ordering. (A Noetherian

ordering closedunder contexts is elsewhere called a reduction ordering.) For instance, if
R is a terminating term rewrite System, then the transitive closure ^+ of the rewrite

relationis a termination ordering. This motivates the followinggeneralproof method:

Fact: ([Manna, Ness 70])

R is a terminating rewrite System if and only if, there is a termination ordering > such

that Rc>.

D

In other words, a terminationproof for a rewrite System R consists of a suitable termina
tion ordering > such that 1> r holdsfor all rules (1 -> r)€ R. Findinga termination or

deringhowever may be difficult Termination of rewrite Systems has been shownunde-

cidable even for strongly restricted classes of rewrite Systems, for the class of Single rule

Systems ([Dauchet 88]) for example, or for the class of rewrite Systems where all func

tion Symbols have arity 0 or 1 ([Huet, Lankford 78]). These negative results posed the

challenge of designing powerful termination orderings.

For technical reasons, a termination ordering is often provided by a quasiordering:

25

Chapter 2: Termination, termination modulo, and relative termination

Definition:

1. ANoetherian quasiordering is a quasiordering £ whose associated strictordering > is
Noetherian.

2. A termination quasiordering is a quasiordering closed under contexts andinstantiation

whose strictordering is a terminationordering.
D

(Thenotion of Noetherian quasiordering is strongly related to thatof a well-quasiorder-

ing, as pointed out in [Dershowitz, Jouannaud 89].) Proofs of termination modulo actu
ally require a Noetherian quasiordering because both theassociated strictordering andthe
associated equivalence relation are needed for the proof.

Most of the cunently knowntennination quasiorderings are simplification orderings:

Definition:

The subterm ordering l£ is defined by 11£ t/u, whenever ue Occ(t). The subterm

strictordering associated to l£ is denoted by l>. A quasiordering that extends the sub

term ordering and is closed under contexts, is called a simplification ordering.

U

It is known that, as an obvious consequence of KruskaTs tree theorem, every simplifica

tion ordering is Noetherian. (Commonly, the subtermcondition is replaced by a slightly
stronger condition: For all t, and u * X, the inequality t > t/u must hold, in other

words, l> £> must hold. Note that the above definition, like the one in [Dershowitz,

Jouannaud 89], rather admits t ~ t/o, too, which may be advantageous in the framework

of relative termination.)

Among the simplificationorderings, the two most populär subclasses are the path order

ings, with the lexicographic (recursive) path ordering ([Dershowitz 79], [Kamin, Levy

80], [Dershowitz 82]) as prominent representative, and the homomorphic interpretation

orderings, where thepotynomial interpretation ordering ([Lankford75], [Lankford 79],

[Ben Cherifa, Lescanne 87]) is known best.

Klop gave an excellentdescription of recursive path orderingin [Klop 87], Def. 3.3, by

means of a term rewrite System with hidden functions. The following is a slightly

changed variant of it:

26

Chapter2: Termination, termination modulo, andrelative termination

Definition:

The class of lexicographic (recursive) path orderings is described by the following

scheme: Suppose we have a quasiordering £ on F, the so-csilled precedence. Next, each
fe F either has some lexicographic Status, given by a permutationon the set of argument

positions {1,..., arity(f), or f has multiset Status, or it has none of them (indifferent
Status). If f is a binary function symbol, then the two lexicographic statuses are also

referred toasleft-to-right (i.e. the identical permutation) and right-to-left. Wewill usethe
abbreviation icfti,..., tn) =def ftjc(l)..... tjc(n)) for the application ofa permutation toa
sequence of terms.

Let there be a fresh unary function symbol *, i.e. *«F, with arity(*) = 1. Forsim-
plicity ofnotation, we drop the pair ofparentheses after *. The symbol * is called the
marker symbol. Amarked term *t may be taken as a nondeterrninistic placeholder for
some term smaller than t itself. (Accordingly, thefollowing rewrite System is non-con-
fluent, see (Hußmann 89].) The finite rewrite System RPO on terms in the extended sig-
nature Fu{*} is given by the following rules (assume n=arity(f), k=arity(g)):

Introduce marker:

X-» *x

Make copies below strictlylesser top:

*f(xi,.... x„) -> g(*f(x! Xn) *f(xi Xn))

if f>g

Push marker down (lex):

*f(7C(X!, XjJ) -> g(p(Xl Xi.l, *Xi, *f(rt(xi, X„)), ..., *f(7C(Xl X^)))

if f~g have lexicographic Status tc"1, p"1, respectively, and ie {1,.... min(n, k+1)}

Push marker down (mult):

*f(xi, Xn) -> g(7C(xi, xn, *xi, *xi, xj+1 Xn))

if f~g have multiset Status, ie{l,.... n}, k^n-1,

and 7C denotes an arbitrary k-peimutation

Select argument:

*f(xi,.... Xn) -> xi

if iefl, ...tn]

Now let >rpo denote -Rpo>+ restricted to terms that do not contain markers. >rpo is
called the lexicographicpath ordering (with precedence > and Status).

n

27

Chapter 2: Termination, termination modulo, and relative termination

By definition, >rpo is transitive, closed under contexts and instantiation (for terms and

substitutions that do not contain a marker), and contains the strict subterm ordering.

Moreover, it can be shown that >ipo is irreflexive. Hence we have:

Fact:

>rpo is a simplification ordering, closed under instantiation.

D

Note that thefirst rulein RPO is left-isolating—see section 1.4. (We omittheproofthat

>rpo matches the definition in jTCamin, Levy 80]. Elsewhere, >rpo is also called the
generalized lexicographic path ordering, or therecursive path ordering with Status.)

Example:

Let R =def (s(x)+y -» x+s(y)}. Then Ris a terminating rewrite System, proven by the
lexicographic path ordering with precedence +>s, and + having Status left-to-right
The proof amounts to show R £ >rp0, i.e. s(x)+y >Tpo x+s(y). Redexes are under-
lined:

s'x""y Introduce marker
*

(s(x^ Push marker down (lex) *
!^(x>*(s(x)+y) g . , ->-*0*** \\ / jj Select argument

Make copies below strictly lesser top '
x+sC^to)) Select argument X+S^

n

Remark:

Klop's presentation differs in several aspects:

(1) He uses {*f. f€F), rather than {*} as the setof new function Symbols. In other
words, the marker is partof the function symbol *f. Thisprecludes himfromcomfort-
ably using the markerat variables likefor example in *x.

(2) Klop defines an infinite (ground) tree replacement System. Hisrule "In Context" and

his useofreplacement Schemata indicate that there is anequivalent/w/te rewrite System.

(3) Klop assumes that function Symbols have variable arity. This is not necessary; a
function symbol with two arities can be split into two different function Symbols with
fixed arity. This explains the additional function symbol g in the rule "Push marker
down (mult)". Inorder to keep the original power, the setF of function Symbols should
be sufficiently rieh. For f(ti, t2, t3) >rp0 gto), for instance, there should be an
"interpolating" function symbol h~f with arity(h) = n-l whenever f~g have multiset
Status and k < n-1 holds. The proof works by

-28-

Chapter 2: Termination, termination modulo, and relative termination

f(tl, t2, t3) >rpo h(ti, t3) >rpo gfe).

Note thatfinitely many suchadditional functions are required.

(4) In [Klop 87], terms are considered up to permutations of arguments — it saves

technical trouble for the multisetStatus. But it forbids one to have both function Symbols

with lexicographic Status and function Symbols with multiset Status at the same time.

(Klop's assumption can be taken into accountby equational rewriting, with permutation

equations foreach function symbol thathasmultiset Status.)

D

Thelexicographic path strictordering can easily beextended towards aquasiordering ^rpo
where t ~rpo t' holds if t and t' differ onlyby function Symbols which are equivalent
in the precedence, and by permutations of parameters of function Symbols which have

multiset Status. For classifications of path orderings with Status and Knuth-Bendix order

ings, see [Rusinowitch 87b], [Steinbach 88], [Dershowitz, Okada 88], and [Lescanne

89].For lack of space, Knuth-Bendix orderings arenot treatedin this thesis.

A function [J-F-»N(X) that maps n-ary function Symbols to polynomials in n vari

ables with coefficients from N, is called Sipolynomial interpretation. Let the variables

ränge in N. In a straightforward way, [J is homomorphically extended to terms, yield-

ing a function [_]: Term -> N(X). (Observe that U is indeed a homomorphism:

(Term, F) forms an algebra. Likewise does (N(X), N(X)) form an algebra, where

function application is composition of polynomials. (N(X), N(X)) possesses a subal-

gebra ({[t]. teTerm}, {[f]. feF}), the homomorphic image of (Term, F) under [J .)

It is known that, provided the subterm property holds, the polynomial interpretation or

dering » inducedby

t»t' <=»def me polynomial [t] - [ti is positive everywhere,

is a simplification ordering, closedunderinstantiation. By a coordinate transformation, it

suffices to show that [t] - [ti is finally positive, a condition that is technically easier to

achieve.

By abuse of notation, we will drop square brackets around variables. Likewise, we will

use ordinary notation for polynomials, and thus overload function Symbols like + with

addition on N.

29

Chapter 2: Termination, termination modulo, and relative termination

Example:

R =def (s(x)+y -> x+s(y)} can also be proven a terminating rewrite System using the

polynomial interpretation

[s(x)] = x+1, [x+y] = 2x+y.

We have the proof

[s(x)+y] - [x+s(y)] = 2(x+l)+y - (2x+y+l) = 1 > 0.

D

There are many terminating rewrite Systems whose termination is impossible to prove by

a simplification ordering. The reason is that they admit a (homeomorphically) self-em
bedding derivation: (t, t0 is called self-embedding, if t ^+ t' holds. (Recall that

<l denotes the subterm strictordering.) For such a Situation, there is the class of semantic

path orderings ([Kamin, Levy 80], [Dershowitz 87]). Sometimes also a "hand-made" or

dering works:

Example: (FF)

Let R=def {ffx-» fgfx}. (The only function symbols f and g are assumed unary, and

in the case where all function symbols have arity 0 or 1, parentheses may be omitted

without raising confusion. Such rewrite Systems enjoy a close relationship to Thue Sys

tems.) R is self-embedding, as we now show. If there is a termination ordering > 2 R,

then ffx > fgfx holds. On the other hand, if > is a simplification ordering, then by the

subterm property, gfx £ fx holds, so by closure under contexts, fgfx ^ ffx, which

contradicts > irreflexive. So every simplification ordering must fail to prove that R is a

terminating rewrite System. Though R is a terminating rewrite System, proven by the

termination ordering > defined by

t>t'<=>def Vg. #ta>N#t'G a #fta >n #ft'a,

where #t denotes the number of pairs of "ff patterns" (i.e. pairs of adjacent f symbols)

in t. The complicated definition of the orderingis to ensure that > is closed under con

texts and instantiation.

•

2.4. How to prove relative termination

Proving relative termination, like proving termination and termination modulo, is based

on Noetherian quasiorderings. Termination modulo can even be characterizedby means

of a Noetherian quasiordering. It remains, however, still unsolved whether the cone

sponding characterization also holds for relative termination. We can answer positively

30

Chapter 2: Termination, termination modulo, andrelative termination

for the case where the acyclicpart of S terminates—it is a littie more general than termi

nation modulo.

Termination modulo can be characterized by a Noetherian quasiordering, as follows:

Fact:

Let R and S denote binary relations. R/S" terminates if and only if, there is a Noetherian

quasiordering £ such that R £ > and S £ ~ hold.

•

This characterization suggests an extension towards relative termination. As we will see

later, a characterization of relativetermination by meansof a quasiordering is a nontrivial

problem Forthe moment, letus State the important fact thatthe existence of a Noetherian

quasiorderingis sufflcient:

Fact: (quasiordering lemma)

If there is a Noetherian quasiordering £ where R £ > and S £ £, then R/S is

Noetherian.

D

Now let us consider some obvious applications of quasiorderings for proving relative
termination of rewrite Systems. On the spot, the criterion canbeinstantiated with termi
nation quasiorderings.

Theorem: (termination quasiordering criterion)

Let R and S denote rewrite Systems. If £ is a termination quasiordering, and R £ >
and S £ > hold, then R is a relatively terminating rewrite System to S.

Proof:

By definition, > also isclosed under contexts and instantiation. Hence g» £ £ and
ö> £ >. Theclaim follows by the"quasiordering lemma" above.

•

So termination quasiorderings are applicable for proofs of relative termination. This in-
cludes the class of simplificationorderings:

31-

Chapter 2: Termination, termination modulo, and relative termination

Corollary:

1. Let ^rpo denote any lexicographic pathordering. If S £ ^ipo and R £ >rpo» thenR

is a relatively terminating rewrite Systemto S.

2. Let U denote any polynomial interpretation. If [1] - [r] > 0 for every (1 -» r)e S

and [1] - [r] > 0 for every (1 -> r)e R, then R is a relatively terminating rewrite

System to S.

Example:

1. (Nonfin)

Let S =def {ex-> fcx), R =def {csx -> ex). In order to prove that R is a relatively ter

minating rewrite System to S, choose a polynomial interpretation: Take [ex] £ x,

[sx] > x arbitrary, and let [fx] = x.

2. (Set, continued)

Recall the specification of subsets of {a, b}, with the empty set, an insertion function,

and the membership relation:

R =def {elem(x, 0) -» false,

elem(x, ins(x, s)) -> true,

elem(a, ins(b, s)) -> elem(a, s),

elem(b, ins(a, s)) -» elem(b, s)},

S =def {ins(x, ins(x, s)) -» ins(x, s), "left-idempotence"

ins(x, ins(y, s)) -> ins(y, ins(x, s))}. "left-commutativity"

We claimedthat R is a relatively terminating rewriteSystem to S. This is proven for ex
ample by the polynomial interpretationdefined by

[true] = [false] = [a] = [b] = [0] = 2,

[ins(x, s)] = [elem(x, s)] = x+s.

We have in particularfor the left-idempotence rule:

[ins(x, ins(x, s))] - [ins(x, s)] = x+x+s - (x+s) = x > 0,

and for left-commutativity:

[ins(x, ins(y, s))] = x+y+s = [ins(y, ins(x, s))],

This suffices to prove that R is a relatively terminating rewrite Systemto S, but it fails to

prove that RuS is a terminating rewrite System.

•

Let us now stop with the sufflcient conditions of relative termination. The rest of this

section investigates when the existence of a Noetherian quasiordering is also necessary

32

Chapter 2: Termination, termination modulo, and relative termination

for relative termination. In a straightforwardway, relative termination is characterized by

a pair composed of a quasiordering and a strictordering (> and »):

Lemma: (two orderings)

R/S terminates if and only if, there are a Noetherian strictordering » 2 R and a qua

siordering £ a (» u S), such that >» £ » holds.

Proof:

(=>) Set » =def (R/S)+ and £ =def (RuS)*.

(<=) It can easily be shown by induction that (RuS)+ £ £ and then that (S*R)+ £ »
holds. Since » is Noetherian, S*R and thus R/S terminate.

D

Instantiating » =def >» we obtain the "quasiordering lemma" again. But otherwise, we
must look for both, a quasiordering £ and a Noetheriansubrelation », in order to prove

relative terminationnow. Can we get out of this inconvenience?Here is an example of a

quasiordering > where > is not Noetherian buthasNoetherian subrelations:

Example:

Let > denote the natural ordering on Q+, the set of positive rational numbers. The

strictordering > =def ^ is not Noetherian, as it admits the infinite derivation

1 > 1/2 > 1/3 >... On the other hand, the strictordering »i defined by

P»1P' <=>def P>P'+1,

is actually Noetherian — every derivation starting from p has length bounded by p.
Moreover it satisfies both »i £ > and >»i £ »i. Another, less trivial, Noetherian

strictordering »2 on Q+ is defined by

P»2P' <=Mef 3n, i€N. p > n+r^ ^ p'.

Its termination proofrelies on the fact that > restricted to theset {n+~. n, i€ N} is

Noetherian,as it is order-isomorphic to NxN with lexicographic order.

•

As we see, it is by no means obvious whether £ can always be chosen such that > is

Noetherian. We are lucky when the acyclic part S\ (S-1)* of S is Noetherian. In this
case the converse of the "quasiordering lemma" holds, choosingthe straightforward or
dering £ = (RuS)*.

33

Chapter 2: Termination, tenmnation modulo, and relative tenmnation

Lemma: (quasiordering Supplement)

If both S \ (S"1)* and R/S terminate, then there is a Noetherian quasiordering £ where

R £ > and S £ £.

Proof:

One easily proves by induction on n that (S\(S-1)*)n =Sn\(S"1)*. Hence the transi
tiveclosureof S \ (S-1)* is S+\(S-1)*. It terminates by premise.

Because R/S terminates, (R/S)+ is irreflexive, and so

(R/S)+n((RuS)"1)*=0.

This property will be usedin the following reasoning.

Let > =def (RuS)*. It remains to be shown that 2S£ is Noetherian.

> = (S+u(R/S)+) \ ((RuS)"1)*

= S+\((R/S)-1)+\(S-1)* u (R/S)+

= S+\(S"1)* u (R/S)+.

Since both S+\ (S-1)* and (R/S)+ are Noetherian, so is >. The reason is that an infi
nite RuS-derivation either contains an infinite S+\ (S"1)*-derivation, or contains in

finitely many R-steps, in which case there is an infinite R/S-derivation. (See also the

"inheritance by transitivity" lemma in section 3.1.)

D

On account of the "quasiordering Supplement" lemma, it is useful to know whether

S\ (S-1)* terminates. This is the case, especially, when S\ (S"1)* = 0, i.e. when S is
cyclic. Therefore the characterization is no problemin the terminationmodulo approach,

whereS is always cyclic.The following criterion is a littiemoregeneral:

Lemma: ([Guttag etal. 83])

If S+\(S-!)* is finitely branching, then S\(S-!)* terminates.

Proof:

S+\ (S"1)* is transitive, and irreflexive. Then it is in particular acyclic. According to

[Huet 80], a finitely branching and acyclic relation terminates.

•

Thequestion remains open whether the condition "S \ (S-1)* terminates" may still bere-
laxed, in the following sense: For all R, S, where R/S terminates, does there exist some

S'3S suchthat both R/S' and S^S'-1)* terminate? In the following example, there is

still such an S':

-34-

Chapter 2: Termination, temiination modulo, and relative termination

Example: (FF, continued)

Let the term rewrite Systems R =def {ffx -» fgfx) and S =def{fa -» gfa) be given. R/S

terminates but S\(S"1)* = S does not. S'2 S must bechosen such that S'\(S'-1)*

terminates. That can only be achieved if for suitable m > n, S' contains a cycle of the
form gmfa ->+ gnfa. The value n = 0 is badly chosen since it would cause a cycle in

R/S', implying that R/S' fails to terminate. But the choice S'= Su {ggfa -» gfa}

works.

D

2.5. Relative termination in restricted Systems

Now let us consider a special case which has been studied in the literature: If all infinite

R-derivationscontain a cycle, then R is called quasi-terminating. In order to prove that a

quasi-terminating R terminates, it is sufflcient to show that R admits no cycles. This is

the underlying idea of the two-step termination proof technique in [Guttaget al. 83]. A

natural question is, whether the same technique is applicable for relative termination of R

toS.

The property "R+ finitely branching" is called "R globally finite" in [Huet 80] and

[Guttaget al. 83], and "R quasi-terminating" in [Dershowitz 87]. The termination proof

method in [Guttag et al. 83] says: In order to prove R terminating, first prove that R is

quasi-terminating, then prove that R satisfies some strictordering. The idea works for

proofs of relative termination, too.

Lemma: (forS-0, see [Guttag et al. 83])

Let RuS be quasi-terminating. R/S terminates if and only if, there is a quasiordering >

such that both Rc> and Sg^.

Example: (Set, continued)

Call a rule 1-» r length-reducing, if IOccO)l £ IOcc(r)I and every variable occurs in 1 at

leastas often as in r ([Guttag et al. 83]). The lattercondition is called left-dominance in

[Drosten 89]; here it ensures that the length-reducing property is closed under contexts

and instantiation.

R =def{elem(x, 0) -> false,

elem(x, ins(x, s)) -> true,

elem(a, ins(b, s)) -> elem(a, s),

elem(b, ins(a, s)) -» elem(b, s)},

35

Chapter2: Termination, termination modulo, and relative termination

S =def {ins(x, ins(x, s)) -> ins(x, s), "left-idempotence"
ins(x, ins(y, s)) -» ins(y, ins(x, s))}. "left-commutativity"

R is a relatively terminating rewriteSystem to S, because

(1) RuS is a quasi-terrninating rewrite System, as length-reducing.

(2) All rules from R are even strictly length-reducing.

2.6. On the descriptive power of relative termination

Relative termination generalizes both termination and termination modulo, in the sense
that termination R/S is implied by terminationof RuS or R/S". In this section we will

show that the converse is not true, i.e. that there are indeed R and S such that R/S termi

nates, but neither RuS nor R/S does.

The Set example may again serve as a motivation. Following [Huet 80], it is quite natu

ral to have a rewrite SystemS that describes the data structures, and another rewrite Sys

tem R that describes the algorithms. Regarding this, left-commutativity and left-idempo

tence certainly both belong to S. Now R is a relatively terminating rewrite Systemto S,
but RuS is not a terrninatingrewrite System, because left-commutativity is cyclic. Neither

is R a terminatingrewrite System modulo S:

Example: (Set, continued)
m

Forming the Symmetrie closure of S turns out harmful to relative termination:

R is not a terminating rewrite System modulo S, because there is a cycle

elem(a, ins(b, s)) <g- elem(a, ins(b, ins(b, s))) -g elem(a, ins(b, s))

D

Nevertheless termination modulo could be maintained here, if left-idempotence was re-

moved from S and put into R instead. Such a move would not work in the following ex

amples:

Example:

1. (FF, continued)

Let R =def {ftx -> fgfx} and S =def {fa -> gfa). We already proved that R is a rela
tively terminating rewrite System to S. S and thus RuS are obviously not terminating

rewrite Systems. Neither is R a relatively terminating rewrite System to S_1 (nor to 5"),
since there is a cycle

ffa •£» fgfa <g- ffa.

-36-

Chapter 2: Termination, termination modulo, and relative termination

2. Consider the rewrite Systems

R =def{(x+y)*z —» x*z+y*z) and

S =def (x*x+y*y —» x*y+x*y).

R is the right-distributive law, S is arule like x2+y2 -» 2xy. Neither S nor S"1 are ter

minating rewrite Systems, because the left and the right hand side have a common in

stance x*x+x*x. So, particularly, neither RuS nor RuS-1 are terminating rewrite Sys

tems. Nor is R a relatively terminating rewrite System to S*1, nor to 5", because of the
looping derivation

x*(x+x) +x*(x+x) <g- x*x +(x+x)*(x+x) -g» x*x +(x*(x+x) +x*(x+x)).

R in tum is arelatively terminatingrewrite System to S, as can be proven by the polyno

mial interpretation

[x+y] = x+y+k, [x*y] = x*y,

for arbitrary k>0. Onegets

[(x+y)*z] - [x*z+y*z] = (x+y+k)z - (xz+yz+k) = (z-l)k > 0 and

[x*x+y*y] - [x*y+x*y] = x2+y2+k - (2xy+k) = (x-y)2 £ 0.

Note thatone can find instantiations for x and y such that x-y =0, and likewise there

are instantiations such that x-y * 0. So none of the two cases holds uniformly, a fact

that excludes degenerate cases.
•

These examples demonstrate impressively that relative termination (of rewrite Systems)
has strictly greater expressive power than termination modulo.

37

3. How to strengthen termination orderings

The previous chapter introduced relative termination andcompared it to the related no

tions of termination and termination modulo. The main question of this chapter will be,

how to obtain from a (relative) termination result a stronger one. Two basic concepts are

investigated:

(1) Termination inheritance:

Infer termination of RuS from termination of R/S, and

(2) Commutation and Cooperation:

Infer termination of R/S from termination ofR.

In the first case, the knowledge of relative termination is applied, whereas in the second

case, it is derived We have seen in the previous chapteralreadythat the implications are

not generally valid. So what we are after, is a set of sufflcient conditions.

Inheritance of termination meansthe transference of termination from the components R
and S to the terminationof the composed System RuS. Termination inheritance has been

studiedsuccessfuUy for the direct sum of termrewrite Systems. Briefly speaking, transi-
tivity turns out to be anothersufflcient condition for inheritance: If RuS is transitive, then

the termination of RuS follows from the termination of both R and S. This property

gives rise to a couple of lemmas concemingthe inheritance of relative termination. One of

these lemmas admits an interpretation as atermination proofmethod by the lexicographic
combination of termination orderings. A current major weakness of this method leads us

to the second problem area of this chapter:

Many currently available termination quasiorderings, for example path orderings, enjoy a
considerable expressive power, but on the other hand, have a small associated equiva-
lence relation. They can rarely be direcdy usedfor relative termination. Having a means

to strengthen a result "R terminates" towards "R relativelytenninates to S" is therefore

very important

If R commutes over S, then all R-steps in an RuS-derivation can be shifted towards the

beginning. Thus a derivation that contains infinitely many R-steps can be transformed

into an infinite R-derivation. This reasoning led to criteria for termination modulo

([Jouannaud, Munoz 84]) and relative termination ([Bachmair, Dershowitz 86],

[Bellegarde, Lescanne 86], [Bellegarde, Lescanne 87]). The essential commutation-like

property is called Cooperation. We will generalize the Cooperation idea, so as to infer
termination of R/(SuQ) from termination of R/S in a fairly general setting. Two local

conditions for Cooperation are investigated here: The first one redraws the localCoopera

tion approach, which becomes the special case Q =S'1. The second oneis a new prop-

-38-

Chapter 3: How to strenpthen termination ordering

erty, strong Cooperation. It is similar to Huet's strong confluence. This approach Covers
thequasi-commutation approach, setting S=0. All currently known termination criteria
based on commutation-like properties are thus instances ofone scheme.

In order to get effectively verifiable criteria, the term rewrite structure must finally be
taken into account, leading to criticalpair criteria. This is amost typical step in term
rewriting. First the notion of critical pair criterion is explained in füll generality. Then we
State some critical pair criteria for Cooperation, and using some of the inheritance results,
critical pair criteria for termination of term rewrite Systems. Acouple ofexamples taken
from the field of algebraic specification conclude this chapter.

3.1. Termination inheritance

Itisobvious that termination ofRuS implies termination ofboth Rand S. The converse
is usually not the case. If RuS terminating is equivalent to Rand Sterminating, then one
may say that RuS inherits termination from R(and S). On this account, the adjective
"relative" in "relative termination" isjustified, because onthe one hand, R terminates if
and only if,Rrelatively terminates to0, and onthe other hand, RuS inherits termination
from S by the relative termination of.R to S.

Anumber oftermination inheritance criteria exist for arather special case: Rand Suse no
common function symbols. Then, RuS is also called the direct sum ofRand S([Toyama
et al. 87], [Rusinowitch 87a], [Middeldorp 89]). Inthis section aquite different termina
tion inheritance result is presented which relies on a transitivity requirement. A few
applications of the inheritance result are shown.

Theorem: (termination inheritance by transitivity)

Let R and S denote binaryrelations such that RuS is transitive. Then RuS terminates if

and only if, both R and S terminate.

Proof:

(I sent the claim as a question to the "rewriting" mailbox at CRIN (Centre de Recherche
en Informatique, Nancy), and received several beautiful proofs, from Jean-Pierre
Jouannaud, Dieter Hofbauer, Thomas Streicher, Werner Nutt, Franz Baader, and George
McNulty. There were three kinds of proofs:

1.by theinfinite version of Ramsey's theorem,

2. by minimal counterexample, similar tothe Nash-Williams proof ofKruskaTs tree
theorem,

3. by a case analysis on R-normal forms.

The following proof (by case analysis) has been communicated by Dieter Hofbauer.)

-39-

Chapter 3: How to strengthen terminationorderings

For ease of notation, let -»denote the relation RuS. The proof is done by contradiction.

For thispurpose let ti -> t2 ->... denote an infinite -»-derivation, i.e. ti -»tj holds for
all i < j, due to transitivity of -». Nextlet C =def {ti, t2,...}, andlet M denote the set

of all elements of C which have no immediate R-descendant in C. We show by case anal

ysis on the cardinality of M thateitheran infinite R-derivation or an infiniteS-derivation

can be constructed, each one yielding a contradiction.

Case 1: M is infinite.

Then M = {tilt tfc,...} where ii < i2 <... are ascending indices.Then tix -> t^ but t^
has no immediate R-descendant in C, so ti, S tj2 must hold. Likewise ti2 S ti3 and so

forth. Summarized, ti, S ti2 S ... is an infinite S-derivation.

Case 2: M is finite.

Let n =def max {i. ti e M}. Then for all k > n there is k' > k such that tk R v holds.

This way, one gets an infinite R-derivation.

D

Immediately a few applications of this criterion turn up. We observe for instance that
(RS*)+ = R+ u (R+S+)+ holds. SoR/S terminates if and only if, both R and R+S+ do.
More interesting applications forrelative termination arelisted in thefollowing corollary.
We will use them at the end of this chapter.

Corollary: (inheritance ofrelative termination)

Let R, S, and Q denote arbitrarybinaryrelations.

1. (RuS)/Q terminatesif and only if, bothR/(SuQ) and S/Q terminate.

2. Let R, S £ Q. Then (RuS)/Q terminates if andonly if, bothR/Q and S/Q terminate.

3. Let S c Q. Then R/QuS terminates if and only if, both R/Q and S terminate.

Proof:

il(RuS)/Q)+ = (R/QuS/Q)+ = ((R/Q)/(S/Q))+u (S/Q)+ = (R/(SuQ))+ u (S/Q)+.
Notethat R/(SuQ) maynotbereplaced by theweaker (R/S)/Q, norby R/(S/Q).

2l Actually, this is just a reformulation of 1, by closure under subsets. It will be used in
the next chapter, last section.

2lS*(R/Q)S* = R/Q. So (R/QuS)+ = S* ((R/Q) S*)+u S+ = (R/Q)+uS+.

•

Lemma 1 in [Bachmair, Dershowitz 86] is a special case of our "inheritance of relative

termination" corollary, part 1, for Q = 0: RuS terminates if and only if, both R/S and

Sdo.

40

Chapter 3: How to strengthen termination orderings

Theinterdependence of termination between some binary relations that can bebuilt using
R andS, is illustrated in the following figure:

R/SuS

RuS — — R/s

S —^ v*- R/S

S —*^ ^*»» n /ö

-^V— R/S

R->V. R+S+

Read a (single or double) arrow as "termination of... and... entails tenmnation of..."

or read it as "the transitive closure of... together with the transitive closure of... is a su-

perset of the transitive closure of...". The diagram illustrates the central role of R/S

among R, RuS, and R/S*. It moreover shows that the knowledge "R/S terminates" is an

important starting point of termination proofs. "R/S terminates" is the common premise

of two termination results: Termination of RuS and termination of R/S". Assuming it

turns out later that S terminates, then we may conclude that RuS terminates, and we may

go on with "classic rewriting". If, on the other hand, S is cyclic, then we have termina

tion of R/S", i.e. termination modulo, and we may continue with "equational rewriting".

Later in this chapter, we will find yet another way to infer terminationmodulo from rela

tive termination. Anyway, it is advisable to leave the decision open where to switch later.

Still, if neither RuS nor R/S" happen to terminate, relative termination is valuable. For

instance, reduction using R with interspersed S-Steps is already safe when R/S termi

nates. Equational rewriting may be generalized on that account

3.2. Lexicographic combination proofs

Recall from the previous section the "inheritance of relative termination" corollary, part 1:

(RÜS)/Q terminates if and only if, both R/(SuQ) and S/Q do.

This fact is linked to a certain termination proofmethod—the lexicographic combination

of Noetherian orderings. Indeed, the Noetherian ordering for (RuS)/Q is simply the lexi

cographic combination of the orderings thatprove R/(SuQ) and S/Q terminating. So we

have a method to prove terminationof rewriting stepwise, by relative termination. In Or

der to demonstrate the strength of the method, we will present two known examples that

can be proved terminating this way, but cannot be proven by the pure orderings.

The "inheritance of relative termination" corollary, part 1 can be visualized by "cake dia

grams":

41

Chapter 3: How to strengthen termination orderings

RuS

A O

SuQ

Shaded areas "relatively terminate to" the white ones. As a mnemonic, one may say that

the cake diagram on the right is the cake diagram on the left where the white area is re

placed by the cake diagram in the middle. Thus, more and more from the white area be-

comes shaded.

Provided that £1 proves R/(SuQ) terminating, i.e. it proves R c >i and S c ^l, and

provided that ^2 likewise proves S/Q terminating, we can even Statean ordering which

proves (RuS)/Q terminating. It is the ordering (^1, ^2)» the lexicographiccombination

of £1 and ^2. Recall from the "two orderings" lemma, section 2.4, that relative termi

nation is characterized by a pair of quasiordering and strictordering. The reasoning works

also in this more general case: Assume that ^1 and »1 together prove termination of

R/(SuQ), i.e. that SuQ c ^1 and R c »1 hold, and moreover assume that ^2 and »2

together prove termination of S/Q, i.e. that Q £ £2 and S £ »2 hold. Then the pair

^iu^2, »iu(^in»2) proves termination of (RuS)/Q, by the reasoning Qc^i,

R £ »1, S £ ^in»2. The notion of lexicographiccombination may be extended in this

respect, towards a combination of pairs ofquasiorderingand strictordering.

The lexicographic combination of termination orderings for R/(SuQ) and S/Q providesa

termination orderingfor (RuS)/Q. This fact suggests that we attacktenmnationproving

of rewrite Systems by lexicographic combination of termination orderings. Interestingly,

this proof method is already known, without the background of relative termination. It

has been introduced for combinations of polynomial interpretations in [Ben-Cherifa,

Lescanne 87], and for combinations of the lexicographic path ordering in [Dershowitz

87]. The combination method sometimeseven succeeds when the pure methods fail, as is

witnessed by the following two examples:

Example:

1. ([Dershowitz 87], Ex. 18)

Let f be a unary, g and h be binary function symbols, and let x, y be variables. R and S

are defined by

R=def{h(f(x),y) -> f(g(x,y))} and

S=def (g(x,y) -> h(x,y)}.

42

Chapter 3: How to strengthen termination orderings

By anyrecursive path ordering ^rpo> onecannot prove that RuS is a terminating rewrite

System: It is easy to see by checking the definition of ^rpo that the precedence qua
siordering £ must satisfy h > f and h > g in order to prove that R is a terminating

rewrite System. The precedence h £ g however, prevents proving that S is a terminating

rewrite System. But h - g suffices to prove S £ ^rpo which altogether yields at least

that R is a relatively terminating rewrite Systemto S. Separately, one may now prove that

S is a terminating rewrite System, for example by £rpo withprecedence h <g.

2. ([Lankford 79], Ex. 3, simplified)

Assume given the following piece of Peano arithmetic:

R=def (x*(y+z) -> (x*y)+(x*z)},

S=def {0+x -> x, s(x)+y -» s(x+y)},

E=def (x+y -> y+x, x+(y+z) -> (x+y)+z}.

E is cyclic (!), and therefore [x+y] = [y+x] as well as [x+(y+z)] = [(x+y)+z] is to

hold. By [Ben-Cherifa, Lescanne 87], Prop. 4, the interpretation of + must be either

[x+y] = x+y+b, or [x+y] = a(x+b)(y+b) - b, for some fixed a, beN, a>0. The

latter interpretation fails, by [x*(y+z)] - [x*y+x*z] < 0. The former interpretation

yields [s(x)+y] - [s(x+y)] =0. This suffices for the proof that R is a relatively terminat
ing Systemto SuE, but not yet for a proofthat RuS is a relatively terminating rewrite

System to E. The missing step consists in separately proving that S is a terminating

rewrite System to E, for example by the polynomial interpretation [s(x)] = x+1,

[x+y] = xy.

D

With the notion of relative termination, there is another view of the combination method:

If R £ >l and S £ ^i, then we already proved termination of R/S, even if we knew

nothing about >2. This is important information, as we stressedat the end of the previ

ous section.

Iteration of the combination method leads to an incremental terminationproof technique:

Suppose the considered rewrite System R is split into slices Ri,..., Rn. Try to prove

that R\ I (R2U...uRn) terminates. If this succeeds, Ri may be completely discarded for

the rest of the termination proof. (If it fails, a reanangement of the slices may help.) It
remains to be shown that R2U...uRn terminates. Next try to prove that

R2 / (R3U...uRn) terminates, and so forth. In that sense, the termination proof may be

called incremental. (Compare this with the incremental proof method of [Detlefs,

Forgaard 85], which is incremental with respect to the precedence >of >rpo.) The main
problemcunently is that proofs for Ri / (R2U...uRn) are very difficult, since the exist-

ing termination quasiorderings £ are designed for a powerful strictordering >, with no

-43-

Chapter 3: How to strengthen termination orderings

consideration for their equivalence relation ~. All path orderings, for instance, share a

weak equivalence relation ~rp0 (see [Steinbach 88]), which is littiemore thanequality
modulo renaming. Hence path orderings are poorly suited for our purposes, and the ex

ample above already is a rare exception. Polynomial interpretations work slightly better

than path orderings, as experience with small examples has shown.

Example: (INT2-ADD, cf [Padawitz 88], p. 19)

Let R=def {x+0 -» 0, x+s(y) -> s(x+y)} and

S=def{x+(-y) -» -(-x+y)}

togetherdefine additionon the integernumbers. The polynomialinterpretation

[0] = 2, [s(x)] = x+l, [x+y]=xy, [-x]=x

proves

[x+0] - [0] > 0, [x+s(y)] - [s(x+y)] > 0, but only

[x+(-y)] - [-(-x+y)] = 0.

So it proves thatR is a terminating rewrite System to S, butdoes not yet prove that RuS

is a temiinating rewrite system. Note in theproofthat the interpretation [-x] = x is per-
fectly admissible. In orderto finish theproofthatRuS is a terminating rewrite System,

we still have to prove that S is a terminating rewritesystem. That can be done by another

polynomial interpretation, for instance [x+y] =(x-l)y2, [-x] = x+l. Weget

[x+(-y)] - [-(-x+y)] = (x-l)(y+l)2-(l+xy2) = 2y(x-l)+x-2 > 0.
D

The lexicographic combination method can be used, for instance, to show termination in
some associative theories, i.e. theories RuA that contain an associativity axiom

A =def {(x+y)+z -» x+(y+z)}. It is known that A forms a terminating rewrite system
So, in order to prove that RuA is a terminating rewrite system, it remains to be shown

thatR is a relatively terminating rewrite System to A. Nowrathershowthe strongerresult

that R is a terminating rewrite system modulo A. The method profits from the special

powerful tools thatareavailable forproving termination modulo A,for example theas
sociative pathorderings (Pachmair, Plaisted 85], [Gnaedig 87]).

Example: (Associativity and Endomorphism, cf. [Bellegarde 86])

Let A =def {(x+y)+z -> x+(y+z)} ,

E=def{f(x)+f(y) -> f(x+y)},

E'=def{f(x)+(f(y)+z) -• f(x+y)+z).

44

Chapter 3: How to strengthen tenmnation orderings

The rewrite rule E specifies that f is an endomorphism for +. E' appears in order to

have a locally confluent rewrite System; E' might be generated from A and E during the

ran of a Knuth-Bendix completion procedure. We want to prove that AuEuE' is a termi

nating rewrite system. The lexicographic path ordering >rpo can justprove that AuE is a

terminating rewrite System, by precedence + > f, and Status + lexicographic left-to-

right. But the proof extension to E' fails. Actually no lexicographic path ordering can

prove that AuEuE' is a terminating rewrite System.

But according to our method EuE' can be proven to be a terminating rewrite System

modulo A, for example by the polynomial interpretation [f(x)] = x+1, [x+y] = x+y.

Thus we proved that AuEuE' is a terminatingrewrite System. Another polynomial inter

pretation however proves that AuEuE' is a terminating rewrite System at once: [f(x)] =

2x, [x+y] = xy+x ([Lankford 79]).

D

The method fails when one cannot prove that R is a terminating rewrite system modulo

A, although RuA is a terminating rewrite system. Such a failure has been communicated

by Franz Baader: Let R =def (y+(x+y) -> x+x}. R is not a terminating rewrite system

modulo A, witnessed by the cycle

a+(a+(a+a)) <£ a+((a+a)+a) -^ (a+a)+(a+a) -g a+(a+(a+a)).

Recenüy, it has been shown by Frank Drewes (personal communication) that RuA is a

terrninating rewrite System, viathe polynomial interpretation [f(x,y)] =x2+xy.

3.3. Commutation and related properties

The commutation property and its local counterparts play an important role in the inter-

play of binary relations R and S. Commutation goes back to Hindley ([Hindley 64]).

Commutation and some of its variants are used in [Rosen 73] and [Staples 75] for con

fluence proofs (see [Klop 87] for a collection of examples). Commutation is also an es-

sential ingredient in Peterson and Stickel's "congruence class approach" ([Peterson,

Stickel 81]). In [Raoult, Vuillemin 80] commutation is used for deriving the equivalence

of operationaland denudational semantics of programinglanguages. [Dershowitz 81] and

[Guttag et al. 83] use commutation for proofsof termination by forward and overlapclo

sures. In [Toyama 88],commutation without terminationassumptions is used for conflu

ence proofs.

In this section, we summarize some basic facts about commutation-like properties of bi

naryrelations. These facts explain whatmakes commutation interesting in the framework

of relative termination.

Let us first switch to arbitrary binary relations R and S.

-45-

Chapter 3: How to strengthen termination orderings

Definition:

The following diagrams represent some properties which arerelated to commutation:

*-^9
T*

R commutes over S

+9
*3*X

•S*6

R strictly commutes over S

I B PO

n R.

R locally commutes over S

••9•f*

I

R strongly commutes over S

-*?

RiiiS

6 R #£

R strictly locally commutes over S R quasi-commutes over S

•

Bachmair andDershowitz use thephrase "... with S" so as to say "...overS'1". So
for instance "Rlocally commutes with S" means "Rlocally commutes overS"1". They
also coined the notion of quasi-commutation. (Elsewhere, strict commutation and strict

local commutation are also called local commutation.)

Lemma:

In the following diagram, some logical dependencies between the various commutation-

like properties are drawn. A label at an implicationsign is to indicate a sufflcient condi

tion for that implication.

46-

Chapter3: How to strengthen termination orderings

•*—*>

R ^
c

R strongly commutes over S

ir

•*—*§

<> & #Ö

*

T*

o

S-l/R
terminales

R commutes over S

ir

0 R +Q
T*

6 -R %£
+

2 B *Q

<» R &o

R locally commutes over S

ir

9 fc

* R.

/? strictly commutes over S R strictly locally commutes overS

Proof:

t
Vk R Noetherian

Ii

T*

R&ST

/? quasi-commutes over S

All implications are Standard, except two. The equivalence in the topmost line will be
proven in the "local Cooperation" lemma, in the next section. The curved anow is proven
by straightforward induction along R+ ([Bachmair, Dershowitz 86]).

•

IfRterminates then by acycle of implications, strict local commutation and quasi-com
mutation are equivalent. In this case, it is moreconvenient to check for strict local com
mutation since this check involves fewer pairs: R+S* £ R(RuS)*.

Commutation properties contain confluence properties as a special case. For instance, R
is confluent ifand only if, Rcommutes over R"1. Ris locally confluent ifand only if, R

-47

Chapter 3: How to strengthen termination orderings

commutes locally over R-l.Theanows in the topmost row in theoverview above then
collapse to the strongconfluence lemmaof Huet (left anow), and Newman's lemma, re

spectively (right arrows; note that R/R = R+ holds.)

Quasi-commutation is useful in the framework of relative termination, for thefollowing
central fact:

Lemma: (quasi-commutation; [Bachmair, Dershowitz86], lemma 2)

If R quasi-commutes over S, thenR/S terminates if and only if, R terminates.

Proof:

"Only if' is trivial. For "if', assume R terminating and quasi-commuting over S. Then,

as we can gather from the overview above, R strictly commutes over S. Now suppose
there is a sequence ti RuS t2 RuS ... that contains infinitely many R steps. Then, the

following infinite diagram can be constructed (from left to right):

°^—s—*> ß—*S S—*o ß—*o S—po R-
\. strict f* f *

^Rv comm. % strict $ strict
X^ | comm. comm.

V^ö ' R m R
+ + +

Thus there is an infinite R+-derivation which contradicts termination of R.

D

Quasi-commutation, in other words, "lifts" terminationfrom R to R/S. Since R/S strictly

locally commutes over S, there is even the characterization:

Corollary:

R/S teiminates if and only if, there is R' 2 R, such that both R' terminates and strictly lo

cally commutes over S.

•

3.4. Cooperation

Commutation-like criteria that are even more interesting and powerful, can also be devel

oped for relatively terminating Systems. Suppose R, S and Q are binary relations. We

seek a criterion for the proposition

"termination of R/S implies termination ofR/(SuQ)",

in the spirit of the "quasi-commutation" lemma. In this section we will arrive at such a

sufflcient condition which we will call Cooperation.

-48-

Chapter 3: How to strengthen termination orderings

First observe that (R / (SuQ))+ = ((R/S) / (SuQ))+ holds. So it is to be shown that

R/S quasi-commutes over SuQ, (Let us plead for this decision: The other choice "R/S

quasi-commutes over Q/S" is equivalent by (R/S) (R/SuQ/S)* = (R/S) (RuSuQ)*.
"R/S quasi-commutes over Q" is also sufflcient, but more restrictive. It forbids for in

stance the Situation where the diagram only joins by RQS .) Since R/S triviaUy quasi-

commutes over S, it still has to be shown that QS*RS* £ S*R(RuSuQ)*. Thisis

achieved by showing that the diagram

holds.

+o—R—*

i
RuSuQ

*

The first step to localproperties now is a Separation of the S* andR parts into twodia
grams. A naive candidate for the first diagram is commutation of S over Q. For the sec

ond diagram, we define:

Definition:

R S-cooperates over Q, if

R *o

RuSuQ

•S #•© R &ö

Thus we obtain the lemma:

Lemma: (Cooperation)

Suppose that S commutes over Q, and that R S-cooperates over Q. Then R/(SuQ) termi

nates if and only if, R/S does.

Proof:

R/S quasi-commutes over SuQ:

—S—+9 ß—»9
i • \

comm. Q coop. RuSvQ
i i

,w,.v.vS.v,.,v.,.|::O..v.,S>^0,.,v.Rv|&Ö
* *

49

Chapter 3: How to strengthen termination orderings

Application of the"quasi-commutation" lemma completes theproof.

D

Thislemma demonstrates theprominent roleof Cooperation in proofs of relative termina
tion. Basically the samedecomposition ideais briefly sketched in [Bachmair, Dershowitz
86], proposition 1,however for Symmetrie S.The quasi-commutation lemma is a special
case, by S = 0. Likewise, the criterion in [Jouannaud, Munoz 84] is a special case,
with S = 0 andQ Symmetrie. Another particularly useful special caseis QcS*1. The

notion of Cooperation, coined in [Bellegarde, Lescanne 86] ("RS-cooperates overS"1"is
called "R cooperateswith S" there), and investigated also in [Bachmair, Dershowitz 86],

theorem 4, describes thecase Q = S"1. There, thecommutation of S overQ becomes the
confluence property for S. So we findout that the scenario just sketched Covers quite a
number of special cases.

The nextsections willseeklocalized variants andexecutable criteria for Cooperation.

3.5. Local Cooperation and strong Cooperation

The Cooperation diagram can be localized. Below we will investigate two localizations.

The first one closely follows the local Cooperation approach ([Bachmair, Dershowitz

86]), which it contains for the setting Q = S"1. Thesecond approach is new; it uses a lo
cal property, "strong Cooperation", in the spirit of Huet's strong confluence, and may

therefore be applied without additional termination requirements. It contains the quasi-

commutationapproachas a specialcase (for S = 0).

Local Cooperationis defined thus:

Definition: (cf. [Bellegarde, Lescanne 86], where Q = S'1)

R locally S-cooperates over Q, if

9 R PQ

RuSuQ

*

Lemma: (local Cooperation)

If Q'VS terminates, S locally commutes overQ, andR locally S-cooperates overQ, then
R S-cooperates over Q.

50-

Chapter 3: How to strengthen termination orderings

Proof:

We first prove that S commutesover Q, by inductionusing the ordering » on pairs (t, n),

defined by

(t,n) » (t',nO <=>def

t (Q^/S)+ t' v

t (Q"1 u S)* t' a n >n n'.

Observe that » is indeedNoetherian. Suppose (Q-1)"11 Sn. The case where m = 0 or
n = 0 is trivial. The remaining case is shown by the first diagram below. The inductive

hypothesis in the smallboxis justified through t Q"11', theotherone through t S t" and
n >n n-1.

Next we prove that R S-cooperates over Q whenever Q* t R, by induction using
(Q"VS)+ on t. This is done by the second diagram below. The inductive hypothesis is

justified through t Q1 S* t'.

to B *
t

local

comm.

ind.

hyp.

3

t"
•*>•

f*

ind.

hyp.

*'
;: *

Choosing Q = S_1, onegets a technically simpler result:

Corollary: ([Bachmair, Dershowitz 86], lemma5)

If S is terminating and locally confluent, and R locally S-cooperates over S-1, then R
S-cooperates overS_1.

D

Sometimes Cooperation can still beproven if Q_1/S fails to terminate, butlikefor strong
confluence,one needs a more restrictivelocal diagram.

51

Chapter 3: How to strengthen termination orderings

Definition:

R strongly S-cooperates over Q, if

—ß—*Q
M *

Ru$uQ

holds.

Lemma: (strong Cooperation)

If S commutes over Q and R strongly S-cooperatesover Q, then R S-cooperates over Q.

Proof:

By induction on the length n of the Q-derivation. The case n = 0 is trivial. The case

n>0 is treated by the diagram

—ß—*9

I! prem. RuSuQ

-itn-1 m *

hyp-

<• R #d

Certainly, commutation of S over Q is in such a Situationproven by strong commutation.

Note, finally, the special case where S = 0. There strong Cooperation becomes quasi-

commutation (of R over Q), and the lemma coincides with the "quasi-commutation"

lemma again.

3.6. Criteria for local Cooperation

In the previous sections, we developed a notion called Cooperation, which allows to

strengthen termination of R/S to termination ofR/(SuQ), and we approached two local

conditions for Cooperation—local Cooperation and strong Cooperation. This section pre-

sents critical pair criteria for local Cooperation, and illustrates them by examples. In par

ticular, the criterion of Bellegarde and Lescanne is generalized, and a new criterion for lo

cal Cooperation is added.

By the critical pair scheme, we obtain a new straightforward criterion for local Coopera

tion of term rewrite Systems.

-52

Chapter 3: How to strengthen termination orderings

Theorem: (first local Cooperation criterion)

Let R and S be left-linear and let Q be right-linearand left-nonerasing. If

1) <q/s* tenrünates,
2) CP(Q"!, S) C -ö>V . and

* . .*3) CP(Q-1, R) S ,»YlüKrf

then r>/SuQ> terminates ifand only if -jf/j* terminates.

Proof:

"Only if' is trivial. "Iff is assembled by critical pair properties and the previously proven

lemmas on Cooperation. Since S is left-linear and Q is right-linear, the local commutation
of j> over ^ holds due to 2. Likewise, -^ locally g»-cooperates over ^, because

of 3, and because R is left-linear and Q is right-linearand left-nonerasing. According to
the "local Cooperation" lemma, ^> -^-cooperates over q>. Together with tf/j> termi
nating, the Cooperation lemma yields r>/SuQ> terminating.

•

If in addition S is a terminating rewrite system, the result can be strengthened:

Corollary:

Let R and S be left-linear and let Q be right-linearand left-nonerasing. If

1)Q-luS is a terminating rewrite system,
2) CP(Q"1, S) c s>V* .and
3)CP(Q-1,R) C t*R>*JBu(t*>

then j>rjtf&J-§> terminates ifand only if ^/-^ terminates.

D

The following is a typical application:

Example: (cf. Ex. 27 in [Dershowitz 87])

Let E =def {x*(y+l) -» x*(y+l*0)+x,

x+0->x, x*l->x, x*0-»0}.

E is a terminating rewrite System, but no simplification ordering can proveit, since the
firstrulecontains anembedding 1 into 1*0. A tenmnation proofcouldbe given bymeans
of the semantic path ordering ([Kamin, Levy 80], [Dershowitz 87]), having precedence

* > +, and using the natural interpretation for summands.

53-

Chapter 3: How to strengthen termination orderings

A proof can also be given alike the transformation ordering method (which will be ex-
plained later): We intend to providerewrite Systems R, S andQ such thatboth RuQ^uS

is aterminating rewrite system and E c (r^sCö* u s^+ nolds-

A first attempt choosing

R =def (x*(y+l) -> x*y+x, x*l->x),

S =def (x+0 -»x, x*0-»0), and

Q=def S-1 = {x->x+0, 0-»x*0)

fails, "just" because the second rule 0 -»x*0 in Q is left-erasing—x disappears at the

left hand side. For this reason the (non-critical pair) branching diagram

0 ^ (x*(y+l))*0 ä> (x*y+x)*0

for example, does notjoinappropriately. We rather need Q * S"1. We are now going to
demonstrate that then the corollary to the "first Cooperation criterion" works. Let us

choose

R =def (x*(y+l) -> x*y+x, x*l->x),

S=def{x*0->0}, and

Q=def (x -> x+l*0, x->x+0},

with the intention that E c (r^/s^q* u s*)+ nola^:

x*(y+l) tf x*(y+l*0)+x x*l ^ x

L^ x*y+x -^ L—R—^
The remaining two rules from E are already in S. Both R and S are left-linear, and Q is

right-linear and left-nonerasing. RuQ-1uS is indeed a terminating rewrite System,

proven for example by some lexicographic path ordering. The (Q_1, S)-critical pairs lo
cally commute:

x ^ x+l*0 3» x+0
I I

s

The (Q"l, R)-critical pairs locally S-cooperate since there are no such critical pairs. So the
corollary to the "first local Cooperation criterion" applies, yielding r>/SuQ> u -g» termi

nating. So in particular, E is a terminating rewrite system.

•

The restriction "R and S left-linear" in the critical pairconditions to local Cooperation is

rather uncomfortable. Exchanging one restriction for another one, it may be disposed of
when Qc*<g-. Then, -£/$> and W^ terminate if and only if (r^^t) / §» termi-

-54-

Chapter 3: How to strengthen termination orderings

nates, by the "inheritance of relative termination" corollary, part 1, of section 3.1. Thus

we arrive at another criterion:

Theorem: (second local Cooperation criterion)

Let Rand Sbe arbitrary, and Qc *<j- right-linear and left-nonerasing. If

1) (-j^tf)/ s* terminates,
2) CP(Q-l, S) c -?*-$* ,and
3)CP(Q-l,R)£l>*lta^*,

then even r»/s^q> u W^ terminates.

•

Again, it happens frequentiy that S is a terminating rewrite system. This allows one to

tighten the result:

Corollary: (for Q = S'1, see[Bellegarde, Lescanne 87])

Let Rand Sbe arbitrary, and Q£ *<g- right-linear and left-nonerasing. If

1) RuS is a terminating rewrite system,

2) CP(Q"1, S) £ s>*Q>* , and
RuSuQ)3) CP(Q-l, R) c s>*R>RuSuQ>*,

then even r>/Suq> u -§> terminates.

Proof:

RuS is aterminating rewrite System, which by QG*^- implies that also RuSuQ-1 is,
which by the "inheritance" lernma impües that both (•R-Kjfe-) /-^ and •§> terminate. The
"second local Cooperation criterion" is applicable, yielding that r>/SuQ> u Wj> termi
nates. From termination of -j£r$-tf and -§ we may infer termination of

R^^jö* u s*' by "^eritance ofrelative termination", part 3.

D

This corollary is the basis of a method to prove termination of a term rewrite system P,
by showing that P £ (rf/j^tf u s*)+ nolds for a suitable choice of R, S, and Q, and

by checking the respective termination and critical pair conditions. The method has (for

Q = S_1) been investigated by Bellegarde and Lescanne, who called it transformation or
dering, and it has been implemented at CRIN by Bruno Galabertier. The implemented

procedure works in a way similar to the Knuth-Bendix completion procedure: Given the

rewrite Systems P and S, the system R is constructed Computing critical pairs step by
step. There is a riehsetof examples of transformation orderings in [Bellegarde, Lescanne

55-

Chapter3: How to strengthen termination orderings

86] and [Bellegarde, Lescanne 87], among them acouple of termination proofs even for
self-embedding term rewrite Systems. Let usjustrecall their favourite example.

Example: (Associativity and Endomorphism, continued)

Let A =def {(x+y)+z -» x+(y+z)},

E =def (f(x)+f(y) -> f(x+y)}, and

E'=def (f(x)+(f(y)+z) -> f(x+y)+z).

The rewrite rule E specifies that f is an endomorphism for +. No lexicographic path
orderingcan prove that AuEuE' is a terminating rewrite system. But a proof can be done

using a suitable transformation system ([Bellegarde, Lescanne 86]):

S =def {f(x)+y -» f(x+y), x+f(y) -> f(x+y), (x+y)+z -> x+(y+z)}.

Informally speaking, S is a transformer who cares that f is moved outside, and paren-

theses are movedto theright Choosing Q =def S"1, we getQ right-linear and left-non
erasing as required. It is certainly a matter of intuition to find good Q and S. Next it is

easy to prove that S is a terminating rewrite system, so we may hope to apply the corol

lary to the "second local Cooperation criterion".

S is a locally confluent rewrite system. Now we have to design R, in a way that

AuEuE' C itf/ftf U s*)+

holds. A is already covered by AcS. Since S is a terminating and confluent rewrite

system, -^-normal forms exist and are unique. We may so choose the unique -^-normal

forms of E-rules and E'-rules for R-candidates.

f(xHf(y) -—g-> f(x+y)

4s Tr

f(x+f(y)) --ö-> f(f(x+y))

f(xHf(yHz) •-w~> f(x+y)fz

4s is

f(xMy+z) (f(x)+y)+z

is Is

f(f(x)+(y+z)) f(x)+(y+z)

is is

f(f(x+(y+z))) f(x+(y+z))R >

We see that R should be extended by a rule f(f(x+y)) -» f(x+y), in order to solve the

two diagrams. (Also possible: f(f(x)) -» f(x).) >rpo proves that RuS is a terrmnating

rewrite system. Now it remains to be shown that (S, R)-critical pairs locally S-cooperate:

-56

Chapter 3: How to strengthen termination orderings

f(f(x)Hy —g-» f(x)+y

is is

f(f(xKy) f(x+y)

Lg-» f(f(x+y)) -J
D

Anotherexampleof a self-embedding rewrite system, which I communicated to Pierre

Lescanne, has recenüy been solved by Lescanne, Bellegarde, and Galabertier (private
communication) with Support of their tool:

Example: (conversion into binary numbers)

Assume we want to specify a conversion of N into the setof binary numbers. Binary
numbers are sequences of bits. The rewrite system uses two constants "O" and '!" (the
bits zero and one), the unary function symbols "half (integer division by two) and
"lastBit" (to yield "O" for even numbers, and "I" for odd numbers), the constant "empty"
(the empty bit string), and finally the binary function symbol "&" (append a bit at the
right to a bit string; in infix notation). Note the difference between the natural number 0

and the bit O. The rewrite system looks as follows:

C=def{half(0)-»0,

half(s(0)) -» 0,

half(s(s(x))) -» s(half(x)),

lastBit(0)-»O,

lastBit(s(0)) -* I,

lastBit(s(s(x))) -»lastBit(x),

conv(0) -» empty & O,

conv(s(x)) -» conv(half(s(x))) & lastBit(s(x))}.

C is a tenninating rewrite system, as wewilldemonstrate. All rewrite rules, but the last

one, can be easily shown ordered by >rpo provided with a suitable precedence >. Let
us fix aparticular choice for the precedence which will be useful inthe following, too:

s>half, s>conv>&, conv > lastBit > O,

lastBit >I, 0>O, 0> empty, 0>&.

The last rewrite rule of C causes a problem for all simplification orderings, because it
contains an embedding s(x) into half(s(x)). Now the essential idea is to invent a unary
auxiliary function symbol q with precedence conv>q>&, and to havea transformer
system

S =def {conv(0) -> empty & O,

conv(half(x)) -» q(x)}.

57

Chapter3: How to strengthen termination orderings

The rest is routine. (Actually Galabertier's system computes the following proof.)
S c >ipo, andtherefore S is a terminating rewrite system. S is a confluent rewrite System

since it has no nontrivial critical pairs. Also, S is left-linear andright-nonerasing. Next
we have to choose Rsuch that C q (^>/=s u -f)+. The rules for "half' and "lastBit"
are already in^-normal form, therefore it isadvisable toput them into R. Now consider

the last two rules from C:

conv(0) ^ empty &0 conv(s(x)) ^ conv(half(s(x))) &lastBit(s(x))

s— J* ^s
q(s(x)) & lastBit(s(x))

We find thatR needs therule conv(s(x)) -» q(s(x)) & lastBit(s(x)) to handlethe diagram
to the right Finally, Rhas to be extended ina way that -g> locally -^»-cooperates over
<§-. We check this for the (R, S)-critical pairs:

conv(half(0)) ^ conv(0) conv(half(s(0))) ^ conv(0)

is is is is
q(0) ^ empty &0 q(s(0)) ^> empty &0

conv(half(0)) ^ conv(s(half(x))) "

^ q(s(s(x))) -jj-T
We need the following new R-rules in order to finish the critical pair diagrams:

q(0) -> empty &O,

q(s(0)) -» empty &O, and

q(s(s(x))) -> conv(s(half(x))).

They cause no more critical pairs, so we are finished. Lucküy, R c >rp0 still holds
now, so RuS is a terminating rewrite System. The corollary to the "second local Coop

eration criterion" applies—C is proven to be a terminating rewrite system.

D

Finally, here is an example where Qc *<g- but Q* S_1 holds.

Example: (Ex. 27 in [Dershowitz 87], continued)

Let E=def{x*(y+1) -> x*(y+l*0)+x,

x*l-»x, x+0-»x, x*0->0).

E is a terminating rewrite system, but self-embedding. We saw that Cooperation failed

when Q = S"1. The "first localCooperation criterion" was successful. Now let us apply
the "second local Cooperation criterion". Choose

58

Chapter 3: How to strengthen termination orderings

R =def(x*(y+l) -> x*y+x, x*l -> x},

S =def {x+0 -»x, x*0 -> 0}, and

Q=def{x-»x+l*0},

with the intention that E £ (r>/s^q* u s*)+ nolds- Rcan actually be constructed like
in the examples above. (Likewise, one might choose Q =def (x*y -» x*(y+l*0)}, or

Q=def{0->1*0}.)

Both R andS are left-linear, andQ is right-linear andleft-nonerasing. We are now going
to prove that -^/"s^q* u "s* ^^^^ terminates. The requirement Qc *^- is satisfied
because

x £- x+0 £- x+l*0

holds. (Note that the inclusion is strict here.) The (Q"1, S)-critical pairs locally commute:

x ^ x+l*0 ^> x+0

1 , '
Since there are no (Q_1, R)-critical pairs, local Cooperation is satisfied There is noprob
lem proving RuS ordered by a suitable simplification ordering. We may apply the corol

lary, and we get termination ofthe stronger r>/g^n* u s*- So Eis atenninating rewrite

system, which was the claim.

D

3.7. Criteria for strong Cooperation, and their applications

So far aboutthe local Cooperation criteria. In contrast, strong Cooperation does not need

the termination of Q"tyS. This section finishes the Cooperation approach; acritical pair
criterion for strong Cooperation is given. We haveasinteresting special cases, a new cri

terion for termination modulo from relative termination (Q-1 =S), and thequasi-commu
tation criterion (S =0). It turns out that quasi-commutation is hardly suited for termina
tion proofs.

Critical pair criteria for the "strong Cooperation" lemma raise the following theorem.
Unlike the "second local Cooperation criterion", it cannot dispense with the syntactic
condition "R left-linear".

59-

Chapter 3: How to strengthen termination orderings

Theorem: (strong Cooperation criterion)

Let R and S be left-linear, and Q be right-linearand left-nonerasing. Suppose that

1) -g commutes over ^, and that
2) CP(Q-1, R) C Ttoüf*.

Then r>/Suq> terminates ifand only if j^/g» tenninates.

Example: (Nonfin, continued)

Let f, c, s denote unary function symbols, x a variable, and let

S =def {fcx -> ex},

Q =def {ex -» fcx}, and

R=def {csx-»cx}.

Remember that parentheses may be dropped in the case of constant and unary function

symbols exclusively. RuS is a terminating rewrite System.To prove that R is a terminat

ingrewrite system modulo S, also a strong Cooperation argument works. -§> commutes
over q>, i.e. S isa confluent rewrite system. R, S, and Qare linear and nonerasing, and

there is justone(Q"1, R)-critical pairtoconsider

csn ^ fcsn ^> fen

Therefore •£ strongly -^»-cooperates over -^. Since -$/•§> terminates, -r>/SuQ> =
•^/=S terminates.

D

Consider now the setting Q = S"l, and assume that there are no (R, S)-critical pairs and
that both R and S are left-linear. In this frequent case, thanks to the "strong Cooperation

criterion", we do not need that S is a terminating rewrite system, so as to prove that R is a

terminating rewrite system modulo S:

Corollary:

Let R be left-linear, S be left-linear, right-nonerasing, and a confluent term rewrite Sys

tem, and suppose there are no (R, S)-critical pairs. Then R is a terminating rewrite Sys

tem modulo S if and only if, R is a relatively terminating rewrite system to S.

•

Example: (cf. Ex. in [Bockmayr 88])

Let the addition on N be speeified by

60-

Chapter 3: How to strengthen termination orderings

S =def {0+x -> x, s(x)+y -> s(x+y)} ,

and Square numbers by

R =def (sq(0) -> 0, sq(s(x)) -> s(x+(x+sq(x)))} .

The last rule is suggested by the binomial equation (x+1)2 = 1+ 2x+ x2. R is a rela
tively terminating rewrite System to S, shown for instance by ^rpo withprecedence sq>
+ > s. Both R and S are confluent rewrite Systems, because they are left-linear, and there

are no (R, R)- nor (S, S)-critical pairs. As there are no (R, S)-critical pairs, and R is left-

linear, and S is right-nonerasing, we may employ the above corollary to the "strong Co

operation criterion" so as to infer that R is a terminating rewrite system modulo S. Note

that termination of S has indeed not been used in this reasoning. An alternative termina

tion proof may be obtained using the polynomial interpretation

[s(x)] = x+1, [x+y] = x+y, [sq(x)] = 2x2+3.
•

As mentionedearlier, strong Cooperation becomesquasi-commutation in the case S = 0.

Likewise, critical pair criteria for strong Cooperation become criteria for quasi-commuta

tion. Dershowitz' quasi-commutation is soanother special case (where CP(Q-1, R) = 0)
of the "strong Cooperationcriterion":

Corollary: (quasi-commutation criterion; without criticalpairs, see [Dershowitz 81])

Let Rbe left-linear, Qright-linear and left-nonerasing, such that CP(Q-!, R) Q r>+'̂ *-
Then R is a relatively terminating rewrite system to Q if and only if, R is a terminating

rewrite system.

Example:

1. (Integer numbers; cf. INT2 in [Padawitz 88])

Let Q =def {-0 -* 0, ~x -> x, s(-s(x)) -> -x}

be a piece of a specification of Z, the integer numbers, and let

R=def {x+0 -> x, x+s(y) -» s(x+y), x+(-y) -» -(-x+y)}

specify integer addition. -^ quasi-commutes over ^, since Ris left-linear, Qis right-

linear and left-nonerasing, and the (Q_1, R)-critical pairs strictly locally commute:

-61

Chapter 3: How to strengthentermination orderings

*K-0) ^ x+0 £> x x+(-0) ^ x+0 £» x

4* Tq 4,r Tq
-(-x+0) —ir-> -x -(-x+(-0)) ~x

Ir Tq
~(--x+0) —g—> -—x

x+(-s(y)) ^ x+s(y) ^> s(x+y)

4r Tq

-(-x+(-s(y)) ~s(x+y) *K-y) tf *K-y) tf <'*+V)
Ul Tq L^-* K-x+(-y)) -qJ

~(-x+s(y)) —j^-* ~s(-x+y)

x+s(-s(y)) ^ x+(-y) ^ -(-x+y)

±R Tq
s(x+(-s(y))) ^ s(-x+s(y)) ^ s(-s(-x+y))

R is a terminating rewrite system, as has been demonstrated in the previous chapter. By
thefact that -^> quasi-commutes over -rf, we have that R is a relatively terminating

rewrite system to Q. Moreover Q is is a terminating rewrite system by the polynomial

interpretation

[-x] = x+1 = [s(x)].

Together we have that RuQ is a terminating rewrite System.

2. (FF, continued)

Let R =def {nx -> fgfx}, Q =def {a -> ga}. R is a terminating rewrite system. There are

no overlaps between ffx and ga. So there areno (Q"1, R)-critical pairs. R is left-linear,
and Q is right-linear and left-nonerasing.Therefore R is a relatively terminating rewrite

system to Q. All termination criteria based on direct sums (for instance the one in

[Toyama et al. 89}) fail because g is a common function symbol in R and Q.

•

Next, we show a small example from the algebraic specification domain.

Example: (Maps)

Assume primitive specifications BOOL (for truth values), DATA (some data domain to

gether with a conditional "if'), and INDEX (a set of tokens provided with a total equality

function "eq"). The new functions "empty" (constant), "put" (binary), and "get" (unary)

are specified by the rewrite system

MAP =def { get(put(m, i, d), j) -> if(eq(i, j), d, get(m, j))}.

62

Chapter 3: How to strengthen termination orderings

Informally, expressions built with "empty" and "put" represent tables or finite mappings

from indices to data; "put" is an update Operator, and "get" a retrieval Operatoron maps.

Since MAP is left-linear and a terminatingrewrite system, the following Statementmay be

made: Provided that BOOL u DATA u INDEX is right-linear, MAP / (BOOL u DATA

u INDEX) is a terminating rewrite system, because there are no overlaps between left

hand sides from MAP and right hand sides of the primitive specifications.

D

The quasi-commutation technique however suffers from its hard syntactic restrictions.

Criticalpairs may cause additionalproblems.

Example: (Stack ofN)

Let Peano arithmetic be specified by a rewrite system NAT as usual:

NAT =defADD u MULT,

ADD=def {0+y -» y, s(x)+y -> s(x+y)},

MULT=def {0*y -> 0, s(x)*y -> (x*y)+y).

NAT is a terminating rewrite System, a fact which we can prove for example by the lexi

cographic path ordering using precedence * > + > s. In order to specify Stacks, we use

further function symbols "empty" (constant), "first", "rest", "length" (unary), and "app"

(binary). Stacks areconstructed hierarchically on the natural numbers.Let x and w de

note variables. Consider the rewrite system

STACK =def {first(app(x, w)) -» x, rest(app(x, w)) -» w,

length(empty) -» 0, length(app(x, w)) -> s(length(w))}

STACK is obviously a terminating rewrite System (proven by ^rpo using precedence
length> s, length>0). Is STACK u NAT a terminating rewrite Systemaswell?

Let us first try to prove that CTACK> quasi-commutes over ^^). Except for critical

pairs like

first(0+app(x, w)) NAT > first(app(x, w)) ^^ > x,

which may be ruled out for reasons of well-sortedness, there are no overlappings be

tween left hand sides of STACK and right hand sides of NAT, although there are com

mon function symbols 0, s in STACK and NAT ([Ganzinger, Giegerich 87]). By the
quasi-commutation criterion, we may infer that STACK> quasi-commutes over ADD),
and therefore that STACK u ADD is a terminating rewrite System. But thisreasoning
does notcarry over to STACKu MULT, as the first multiplication rule is left-erasing in
y, and the secondrule is not right-linear in y.

63

Chapter 3: How to strengthen termination orderings

Now, in a second attempt, we may try to prove that ^^ > quasi-commutes over
stack)» NAT is left-linear, and STACK isright-linear, butleft-erasing. Moreover, there

are the following (STACK"1, NAT)-critical pairs:

first(app(0, w))+y
STACK

first(app(s(x),w))+y -Stack"

first(app(0, w))*y

fust(app(s(x), w))*y

rest(app(w, 0))+y

STACK

STACK

STACK

rcst(app(w,s(x)))+y CTACK

rest(app(w, 0))*y
STACK

rest(app(w,s(x)))*y STACK

length(empty)+y
STACK

length(app(x,w))+y STACK

length(empty)*y
STACK

length(app(x,w))*y y^^

0+y

s(x)+y

0*y

s(x)*y

0+y

s(x)+y

0*y

s(x)*y

0+y

NAT > y

•mr* s<x+v>

•» 0
NAT

-nät* (x*v>+y

NÄT* y

tet* s(x+y>

-> 0
NAT

•mr* (x*y)+y

s(length(w))+y ^^ > s(length(w)+y)

0*y
NAT

sGength(w))*y

64

+ 0

NAT > Gength(w)*y)+y

Againthe critical pairs thatcontain "rest" symbols mightbe mied out, usingwell-sorted-

ness Information. However, none of the remaining critical pairs quasi-commutes.

Adopting a Knuth-Bendix like technique, one may add these critical pairs to NAT, and

may even succeed to prove that NAT remains a terminating rewrite system. But then fur-

ther critical pairs emerge.

Summarizing, the use of quasi-commutation heavily depends on which rewrite relation

quasi-commutes over whichone. (Indeed STACK u NAT is a terminating rewrite Sys

tem, which can be proven by a Standard termination ordering.)

•

Although quasi-commutation is far from being a powerful criterion, its obvious advan-

tage is an easy check by syntactic criteria. For syntactically restricted rewrite Systems, it

is an interesting termination proof method.

4. Confluence criteria

Confluence, also called the Church-Rosser property, is probably the most important, and

the most typical notion of term rewriting. Informally speaking, the order of the rewrite

steps is irrelevant for a confluent rewrite relation. It is known that confluence ofrewriting

is undecidable ([Huet 80]), even for the class of Systems where the function symbols

have arity 0 or 1 ([Book et al. 81]). Confluence is decidable for the class of ground

rewrite Systems ([Dauchet et al. 87], [Oyamaguchi 87]). According to [Knuth, Bendix

70], confluence is also decidable for the class of terminating rewrite Systems: A terminat

ing rewrite system R is a confluent rewrite system if and only if, for each (R, R)-critical

pair (t, tOt the normal forms of t and t' are (syntactically) equal. Knuth and Bendix

designed a procedure that attempts (and sometimes succeeds) to convert a System of

equations into a confluent and terminating term rewrite System. For non-terminating

rewrite Systems, confluence can be attacked by strong confluence criteria ([Rosen 73],

[Huet 80]). The strong confluence approach originates from the confluence proof of

lambda calculus; it disposes completely with the termination property, but compensates it

with a considerably harderlocal condition.

It has been a major goal since the beginnings of confluence theorems to decompose the

confluence proof of a relation RuS into those of R and S, or at least, to profit from the

confluence of S, say. This goal has brought up a variety of sufflcient conditions, see

[Klop 87] for examples. A surprisingly powerful criterion is given in [Toyama 87b]: If

R and S have no function symbols in common, then R and S confluent rewrite Systems

implies RuS a confluent rewrite System. If R and S have no common function symbols,

then RuS is also called the direct sum of R and S. We allow that R and S have common

function symbols, but impose the restriction that R is a relatively terminating rewrite Sys

tem to S instead.

Confluence criteria for composed Systems RuS, where R is a relatively terminating

rewrite system, may be developed along the proof methods of "confluence modulo".

Since confluence of RuE (E Symmetrie) is the sameas the E-Church-Rosser property of

R, Jouannaud's approach for "confluence modulo" can be compared to the confluence

approach here.

The objeetive of this chapter is

(1) to show how to localize RuS-confluence diagrams step by step,

(2) to point out the limits of localization,

(3) and finally to come down to critical paircriteria.

65

Chapter 4: Confluence criteria

A confluence proof for S may be delayed, or strong confluence may be used for it.
Klop's confluence criterion ([Klop 87]) is of thelatter kind. Such acriterion may be seen
as a common generalization of the Newman criterion andstrong confluence criterion.

4.1. The role of coherence

Let R and S denote relations, and let R/S terminate. How can we prove confluence of

RuS? As we will see, in a way very similar to confluence modulo.There for Symmetrie

E, essentially confluenceof RuE is sought. Terminating relations are proven confluent

by the Newman lemma. In this spirit, we Start to localize the *<RuS r^* •°^agramS'
Localization gets stuck in adiagram that has acounterpart in the "confluence modulo" ap

proach. The key notion that helps to continue localizing then, has been called coherence.

Coherence means, roughly speaking, thatR-stepsmay always be put beforeE-steps. We

will set up a suitablenotion of coherence for R and S where S is an arbitrary binary rela

tion, ratherthan symmetry closed.

In order to simplify talking aboutconfluence diagrams, let us agree to say that a relation

Qjoins, if Q c (RuS)* ((RuS)"1)* holds. Confluence of RuS in this respect means
that ((RuS)-l)* (RuS)* joins:

RuS po

RuS R|>S
* u

i >. RuS....$sÄ

In the case where S is some Symmetrie relation E, the property of E-confluence in

[Jouannaud 83] precisely means joinability. The property which corresponds to the

Church-Rosser property in the case of equational rewriting, the E-Church-Rosser prop

erty, precisely means confluence of RuS. The liberalnotion of rewrite system makes this

possible.

For the inductive proofs of this chapter,we will use the Noetherian ordering » on pairs

(t, n), defined by

(t, n) » (t', nO <=>def

t(R/S)+t' v

t(RuS)*t' a n>Nn'.

In the naive attempt to localize as much as possible from the confluence diagram for

RuS, one arrives at the following lemma. It characterizes confluence in the case of rela

tive termination:

66

Chapter 4: Confluence criteria

Lemma: (first localization)

Let R/S terminate. Then RuS is confluent if and only if the following diagrams hold:

+9

RuS

Proof:

In order to show that

t o—Ri,iS »o

RuS Ri^S

4UaS~~&2T*

'••K-W-w-""^:-Ö

RipS

holds for all t, and all m £ n, we use induction » on the pair (t, n). The case m = 0

is trivial. Now assume that n £ 1. Since we may use the inductive hypothesisin the case
t RuS t', n > n-1, the proof is done if we arrive to show that in the proof attempt

m
t o Ri,iS »o

n-1

R<l>S <io, r|»S
show) l

hyp.

,RuS-§$öx
*

*!
RuS tnd- R4>S

theupper partholds. There aretwocases toconsider, according to theequality

(RuS)* = S* u S* R (RuS)* .

casel:

S %q

r4>s pre^' R|>S
X*

case 2:

-s—I* •*>. RuS V

R^S Prem- RuS

Case 2 needs again a case analysis: Whether the grey arrow downwards contains an

R-step or not The achieved part of the proof diagram becomes black, because it may
now be taken as a premise.

67

Chapter 4: Confluence criteria

case 2.1: (no R-step)

t'
-B—»o—RuS %

prem. R^s ind. R|,s
1 hyp. |

* *

The inductive hypothesis is justified by

t S* R f.

case 2.2: (at least one R-step)

RuS

R4»S ?"* R4pS
hyp. T

.* 1*

ind. r^,s
hyp.

* * *

The inductive hypothesis is justified by

tS*S*Rt', andby tS*Rt".
D

The strength of this lemma is shown by the counterexample (R/S does not terminate) at

the left hand side below, where RuS is not confluent, although both R and S are conflu

ent and terminating, and the diagramat the right hand side below holds:

""^Cx"-*"*0
RuS »

RuS

Notice that the diagram for R S* R fits tothe "confluence modulo" diagram for R E* R
in [Huet 80]. Next we want to get rid of the composed reduction S* R in that diagram.
But the conditions for confluence of RuS can be continued localizing only under further

restrictions. This isdemonstrated byanother counterexample (R-1 S* R -diagrams do not
join) at the left handsidebelow,where RuS is notconfluent, although R/S terminates, R

and S are confluent, and the following diagramholds:

o«-R »-*>
•S *9

WS

In order to break R'1 S* R -diagrams apart, we have to take care that there is no infinite
S-derivation which connects R-"redexes". The basic idea is to use a Noetherian ordering

» that guards such S-derivations. For simplicity reasons, we will not develop this con-

cept in general, but instantiate » by (R/S)+. (It is useless to choose »=defS ifS ter

minates. In thiscase, fully local conditions are achieved, applying Newman's lemma for

RuS.)

68

Chapter 4: Confluence criteria

For "confluence modulo", Jouannaud ([Jouannaud 83]) coined the notion of coherence,

which we widen for the purpose to prove confluence of RuS where R relatively termi

nates to S:

Definition:

Assume thatR, R', andS aregiven, and R £ R' £ S*R holds. A triple (to, ti, t2) of
terms is called coherent, if one of the following cases holds:

(l)tiS*((RuS)-l)*t2 or

(2) ti R (RuS)* ((RuS)-l)* t2 or

(3)3t3. to (R/S)+13 a ti S* t3 (RuS)* ((RuS)-l)* t2.

Note that if S is cyclic (as in the "confluence modulo" approach), cases 1 and 3 cannot

occur sincethey wouldimmediately causea cycle in the R/S relation,and thus contradict

termination of R/S. The remaining case 2 in our case enumeration then coincides with

Jouannaud's notion of coherence. Let E be Symmetrie. Jouannaud calls R E-coherent, if

(E-1)* R (E*R)* is coherent The coherence of (E"1)* R has already the same effect.
This motivatesthe followingdefinition:

Definition:

Riscalled S-coherent, if ti (E"l)* to R t2 implies that to, ti, t2 arecoherent
•

Using S-coherence, we can continue to localize confluence of RuS:

Lemma: (secondlocalization)

Let R andS denote binary relations and letR/S terminate. RuS is confluent if andonly
if, there is R' suchthat R £ R' q R/S holds, thediagrams

*

-*9 9 S—*>

RuS

5 RuS-&Ö 3 RvS pö
* *

hold, and R is S-coherent.

Proof:

R^S

Letus call the two mentioned diagrams premise 1,premise 2, respectively. Byinduction
on the (Noetherian) lexicographic ordering ((R/S)+, >) on (t, min(m, n)), we prove
simultaneously

-69-

Chapter 4: Confluence criteria

1. that ((RuS)"1)1" R"11 (RuS)n joins, and

2. that R-11S* R joins. As here the expression min(m,n) is not defined, werather use
the first transfinite ordinal number ©, in order to achieve ©>min(m,n).

Claim 2 is needed precisely as premise 2 for the "first localization" proof. For the proof
of claim 1, we may so take a copy of the proofof the "firstlocalization" lemma, where

we replace "premise 2" by "inductive hypothesis 2". This already finishes the proofof
claim 1.We have, so to speak, "reused" the proofof the "firstlocalization" lemma.

Claim 2 remains to be proved. An (S"1)* R -diagram may join in 3 different ways, ac
cording to thedefinition of coherence. Here the first case is covered by the third one.We
employ case analysis alongtheremaining two alternatives:

casel:

t o— •s-^W •ß—p>

If' pr™ti?S

coh. t $™»RuSH&$
1 * '-

RiliS [nd- RtlfS
i hyp.
i* I *

•RuS-.&# RuS-^ö
* *

The inductive hypothesis is

justifiedby tS*R't'.

d RuS .»ö RuS
* *

Justification: t(R/S)+t'.

(Jouannaud uses for his proofs essentially the same Noetherian ordering as we do here.)

Following [Jouannaud 83], we introduced an auxiliary relation R' where RcR'c S*R

holds. This has a number of technical advantages:

1. If we instantiate R' by S*R, we get acopy of the "first localization" lemma. Thus, we
can keep the "if and only if' for the next lemmas.

2. The instantiation R' = R leads us to a result in the spirit of Huet's "confluence mod

ulo" approach. At the end of this chapter, we will present two critical pair criteria for

this case.

3. In the case where R and S denote rewrite Systems, finally, the rewrite relation g^
may be instantiated by a class rewrite relation Rg), extending Jouannaud's

"congruence class approach". Here

t"^js> *' hol(*s tf t ~~T* '" "~T~* "R* x for some ul -pre v» •••» un ^pre v .

-70

Chapter 4: Confluence criteria

The class approach is however not continued within this thesis. See also the discussion in

the conclusion.

4.2. Further localization

Suppose thatS might be a primitive rewrite system, andR might bedefined hierarchically
on topof S. In such a Situation, it is reasonable to assume a priori that S*1 S* joins. The
only non-local condition for confluence of RuS on this account, is the S-coherence dia

gram. A very natural choice is to adopt the restriction that S is "almost" confluent, not too

hard a restriction after all. Then we get a confluence result for local S'1 R - diagrams.
The sectionis concluded with criticalpair criteriafor this case.

Definition:

R' is called locally S-coherent, if ti S"1 to R' t2 implies that to, ti, t2 arecoherent.

D

Local S-coherence is a local version of S-coherence. In thesame vein, S* may becalled
locally S-coherent if ti S"1 to S* t2 implies that to, ti, t2 are coherent This property
containsconfluence of S as a special case. Using these new notions, the next localization

step takes place:

Lemma: (third localization)

Let R/S terminate. Then RuS is confluent if and only if, there is some R' such that
RcR'cR/S, thediagram

9 R *>

F

I l~v^RuS~~&:Ö
*

holds, andboth R' andS* arelocally S-coherent.

Proof:

"Only if' is easy by R' =def R/S. Cases 1 and 2 in the coherence definition cover all
ti (RuS)* ((RuS)"1)* t2 inquestion.

For "if, weperform induction using ((R/S)+, >) upon (t, n) to show simultaneously
that for all t, ti, and t2,

1. ((RuS)"1)* t (RuS)* joins (there we set n = co), and

2. ti (S'l)n t R'uS* t2 implies that t, ti, t2 arecoherent.

71-

Chapter 4: Confluence criteria

Claim 2 implies that t, ti, t2 are coherent for ti (S"1)* t R t2, which is needed in orderto

reuse the proof of the "second localization"lemma for claim 1.

We enter nowthe proof of the second claim The proof is by acase analysis along the3
cases in thelast premise. In each case, we need in addition acase analysis depending on
which case, the inductive hypothesis yields.

casel: case 1.1: case 1.2:

to R'uiS »q q R'i.»S pq

VV,

n-1

local

coh.
R<£>S

^3~~.w§kq
* i

ind.

hyp.
2

RiyS

RuS
*

Justification: t S t', n > n-1.

case 1.3:

RyS

\ + I *
< S $0 RuS-#ö

* t" *

As required, t (R/S)+ t" holds,

via tSt'(R/S)+t".

R4>S

*

r4>s

gftse2;

t <*- £Xi$-

local

coh.
Rl|>S

f 5—v.Rlvvvvv^ivwvvv.R.US-v^y
* ?

n-1

ind. ind. \
J» Äyp. R4*S hyp. RyS

2 j 1 \
!' RuS-&f*..Ru5-.&f*

Ind. hyp. 2 justified by t S t', n > n-1,

ind. hyp. 1 justified by t S t' R' t".

72

Chapter4:Confluencecriteria

gase2tl;

tQJtv^-+Q

R<l>S

\rW—»oRuS» ixr:

R<I>Sr6s

*

<5&öRU5--j$jtf
t'"

Asrequired,t^r1"t'"holds,

case2t2;

case3:

t<fc

\'<

RuS

\
<5Kt§

R'uS*

local

coh.

,ft"
5-—P>v—RuS

1
ind.ind.

hyp.R4*Shyp.R'
2I7|

*RuS-^JERuS-^ö
**

t

•Jo-RuS-.#SRuS-.#f
*t'"**

Asrequired,t-g^+t"'holds,via

n-1

>$80"KU5>••••&:•{>

I

Asrequired,t-^+t"'holds,

^'l^+RÜS***'''-

Ind.hyp.2justifiedbytj>t',n>n-1,
ind.hyp.1justifiedbyt-|^»+t".

case3.2:

t*.KuSL

I*
R-|*>RuS-^SRuS--#

73

Chapter 4: Confluence criteria

ü R/.S

„+

4»«<^™M»^ RuS kZ
* y * *

As required, t (R/S)+1'" holds, via t S (R/S)+1'".

n

Note thatcase 3 in thecoherence notion is indispensable for theproof, case2.1, even if
we skippedcase 3 in local S-coherence. Thispoints to the fact that the coherencenotion
is well-chosen.

For rewrite Systems Rand S, coherence of <§- ^ is supported by acritical pair criterion.
One arrives at the theorem:

Theorem: (firstconfluencecriterion)

LetS bea confluent rewrite system, and letR beleft-linear and a relatively terminating
rewrite System to S. If

1) CP(S, R) G -?* Ng^ u t ^ *<g^, and
2)CP(R,R) c-^**^,

then RuS is a confluent rewrite system.

Example: (Nonfin, continued)

Let f, c, s denote unary function symbols, x a variable, and let

S =def {ex -» fcx}, and

R=def {csx-»cx}.

S is left-linear and there are no (S, S)-critical pairs. So S is a confluentrewrite system.
By the sameargument, R is a confluent rewrite System. In order to provethat RuS again

is a confluentrewrite system, the following criticalpair is to consider

CSX t ex

4s is

fcsx t fcx

74

Chapter 4: Confluence criteria

This diagram satisfies case 2 of the "first confluence criterion", therefore RuS is a con

fluent rewrite system.

In comparison to the commutativity criterion in [Toyama 88], corollary 3.1, S needs not

be left-linear. So for example, our criterion treats the Systems

R =def (c(s(x), s(y)) -» c(x,y)},

S =def {c(x, x) -> f(c(x, x))}

(where c Stands for a binary function symbol now) in the same way as above, whereas

Toyama's criterion would fail.

D

The "first confluence criterion" can also be compared to [Huet 80], theorem 3.3. In con

trast to Huet, we may not replace t-j^* *<^§"l by l T?* s** *<s" *<R *'» since we
cannot move an R-rewrite step before an S-rewrite step. In order to justify such moves,
we would inaddition need coherence of j»-^. Without going into details, Huet's theo

rem can easily be instantiated (E = 5) in this spirit:

Theorem: ([Huet 80], theorem 3.3)

Let S be a confluent rewrite system, andlet R be left-linear, and a relatively terminating
rewrite system to S. If every (SuR, R)-critical pair (t, O satisfies t ^>* j>* *<j *<£ t',
then RuS is confluent, and moreover =rus = r>* j>* *<§- *<r holds.

D

The claim still holds ifconfluence of j* is weakened to *<g- -§>* c -^* -?»" '<s- '<«•
(without proof).

4.3. On a confluence criterion of Klop

If we want to localize even the (S*, S)-diagrams, then we must enforce still stronger
conditions, very much like Huet's strong confluence. This is anideadue to [Klop 87]. In
this section, we will first recall Klop's confluence criterion, which is the first mentioned

confluence criterion for relative termination in the literature. Then, we will show in two

stepshowKlop's criterion can be generalized further. The first stepaimsat a reformula
tion of Klop's resultin simpler terms. Starting from the lemma in the previous section,

the second step develops a "strongly localized" descendant which obviously generalizes
that reformulation. This descendant is particularly interesting even for anotherreason: It
is a common generalization of Newman's lemma and Huet's strongconfluence lemma.

The result is based on the new notion of "strong coherence", which has nocounterpart in
the equational approach.

75-

Chapter 4: Confluence criteria

Definition: ([Klop 87], Ex. 1.7.11)

A relation S that commutes over R-1 is saidto have Splitting effect (to R), if there are
tS^tRuSK, such that all n which satisfy t (RuS)n ((RuS)"1)* t' are greater than 1.

D

Klop arrives at the theorem:

Theorem: ([Klop 87], Ex. 1.7.11)

Let Qi, ie {1,..., n), denote a crowd of binary relations, and let Q = QiU ... uQn.

Suppose that for all i, the following twoconditions hold:

(1) Qi commutes overQ"1, and,

(2) if Qj has Splitting effect to Q, then Qi relatively terminatesto Q.

Then Q is confluent

•

Now we are going to show that this is a specialcase of an even further localized variant

of the "third localization" lemma of the previous section. First, the condition to have

Splitting effect becomes much easier to widerstand when turned intoits contrary:

Definition:

Call a relation S non-splitting (to R), if the following diagram holds:

» RuS »p
j

R<|iS

c

D

Note that "non-splitting" is a property similar to "strongly commuting" (cf. the overview

in the previous chapter, third section).

Fact:

Let S commute overR-l. Then S is non-splitting to R if andonly if, S has no Splitting
effect to R.

•

Now let R denote the union of all Qi which have Splitting effect, and let S denote Q\R.

The property "all Qi which have Splittingeffect, are relatively terminating to Q" can be

replaced by "R is relatively terminating to Q", thanks to the "inheritance of relative ter

mination" corollary, part 3, in section 3.1. Thus we get:

76

Chapter 4: Confluence criteria

Lemma:

If R/S terminates, R is locallyconfluent, and S is non-splitting, then RuS is confluent.

D

This lemma is a slight generalization of Klop's lemma, since it does not require that R

commutes with S. Still it admits an interesting relaxation, which can be derived from the
"thirdlocalization" lemma in the previous section. Namely, if (RuS)e is an R-step, or an
S-step that is guarded by a properR/S-derivation, thenfurtherRuS-steps may follow:

Definition:

R' is called strongly S-coherent, if ti S"1 to R' 12 implies that

(1) tiSß((RuS)-l)*t2 or

(2) ti R' (RuS)* ((RuS)-l)* t2 or

(3) 3t3.to(R/S)+t3 a tiSet3(RuS)*((RuS)-l)*t2.

D

Notice the e symbols in cases 1 and 3. There is also a notionof strongE-coherence in

[Jouannaud 83],with a different meaning, however. Strong S-coherence actually has no

counterpartin the equationalapproach. (S-coherence and strong S-coherence coincide if

S is cyclic andR/S terminates.) Strong S-coherence of S essentially means strong conflu
enceof S. Strong coherence satisfies thefollowing result:

Lemma: (füll localization)

Let R' be suchthat RcR'cR/S holds. If R/S terminates, thediagram

—B—*>

R

f :l*
ö^.-.-.vRuS^^

*

holds, and R'uS is strongly S-coherent, then RuS is confluent.

Proof:

Using the inductive ordering ((R/S)+, >) on (t, n), we show simultaneously

l.thejoiningof the diagram ((RuS)'1)* t (RuS)* (let n = co here), and

2. all t, ti, t2 with ti (S"1)01 R'uS t2 are strongly coherent

For claim 1 we reuse the proof of the "secondlocalization" lemma. So claim 2 remains to

beproven. If n = 0, then everything is trivial (case 1of the claim holds). Letnow n > 0.

77

Chapter4:Confluencecriteria

Thenwecanapplythepremise,whichleadstoacaseanalysisverysimilartothatinthe
"thirdlocalization"lemma.

casel:

tq—R'uS»q

t'Ir.

n-1

strong
coh.

RyS

S$3
ind.I

Ihyp.R<|>S
2\

•wn,.Q'#* (KU3-fö

Justification:tSt',n>n-l.

case1.3:

Asrequired,t(R/S)+t"

holds,viatS(R/S)+t".

ca?e2tl;

t9
XXiS-•*Q

RjiS

!•—R^—»oR'.'S»y

R«£iSR^S

*

•S$?•RuS-^f

Asrequired,t(R/S)+t'"

holds,viatSR'(RuS)*t'".

case1.2:

gase2;

to-•ÄXiS.

78

co/t.

t"

ind.m</.

Shyp.R^SAy/>.Rl|»S
21

Ind.hyp.2justifiedbytSt',n>n-1,

ind.hyp.1justifiedbytSR't".

case2.2:

••*'p*RvS-#SRvS-..&5ö

Chapter 4: Confluence criteria

gase 2,3;

t JtXiS. +9

Ru

•RI •#Q—RuS »
* i

Nt

RyS
: *

c t"' * *

As required, t (R/S)+1'" holds, via

t S (R/S)+1'".

case 3,1;

t * RiaS-

1«/

c t *

As required, t (R/S)+1'" holds,

via t(R/S)+(RuS)*t"'.

i (.,w^AVS>^^p5c.AW^.RjjiS—^ä-—..RuS-—^o
c t'" * *

case 3:

JUiS.

$ fc/s 5/roIn* rIpS
\ coh. T

V t" 1*
t'J S H> RvS-rf

' : * 1
C I * I

ind. ind. I
Jl Ayp. R^S Ayp. R&S

2 17

JL^-RvS-^?—RvSHNf

As required, t (R/S)+1'" holds, via t S (R/S)+1'".

Note that case 2.1 in the proof relies on case 3 in the definition of strong coherence (cf.

the note after the "first localization" lemma in the previous section).

79-

Chapter 4: Confluence criteria

Let now Rand Sdenote rewrite Systems, and let ^>' =•£». By the critical pair theorem,
we get:

Theorem: (secondconfluence criterion)

Let S be left- and right-linear, and let R be left-linear, andarelatively terminating rewrite
system to S. If

1) CP(S, RuS) c ^y^ u t*ös>**<*ös . «*
2) CP(R, R) c -r^s** *<r£s~ ,

then RuS is a confluent rewrite system.

D

This result can be seen as a common generalization of the Knuth-Bendix criterionon the

one hand (except for the left-linearity requirement on R, which may be dropped when

S =0), and Huet's first strongconfluence criterion on the other hand (for R =0).

Example: (FF, continued)

Consider R =def {ffx -» fgfx}, S =def {fa -» gfa}. We learnt in the previous chapter
that -£»/j» terminates and j» does not. R is left-linear, S is left- and right-linear and

has no nontrivialcritical pairs. The only (R, R)-critical pair joins:

fffx -g> fgfix

Ir !r

ffgx ^ fgfgfx

The only (R, S)-criticalpairis trivial. So it meets case 1 in the definition of strongcoher

ence. Therefore RuS is a confluent rewrite system, according to the "second confluence

criterion".Toyama's confluence criterion ([Toyama 87b]) for direct sums fails because R

and S share the function symbol g.

•

80

5. Applications of relative termination

This chapter presents two results about narrowing where relative tenmnation plays a key

role. It is shown that narrowing with intermediate rewriting (not necessarily to normal

form; "reduced narrowing") is complete if the rules used for this rewriting form a rela

tively temiinating rewrite System to the whole rule set. Moreover it is shown that normal

narrowing where normalization is done with a normalizing subset of the rule set, is com

plete, if the normal forms are finally preserved. (Recall that normalizing means that nor

mal forms always exist.) These two results generalize the classical theorem of [Fay 79]

thatnormalnarrowing is complete for terminating rewrite Systems. By a counterexample,

a previous claim of the completeness of normal narrowing in [Hußmann 85] is shown

wrong, and the mistake in the proof is analyzed and repaired.

5.1. Oriented paramodulation and narrowing

Equationalunification is the task to solve an arbitrary equation in a given equationalthe

ory. Universal unification is accordingly a procedure thatassigns to an equational theory

E and an equation (t, O, the set of E-unifiers of t and t'. Paramodulation steps and

narrowing steps are basic steps of a complete universal unification procedure, where

completeness means that every Solution is covered by a computed unifier. This section is

to introduce the notions of paramodulation and narrowing, their connection to each other,

andtheirrole in rewriting andequational reasoning. The notionof paramodulation is pre-

sented in a new style.

Paramodulation ([Robinson, Wos 69]) was invented in order to handleequality in reso-

lution in an adequate and fairly efficient way. See [Padawitz 88], [Furbach et al. 89], and

[Hölldobler 89] for a comprehensive treatment of paramodulation. Commonly paramodu

lation is defined for conditional, Symmetrie rewrite Systems. Employing our liberal un-

derstanding of term rewrite system, it appears technically more convenient to drop the

symmetry condition. (In other words: The orientation of rules is taken into account.

Elsewhere the notion of oriented paramodulation is used to stress this. Here usual

paramodulation is modelledby oriented paramodulation usinga symmetry closedrewrite

system.) In this thesis, we will need paramodulation andnarrowing only for the uncon-

ditional case, and we will alwaysmean the oriented variant

Solving anequation (t, tO in an equational theory E means to findanE-unifier c of the

left hand side t andthe righthand side t' of the equation, i.e. a Substitution a such
that ta=e t'CT holds. (Recall that =e denotes the congruence closure of ^ .) Since we
adopt a liberal view of termrewrite system, we may assume that E =R for some rewrite

81

Chapter 5: Applications of relative termination

SystemR. Let us in the following assume that R is confluent It is well known that R then

satisfiesthe Church-Rosser property:

ta=r t'a ifand only if for some t", both ta ^>* t" and t'a ^* t".

For convenience, we encode the two derivations ta^* t" and t'a ^* t" into one. For
this purpose, we fix the following Convention (the idea to this encoding goes back to
[Hullot 80] who usedthe name "h" instead of "eq".):

Encoding Convention:

Let there be a binary function symbol eqe F to express equality, with the reflexive

axiom (eq(x, x) -» true) e R, and "true" and "eq" do not appear as a top symbol on
any other left hand side in R.

•

Now we may treat equations (t, O as if they were terms eq(t,0:

Lemma: (encoding)

Let R denote a confluent rewrite system where the encoding Convention holds. Then a

Substitution a is aR-unifier ofthQ equation (t, O ifand only if, eq(t, tO<J -g»* true
holds.

Proof:

Because reflexivity is the only rule where "eq"occurs on the left hand side, the topmost

symbol "eq" cannot be removed from the goal, unless by application of reflexivity.

Reflexivity leads to the term "true", which is in normal form, and which can therefore

only be the last term in the rewrite derivation. So the derivation has for some suitable t"
the form eq(t, Oa g-»* eq(t", t") -g true, and all rewrite steps, except the last one, hap
pen strictly below the top. Therefore we have both ta •£»* t" and t'a ^>* t", i.e. a is
indeed an R-unifier of (t, O.

(=»

Let a denote an R-unifier of (t, t'), i.e. a satisfies both ta ^»* t" and t'a ^>* t" for
some t". So in particular eq(t, tOr ^>* eq(t", t") ^> true holds, where the last applied
rule is reflexivity.

D

Systems of equations might be treated likewise, by means of an additional binary func

tion symbol ande F, with the rewrite rule (and(true, x) —»x) e R, and "and" does not

appear as top symbol on any other left hand side in R. The system of equations

82-

Chapter 5: Applications of relative termination

(tl.tiO, (tn,tn')

could be encoded into

and(eq(ti, ti'),..., and(eq(tn, tn'), true)...).

We will however stick to the Single equationcase in the following.

So far, we have reduced the unificationproblem to the problem of finding all those sub
stitutions a which enable a certain derivation. Now it appears quite natural to consider

the single-step problem, and this is the key idea to paramodulation, as we will see in a
minute. Fix an occurrence u and a rewrite rule (1 —¥ r) e R, which has been renamed

suchthat Var(l-> r) n Var(t) = 0, without loss of generality. We have to enumerate

the set

P = {a. ta-rz^ (ta)[u<-ra]J

of all substitutions a such that the instance ta admits a rewrite step using the rule 1-> r

at u. Obviously P contains all the Information needed to compute E-unifiers step by

step. In the definition of P, we use already the fact that the right hand side of the rewrite

step is uniquely determined by u, 1 -» r, and a, even when 1 -> r should be right-

erasing. (Here one must be careful because of the liberal notion of rewrite rule.) On this

account, P is characterized by

P = {a. (ta)/u = la}.

P is often infinite, though a finite description is desirable. For instance, it can easily be

verified that for each a € P, also at e P. On this account, it makes sense to define a

paramodulation step as a step that computes a set of most general (i.e. minimal with re-

spect to the subsumption ordering <sUb) elements of P.

Definition:

Let t, t' be terms, u an occurrence, 1-»r a rewrite rule, and a a Substitution. Then t

admits aparamodulation step atuwith a (to t'), (in symbols t P^T >q t') if

Wta-r^t', and

(2) ta' j_^r> t" implies that there isa Substitution T| such that both tar| =ta' and
t'T] = t".

•

In short, one may say that, given a term t, an occurrence u, and a rule 1 -» r,

paramodulation describes themost generalinstance ta oft thatadmits a rewrite step at u

using rule 1 —> r. For this reason, rewrite steps may be considered as a special case of

paramodulation steps.

-83-

Chapter 5: Applications of relative termination

Above we suggested that there is a finite presentation of P. The set of paramodulation

steps for fixed u and 1-> r is actually finite, provided F is finite. So we can effectively

compute paramodulationsteps:

Paramodulation Step:

We have to distinguish two cases.

Case 1: ueFOcc(t).

Then (ta) / u = (t/u) a, so P = { a. (t/u) a = la }. In other words, P is the set of

0-unifiers of t/u and 1. As it is well known, 0-unifiers are decidable, and the most gen

eral 0-unifier, if it exists, is unique up to renaming.Such a step is also called a narrow
ing step (in symbols t N\^t>a t').

Case 2: u^FOcc(t).

Then there are occurrences v, w, and a variable x suchthat t/v = x, (xa)/w = la,

and u = v.w hold. Moreover v,w, andx are unique.Without going much into details,

let us State that here the finite set

{ [l'[w<-l] / x]. Vw'eFOccO. w'<prcw }

is equal (modulo renaming) to the setof most general elements from P.The term Y is
called the prefix to 1in l'[w <- 1] which is substituted for x. [Padawitz 88] shows that
prefixed rules l'[w«-l] -» l'[w<-r] allow to simulate proper paramodulation steps

by narrowing steps.
•

(Elsewhere this algorithm is taken as a definition ofparamodulation, and ourdefinition
above appears as a consequence, called the lifting lemma.)

Even if both R andF arefinite, paramodulation is usually infinitely branching, i.e. from a
term t infinitely many paramodulation steps may Start, due to infinitely many occur
rences ueFOcc(t) below a variable x. This drawback is not shared by narrowing,

provided Ris finite. Nanowing is arestricted form ofparamodulation; itcoincides with
paramodulation when a is normal. (A Substitution a is called normal, if xa is normal
for all xeX.) This fact makes narrowing more attractive than paramodulation. I found it

instructive to perform all proofs for the paramodulation case first, and toadd a corollary
for nanowing.

Example:

l.Let R =def {0+x-> x, s(x)+y-» s(x+y)} and t=defz+z. Narrowing steps for t can
take place atoccurrence Xonly. Up torenaming, they are

84-

Chapter 5: Applications of relative termination

t -/^a 0, and

t -p£>a' s(z'+s(zO),

where a =def [0/x, 0/z], and a' =def [z'/x, s(zO/y, s(z0/z]. An infinite crowd of fur

ther paramodulation steps (which are no narrowing steps) is for instance

t -Pj^a s*(0) + ^(0+0), ieN,

where u = 1 1 (i times), and a" =def [0/x, sKO+0) / z].

2. Let R =def{eq(x, x) ->true) and g=defe<ltf(y)»z). The only R-paramodulation step

(actually a nanowing step) for the goal g is

g-J^atrue,

where a=def[f(y)/x,f(y)/z].

•

A paramodulation step is the basic step of a complete universalunification procedure: A

set Uof E-unifiers of (t.O is called comp/ere, if every E-unifier z of t and t' iscov-

ered by some computed unifier aeU, i.e. eq(t, tTr £sub eq(t,Oo holds. (There is a

different notion of completeness in the literature, see [Fages, Huet 83], which uses sub-

sumption modulo E . Our procedures may produce some superfluous substitutions on

that account) Given an equational specification E and two terms t and t', the paramodu

lation procedure indeed delivers a complete set ofE-unifiers of t and t'.

Theorem: (completeness ofparamodulation)

Assume that R is a confluent rewrite system satisfying the "encoding Convention". Let
U denote the set ofsubstitutions a =ai...an where eq(t, O -f^ax — /^o» trae is

a paramodulation derivation. ThenU is a complete setof R-unifiers of (t, V).

Proof:

Correctness: I.e. U onlycontains R-unifiers of (t, t'). Assume given a paramodulation
derivation eq(t, 0-Pj[>g1 ... -^Va«>true» and let a = al—an- Paramodulation by
definition describes most general rewrite steps, so here there is a rewrite derivation
eq(t, Oa ^* true. Employing the "encoding" lemma, this means that a is an R-unifier
of (t, f).

Completeness: I.e. every R-unifier of (t, t') is covered. Let T denote an R-unifier of
(t, O. Due to the "encoding" lemma, t satisfies eq(t, Ot ^* true. According to the
definition of paramodulation, there exists a paramodulation derivation
eq(t, O-^j^a, — fR>an tnie and some T| where t = ai...anTl. Hence T is covered
by the computed unifier a =defai...an.

85-

Chapter 5: Applications of relative termination

D

If the Substitution i is normal, every paramodulation step is actually a narrowing step.

Corollary: (completeness ofnarrowing;for terminating rewrite SystemsR, see [Hullot

80];[Hußmann85])

Assume that R is a confluent rewrite system which satisfies the encoding Convention. Let
U denote the set of substitutions a =ai...an where eq(t, V) -^i^^ ... JVR)<yB true is a

narrowing derivation. Then U is a setof R-unifiers of (t, t') which is complete for nor

mal R-unifiers of (t, O.

•

5.2. Normal narrowing is not complete

The pure narrowing procedure is very inefficient as theoretical considerations

([Bockmayr 86]) and practical use ([Geser, Hußmann 85], [Hammes 86]) have shown.

Various improvements have thereforebeen investigated: Basic narrowing([Hullot 80]),

redex selection strategies ([Fribourg 84], [Padawitz 87], [Echahed 88]), and normal nar

rowing, i.e. narrowing with intermediate normalization of terms ([Fay 79]). Overviews

of narrowingoptimizations are given in [Rety 87], [Nutt et al. 87] and [Padawitz88].

Normal nanowing has up to now only been considered when the whole set of rewrite

rules was terminating (except in [Hußmann 85]). However it is also an interesting ques-

tion whether narrowing with normalization by a normalizing subset R of the rules re

mains complete, although the whole set RuS of rules is potentially a non-terminating

rewrite system. This question is connected with relative termination, as we will see. In

this section we will show by a counterexample that, againstall expectations, R-normal
RuS-narrowing is not complete for normal Solutions, even when R is a terminating

rewrite system This counterexample falsifies a conjecture of [Hußmann 85] and shows

that Hußmann's proof attempt was not a complete proof.

A normal paramodulation step(and accordingly a normal nanowing step) for t consists
in reducing t to a ^-normal form—for this reason let us assume that R isanormaliz
ing rewrite system—followed by a paramodulation step. Formally, normal paramodula

tion is defined thus:

Definition:

Let R be normalizing. An R-normal RuS-paramodulation step from t to t' is defined

by:

•

-86-

Chapter 5: Applications of relative termination

The optimizing effect is obvious as anormal paramodulation derivation is aspecial case
ofa paramodulation derivation (since rewrite steps are paramodulation steps), and some
paramodulation derivations are cut off. For the same reason, normal paramodulation is
correct against the paramodulation procedure. The same reasoning applies to normal nar
rowing. If S=0, completeness can be easily proven by induction on ^+ ([Fay 79]).
However in the case where S* 0 is anon-terminating rewrite system, the completeness
proof becomes much more intricate. Hußmann attempted to prove completeness ofnor
mal conditional narrowing with [Hußmann 85], lemma 5.6. Letus reexamine thereason
ing for the unconditional case only. An unconditional version of the lemma which
Hußmann proved looks as follows:

Fact:

If Ris aconfluent rewrite System, then t ^>* true and ttf t' imply t' ^>* true.
D

Using this lemma, arbitrarily many ^-normalization steps may be interleaved with the
nanowing steps without loosing completeness. But letus beprecise:

Theorem:

Let R be a confluent rewrite system, and neNarbitrary. Let Udenote the set of substitu
tions a = ai...Ok where either

(1)k<,n and eq(t. f) WRRuS)q,... NPRRuS)gl true, or
(2)k>n and eqft,O-W^^c, ...-m^^^-P^^ ...-P^^Oüc

hold. (Informally: As soon as the length of the normal paramodulation derivation exceeds
n, normalization is switched off.) Then Uisa complete set ofR-unifiers of (t,O.

•

The difference tonormal paramodulation isvery small: An arbitrary upper bound for the
number ofnormalizations exists. But this theorem does not say that normal paramodula
tion is complete.

Lemma:

R-normal RuS-nanowing may be incomplete although Risa terminating rewrite system,
andR, S, andRuS areconfluent rewrite Systems.

Proof:

By counterexample. Let a, b, c be constants, and let

R=def{a->b, eq(x,x)-»true} and

-87

Chapter 5: Applications of relative termination

S=def{b-»a, a-»c).

The goal g=defeq(b, c) has the trivial Solution id, the identity Substitution (there is no

unknown to be solved). This Solution is obtained by means of the following narrowing

derivation:

eq(b, c) -#s»# eq(a,c) -#5»«* eq(c,c) -#g*# true.

On the other hand, the only narrowing derivation with •^-normalization is

eq(b,c) j**** eq(b,c) -H^jd
eq(a,c) ^NF eq(b,c) -M^id
eq(a, c)...

which becomes cyclic and therefore yields no Solution.

(S contains aleft hand side "a" which isnot in -^-normal form. Itmay seem that this was

the reason for incompleteness. However a slightly changed example points out the con-

trary: Let f be a unary function symbol, and a, b, and c be constants. The setting

R =def (f(a) -» b, eq(x, x) -» true},

S =def {b -» f(a), a-»c},

g=defeq(b,f(c))

works the same way.)

D

What went wrong? The missing link is zfairness argument In the counterexample, the
application of anarrowing step after -^-normalization destroyed -^-normal forms again
and again. In other words, j> did not finally preserve ^-normal forms (this notion will

be defined below). Although every intermediate goal has the potential to reach the Solu

tion, it is not cenain whether sufficiently many steps decrease the distance to (i.e. the
length of the shortest derivation to) the Solution. If g» does finally preserve -^-normal

forms, then the distance to the Solution finally decreases, and completeness holds indeed,

as we will prove in the last section.

5.3. Relative termination and reduced narrowing

Before we prove a completeness result for normal nanowing based on the premise that
-g» finally preserves -^-normal forms, let us first consider the special case that R is a

relatively terminatingrewrite system to S. The issue becomes comparatively simple then,

since we need not care about normal forms. We actually need not perform R-normaliza-

tion, but may perform arbitrarily less R-rewrite steps. Padawitz ([Padawitz 88], section

88

Chapter 5: Applications of relative termination

8.7) calls this technique "R-reducedRuS-paramodulation". We will arrive at a surpris-

inglysimple proofof completeness of R-reduced RuS-paramodulation and narrowing.

Definition:

An R-reducedRuS-paramodulation step from t to t' is defined by:

1^RuS^ l'» tf l R>* ^RuS^ l''
•

This definition does not yet cover the following fact: A procedure for reduced paramodu

lation performs the R-reduction in a "trap door" way, i.e. it disregards alternative R-re-

duction steps. But at a point where a paramodulation step is due, all possible paramodu

lation steps are considered. We may take this into accountby the followingdefinition:

Definition:

Äset D of reduced paramodulation derivations starting from t is called 2l computedset,

if it satisfies the following constraints:

(1) If some reduced paramodulationderivation in D has the prefix

1 ÄjPR,RuS)<yi *" ÄjPR,RuS)<jm R* l ^RuS>a»l »

then for every paramodulation step t' ^RuS>aB' *'"» Dcontains a reduced paramodula
tion derivation which has the prefix

1 Ä/?R,RuS y°i - Ä/?R,RuS }<ti R** l' FRuS)<Ju'*'"•
(2) Every reduced paramodulation derivation in D which has the prefix

1 RPR,RvS >ai •" ÄiPRfRuS)<Jn-i R* l»

continues with a rewrite step or a paramodulation step, provided that t' admits a

paramodulation step.

D

This definition will in the following only be used informally, however. The proof of the

following completeness theoremrelies on the fact that, as long as R-rewrite steps are per-
formed, the goal decreases with respect tothe ordering (^ / g»)+, otherwise this order

ing is preserved and the length of the remaining derivation decreases.

Theorem: (completeness ofR-reduced RuS-paramodulation)

If RuS is a confluent rewrite system, and R is a relatively terminating rewrite system to

S, then R-reduced RuS-paramodulation is complete, i.e. every computed set of R-re

duced RuS-paramodulation derivations computes a complete set ofRuS-unifiers.

89-

Chapter 5: Applications of relative termination

Proof:

We prove

If gT-^g>ntrue, then g RPRKuS >o*tme where ga^ubg*

by induction along the ordering » on pairs (gr,n), defined by

(t, n) » (t', nO <=>def

t^/^+t'v

'rüS***' A n>Nn'-

Casgl; gx = true.

Obvious.

Caafe^gTR^R^^true.

According to the definitions of reduced paramodulationand computed set, now ei

ther an R-rewrite step or an RuS-paramodulation step is done. It must be shown that no

matter which one is chosen, an approximantof x is safely computed.

Case 2.1: An R-rewrite step is chosen.

Then g r» g' and, since RuS is confluent, g'T r^* true. Because gr -^ g'T,
the induction hypothesis applies and yields the claim.

Case 2.2: An "ordinary" paramodulation step is chosen.

By defimtion ofaparamodulation step: g-^R-ty g'» M '̂ =T» g'*' rus*""1 true*
The inductive hypothesis applies, because g^R^g'*' **& n>n-l. It yields aSubsti

tution a' where g'a'£Sub g'*'- One can choosea'such that gjia'^sUb g^ix' holds.

So ga^subgf, where a=defHO-'.

D

Corollary: (completenessofR-reduced RuS-narrowing)

If RuS is a confluent rewrite system, and R is a relatively terminatingrewrite System to

S, then R-reduced RuS-narrowing is complete for normal substitutions.

Proof:

Like above. Notice that in case 2.2, the Substitution %' is RuS-normal since i is. So

the paramodulation stepactually is a nanowing step.

90-

Chapter 5: Applications of relative termination

5.4. A completeness result for normal narrowing

As promised above, even the comparatively weak condition "-§> finally preserves
•^-normal forms, and R is a normalizing rewrite System" suffices for a completeness

proof of R-normal RuS-paramodulation. The section begins with a definition of final

normal form preservation together with a number of basic facts about it Then the main

problem which we come across is: Instantiation along a paramodulation derivation does

not preserve normal forms at all. How can we take use of final normal form preservation

anyway? The essential trick is to prove that finally there is no more strict instantiation.

The proof is rather technical in nature; any reader who is not familiär with Substitution

handling is suggested to skip it The remainder of the section is devoted to a detailed

proof of the completeness claim.

Definition:

1. S preserves R-normal forms, if for all t, t' where t S* t' and teNFR, also
t'€NFR holds.

2.The relation R+NF ("proper R-normalization") is defined by

t R+NFt' <=>def tR+t' A t'€NFR.

Notethatas a consequence, ^NFr. Accordingly R+NF is a terminating relation.

3. Sfinally preservesR-normalforms, if every derivation

to RNFS* ti RNFS* t2 RNFS* ...

contains only finitely many ti« NFr.

•

These three notions are closely correlated:

Facts:

1. If S preserves R-normal forms, then S finallypreserves R-normal forms.

2. S finally preserves R-normal forms if and only if, R+NF/S terminates.
3. If R/S terrninates, then S finally preserves R-normal forms.

(Proof: (R+NF/S)+ e (R+/S)+ = (R/S)+ .)
D

The converse of property 3 does not hold: S may preserve R-normal forms although
R/S does not terminate, as the following counterexample demonstrates:

-91-

Chapter 5: Applications of relative termination

Now the mainresult of thischapter canbe formulated:

Theorem:(completeness ofR-normal (oriented) RuS-paramodulation)

IfRuS is aconfluent rewrite System, Ris anormalizing rewrite system, and j> finally
preserves ^-normal forms, then R-normal (oriented) RuS-paramodulation iscomplete.

D

Letus first attack the completeness proof informally. Suppose that goal g has aSolution
x, i.e. there exists aderivation gx R^n true for some neN. In order to compute a

unifier that Covers x, we must step by step construct anormal paramodulation derivation
that approximates x. The first normal paramodulation step g NPRRxjS)^g' bringsup
the following goal g'. The Substitution |x mustsatisfy gx£subgp., otherwise x could

no longer becovered. (Such anormal paramodulation step really exists,as will be shown
below.) In other words, there is a Substitution x' that satisfies gx =gp.x'. By conflu
ence ofRuS, aderivation g'x' R^n' true exists. Now the proof would be finished if

the inductive hypothesis could be applied to that derivation. This means, we need a suit-

able Noetherianordering > that compares the two derivations:

texRGs»ntrue) > (g^Rüst"'0™)-

Final normal form preservation means that (r>+nf / s>)+ is aNoetherian ordering. As
soon as normal forms are preserved, the normal paramodulation steps come down to

"ordinary" paramodulation steps. So far, so good. But paramodulation steps may instan-
tiate goals—instantiation may at any time destroy normal forms. This means a severe

problem to the proofsince the normal form preservation property cannot work aslong as

it is interfered by instantiation. Renamings are by the way harmless; they cannot tum a

normal form into arewriteredex. The crucial fact that solves the problemis: Strictinstan

tiation cannot happeninfinitely often. A Noetherian ordering> will be defined that com

pares x with x' such thateither x>x' or x' is essentially a renaming of x. Renaming

can easily be factored away. So sooner or later tx = tx' must be reached, and then nor

mal form preservation ticks. The Noetherian ordering which we need will be defined as a

lexicographic combination on triples (x, g, n).

Let a be an approximant of x, i.e. gx = g|ix' holds for some suitable Substitution x'.

One may then say that for g the Substitution x is "missing" to the final instance gx,

and likewise x' for gp,. The "missing" substitutions areorderedby a Noetherian order

ing.

-92

Chapter 5: Applications of relative termination

Definition:

1. Multisets are coUections of elements where in contrast to sets also the multiplicity of

elements counts. Given an ordering > on elements, its multiset extension >mult» an or

dering on multisets, is defined as the closure under + (the multiset sum) and under

transitivity of the relation:

{ (tyL m). y > x for all xem }.

It is known that the multiset extension of a Noetherian ordering is Noetherian on finite

multisets ([Dershowitz, Manna 79]).

2. Recall from chapter "Termination, termination modulo, and relative tenmnation", sec

tion "Tenmnation orderings for rewrite Systems" the subterm ordering l> on terms:

11> t' means that t is a strict superterm of t'.

Define the relation » ontriples (a, t,n) by

(a, t, n) » (a', t', nO <=>def

[xa.xeVar(t)]l>muit [xa'.xeVarftO] v

ta=ta' a (t(I>NF+/^)+t'v

tlj^u/t' a n>Nn'),

where square brackets denote multiset comprehension, for example if y, z e Var(t) are

distinct variables, and yo = za, then ya occurs twice in the multiset [xa. xe Var(t)].

D

For the proofof completeness, we need some facts about »:

Lemma:

1. If -§> finally preserves ^-normal forms, then » is aNoetherian ordering.

2. Let the term t be given, and let t^tx' = tx. Then

(1) [xx. xe Var(t)] l>muit [xx'. xe Var(tp)] or

(2) tu is a renaming of t.

Proof:

h

The subterm ordering l> is Noetherian, so the relation l>mult is Noetherian on finite

multisets. If ta = ta', then in particular [xa. xe Var(t)] = [xa'. xe Var(tO]. The rela

tion (r>+nf / -g»)+ is Noetherian by the premise that -g» finally preserves -R^-normal
forms. The relation (r»+nf / s>)+ absorbs (r>nf u ^>)*. So the lexicographic combi
nation » is Noetherian as well.

-93

Chapter 5: Applications of relative termination

2i

Assume a term t' suchthat yeVar(t') holds. Then t'x'feyx' by definition of l£.
Accordingly bydefinition of multiset extension, [t'xl femuit [yx'. yeVarO] holds.

With t'=defxu, xeVar(t), weget:

[xux'.xeVar(t)] femuit [yx'.yeVar(xu) a xeVar(t)],

which is equivalent to

[xx.xeVar(t)] femuit [yx'.yeVar(tu)].

Finally we show that whenever [xx. xe Var(t)] = [yx'. ye Var(tu)], then the term tu is

just a renaming of t So assume that [xx. xe Var(t)] = [yx'. ye Var(tu)], or equiva-

lently, that l{xeVar(t). xx = to}l = l{yeVar(tu). xx' = to)l holds for every term to.

Observe that the set of nontrivial such to is finite due to the finiteness of Var(t). Choose

a maximal nontrivial such to, i.e. if to' l>to then {xeVar(t). xx = to'} = 0. By def

inition, there is a bijection from {ye Var(tu). xx' = to) to {xe Var(t). xx = to). This

way the set can be exhausted, and the wanted bijection is the disjoint union of the as-

sembled pieces.

•

Due to confluence of RuS-rewriting, we may continue with a normal form of g, and

may be sure that from this normal form still a successful rewrite derivation exists. But

that derivation may turn out longer than n. Now because of final normal form preserva
tion, finally g must be a -^»-normal form itself. In that case, we can take the next step
from the rewrite derivation for gx RuS>" true, so we decrease the length ofthe derivation

by 1. This is the essential step. Let us now finish the proof:

Theorem:(completeness ofR-normal RuS-paramodulation)

If RuS is a confluent rewrite system, R is a normalizing rewrite system, and -§> finally
preserves ^-normal forms, then R-normal RuS-paramodulation iscomplete.

Proof:

Fix some arbitrary (need not be most general) Solution x of the goal g, that is,

gx R^s»n true holds for some neN. By induction on the triples (x, g, n), using » as

Noetherian ordering, we are now able to prove that there is a normal paramodulation
derivation g NPR RuS)g* true where a<subX.

Let go e NFR(g) * 0 be some arbitrary ^-normal form of g. Note that ingeneral, go

needs not be unique, for R is not presumed to be a confluent rewrite system. Because
RuS is a confluent rewrite system, there is a derivation gox RuS>m true. If already

94

Chapter 5: Applications of relative termination

ge NFR(g), i.e. g = g', then we may obviously take the given derivation of length n.

(We will still need this fact below in case 2.2.1.) There are the cases:

Case 1: gox = true.

Obvious.

CaseJk goxRuS> RuS)m"ltrue» m>0-

By def. of paramodulation there are u, x', g', such that go ^R>p g'» ux' =x,
and g'x' r^* true. A case analysis shows that in either of the following subcases, the
inequation (x, g, n) » (x', g', m) holds.

Case 2.1: [xx. xe Var(g)] l>muit [xx'. xeVar(gO].

x and x' differ by a strict instantiation.

Case 2,2; [xx. xe Var(g)] = [xx'. xe Var(g-)].

I.e. x and x' differ only by a bijective renaming. So the paramodulation step ac

tually was arewrite step: gOR^s»g'» g'* rOs** tniQ- Since go was •^-normal, even
gO s*g' holds.

Case 2,2,1; g = g0.

Then using the paramodulation/rewrite step taken from the derivation of length n,
g g» g' and n >n-1 =m-1 hold.

Case 2.2.2: g*g0.

Then g (r>+nf/s*)+ g' holds.

In all subcases (2.1, 2.2.1, and 2.2.2) the inequation (x, g, n) » (x', g', m) holds,

which justifies the inductive hypothesis for g't'-R^s»m true. We may so continue with

case 2 in general. The inductive hypothesis suppliesa normal paramodulation derivation
g' WPR RuS ><r* tme, where g'a' <gUb g'x' holds. The Substitution a' can be cho
sen such that gua' $sub gut' holds. Thus there is a Substitution a =def ua' together
with the step g -^N*7 go—JVyRRuS >p, g' which completes the desired normal
paramodulation derivation g NPRR^S)q* true.

D

For normal narrowing, there is a conesponding result. Normal Solutions are approxi-

mated by normal substitutions only, and for normal substitutions, narrowing and
paramodulation stepscoincide (this concerns case2 in the above proof). So we have:

95

Chapter 5: Applications of relative termination

Corollary: (completeness of R-normal RuS-narrowing)

URuS is aconfluent rewrite system, Ris anormalizing rewrite. System, and -^ finally
preserves -^-normal forms, then R-normal RuS-narrowing is complete for normal So

lutions.

D

The followingexample demonstrates the strengthof the theorem:

Example:

Let R =def {a(x) -> b(x), b(x)-»c(x), eq(x,x)-> true},

S =def {b(x) -»a(x), c(s(x)) -* a(x)}, and

g=defeq(c(n),c(0)).

R is not a relatively terminating rewrite system to S because of the cycle
a(x) -^ b(x) •§> a(x). But R' =def U(x) ->c(x), b(x) -> c(x)} is a relatively terminating
rewrite system to S. Therefore, particularly, r»+nf / -^ terminates, and by
_>+NF = ^+NF, also •R^+NF/s> tennmates. So R-normal RuS-narrowing iscom
plete.

Normal narrowing derivations are of the form

eq(c(n),c(0)) ^ eq(c(n), c(0)) -^[s(ni)/n]
eq(a(n1), c(0)) ^ eqteö^), c(0)) ^V[S(n2) /nj

eq(a(nk), c(0)) ^^ eq^^), c(0)) -^[0/nJ true,

which deliver the füll set ofSolutions {[sk(0) / n]. keN}. Note that the ^-normal
fonns c(sk(0)) are destroyed k times during the rewrite process; this indicates that
normal forms are not preserved at once, but finally.

D

-96

Summary

The property of relative termination, invented by [Bachmair, Dershowitz 86] and inde-
pendenüy by [Klop 87], is the topic of this thesis. Relative termination to arewrite Sys
tem is a straightforward generalization of termination aswell as of termination modulo an

equational theory. The generalization is strict, as is proven by anexample (section 2.6)

that is relatively terminating, but neitherterminating nor terminatingmodulo. Necessary

syntactic conditions for relative termination are stated (section 2.2). It is shownthatexist-

ingtechniques and methods to prove termination and termination modulo basically can be

reused to prove relative termination of rewrite Systems (section 2.3). This holds in par

ticular for the lexicographic recursive path ordering and for polynomial interpretations.

The question, whether there is a general characterization ofrelative tenmnation by means

of a termination quasiordering, is stillopen. But it is shown that,providedthat the acyclic

part of the binaryrelation S terminates (as is the case with termination modulo), then

relative termination to S is characterized by meansof a termination quasiordering.

Relativetermination is investigated in connection with finitely branching relations (section

2.4), among other things with the quasi-termination property. Quasi-termination and

relative termination are similar notions. Another notion which is similar to relative termi

nation, is final preservation ofnormalforms (treated in section 5.4). These notions arise

quite naturally with considerations on relative termination.

The question, when termination of both R and S allows to infer the termination of RuS,

in other words, when RuS inherits termination, is of basic importance for composed

rewrite Systems. In the case of direct sums, i.e. disjoint sets of function symbols occur-

ring in R and S, there exist strong results for inheritance of confluence ([Toyama 87b])

and termination ([Toyama et al. 89]). As a consequence of the infinite version of

Ramsey's theorem, another sufflcient condition for inheritance is given by transitivity of

RuS (section 3.1). An application of this result is the inheritanceofrelative termination.

The method to prove termination by the lexicographic combination of Noetherian order

ings is discovered to rnimic precisely inheritance ofrelative termination (section 3.2).

Path orderings show their weakness when applied to prove termination modulo, and so

do they for relative termination. On this account,commutation criteriaalong [Bachmair,

Dershowitz 86] are valuable, since they allow to infer relative termination from termina

tion. The commutation approach is attacked in a fairly general form, such that both the

approaches of quasi-commutation and Cooperation can be described as special cases

(sections 3.3, 3.4, and 3.5). The value of the general form is demonstrated by an exam

ple proof that would not work in the present special cases (section 3.4). Proofs of relative

termination are also suitable to prove termination of certain rewrite Systems. This is the

-97-

Extensions or: What has not been treated

basis of the transformation ordering proofmethod. As is known, some self-embedding
rewrite Systems can be shown terminating by transformation.

In the second part of this thesis, applications of relative termination are investigated, other

than termination proofs again. In chapter 4, new confluence criteria based on relative

termination aredeveloped. Section4.1 introduces andmotivates a propertythat matches

coherence An the confluence modulo approach. For Symmetrie S, indeeda substantial part

of the "confluence modulo" approach ([Jouannaud, Kirchner 86]) is covered. The last

one of these confluence criteria (section 4.3) reformulates and generalizes a confluence

result of [Klop 87], and generalizes moreover the two classical approaches of [Knuth,

Bendix 70] (local confluenceof critical pairs) and [Huet 80] (strong confluence for linear

rewrite Systems).

Chapter 5 finally presents two new results aboutnarrowing with intermediate rewriting

("reduced narrowing") and nanowing with intermediate normalization ("normal narrow

ing"), where besides the rewrite system R, used for reduction, normalization, respec

tively, there may still be other rules S. Reduced nanowing is shown complete when R is

a relatively terminating rewrite system to S (section 5.2), and normal narrowing is shown

complete when R is a normalizing rewrite system and -g> finally preserves -^-normal

forms (section 5.3). Both results generalize the classicalresult about normal nanowing of

[Fay 79]. A previous conjeeture of [Hußmann 85] which dispenses with final normal

form preservation, is shown wrong by a counterexample. The mistake is located and

carefully analyzed.

Apart from these main results, the thesis contains a few small novelties. The well known

lexicographic path ordering is defined by means of a rewrite system with one hidden

function (section 2.3). A dependency graph of commutation-like properties is drawn

(section 3.3). A general critical pair criterion is stated which assembles all syntactic

premises once and for all (section 3.6).

Altogether, it may be stated that the equational rewriting approach can be extended to

what might be called a "reductional rewriting approach", by simply dropping a symmetry

condition, and by dropping syntacticrestrictions usually put on rewrite Systems.

Extensions or: What has not been treated

Relative termination is just one of a number of possible generalizations of termination,

and many rewrite Systems arenot relatively terminating, for example rewrite Systems for

while loops. Some terms can be normalized, though, applying a certain rewrite strategy.

Rewrite strategies, however, have not been consideredin this thesis.

98

Extensions or: What has not been treated

Some known termination orderings, like the Knuth-Bendix ordering ([Knuth, Bendix

70])or the semantic pathordering ([Kamin, Levy 80]), as well asrecentimprovements in

path and decomposition orderings ([Rusinowitch 87b]), had to be neglected for Space

reasons. (Interestingly though, transformation techniques can still handle some crucial

examples of improved path orderings.)

Many of the criteria presentedin this thesis may be seen as correctness proofs ofmethods

to prove termination, confluence, etc., which still may be prepared for Software tools.

Since concrete Software was not an aim of this thesis, this work is left for the interested

reader and Software developer.

A very promising method for "automated'1 inductive proving, the "proofby consistency"

method ([Musser 80], [Huet, Hullot 82], [Jouannaud, Kounalis 86], [Kapur, Musser

87]), may also be extended towards relative termination, the guideline being that stric-

torderings of the form (R/S)+ serve as inductive orderings. Many of the proofs (of

commutation and confluence properties) in this thesis arenot far from being formalized

on that account. The details, of course, still have to be worked out. It may be expected

that the equational approach ([Bachmair 88]) again becomes a special case.

The confluence criteria in chapter 4 are far from being exhaustive. The "congruence class

approach" of [Peterson, Stickel 81] and [Jouannaud 83] shows a way to scrap the left-

linearity restriction. It can be carried over also to "descendants classes" of arbitrary

rewrite Systems S. Applying Jouannaud's technique, a rewrite system R' satisfying
R £ R' £ R/S is introduced. Such a starting point can still be found in the lemmas in

chapter4. But the further development towards criticalpaircriteriawould burst this dis

sertation. In order to deal with them, one needs a couple of notions such as "class rewrite

relation", "S-unifier" and "S-critical pair", generalized to arbitrary rewrite Systems S,

rather than Symmetrie ones. Furthermore an unsymmetric unification algorithm, and

Software support in Computing examples, must still be made available:

The theory ofequational term rewriting Systems presented here lacks many

examples. We apologizefor this drawback and explain the reason: interesting

examples are simply intractable by hand. Only Computer experiments can

provide such examples.

(conclusion in [Jouannaud, Kirchner 86])

-99

References

The following abbreviations are used:

Proc. Proceedings, Intl. International, Conf. Conference, J. Journal, Vol. Volume, No.

Number, pp. pages, LNCS Springer LectureNotes in Computer Science

[Avenhaus, Madiener 90]

J. Avenhaus, K. Madiener: Term rewriting and equational reasoning. To appear in: R. B.

Banerji (ed.): Formal Techniques in Artificial Intelligence: A source-book. Elsevier Science

publishers B. V., Amsterdam, 1990.

[Bachmair 88]

L. Bachmain Proof by consistency in equational theories. In: Proc. Logic in Computer

Science, 1988, pp. 228-233.

[Bachmair, Dershowitz 86]

L. Bachmair, N. Dershowitz: Commutation, transfonnation, and termination. In: Proc. 8th

Conf. onAutomated Deduction, Oxford 1986, LNCS 230, pp. 5-20.

[Bachmair, Plaisted 85]

L. Bachmair, D. A. Plaisted: Termination orderings for associative-commutative rewriting Sys

tems. In: /. ofSymbolic Computation (1985) 1, pp. 329-349.

[Bellegarde 861

Rewriting Systems on FP-expressions to reduce thenumber of sequences yielded. Li: Science

of Computer Programming 6 (1986), pp. 11-34.

[Bellegarde, Lescanne 86]

F. Bellegarde, P. Lescanne: Termination Proofs based on Transformation Techniques.

Manuscript CRIN 86-R-034,1986, to be published.

[Bellegarde, Lescanne 87]

F. Bellegarde, P. Lescanne: Transformation ordering. In: Proc. 12th Colloquium onTrees in

Algebra and Programming, Pisa 1987, LNCS 249,pp. 69-80.

[Ben-Cherifa, Lescanne86]

Termination of rewriting Systems by polynomial interpretation and its implementation. In:

Proc. 8th Conference on Automated Deduction, 1986, LNCS 230, pp. 42-51. Alsoin: Science

of Computer Programming 9 (1987), pp. 137-159.

[Bockmayr 86]

A. Bockmayr. Narrowing with inductively defined functions. SEKI memo 25/86, Universität

Kaiserslautern, 1986.

100

References

[Bockmayr 88]

A. Bockmayn Narrowing with built-in theories. In: Proc. Intl. Workshop on Algebraic and

Logic Programming, Dresden, Mathematical Research 49, Akademie Verlag, Leipzig, 1988,

pp. 83-92. Also in LNCS 343.

[Book et al. 81]

R.V. Book, M. Jantzen, C. Wrathan: Monadic Thue Systems. In: Theoretical Computer

Science, Vol. 19, No. 3,1981, pp. 231-251.

[Church, Rosser 36]

A. Church, J. B. Rossen Some properties of conversion. In: Transactions of the American

Mathematical Society 39, pp. 472-482,1936.

[Dauchet88]

M. Dauchet: Termination of rewriting is undecidable in the one-rule case. In: Proc.

MathematicalFoundations ofComputerScience88, Karlsbad,LNCS 324.

[Dauchet et al. 87]

M. Dauchet,T. Heuillard, P. Lescanne, S. Tyson: Decidability of confluence of ground term

rewriting Systems. In: Proc. of the 2nd Symposium on Logic in Computer Science. Ithaca,

New York, June 1987.

[Davis 73]

M. Davis: Hilberths lOth Problem is unsolvable. In: American Mathematic Monthly 80,3

(Maren 1973), pp. 233-269.

[Dershowitz 79]

N. Dershowitz: A note on simplification orderings. In: Information Processing Letters Vol. 9,

No. 5,1979, pp. 212-215.

[Dershowitz 81]

N. Dershowitz: Termination of linear term rewriting Systems. In: Proc. 8th Intl. Conf. on

Automata,Languages, and Programming,LNCS 115, pp. 448-458.

[Dershowitz 82]

N. Dershowitz: Orderings for term rewriting Systems. In: Theoretical Computer Science

Vol. 17, No. 3, Maren 1982, pp. 448-458.

[Dershowitz 85]

N. Dershowitz: Termination. In: Proc. Ist Intl. Conf. on Rewriting Techniques andApplica

tions, Dijon, May 1985, LNCS 202, pp. 180-224.

[Dershowitz 87]

N. Dershowitz: Termination of rewriting. In: J. of Symbolic Computation (1987) 3,

pp. 69-116.

101

References

[Dershowitz et al. 83]

N. Dershowitz, J. Hsiang, N. A. Josephson, D. A. Plaisted: Associative-commutative rewrit

ing. In: Proc. 8th Intl. Joint Conf. on Artificial Intelligence, Karlsruhe, Aug. 1983,

pp. 940-944.

[Dershowitz, Manna 79]

N. Dershowitz, Z. Manna: Proving termination with multiset orderings. Communications of

the ACM 22, pp. 465-476. Also in: Proc. Intl. Conf. on Automata, Languages, and

Programming, Graz,July 1979, pp. 188-202.

[Dershowitz, Jouannaud 89]

N. Dershowitz, J.-P. Jouannaud: Rewriting Systems. In: Handbook of Theoretical Computer

Science, North-Holland, 1989.

[Detlefs,Forgaard 85]

D. Detlefs, R. Forgaard: A procedure for automatically proving the termination of a set of

rewrite rules. In: Proc. Ist Intl. Conf. on Rewriting Techniques and Applications, Dijon,

May 1985, LNCS 202, pp. 255-270.

[Drosten 89]

K. Drosten: TermerSetzungssysteme, Grundlagen der Prototyp-Generierung algebraischer

Spezifikationen. Informatik-Fachberichte 210, Springer, Feb. 1989.

[Echahed88]

R. Echahed: On completeness of narrowing strategies. In: Proc. Intl. Colloquium on Trees in

Algebra and Programming, 1988,LNCS 299, pp. 89-101.

[Fages,Huet83]

F. Fages, G. Huet* Complete sets of unifiers and matchers in equational theories. In: Proc.

Colloquiumon Trees in Algebra and Programming, 1983, LNCS 159, pp. 205-220.

[Fay79]

M. Fay: First order unification in an equational theory. In: W. H. Joyner (ed.), Proc. 4th

Workshop on AutomatedDeduction, Academic Press 1979.

[Fribourg 84]

L. Fribourg: A Narrowing Procedure for Theories with Constructors. In: Proc. 7th Conf. on

Automated Deduction, May 1984, LNCS 170, pp. 259-281.

[Furbach et al. 89]

U. Furbach, S. Hölldobler, J. Schreiben Hörn equality theories and paramodulation. In: /. of

Automated Reasoning, Vol. 5, No. 3, Sept. 1989, pp. 309-338.

102

References

[Ganzinger, Giegerich87]

H. Ganzinger, R. Giegerich: A note on termination in combinations of heterogeneous term

rewriting Systems. In: Bulletin EATCSNo. 31, Feb. 1987, pp. 22-28.

[Geser, Hußmann 86]

A. Geser, H. Hußmann: Experienceswith the RAP system — a specification Interpreter com-

bining term rewriting and resolution. In: Proc. Ist European Symposium on Programming,

Maren 1986, LNCS 213, pp. 339-350.

[Gnaedig87]

L Gnaedig: Investigations ontermination ofequational rewriting. Report INRIA, Le Chesnay,

1987.

[Gnaedig, Lescanne86]

I. Gnaedig, P. Lescanne: Proving termination of associative rewriting system byrewriting. In:

Proc. 8th Conf. on Automated Deduction, Oxford, LNCS 230,1986, pp. 52-61.

[Guttagetal. 83]

J. V. Guttag, D. Kapur, D. R. Müssen On proving uniform termination and restricted termina

tion of rewriting Systems. In: SIAM J. on Computing, Vol. 12, No. 1, Feb. 1983, pp. 189-

214.

[Hammes 86]

D. Hammes: Gleichheit in PROLOG: Ein Fallbeispiel. Arbeitspapiere der GMD, Vol. 228,

St Augustin, Oct. 1986.

[Herbrand 30]

J. Herbrand: Recherches surla thiorie de ladimonstration. These, Universite' de Paris, 1930.

In: Ecrits logiques deJacques Herbrand, PUF Paris 1968.

[Hindley 64]

R. Hindley: An abstract Church-Rosser theorem. Part 1in /. ofSymbolic Logic 34 (1969),

pp. 545-560; part 2 in/. ofSymbolic Logic 39 (1974), pp. 1-21.

[Hofbauer,Kutsche 89]

D. Hofbauer, R.-D. Kutsche: Grundlagen des maschinellen Beweisens. Vieweg Verlag, 1989.

[Hölldobler 89]

S. Hölldobler. Foundations ofequational logic programming. LNCS subseries Lecture Notes

in Artificial Intelligence353,1989.

[Huet 80]

G. Huet: Confluent reduetions: Abstract properties and applications to term rewriting Systems.

In: /. ofthe ACM Vol. 27, No. 4, Oct. 1980, pp. 797-821.

103

References

[Huet, Hullot 82]

Proofs by induction in equational theories with constructors. In: /. of Computer and System

Sciences 25,1982, pp. 239-266.

[Huet, Lankford 78]

G. Huet, D. S. Lankford: On the uniform halting problem for term rewrite Systems. Report

283, INRIA, Le Chesnay, 1978.

[Huet, Oppen 80]

G. Huet, D. C. Oppen: Equations and rewrite rules — A survey. In: R. Book (ed.): Formal

Language Theory - Perspective andOpen Problems, Academic Press (1980).

[Hußmann 85]

H. Hußmann: Unification in conditional-equational theories. Report MIP-8502, Universität

Passau, 1985. Short version also in: Proc. European Conference in Computer Algebra 85,

Vol. 2, LNCS 204 (1985), pp. 543-553.

[Hußmann 85/87]

H. Hußmann: Rapid prototyping for algebraic specifications —RAP system user's manual.

Report MIP-8504, Universität Passau, 1985. Revised version 1987.

[Hußmann 89]

H. Hußmann: Nichtdeterministische algebraische Spezifikationen. Dissertation, Universität

Passau, 1989.

[Jouannaud83]

J.-P. Jouannaud: Confluent and coherent equational term rewrite Systems. Applications to

proofs in data types. In: Proc. Colloquium on Trees in Algebra and Programming 83,

LNCS 159, pp. 269-283.

[Jouannaud, Kirchner 86]

J.-P. Jouannaud, H. Kirchner Completion of a setof rules modulo a setof equations. In:

SIAMJ. on Computing 15, 1986, pp. 1155-1194.

[Jouannaud, Kounalis 86]

J.-P. Jouannaud, E. Kounalis: Automatic proofs by induction in theories withoutconstructors.

In: Proc. Ist Logic in Computer Science, June 1986, pp. 358-366. Also in: Information and

Copmputation, Vol. 8, No. 4, July 1989.

[Jouannaud, Lescanne 86]

J.-P. Jouannaud, P. Lescanne: La R&criture — Term rewriting. In: Technique et Sciences

Informatiques, 5(6), 1986, pp. 433-452.

-104-

References

[Jouannaud, Munoz 84]

J.-P. Jouannaud, M. Mufloz: Termination of a set of rules modulo a set of equations. In: Proc.

7th Conf. on AutomatedDeduction, LNCS 170,1984, pp. 175-193.

[Kamin, Levy 80]

S. Kamin, J.-J. L6vy: Attempts to generalize the recursive path ordering. Unpublished note,

Dept. of Computerscience, University of Illinois, Urbana, 1980.

[Kapur et al. 85]

D. Kapur, P. Narendran, G. Sivakumar: A path ordering for proving termination of term

rewriting Systems. In: Proc. lOth Colloquium on Trees in Algebra and Programming,

LNCS 185, pp. 73-185.

[Kapuret al. 87]

D. Kapur, P. Narendran, H. Zhang: On sufflcient completeness and related propertiesof term

rewriting Systems. In: Acta Informatica 24 (4), Aug. 1987, pp. 395-415.

[Klop 87]

J. W. Klop: Term rewriting Systems: A tutorial. In: Bulletin of the EATCS, Vol. 32,

June 1987, pp. 143-183.

[Knuth, Bendix 70]

D. E. Knuth, P. B. Bendix: Simple word problems in universal algebras. In: J. Leech (ed.):

ComputationalProblems in Abstract Algebras, Pergamon Press, 1970, pp. 263-297.

[Lankford 75]

D. Lankford: Canonical inference. Report Atp-25, Automated Theorem Proving Project,

University of Texas at Austin, May 1975.

[Lankford 79]

D. Lankford: On proving term rewrite Systems are Noetherian. Report Mtp-3, Mathematics

Dept., Louisiana Technical University, 1979.

[Lankford, Ballantyne 77]

D. S. Lankford, A. M. Ballantyne: Decision procedures for simple equational theories with

permutative axioms: Complete sets ofpermutative reductions. Report Atp-37, Mathematics

Dept., Univ. of Texas at Austin, April 1977.

[Manna, Ness 70]

Z. Manna, S. Ness: On the termination of Markov algorithms. In: Proc. ofthe 3rd Hawaii

Intl. Conf. on System Science, Honolulu, Hawaii, 1970, pp. 789-792.

[Middeldoip89]

A. Middeldoip: A sufflcient condition for the termination of the direct sum of term rewriting

Systems. In: Proc. 4th IEEESymposium on Logic in Computer Science, Asilomar, 1989.

105

References

[Newman 42]

M. H. A. Newman: Ontheories with a combinatorial definition of "equivalence". In: Annais

ofMathematics 43,1942, pp. 223-243.

[Nipkow, Weikum 83]

T. Nipkow, G. Weikum: A decidability result about sufflcient completeness of axiomatically

specified abstract data types. In: 6th Gl Conf. on Theoretical Computer Science, Jan. 1983,

LNCS 145.

[Nuttetal. 87]

W. Nutt, P. R6ty, G. Smolka: Basic narrowing revisited. SEKI-Report SR87-07, Univ.

Kaiserslautern, 1987.

[OTtonnell 77]

M. CDonnell: Computing inSystems described by equations. LNCS 58,1977.

[Oyamaguchi 87]

M. Oyamaguchi: TheChurch-Rosser property for ground term rewriting Systems is decidable.

In: Theoretical Computer Science, Vol. 49, No.l, 1987.

[Padawitz 87]

P. Padawitz: Strategy controlled reduction and narrowing. In: Proc. 2ndConf. onRewriting

Techniques andApplications 87,LNCS 256,pp.242-255.

[Padawitz 88]

P. Padawitz: Computing in Hörn clause theories. EATCS Monographs on Theoretical

Computer Science, Vol. 16, Aug. 1988.

[Peterson, Stickel 81]

G. E. Peterson, M. E. Stickel: Complete setsof reductions for someequational theories. In:

/. ofthe ACM,Vol. 28, No. 2, April 1981, pp. 233-264.

[Plaisted 83]

D. Plaisted: An associative path ordering. Report University of Illinois, Computer science

dept, 1983.

[Porat, Francez 86]

S. Porat, N. Francez: Full-commutation and fair-termination in equational (and combined)

term-rewriting Systems. In: Proc. 8th Conf. onAutomated Deduction, July 1986,LNCS 230,

pp. 21-41.

[Raoult, Vuillemin 80]

J. C.Raoult, J. Vuillemin: Operational and semantic equivalence between recursive programs.

In: J. ofthe ACM 27,1980, pp. 772-796.

-106-

References

[R6ty87]

P. R6ty: Improved basic narrowing. In: Proc. 2nd Conf. on Rewriting Techniques and

Applications, Bordeaux, LNCS 256, May 1987.

[Robinson, Wos 69]

G. A. Robinson, L. Wos: Paramodulation and theorem proving in first order theories with

equality. In: MachineIntelligence4,1969.

[Rosen 73]

B. K. Rosen: Tree manipulation Systems and Church-Rosser theorems. In: J. ofthe ACM,

Vol. 20, No. 1,1973, pp. 160-187.

[Rusinowitch 87a]

M. Rusinowitch: On termination of the direct sum of term-rewriting Systems. In: Information

Processing Letters 26,1987/88, pp. 65-70.

[Rusinowitch 87b]

M. Rusinowitch: Path of subterm ordering and recursivedecomposition ordering revisited. In:

/. ofSymbolic Computation, No. 3, Vol. 1&2,Oct 1987, pp. 117-132.

[Staples75]

J. Staples: Church-Rosser theorems for replacement Systems. In: J. Crossley (ed.), Algebra

andLogic, LectureNotes in Mathematics 450,1975, pp. 291-307.

[Steinbach 88]

J. Steinbach: Extensions and comparisons of simplification orderings. In: Proc. 3rd Intl.

Conf. onRewriting Techniques and Applications, 1989, LNCS 355, pp.434-448.

[Toyama 87a]

Counterexamples to termination for the direct sum of termrewriting Systems. In: Information

Processing Letters 25,1987, pp. 141-143.

[Toyama87b]

Y. Toyama: On the Church-Rosser property for the direct sum of termrewriting Systems. In:

/. ofthe ACM, Vol. 34, No. 1,1987, pp. 128-143.

[Toyama 88]

Commutativity of term rewriting Systems. In: Programming offuture generation Computers

II, Amsterdam, North Holland, 1988, pp. 393-407.

[Toyama et al. 89]

Y. Toyama, J. W. Klop, H. P. BarendregU Termination for the direct sum of left-linear term

rewriting Systems (Preliminary version). In: Proc. 3rd Intl. Conf. on Rewriting Techniques

and Applications, 1989, LNCS 355, pp. 477-491.

-107-

References ___

[Wirsingetal. 83]

M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On hierarchies of abstract datatypes.

In: Acta Informatica 20,1983, pp. 1-33.

[Wirsing 90]

M. Wirsing: Algebraic specification: Semantics, parameterization, and refinement In:

HandbookofTheoretical ComputerScience,North-Holland, 1990.

-108-

Index

acyclic 8

approximation 92

arity 8

arrow 7

associative path ordering 44

associative 44

auxiliary function symbol 57

binary numbers 57

binary relation

abstractbinary relation 13

cake diagrams 41

cardinality 40

Church-Rosser property 65; 82

class approach71

class rewrite relation 70

closed

under contexts 11

under instantiation 11

under subsets 22

closure

reflexive 7

reflexive-transitive 7

Symmetrie 7

transitive 7

under Substitution 11

coherence 69

coherent 69

collapse-free 12

commutation 45; 46

complete 85

completeness 92

of narrowing 86

of paramodulation 85

of R-normal RuS-paramodulation 94

of R-normal RuS-narrowing 96

of R-reduced RuS-narrowing 90

of R-reduced RuS-paramodulation 89

composition

of relations 7

of substitutions 10

confluence 47

confluent 7; 65; 82

congruence class approach 70

congruence closure 12

constants 8

conversion 57

Cooperation 49

counterexample 68

covered 85

critical pair 13

criticalpaircriterion 15

criticalpair lemma 15

critical pairscheme 14

cyclic 8

decidable 65

diagram7

local 12

direct sum 39; 65; 80

domain

of a Substitution 11

E-Church-Rosser property 66

E-confluence 66

effective 13

encoding 82

encoding Convention 82

endomorphism 10

equality 9

equational rewriting 17

example

Associativity and Endomorphism 44;

56

conversion into binary numbers 57

Ex. 60

Ex. 18 42

-109

Index

Ex. 27 53; 58

Ex. 3 43

FF 30; 35; 36; 62; 80

BSfT2 44;61

Maps 62

Nonfin32;60;74

Queues 2; 3

Set 20; 22; 32; 35; 36

Stack ofN 63

F-stability 11

faimess 88

finally preserves R-normal forms 91

finitely branching 8

first confluence criterion 74

first local Cooperation criterion 53

first localization 67

füll localization 77

function symbol 8

generalcritical pair scheme 14

generalduality 17

generalized lexicographic path ordering

28

ground9

hidden function 26

hierarchical 63

homeomorphic self-embedding 30

homomorphic interpretationordering26

idempotent 11

incremental 43

inheritance ofrelative termination 40

instance 10

join 66

Knuth-Bendix ordering 29

KruskaTs tree theorem 26

left-commutativity 20

left-dominance 35

left-erasing 12

left-idempotence 20

left-linear 12

left-non-annihilating 12

left-nonerasing 12

left-nonisolating 12

left-nonlinear 12

left-to-right27

lexicographic combination 42

of terminationorderings42

lexicographic pathordering26

lexicographic Status 27

lifting lemma 84

local 12

local commutation 46

local Cooperation 50

localization 12

localize 12

locally S-coherent 71

looping 23

marker symbol 27

monotony 11

more general than 10

more special than 10

multiset 93

multiset extension 93

multiset Status 27

narrowing optimizations 86

narrowing step 84

Nash-Williams proof 39

necessary condition 24

Noetherian ordering 25

Noetherianquasiordering 26

non-collapsing 12

non-splitting76

nondeterministic 27

normal

object 8

Substitution 84

normal form 8

-110

Index

normal form preservation 92

normal paramodulation step 86

normalization 8

normalizing 8

occurrence 10

functional 10

opposite term rewrite system 17

ordering 8

oriented paramodulation 81

overlap 13

paramodulation 81

paramodulation step 83

pathordering26

permutation 27

polynomialinterpretation 29

polynomialinterpretation ordering 26

precedence 27

prefix ordering 10

prefixed rule 84

preserves R-normal forms 91

primitiverewrite system 71

primitivespecification 63

quasi-commutation 46; 52

quasi-commutationcriterion 61

quasi-commutation lemma 48

quasiordering 8

quasiordering lemma 31

quasiordering Supplement 34

R-derivation 8

Ramsey's theorem 39

ränge

of a Substitution 11

recursive path ordering 26

with Status 28

redex 12

redex occurrence 12

reduced paramodulation 89

reduction ordering 25

regulär 12

relation 7

relative termination 19; 97

relative to 20

relatively terminates (to 20

relatively terminatingrewrite system 20

renaming 11; 92

replacement 10

reuse ofa proof70

rewrite redex 92

rewrite relation 11

rewrite rule 11

rewrite system 11

right-distributive law 37

right-linear 12

right-nonduplicating 23

right-to-left27

rule 11

S-coherent 69

second confluence criterion 80

secondlocalCooperation criterion 55

second localization 69

self-embedding 30; 56

semantic path ordering 30

simplificationordering26

Splitting effect 76

stability 11

strict commutation 46

strict local commutation 46

strict superterm 93

strictordering 8

strongcommutation 46

strongconfluence 65

strongCooperation 52

strong Cooperation criterion 60

strongly S-coherent 77

Substitution 10

subsumption 10

111-

Index

subterm 10

subterm ordering 26; 93

Symmetrie rewrite system 17

syntactic restrictions 16

term algebra9

term rewrite system 11

terminates 8

terminating 8

termination inheritance 39

by transitivity 39

termination ordering 25

termination quasiordering 26

termination quasiordering criterion 31

terms 8

third localization 71

Thue system 30

top symbol 9

transformationordering55

transformer system 57

two orderings 33

undecidable 25

undecidable 65

unification procedure 85

unifier 13; 81

computed 85

variable 8

variablecriticalpair 13

well-founded ordering 25

well-quasiordering 26

-112-

Glossary

(Symbols and formulas are explained in the order, they appear in the text for the first
time.)

1 b r equationspecification

1 -» r rewrite rule

Fp setof function symbols in the rewrite SystemP

R/S R relative toS

N set of natural numbers

^M natural ordering ... ^i3^2^n 1^0

R S composition of binary relations R and S

R"1 inverse ofR

R" Symmetrie closure of R

Re reflexive closure of R

R + transitive closure of R

R* reflexive-transitive closure of R

{f. (t, t')€ R }

set comprehension: The set of all those t' which satisfy that t and t' are

related by R

NFr set of all R-normal forms

NFrU) set of all R-normal forms of t

RNF R-normalization relation

£ and £ quasiorderings

< and > strictorderings, associated to the quasiordering £, >, respectively

« and » other strictorderings

theequivalence relation associated to the quasiordering ^

U ((f> x Termarity(f))

feF

(disjoint) union of all cartesian products between the singleton set {f} and the
n-th powerofthe set Term, where n =arity(f)

(f, ti, ..., tn) (n+l)-tuple, consisting ofthe symbol f and the terms ti,..., tn.

x+y may alsodenote the term +(x, y)

-x may also denote the term -(x)

t =def f(g(x, a)> y) t will be used to denote the term...

eq(t,t') a goal that asks for Solutions of" t equals t'"

=r semantic equality defined by the rewrite SystemR

p (X) powerset of X

Var(t) set of (free) variables in t

113

Glossary 25.2.1991

Func(t) set of function symbols in t

0 empty set

X empty occurrence

i. u composed occurrence

t/u subterm of t at occurrence u

t [u «- t'] replacement ofthe subterm of t at occurrence u by thenew subterm t"

N * setof sequences of natural numbers

Occ(t) setofoccurrencvesof t

FOcc(t) set of functional occurrences of t

%re prefix ordering on occurrences
aandx substitutions

[ti/xi, t2/x2, ...] the Substitution that maps xi to ti,etc.

co least transfinite ordinal number

ta the instance of the term t under Substitution o

gx (diagrammatical)composition of substitutions a and x

^su b subsumption quasiordering on substitutions

dorn o domain of Substitution g

ran g ränge of Substitution G

l£» rewrite relation generated by the rewrite system R

a rewrite step takes place in t at occurrence u, using the rewrite rule 1 -» r,

yielding the term t'

*x RuS) *2 Rus) *•• m wfinüz -g^-derivation
(f(x) -> f(y))e S the rewrite System S contains a rule f(x) -»f(y)

S = {x -> x} S denotes a rewrite system that consists ofthe Single rule x-»x

| > subtermquasiordering

|> subterm strictordering
7c(ti, ..., tn) application ofa permutation n toa sequence of terms

* also used as the marker symbol

>rpo lexicographic path(strict)ordering

>rpo lexicographic path(quasi)ordering
[_] a function in mixfixnotation;"_" indicates the parameterposition
N (X) set of polynomials in variables from X with coefficients from N

[t] the polynomial interpretation ofthe term t

#t number of "ffpatterns" in the term t

> » the relational composition of > and »

Q + the set of positive rational numbers

S \ (S*1)* the S relation without those pairs that are part ofa cycle

114

Glossary 25.2.1991

Sn the n-th power of S, i.e. S...S ntimes

a diagram instance where the number of -7^-steps may be assumed m, and
likewise the number of -^-steps may be taken as n. The term between the two

derivations is called t later on.

CP(R, S) the set ofall criticalpairs of rulesfrom R with rules from S

from a term that is not named, there is both a rewrite step at occurrence v using

a rule from S, yielding the term t, and another rewrite step at occurrence u

using a rule from R, yielding the term t'
Q C *<§• every rule in Qcan be bridged by asequence ofS-rewrite steps in rcversed

order

TL the set of integer numbers 0,1, -1,...

the term t admits a paramodulation stepat occurrence u usingthe rule l-»r.

This paramodulation step uniquely defines the Substitution G and the term t'.
t jv1_^r)q t' narrowing step, i.e. aparamodulation step where ueFOcc(t) holds

s1«)) s(s(...(0)...) i-times
t NPR Ru^q V R-normal RuS-paramodulation
t RPR Ru jq t' R-reduced RuS-paramodulation
t ii>+NF t' proper R-normalization

>mult the multiset extension of the ordering > on elements towards multisets of
elements

m+n for multisets m and n: their sum

[xg. xe Var(t)]

multiset comprehension; themultiset ofall xg where xeVar(t) holds.

115

Liste der bisher erschienenen Ulmer Informatik-Berichte:

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe:
Instance Complexity.

91-02 K. Gladitz, H. Fassbender, H. Vogler:
Compiler-Based Implementation of Syntax-Directed Fimctional Programming.

91-03 Alfons Geser:

Relative Termination.

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber: Fakultät für Informatik

Universität Ulm, Oberer Eselsberg, W-7900 Ulm

♦

