
Compiler�based Implementation of

Syntax�Directed Functional Programming

Katia Gladitz

Lehrstuhl f�ur Informatik II� RWTH Aachen

Ahornstra�e ��� W����� Aachen� Germany

Heinz Fa�bender� and Heiko Vogler

Abt	 Theoretische Informatik� Universit�at Ulm

Oberer Eselsberg� W
���� Ulm� Germany

Ulmer Informatik�Berichte

Nr� �� � ��

Abstract

We consider particular functional programs in which on the one hand the recursion is re�

stricted to syntax�directed recursion and on the other hand simultaneous recursion and nesting

of function calls in parameter positions of other functions is allowed� For such programs called

syntax�directed functional programs� we formalize a compiler�based implementation of the call�

by�name computation strategy� The machine involved in this implementation� called syntax�

directed runtime�stack machine� is minimal in the sense that it computes exactly the class sdFun

of functions which are expressible by syntax�directed functional programs� We verify this mini�

mality property by showing a one�to�one correspondence between the implementation presented

in this paper� and an interpreter�based implementation of syntax�directed functional programs

on checking�tree nested�stack transducers� It is known from the literature that such transducers

characterize in a formal sense the class sdFun�

�The work of this author has been supported by the Deutsche Forschungsgemeinschaft �DFG��



�

� Introduction

In many situations it is appropriate� to describe the semantics of strings that are generated by
some context
free grammar� in a syntax
directed way 
Iro��� AU��� AU��� Knu��� �for short� sd
way�	 Then� the meaning of a string is expressed in terms of the meanings of its substrings	 For
example� the translation of a high
level language program into machine code is often described in
a syntax
directed way 
Ind���	 Then� the translation of a program construct� e	g	 an if then else
statement� is described in terms of the translation of its constituents� i	e	 the condition and the
two alternatives of the if then else statement	

Up to now there exists various formalizations of the concept of sd translation�

� generalized sd translation schemes 
AU���

� attribute grammars 
Knu���

� denotational semantics 
SS��� Gor���

� a�x grammars 
Kos���

� total deterministic macro tree
to
string transducers 
CF��� Eng��� EV���

� context
free hypergraph grammar based syntax
directed translation schemes 
EH���

In this paper we start from total deterministic macro tree
to
string transducers �for short� ymt�
that are particular� left
linear� con�uent� and noetherian term rewriting systems� and embed them
into the context of functional programming	 For this purpose we enrich the syntax of ymt by adding
programming language like syntactic features	 More precisely� all rewrite rules that specify the
computation of one particular function� are collected into one equation� and the pattern matching
inherent in term rewriting systems� is replaced by the usual case
construct	 In this paper we call
the result of this syntactic enrichment a syntax�directed functional program �for short� sd funprog�	

Before showing an example of an sd funprog we explain informally the shape of such programs	
An sd funprog is a �nite list of function de�nitions over an input
output base where such a base
consists of a ranked alphabet of input symbols and a usual alphabet of output symbols	 The �rst
argument z of a function is called its recursion argument� the other arguments are called parameters�

Every function de�nition has the form of an equation� the right hand side of an equation is a case

construct which checks the label root�z� of the root of the recursion argument and switches to
the appropriate case
alternative	 For every input symbol there is exactly one case
alternative	 A
case
alternative is a string over function calls� parameters that appear on the left hand side of
the equation� and output symbols	 In particular� function calls may occur nested in parameter
positions of other functions	 Here� we only consider call
by
name computations of sd funprogs	

Figure � shows a piece of the concrete sd funprog Ptrans	 Actually� it is the syntax
directed
de�nition of the function exptrans which translates abstract syntax trees of high
level programs
into code for some abstract machine	 The one and only parameter of exptrans keeps a tree

structured address which has not yet been used in the code generated so far	 Clearly� the input
symbols of the programs are the labels of the abstract syntax trees �like the symbol �if then else�
of rank three�� and the output symbols are machine instructions� addresses� and interpunctuation
symbols	 In the �gure we have only presented one case
alternative which treats recursion arguments
of the form of if then else
statements	 For the complete de�nition of exptrans� we would have
to add exactly one case
alternative for every other command of the programming laguage �like



� � INTRODUCTION

exptrans �z� y�� � CASE root�z� OF

			

if then else � exptrans �sel��z�� y����

JMC y����

exptrans �sel��z�� y����

JMP y����

y��� � exptrans �sel��z�� y����

y��� �

			

END

Figure �� Part of an sd funprog for the translation of if then else into abstract machine code	

�while do�� ����� �repeat until��	 The case
alternative shown in the �gure contains three function
calls� viz	 exptrans �sel��z�� y����� exptrans �sel��z�� y����� and exptrans �sel��z�� y����	 In fact�
these function calls occur independently from each other and not nestedly	

Up to now only an interpreter
based implementation of sd funprogs exists	 The involved abstract
machine called checking�tree nested�stack transducer �for short� ct�ns transducer� is a sequential
machine with a nested
stack based memory called checking�tree nested�stack 
Aho��� ES���	 As
implementation devices� these machines are of particular interest� because in 
EV��� it is shown in
an indirect way that the class sdFun of tree�to�string functions which are computable by sd funprogs
with call
by
name computation strategy� is characterized by ct
ns transducers	 Thus� in particular�
every function computable by a ct
ns transducer lies in sdFun	 In 
FV��� the interpreter
based
implementation suggested in 
EV��� has been formalized in a direct way	 There� the complete
case
alternative is written into one square of the storage of the ct
ns transducer	 During runtime
the case
alternative is interpreted symbol by symbol from left to right	

In this paper we formalize a compiler
oriented implementation of sd funprogs� i	e	 we de�ne an
abstract machine� called syntax�directed runtime�stack machine �for short sdrs machine�� and a
translation function which maps every sd funprog into a program which is executable on the sdrs
machine	 This implementation is a restriction of the compiler
based implementation of �rst
order
functional programs with call
by
name computation strategy in 
Ind��� with respect to the special
recursion structure of sd funprog	 In the formalization of the sdrs machine we aim at a minimal
set of instructions which is appropriate for the execution of sd funprog	 Actually� we have achieved
that functional programs which allow the speci�cation of tree
to
string functions outside sdFun
are not computable on the sdrs machine	 Rather than proving this characterization formally we
convince the reader about the validity of the characterization by comparing the sdrs machine with
the ct
ns transducer	

The sdrs machine consists of a program storage PS� a program counter PC� an output tape OT�
and a runtime stack RS	 An instantaneous description of an sdrs machine is given in Figure �	 In
fact� the main component of the sdrs machine is the runtime stack	 It consists of F
blocks for the
evaluation of function calls and Y
blocks for the evaluation of the parameter values	 In Figure �



�

�

PC

a b c 														

OT

r

r

r

RET��

JMP ����

r

r

r

PS

������� �� input tree

� dl

� ra

F F�block

r

r

r

�� adr�

�� adr�

� subtree

dlr

�

�� ra

F F�block

slr

�

�� ra

Y Y�block

RS

Figure �� An instantaneous description of an sdrs machine

we have indicated three blocks� one Y
block on top� one F
block one position below the top� and
one F
block at the bottom of the runtime stack	 The block at the bottom represents the call of the
main function Fin of the sd funprog at the beginning of the computation	 We assume that Fin has
just one argument �its recursion argument�� in Figure � this argument is the tree ������� ��	

The computation of a function call is illustrated in Figure �	 Suppose that

� �G�sel��z�� par�� � � � � parn�rest� is a post�x of a case
alternative�

� the F
block bl is on top of RS� and

� the machine is about to simulate the function call of G with recursion argument sel��z� and
parameter expressions par�� � � � � parn	

Let adr�piece� be the program address of the �rst instruction in the translation of some piece of the
source program into sdrs machine code	 Then� a new F
block bl� is pushed on top of the runtime
stack by executing the instruction CREATE��� adr�par��� � � � � adr�parn�� adr�rest��	 The block bl�
contains



� � INTRODUCTION

r

r

r

adr�par��

adr�par��

��s�� s�� tree

r

�

bl ra

F

adr�parn�

r

r

r

adr�par��

trees�

dlr

�

bl� adr�rest�

F

RS

r

r

r

adr�par��

adr�par��

��s�� s�� tree

r

�

bl ra

F

RS

�

CREATE��� adr�par��� � � � � adr�parn�� adr�rest��

Figure �� Computation of the function call G�sel��z�� par�� � � � � parn�

� the tag F

� the return address adr�rest� at which the computation has to be resumed after the evaluation
of the called function	

� a dynamic link dl which points to the topmost square of block bl

� the current recursion argument s� which is selected from the recursion argument of block bl

� the addresses adr�par��� � � � � adr�parn� for the evaluation of the parameters 	

After the execution of the CREATE
instruction the program counter is set to the address for the
evaluation of G by executing the instruction JMP adr�G�	

Besides the F
blocks� the runtime stack contains Y
blocks	 Such a Y
block is pushed on top of
the runtime stack� if a value of a parameter expression is needed	 �Recall that the sdrs machine
simulates the call
by
name computation strategy of sd funprogs	� A Y
block always consists of
three squares�



�

� the tag Y

� the return address ra

� the static link sl which points to the F
block which contains the current environment� i	e	�
the bindings of the free variables of the parameter expressions	 In the following we call this
F
block and its tree the current block and current recursion argument� respectively	

The way in which F
blocks are pushed on top of the runtime stack and� in particular� the fact that
the recursion argument of the called function always is a subtree of the current recursion argument�
already indicates that the sdrs machine can only evaluate functions in the class sdFun	 We are
not going to prove this equivalence formally	 Rather we compare this implementation with the
interpreter
based implementation in 
FV��� and we will show a one
to
one correspondence between
the two implementations	

We have implemented the sdrs machine directly in C on a SPARC station SLC	 On the other
hand sd funprogs can be considered as very simple MIRANDA programs for which a commercial
implementation is available	 Not very strikingly� it turns out that our implementation runs faster
than the MIRANDA
like implementation	

This paper is organized in seven sections where the second section contains preliminaries	 In
Section � we introduce the syntax and semantics of sd funprog	 In Section �� we formally de�ne
the sdrs machine	 Section � deals with the call
by
name implementation of sd funprog on the sdrs
machine	 In Section � we recall the interpreter
based implementation of sd funprog on the ct
ns
transducer and compare this implementation with the implementation of Section �	 Finally� Section
� contains some concluding remarks and indicates further research topics	



� � PRELIMINARIES

� Preliminaries

We recall some notations and basic de�nitions which will be used in the rest of the paper	

We denote the set of natural numbers by IN� it includes the number �	 For j � IN� 
j� denotes
the set f�� � � � � jg� thus 
�� � �	

For an alphabet A� we denote the set of word over A with length n by An	 The set of all words
over A is the set

S
n�INA

n and is denoted by A�� � denotes the empty word	 As usual� a ranked

alphabet is a pair ��� rank��� where � is an alphabet and rank� � � �� IN is a total function	
For � � �� rank���� is called rank of � 	 The subset �m of � consists of all symbols of rank
m �m � ��	 Note that� for i �� j� �i and �j are disjoint	 If the ranks of the symbols are clear
from the context� then we drop the function rank� from the denotation of the ranked alphabet
��� rank�� and simply write �	

Let ��� rank�� be a ranked alphabet and let S be an arbitrary set	 Then the set of �labeled�
trees over ��� rank�� indexed by S� denoted by T��S� is de�ned inductively as follows�

�i� S � T��S�
�ii� for every � � �k with k � � and t�� � � � � tk � T��S�� ��t�� � � � � tk� � T��S��

We denote T� � T����	 For the rest of this paper we �x the set Y � fy�� y�� � � �g of the parameter
variables� for k � �� Yk � fy�� � � � � ykg	

For a set U � fu�� � � � � ukg of words with k � �� and some word w in which the elements of U
do not occur overlapped� we denote by w
u��w�� � � � � uk�wk� the result of substituting wi for every
occurrence of ui in w	



�

� Syntax�Directed Functional Programs

In this section we introduce the concept of syntax
directed functional programs �for short� sd
funprog� by giving the de�nition of its syntax and semantics	 Then we illustrate this concept by a
simple example	 Before we start with the de�nition of the syntax� we �x the following preliminaries
for the rest of this paper� We assume that

� � denotes the ranked alphabet f��� � � � � ��g of input symbols for some 	 � �	

� � denotes the alphabet of output symbols 	

and we call ����� the input�output base of sd funprogs	 The only reason of having these prelimi

naries is to avoid repetitions in the formal de�nitions	 Although having �xed now the symbols of
�� we feel free to choose di erent symbols in concrete examples	

��� Syntax of sd funprogs

As already mentioned in the introduction� an sd funprog consists of a �nite system of equations�
each of them specifying one function by means of a case
expression with case
alternatives	 For
the sake of a better understanding� the de�nitions of these two latter technical concepts are given
preference to the de�nition of the syntax of sd funprogs	

De	nition 
�� Let F denote a ranked alphabet of function symbols such that� for every F � F �
rankF�F � � �	 Moreover� let � � �m for some m � � and let n � �	 The set of case�alternatives
for � with n parameters and function symbols from F � denoted by CA��� n�F�� is the smallest
subset CA � �� 	 F 	 fselj�z� j j � INg 	 Y 	 f�� �� � g�� such that�

�i� � � CA	

�ii� For every a � � and 
 � CA� a
 � CA	

�iii� For every k � �� G � Fk��� 
� 
�� � � � � 
k � CA and j � 
m��
G�selj�z�� 
�� � � � � 
k�
 � CA	

�iv� For every i � 
n� and 
 � CA� yi
 � CA	
L

CA�F� denotes the set
S
����n�RANK�F� CA��� n�F� where RANK�F� is the set of all ranks of

function symbols occurring in F 	 The expressions 
�� � � � � 
k in �iii� are called parameter expressions�

We note that parameter expressions may contain functions	

De	nition 
�� Let F again denote a ranked alphabet of function symbols as in the previous
de�nition	 For every n � IN� the set of case�expressions with n parameters� denoted by CASE �
EXPR�n�� is the smallest set which contains all strings of the form

CASE root�z� OF �� � t� � � ��� � t� END

where for every i � 
	�� ti � CA��i� n�F�	 The set of case�expressions of F � denoted by CASE �
EXPR�F�� is the set

S
n�RANK�F� CASE �EXPR�n�	

L



� � SYNTAX�DIRECTED FUNCTIONAL PROGRAMS

Now we are able to present the de�nition of the syntax of sd funprogs	

De	nition 
�
 An sd funprog P is a tuple �F � Fin� E� such that

� F is a ranked alphabet of function symbols such that� for every F � F � rankF �F � � �	

� Fin � F with rank � is the initial function symbol	

� E is a �nite set of equations of the form

F �z� y�� � � � � yn� � �

where F � Fn��� z is a variable� and � � CASE � EXPR�n�	 Moreover� for every F � F
there is exactly one such equation in E	

L

Note that the variable z� called recursion variable� may only occur as �rst argument of a function
F 	 Also note that the initial function Fin always has rank one	 The only reason for these restrictions
is the fact that the implementation on the sdrs machine becomes technically a bit easier	 Finally
we note that� due to the de�nition of case
expressions and of sd funprogs� for every function symbol
F � F and for every input symbol � � � there is exactly one case
alternative	 Thus� from the
computational point of view� no computation can block because of a lack of an appropriate case

alternative	 This is the reason why sd funprogs only compute total functions� but we will come
back to this point in the next subsection	 The class of sd funprogs over the input
output base
����� is denoted by SDFP �����	 Now let us illustrate these de�nitions by an easy example	

Example 
�� Consider the ranked alphabets F � fF
���
� � F

���
� � F

���
� g and � � f����� ����� ����g of

function symbols and input symbols� respectively	 Let � � fa� b� cg be the set of output symbols
and consider the set E with the following three equations�

F��z� � CASE root�z� OF
� � aF��sel��z�� bF��sel��z�� a� b�� ��	��
� � a ��	��
� � a ��	��
END

F��z� y�� � CASE root�z� OF
� � a ��	��
� � F��sel��z�� y�� c� ��	��
� � a ��	��
END

F��z� y�� y�� � CASE root�z� OF
� � a ��	��
� � a ��	��
� � y�y� ��	��
END



��� Semantics of sd funprogs �

Then �F � F�� E� is an sd funprog over the input
output base �����	 The string

CASE root�z� OF � � aF��sel��z�� bF��sel��z�� a� b��� � � a� � � a END

is a case
expression without parameter� and aF��sel��z�� bF��sel��z�� a� b�� in ��	�� is a case
alterna

tive for � without parameter and function symbols from F 	 The function call F��sel��z�� a� b� occurs
nested in the �rst parameter of F�	

L

Having formalized the syntax of sd funprogs we will introduce its call
by
name semantics in the
next subsection	

��� Semantics of sd funprogs

Clearly� every computation of an sd funprog is directed by an input tree� and before a computation
step is executed� the appropriate case
alternative has to be chosen according to the label of the
current node of the input tree	 Thus� to prepare the de�nition of the semantics� we �rst formalize
this choice as the semantics of case
expressions	

De	nition 
�� Let P � �F � Fin� E� be an sd funprog	 The semantics of case�expressions for F �
denoted by 

 
 ��caseP � is the function



 
 ��caseP � CASE �EXPR�F� � T� �� CA�F�

with 

 CASE root�z� OF �� � t�� � � � � �� � t� END ��caseP �t� � tj � if root�t� � �j 	
L

The semantics of an sd funprog P � �F � Fin� E� is formalized by means of a binary computation
relation on the set of potential computation forms	

De	nition 
�
 Let F be a ranked alphabet of function symbols	 The set of potential computation

forms� denoted by pCF� is the smallest subset ! � �� 	 F 	 T� 	 f�� �� � g�� such that

�i� � � !	

�ii� For every a � � and 
 � !� a
 � !	

�iii� For every F � Fk�� with k � �� t � T�� 
 � !� and for every i � 
k�� 
i � !�

F �t� 
�� � � � � 
k�
 � !�

L

In one computation step the leftmost occurrence of a function call F ���s�� � � � � sm�� 
�� � � � � 
n�
is replaced by a modi�cation of the case
alternative for � in the equation for F 	 The modi�cation
consists of replacing every selection operator selj�z� by the direct subtree sj of the current recursion
argument� and by replacing every parameter variable yi by the parameter expression 
i	 Note that
these parameter expressions do not contain parameter variables because this absence already holds
for the whole function call	 Now we are able to de�ne the call
by
name computation relation of an
sd funprog	



�� � SYNTAX�DIRECTED FUNCTIONAL PROGRAMS

De	nition 
�� Let P � �F � Fin� E� be an sd funprog	 The call�by�name computation relation

of P� denoted by ��P � is the smallest subset of pCF � pCF such that for every ��� �� � pCF �
�� ��P �� i 

�i� �� � wF ���s�� � � � � sm�� 
�� � � � � 
n�
 for some w � ��� F � Fn�� with n � �� ��s�� � � � � sm� �
T� with m � �� 
�� � � � � 
n � pCF and 
 � pCF 	

�ii� F �z� y�� � � � � yn� � � is an equation in E	

�iii� �� � w � 

 � ��caseP ���s�� � � � � sm��� 
sel��z��s�� � � � � selm�z��sm� y��
�� � � � � yn�
n�
�
L

As usual we denote the re�exive� transitive closure of ��P by ���
P 	 We note that� if at all�

any parameter expression is computed in a call
by
name fashion	 However� we observe that the
recursion argument does not have to be computed at all� because in every instance it is a subtree
of the tree that is given to the initial function symbol at the beginning of the computation	 Thus�
the �rst argument of every function can also be considered as a call
by
value parameter	 Actually�
in the implementation of sd funprogs we will take advantage of this observation	

As described in the introduction� sd funprogs are in a one
to
one correspondence to total de

terministic macro tree
to
string transducers	 From the considerations of Section �	� of 
EV���� it
follows that for an arbitrary total deterministic macro tree
to
string transducer P and every input
tree s � T�� there is a unique output string w � �� such that Fin�s� ���

P w� Thus� ��P induces
a total function of type T� �� ��	

De	nition 
�� Let P � �F � Fin� E� be an sd funprog	 The function computed by P with call�by�

name computation strategy is the function ��P �� T� �� �� de�ned by ��P ��s� � w i Fin�s� ��
�
P

w	

The set of computation forms of P� denoted by CF �P �� is the set

f� j � � pCF and Fin�s� ��
�
P �� for some s � T�g

	
L

The class of functions computed by sd funprogs with call
by
name computation strategy is
denoted by sdFun	

We �nish this section by giving an example of a computation	 The superscript at the computa

tion relation �� refers to the applied case
alternative	

Example 
�� Consider the sd funprog P of �	�	 The following input tree t � ������� �� is given	

F��������� ���
�����
�� aF������� bF���� a� b��
�����
�� aF���� bF���� a� b�� c�
�����
�� acc

Hence� ��P ��������� ���� � acc	

L
In this section we have de�ned sd funprogs and explained them by an example	 In the next

two sections we will formalize a compiler
based implementation of the call
by
name computation
strategy on a runtime stack machine� Section � introduces the machine� and Section � shows how
to translate an sd funprog into code for this machine	



��

� Syntax�Directed Runtime Stack Machine

Now we formalize the abstract machine on which the implementation of sd funprogs is based	
These machines are called syntax
directed runtime stack machines� for short sdrs machines	 The
implementation presented here is compiler
based in the sense that every sd funprog is compiled
into a �owchart over instructions which are executable on this machine	

The sdrs machine is de�ned by its instantaneous descriptions� its instruction set and the seman

tics of its instructions	 An example of an instantaneous description of an sdrs machine is given in
Figure � in the introduction	 Since the de�nition of the sdrs machine is completely independent of
the contents of the program store� this store is dropped from the instantaneous descriptions of the
machine	 Recall that the de�nitions refer to the input
output base ����� and that � is the set
f��� � � � � ��g	

De	nition ��� The ������sdrs machine is de�ned as follows�

� The set of instantaneous descriptions� denoted by ID������ is the set PC � RS � OT� where

� PC � IN is the program counter	

� RS � SYMB� with SYMB � fF�Yg	 IN 	 T�� is the runtime stack� a con�guration h
of the runtime stack is described as a sequence h�� � h�� � � � � h�q of squares h�i � SYMB
where h�� denotes the top square	

� OT � �� is the output tape	

� The set of instructions of the sdrs
machine� denoted by I������ is the set containing all
instructions of one of the following type�

� Jump instructions�

JMP n � n � PC
JMR ��� �m�� � � � � �� � m�� � for every i � 
	� � mi � PC

� RS instructions�

CREATE�j�m�� � � � � mn� ra� � j � IN� for every i � 
n�� mi � PC�
and ra � PC

RET
EVAL i � for every i � IN

� Output instruction�

WRITE a � a � �

� other instruction�

DUMMY
L

Programs for the sdrs machine are determinsitic �owcharts over the set of instructions in which
the JMR
instructions realize the branching points	



�� � SYNTAX�DIRECTED RUNTIME STACK MACHINE

De	nition ��� The set of the programs for the ������sdrs machine� denoted by Prog������ is
the set

f� � "�� � � � � n � "n j n � � and for every j � 
n� � "j � I�����g

of strings over the alphabet �IN 	 I�����	 f�� � g�	
L

We �nish this subsection with an example of an sdrs machine program	

Example ��
 Consider the input
output base ����� of Example �	�	 Then the following string
is an �����
sdrs machine program	

� � JMR�� � �� � � �� �
� � WRITE b �
� � CREATE��� �� �� �
� � JMP � �
� � WRITE a �
� � RET �
� � WRITE b �
� � RET �
� � EVAL � �
�� � JMP �� �
�� � RET �

L

Now we turn to the de�nition of the semantics of sdrs machine programs	 First we give the
de�nition of the semantics of the instructions� then we de�ne the one
step semantics� and we end
up with the iteration semantics	 The semantics of a program will be de�ned by using particular
input
 and output
mappings and the iteration semantics	

We need the following �ve auxiliary functions to de�ne the instruction semantics�

�	 env � RS �� IN

env�h� �

�
� � if h�� � F
� # h�� � if h�� � Y

Given a runtime stack h� this function yields the position of the top square of the F�block
which contains the current environment� i	e	� bindings of the recursion variable z and the pa

rameter variables occuring in the post�x of the case
alternative which is currently computed	
If the topmost block is an F�block� then it contains the bindings itself	 If it is a Y�block�
then the static link points to the appropriate F�block	

�	 next � RS �� IN

next�h�� � � � � � h�q� �

���
��

� # h�� � if h�� � F and h��� # h��� � F
�# h�� # h��� # h��� � if h�� � F and h��� # h��� � Y
�# h�� # next�h��� � � if h�� � Y and h��� # h��� � F

where h� � h��� # h��� � � � � � h�q

This function yields the position of the top square of the F�block which represents the envi

ronment of the current environment	



��

�	 cnr � � �� IN

cnr��� � l � if � � �l for some l � 
	�

This function yields the position of the constructor � in the list ���� � � � � ��� of input symbols
that is given by the input alphabet of the �����
sdrs machine	

�	 root � T� �� �

root�t� � � � if t � ��t�� � � � � tn� for some � � �n and t�� � � � � tn � T�

This function yields the root of the given tree	

�	 sel � T� � IN � �� T�

sel���t�� � � � � tn�� j� �

�
tj � if j � 
n�
undefined � otherwise

For a tree and a number j� this function determines the j
th subtree of the given tree� if it
exists	

De	nition ��� For every instruction " � I������ the instruction semantics of "� denoted by
C

 " ��� is a function of type ID����� �� ID����� de�ned as follows where �m� h� w� � ID������

�	 C

 JMP n �� �m� h� w� �� �n� h� w�
C

 JMR ��� �m�� � � � � �� � m�� �� �m� h� w� �� �m�� h� w�

where � � cnr�root�h����

�	 C

 CREATE�j�m�� � � � � mn� ra� �� �m� h� w� ��
�m# ��F � ra � �n # �� � sel�h��env�h� # ��� j� �m� � � � � �mn � h� w�

C

 RET �� �m� h� w� �� if h � F � ra � dl � tree � adr� � � � � � adrdl�� � h
�

then �ra� h�� w�
if h � Y � ra � sl � h�

then �ra� h�� w�

C

 EVAL i �� �m� h� w� �� �h��env�h� # � # i��Y �m# � � next�h� � h� w�

�	 C

 WRITE a �� �m� h� w� �� �m# �� h� wa�

�	 C

 DUMMY �� �m� h� w� �� �m# �� h� w�
L

Before we de�ne the one
step semantics� we informally explain the instruction semantics	

�	 JMP n sets the program counter to n	
Using the instruction JMR ��� � m�� � � � � �� � m�� �jump on root� the program �jumps� to
the program place corresponding to the label of the root of the current recursion argument	
This tree is contained in the fourth square �counted from the top� of the current F�block	
The functions cnr and root help to determine this symbol	



�� � SYNTAX�DIRECTED RUNTIME STACK MACHINE

�	 CREATE�j�m�� � � � � mn� ra� pushes a new F�block on top of the runtime stack with the tag
F� the return address ra� the dynamic link n # �� the j
th subtree of the current recursion
argument and the addresses m�� � � � � mn for the evaluation of the parameter variables	 The
program counter is set to the address of the next instruction	
The RET instruction deletes the topmost block and sets the program counter to the return
address of the deleted block	
By means of the EVAL i instruction a Y�block for the evaluation of the parameter variable
yi is pushed on the runtime stack and the program counter is set to the address for the
computation of the parameter variable yi	 Note that this address is contained in the F�block
which is speci�ed by env�h�	

�	 The instruction WRITE a appends the output symbol a to the end of the output tape and
increases the program counter	

�	 The DUMMY instruction only increases the program counter	 The other components of the
sdrs machine are not changed	 This instruction is only introduced for the computation of an
empty case
alternative of sd funprog	

After this explanation we de�ne the one
step semantics and the iteration semantics of sdrs
machine programs	

De	nition ��� Let P � � � "�� � � � � n � "n � Prog����� be an �����
sdrs machine program	
The one�step semantics E 

 P �� of P is the function E 

 P �� � ID������� ID����� where

E 

 P �� �m� h� w� �

�
C

 "m �� �m� h� w� � if m � 
n�
��� h� w� � otherwise

The iteration semantics I

 P �� of P is the function I

 P �� � ID����� �� ID����� where

I

 P �� �m� h� w� �

�
�m� h� w� � if m � �
I

 P �� �E 

 P �� �m� h� w�� � otherwise

L
Now we introduce the input
mapping and output
mapping for the sdrs machine	

De	nition ��
 The input
mapping is the function input � T� �� ID����� de�ned by

input�t� � ���F � � � � � t� ��

	

The output
mapping is the function output � ID������� �� de�ned by

output��� h� w� � w

	
L

The initial instantaneous description �m� h� w� of the sdrs machine is provided by the input

mapping	 The program counter m is set to the starting address �� the runtime stack h only
contains one F�block with tag F� return address �� dynamic link �� and the given input tree t� and
the output tape w contains the empty word �	 The output
mapping projects the string written
on the output tape	 Now� the semantics of a program can be de�ned in terms of the input
 and
output
mappings� and the iteration semantics	



��

De	nition ��� Let P be a �����
sdrs machine program	

The semantics of P is the function M

 P ��� T�� �� �� de�ned by

M

 P �� �� input 
 I

 P �� 
 output

where 
 denotes the composition operation to be read from the left to the right	
L

Note that M

 P �� might be a partial function	 Although� if P is an sdrs machine program
which is generated by a translation of an sd funprog� then M

 P �� is total	 After the introduction
of the sd funprogs and the sdrs machine we de�ne the translation of sd funprogs into sdrs machine
programs in the next section	



�� � TRANSLATION OF SD FUNPROGS INTO SDRS MACHINE PROGRAMS

� Translation of sd funprogs into sdrs machine programs

For the sake of simplicity of the translation from SDFP ����� to Prog������ we always use
tree
structured addresses in the generated programs	 Such an address is a string of nonnegative
integers seperated by dots� and it is possible that an instruction is labeled by several �possibly
none� tree
structured addresses	 Clearly� such addresses may now also appear as parameters of
instructions	 Before formalizing programs with tree
structured addresses� we present an example
of such a program	

Example ��� Let � � f����� ����g be a ranked alphabet and � � fa� bg be a usual alphabet	 Then

� � JMR�� � ���� � � ���� �
�	� � WRITE b �

CREATE��� ������ ������ �
JMP ��� �

�	�	� � WRITE a �
RET �

�	�	� � WRITE b �
RET �

�	� � EVAL � �
�	� � JMP ��� �
�	� � RET �

is a �����
sdrs machine program with tree
structured addresses	
L

We assume that a load program exists� which transforms programs with tree
structured addresses
into programs with usual addresses as required in De�nition �	�	 This load program transforms�
e	g	� the program in Example �	� into the program shown in Example �	�	

De	nition ��� The set of ������sdrs machine programs with tree�structured addresses� denoted
by Prog � t������ is the set

fw� � "� � � � � �wn � "n j n � �� for every i � 
n� � "i � I ������� wi � �IN���g�

of strings where I ������ denotes the set of instructions that include tree
structured addresses as
parameters and it is required that no address appears more than once as a label of an instruction
in a program	

L

The translation from SDFP ����� to Prog � t����� is de�ned inductively over the syntax of
the sd funprog �cf	 De�nitions �	�� �	�� and �	��	

De	nition ��
 The translation trans is a function of type SDFP ����� �� Prog � t�����	
Let P � �F � Fin� E� be an sd funprog with F � fF�� � � � � Frg for some r � �� Fin � F�� and

E � fFi�z� y�� � � � � yni
� � �i j i � 
r�g�

Then



��

trans�P � � � � ct���� �� RET �

			

r � ct��r� r� RET �

where ct is the function which translates a case
expression into a piece of an sdrs machine
program	 The second parameter of ct is a tree
structured address 
 such that for every string

 � IN�� the address 

 is not yet used in the program generated so far	 ct is de�ned as follows�

ct � CASE � EXPR�F� � IN� �� Prog � t�����

with ct� CASE root�z� OF �� � t� � � � �� � t� END � 
� �

JMR ��� � 
��� � � � � �� � 
�	��

�� � et �t�� 
��� JMP 
��	# �� �

�� � et �t�� 
��� JMP 
��	# �� �

			

�	 � et �t�� 
�	�

��	# �� �

where et is the function which translates a case
alternative into a sequence of instructions	 It is
de�ned inductively over the structure of the case
alternatives as follows�

et � CA�F�� IN� �� Prog � t�����

with et ��� 
� � DUMMY �

for a � �� 
 � CA�F� �

et�a
� 
� � WRITE a� et�
� 
���

for yi with i � �� 
 � CA�F� �

et�yi
� 
� � EVAL i� et �
� 
���

for Fi � Fn��� i � �� n � IN� for every k � 
n� � 
k � CA�F�� 
 � CA�F�� and j � � �

et�Fi�selj�z�� 
�� � � � � 
n�
� 
� � CREATE�j� 
��� � � � � 
�n�
��n# ��� �

JMP i �


��� et �
�� 
��� RET �

			


�n� et �
n� 
�n� RET �


��n# ��� et �
� 
��n# ���

L



�� � TRANSLATION OF SD FUNPROGS INTO SDRS MACHINE PROGRAMS

The generated program always starts with the translation of the case
expression of the equation
for F�� which is also called the main equation	 The �rst instruction in the translation of any
case
expression is the JMR
instruction	 Depending on the root symbol of the current recursion
argument� it jumps to the corresponding code which is produced by the translation function et 	
This latter function is de�ned recursively on the strucure of case
alternatives�
An empty case
alternative is translated into theDUMMY instruction 	 If the given case
alternative
is pre�xed by an output symbol a� then the instruction WRITE a is produced	 If the given case

alternative is pre�xed by a parameter variable yi� then the instruction EVAL i must be executed	
This instruction produces a new Y�block at the top of the runtime stack for the evaluation of this
parameter variable	 If the case
alternative starts with a function call Fi�selj�z�� 
�� � � � � 
n�� then
a CREATE
instruction pushes an F�block on top of the runtime stack	 The succeeding JMP i
instruction jumps to the �rst instruction of ct��i� i�	 Furthermore� the code for the evaluation of
the parameter expressions 
�� � � � � 
n is produced	 The starting addresses for the evaluation of
parameter expressions are given as parameters to the mentioned CREATE
instruction	

Now we want to illustrate the translation for an sd funprog into an sdrs
machine program by
means of an example	

Example ��� Consider the sd funprog P of Example �	�	 We do not want to develop its translation
step by step	 Rather� we show the top
level of this development for the translation of the case

expression of the function F� and we show the complete translation of P in Figure �	

ct� CASE root�z� OF � � a� � � F��sel��z�� y�� c�� � � a END � �� �

� � JMR�� � ���� � � ���� � � ���� �
��� � et�a� ����

JMP ��� �
��� � et�F��sel��z�� y�� c�� ����

JMP ��� �
��� � et�a� ����
��� � RET �

The RET instruction and Label � is produced by trans�P �	

By applying the load program to trans�P � we obtain the translation of P which is presented in
Figure �	

For a better understanding we have ommitted the DUMMY 
instructions� but note that a
�complete� translation would contain them	 We �nish this example with the description of the
computation of the sdrs machine for the input tree ������� �� in Figure � �cf	 the computation of
the sd funprog in Example �	��	 The execution of the program is documented as follows�

� Every state of the sdrs machine is enumerated	

� Every block of the runtime stack is written down separately in one line	 Thus the uppermost
line corresponds to the top block of the runtime stack	

� The instruction of the program to be evaluated next is listed separately	

� We only list the components of the sdrs machine which have been changed during the last
computation step	



��

For a better understanding of the behaviour of the machine� we give some detailed informations	
The step transforming the state with the number n to the state with the number n # �� is called
step n	

� State � is produced by application of the input mapping to the input tree ������� ��	

� Step � tests the top
constructor and jumps to the program address for the execution of the
case
alternative for �	 Then the output symbol a is written to the output tape	

� In step � a new F�block for the evaluation of the function call F��sel��z�� bF��sel��z�� a� b��
is created on top of the runtime stack	 Note that the actual value of z is ������� ��	

� Then a new test on the top
constructor is executed	

� In step � another F�block for the evaluation of the function call F��sel��z�� y�� c� is created	
Note that the actual values of z and y� are ���� and bF���� a� b�� respectively	

� In this con�guration the value of the parameter variable y�� which is c� is evaluated and then
the output symbol c is written down to the output tape	

� In step �� the Y�block can be deleted� because the evaluation of the value of y� has been
�nished	

� Then the second occurrence of y� in the case
alternative ��	�� of Example �	� must be eval

uated 	 Thus� again a new Y�block is generated � c is written down to the output tape� and
then the Y�block is deleted	

� The second function call is �nished and the corresponding F�block is deleted in step ��	

� The �rst function call is �nished and the corresponding F�block is deleted in step ��	

� In step �� the input�block is deleted and the stop label � is written to the program counter	

� The work stops with the output acc	
L



�� � TRANSLATION OF SD FUNPROGS INTO SDRS MACHINE PROGRAMS

Function No	 Code Constructor

F� � JMR�� � �� � � ��� � � ��� �
� WRITE a � �

� CREATE��� �� ��� �
� JMP �� �
� WRITE b �
� CREATE��� �� ��� ��� �
� JMP �� �
� WRITE a �
� RET �
�� WRITE b �
�� RET �
�� RET �
�� JMP �� �
�� WRITE a � �
�� JMP �� �
�� WRITE a � �
�� RET �

F� �� JMR�� � ��� � � ��� � � ��� �
�� WRITE a � �
�� JMP �� �
�� CREATE��� ��� ��� ��� � �

�� JMP �� �
�� EVAL � �
�� RET �
�� WRITE c �
�� RET �
�� JMP �� �
�� WRITE a � �
�� RET �

F� �� JMR�� � ��� � � ��� � � ��� �
�� WRITE a � �
�� JMP �� �
�� WRITE a � �
�� JMP �� �
�� EVAL � � �
�� EVAL � �
�� RET �

Figure �� Translation of the sd funprog of Example �	�



��

No	 ProgramCounter RuntimeStack OutputTape Instruction

� � F� � � � � ������� �� � JMR�� � �� � � ��� � � ���

� � WRITE a

� � a CREATE��� �� ���

F� �� � � � ���� � �
� � F� � � � � ������� �� JMP ��

� �� JMR�� � ��� � � ��� � � ���

� �� CREATE��� ��� ��� ���

F� �� � � � � � �� � ��
F� �� � � � ���� � �

� �� F� � � � � ������� �� JMP ��

� �� JMR�� � ��� � � ��� � � ���

� �� EVAL �

Y� �� � �
F� �� � � � � � �� � ��
F� �� � � � ���� � �

�� �� F� � � � � ������� �� WRITE c

�� �� ac RET

F� �� � � � � � �� � ��
F� �� � � � ���� � �

�� �� F� � � � � ������� �� EVAL �

Y� �� � �
F� �� � � � � � �� � ��
F� �� � � � ���� � �

�� �� F� � � � � ������� �� WRITE c

�� �� acc RET

F� �� � � � � � �� � ��
F� �� � � � ���� � �

�� �� F� � � � � ������� �� RET

F� �� � � � ���� � �
�� �� F� � � � � ������� �� JMP ��

�� �� RET

�� �� F� � � � � ������� �� JMP ��

�� �� RET

�� � �

Figure �� Computation of the sdrs machine program in Figure � with input tree ������� ��



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

� Comparison of the sdrs machine and the ct�ns transducer

After having developed a compiler
based implementation of sd funprogs on the basis of the sdrs
machine� we now brie�y recall from 
FV��� the checking
tree nested
stack transducer �for short� ct

ns transducer�� which serves as an interpreter
based implementation of sd funprogs	 Recall from the
introduction that ct
ns transducers exactly compute the functions of the class sdFun	 In the second
subsection we compare both implementations and� by establishing a one
to
one correspondence
between the computational behaviour of the sdrs machine and the ct
ns transducer� we verify that
sdrs machines also compute exactly the class sdFun	

��� Informal description of ct�ns transducer

An instantaneous description of the ct
ns transducer is provided by the state of the �nite control�
the contents of the output
tape� and the con�guration of the checking
tree nested
stack �for short�
ct
ns�	 An example of an instantaneous description is given in Figure �	

ct�ns

bottom ��s�� � � � � sj� 


s� 


top s�� �

stack�

s� �

stack�

s�� � s�� �

s��� �

stack�

s��� �

	nite control

qi

�

output tape

a b c b a 														
�

Figure �� A Checking
Tree Nested
Stack Transducer	

Intuitively� a ct
ns consists of a �nite amount of stacks that are nested in each other� e	g	� the
nested
stack in Figure � consists of three stacks stack�� stack�� and stack�� stack� is nested between
the two squares of stack�� stack� is nested between the bottom square of stack� and the next square
above� stack� is called outermost stack	 We note that the nesting relation of stacks is acyclic	 One
of the squares is designated to be the current square	 Each square of the ct
ns consists of two
components	 The left component includes a subtree of the checking
tree and the right component
includes a symbol of the stack alphabet	 The tree in the left component of a stack square is a direct
subtree of the tree in the square below� e	g	� in Figure �� s�� is a direct subtree of s�	 The complete



��� Informal description of ct�ns transducer ��

checking
tree ��s�� � � � � sj� is stored in the bottom square of the outermost stack	 �The reader is
refered to De�nition �	�� and De�nition �	� of 
EV��� for a formal de�nition of the checking
tree
nested
stack� there it is denoted by NS�TR�	� The con�gurations of the ct
ns can be transformed by
means of the instructions push�i� ��� pop� moveup� movedown� create���� destruct� and stay����
where � is an element of the stack alphabet and i is a positive integer	 The meaning of these
instructions is described in the following �gures� where we assume that ti is the i
th direct subtree
of t	

� push�i� �� � ��� �� ���� pop � ��� �� ���

t 
 �

r

r

r

���

t 


�

r

r

r

���

ti �

� moveup � ��� �� ���� movedown � ��� �� ���

We have to distinguish two possible con�gurations�

�	�

t 


ti �

�

r

r

r

r

r

r

���

t 


�

r

r

r

���

ti �

r

r

r

�	�

t 


ti 


�

r

r

r

r

r

r

���

ti �

r

r

r

t 


ti 
 �

r

r

r

r

r

r

���

ti �

r

r

r



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

� create��� � ��� �� ���� destruct � ��� �� ���

Also here� we have to distinguish two possibilities�

�	�

t 


ti 
 �

r

r

r

r

r

r

���

t 


ti 
 �

r

r

r

r

r

r

���

ti �

�	�

t 


ti 
 �

r

r

r

r

r

r

���

ti �

r

r

r

t 


ti 
 �

r

r

r

r

r

r

���

ti �

r

r

r

ti �

� stay��� � ��� �� ���

t 
 �

r

r

r

���

t � �

r

r

r

���

A ct
ns transducer contains a �nite set of rules each of which has the following form�

q���x�� � � � � xj�� ���� 


where q denotes a state of the �nite control� ��x�� � � � � xj� and � denote representations of the two
components of the current stack square	 The right
hand
side 
 is a string over output symbols
followed by at most one construct �p� �� where p is a state and � is an instruction of the ct
ns	 The
rule can be applied to an instantaneous description of the ct
ns transducer� if q is the state of the



��� Comparison of the implementations ��

�nite control and the current stack square contains a tree with root label � in its �rst component
and the symbol � in its second component	

Example 
�� Consider the instantaneous description of the ct
ns transducer in Figure � and the
following rule�

qi���x�� � � � � xj�� �� �� abcql�moveup��

where qi and ql are states and a� b� c are output symbols	 This rule can be applied to the instan

taneous description in Figure �� if we assume that � denotes the root of the tree s��� in the current
square	 The application of this rule changes the instantaneous description by

� switching the �nite control to state ql	

� applying the instruction moveup to the ct
ns and

� appending the string abc to the output tape	
L

The formal de�nition of the computation relation of a ct
ns transducer can be found in 
EV���
FV���	

��� Comparison of the implementations

In 
FV��� a direct interpreter
based implementation of sd funprogs on ct
ns transducers is de

�ned	 In this subsection we simultaneously recall this implementation and compare it with the
implementation of sd funprog on the sdrs machine as developed in this paper	

In the interpreter
based implementation the whole case
alternative is put into the right com

ponent of the current square� and it is interpreted symbol by symbol from left to right	 This
interpretation mechanism replaces the program
controled mechanism of the sdrs machine	 We di

vide the comparison of the interpretation mechanism and the program
controled mechanism into
the four cases which are possible for case
alternatives �cf	 De�nition �	���

�	 
 � a�� where a � �

�	 
 � Fi�selj�z�� 
�� � � � � 
k��

�	 
 � yi�

�	 
 � �

We consider the following instantaneous description of the ct
ns transducer as starting point of
our comparison where p is the working state�



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

CT�NS

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s 
 �

OT a b 
 
 


We will see that this instantaneous description is su�ciently general for the description of the
behaviour of the ct
ns transducer in each of the four cases	

The corresponding instantaneous description of the sdrs machine is shown in the next �gure�

PC adr�
�

Runtime stack

F� adr��� � n# � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�
adr�
� �

Program

OT a b 
 
 


The program counter contains the start address for the evaluation of the current expression 
	
The top F�block consists of the tag F� the return address adr��� for the evaluation of the expression
�� the dynamic link n # �� the recursion argument s and the start addresses adr�
��� � � � � adr�
n�
for the evaluation of the parameters 
�� � � � � 
n	 The contents of the output tape is identical to the
output tape of the ct
ns transducer	

Now� we illustrate the instantaneous description of the ct
ns transducer after interpretation of
the pre�x symbol of 
 and the instantaneous description of the sdrs machine after the execution
of the code which arises from the translation of the pre�x symbol of 
	 If the output tape is not
changed� it is omitted	 The �nite control of the ct
ns transducer mostly is in the working state p�
if this holds� then we omit the control from the �gures	



��� Comparison of the implementations ��

Case �� 
 � a�

The output symbol a is deleted in the current square of the ct
ns and it is written to the output
tape	 Thus� we reach the following instantaneous description�

CT�NS

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s � �

OT a b a 
 
 


In this situation the program storage of the sdrs machine has the following structure�

adr�
� �

adr��� �

WRITE a

After executing WRITE a we obtain the following instantaneous description�



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

PC adr���

Runtime stack

F� adr��� � n# � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�
adr�
� �

adr��� �

Programm

OT a b a 
 
 


Case �� 
 � Fi�selj�z�� 
�� � � � � 
k��

In the ct
ns transducer Fi�selj�z�� 
�� � � � � 
k�� is replaced by �
�� � � � � 
k��� and a push�j� Z��

instruction is executed	 Thus� in the new square the left component includes the j
th subtree sj of
s and the right component includes Z�	 Furthermore� the state of the �nite control changes to Fi	
For instance� the instantaneous description

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

p�s Fi�selj�z�� 
�� � � � � 
k��

is changed into the following instantaneous description�

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s �
�� � � � � 
k��

Fi�sj Z�



��� Comparison of the implementations ��

If� for example the root of sj is � and� in the sd funprog which is under consideration� t is
the case
alternative for � of Fi� then Z� is replaced by t� and the �nite control changes back to
the working state p	 Note that the parameter list in the square below the new top square is not
deleted� because it contains the bindings of the parameter variables in t	 We obtain the following
instantaneous description�

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s �
�� � � � � 
k��

p�sj t

In this situation the program storage of the sdrs machine has the following structure�

adr�
� �

adr��� �

CREATE�j� adr�
��� � � � � adr�
k�� adr����

JMP i

By executing the CREATE and JMP instructions we obtain the following instantaneous de

scription�



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

PC adr�t�

Runtime stack

F� adr��� � k # � � sj � adr�
�� � � � � � adr�
k�

F� adr��� � n# � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�
adr��� �

adr�t� �

Program

A new F�block with return address adr���� the dynamic link k # �� the recursion argument
sj � the addresses adr�
��� � � � � adr�
k� for the evaluation of the parameters 
�� � � � � 
k is created at
top of the runtime stack	 Then the program �jumps� to the start address of Fi	 There a JMR
instruction is executed	 Thus� the program jumps to the start address for the evaluation of the
corresponding case
alternative adr�t�	

Case 
� 
 � yi�

The parameter list �
�� � � � � 
n� contained in the square below the current stack square� represents
the bindings of the parameter variables in 
	 Thus� we �nd the binding of yi in the square below
and we have to evaluate the expression 
i	 We delete yi in the top square� we movedown to the
parameter list� and we create a new stack for the evaluation of 
i	 Note that this new square
contains ��s� as checking
tree	 Then� we obtain the following instantaneous description�

CT�NS

��s� 
i

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s �

�

In this situation the program storage of the sdrs machine has the following structure�



��� Comparison of the implementations ��

adr�
� �

adr��� �

EVAL i

By executing the EVAL i instruction we obtain the following con�guration�

adr��� �

Program

PC adr�
i�

Runtime stack

Y� adr��� � s

�

F� adr��� � n # � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�
adr�
� �

The address adr�
i� for the evaluation of 
i is written to the program counter and a new Y�
block is created on top of the runtime stack	 This Y�block contains the return address adr��� and
the static link to the environment of 
i	 In other words� the static link points to the F
block in
which the appropriate addresses are stored for the computation of the values of parameter variables
that may occur in 
i	

Case �� 
 � �
The top square of the ct
ns includes the empty word �	 That means� the evaluation of the case

alternative is �nished and thus� this square can be popped	 The parameter list in the new current
square contains the bindings of the parameter variables for the previous function call and hence�
this list is not needed any longer	 We get the following instantaneous description of the ct
ns�

CT�NS

����s�� ���� � � � � �m��

��s� � �



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

In the sdrs machine the program storage has the following structure�

adr�
� � RET

By executing the RET instruction we obtain the following con�guration�

PC adr���

Runtime stack

F� adr��� �m# � � ��s� � adr���� � 
 
 
 � adr��m�

			

adr�
� �

Program

This ends the discussion of the four possible cases of the structure of case
alternatives	 However�
the attentive reader might have recognized that there is one possible con�guration which is not yet
included in these four cases	 It is an instantaneous description of the ct
ns transducer in which the
current square of the ct
ns is the bottom square of a nested
stack and its right component contains
the empty word �	 For example�

CT�NSa�

��s� �

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s �

�

The nested
stack has been created for the evaluation of a parameter expression and now this eval

uation is �nished	 Thus� the nested stack is no longer needed	 Therefore� a destruct
instruction is
executed and� since the new current square is not a top square of a stack� a moveup
instruction is



��� Comparison of the implementations ��

executed	 We obtain the following instantaneous description�

CT�NSb�

����s�� ���� � � � � �m��

��s� �
�� � � � � 
n��

s � �

As illustrated in Case �� a nested stack is created in the ct
ns transducer i a Y�block is created
in the sdrs machine	 Thus� the following instantaneous description of the sdrs machine corresponds
to instantaneous description a� of the ct
ns�

Program

PC adr�
�

Runtime stack

Y� adr��� � s

�

F� adr��� � n # � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�
adr�
� � RET

The Y
block has been pushed to the runtime stack for the evaluation of a parameter expression	
Now� this evaluation is �nished	 Thus� the Y
block is deleted by the RET
instruction at address
adr�
�	 We get the following instantaneous description of the sdrs machine which corresponds to
instantaneous description b� of the ct
ns�



�� � COMPARISON	 SDRS MACHINE AND CT�NS TRANSDUCER

Program

PC adr���

Runtime stack

F� adr��� � n# � � s � adr�
�� � � � � � adr�
n�

F� adr��� �m# � � ��s� � adr���� � � � � � adr��m�

At the end of this section we summarize the comparison in the following table�

ct
ns transducer sdrs machine

Instructions push CREATE
pop RET �the top block is an F�block�

movedown and create EVAL
destruct and moveup RET �the top block is a Y�block�

function
call push a square create an F�block
yi
variable create a nested stack create a Y�block

working mode interpreter
based machine compiler
based machine

Thus we can conclude a strong similarity between the interpreter
based implementation of sd
funprog on ct
ns transducer and the compiler
based implementation on the sdrs machine	 Therefore�
we can claim that the sdrs machine is a minimal machine for the implementation of sd funprog�
because of the characterization of sd funprog by the ct
ns transducer in 
EV���	 In particular� it is
not possible to implement tree
to
string functions on the sdrs machine which are not in the class
of functions that can be computed by sd funprogs	



��

� Conclusion

In this paper we have formalized a compiler
based implementation of syntax
directed functional
programming on an abstract runtime stack machine	 We have compared this implementation with
an interpreter
based implementation on ct
ns transducer which was formalized in 
FV���	 By
means of this comparison it was found out that there is a one
to
one correspondence between the
two implementations	 In this sense� the sdrs machine is a minimal among all machines on which
sd funprog can be implemented	

In 
Fa���� FV��� an extension of the implementation on the ct
ns transducer to a call
by
need
implementation of sd funprogs was formalized	 In 
Fa���� the implementation on the sdrs machine
is modi�ed to a call
by
need implementation	 There� we have to ensure that each parameter variable
is evaluated at most once	 For this purpose� the value of a parameter expression is written to a
local output tape which is associated to the corresponding Y
block	 If this Y
block is popped from
the runtime stack� the contents of the local output tape replaces the address for the computation
of the parameter in the F
block	 Then� if the value of the parameter is needed once again� the
machine picks it from the F
block	

In our current research we investigate sd funprogs which are enriched by features of logic pro

gramming languages� i	e	� free variables in goals for which an answer has to be computed	 We study
narrowing machines on which such functional logic programming languages can be implemented	
A note for an interpreter
based machine for such a language is presented in 
RV���	



�� REFERENCES

References


Aho��� A	V	 Aho	 Nested stack automata	 Journal of Assoc� Comput� Mach�� ����������� ����	


AU��� A	V	 Aho and J	D	 Ullman	 Translations on a context free grammar	 Inform� and Control�
����������� ����	


AU��� A	V	 Aho and J	D	 Ullman	 The Theory of Parsing� Translation and Compiling� Vol� I

and Vol� II	 Prentice
Hall� ����	


CF��� B	 Courcelle and P	 Franchi
Zannettacci	 Attribute grammars and recursive program
schemes I� II	 Theoret� Comput� Sci�� ���������� and �������� ����	


EH��� J	 Engelfriet and L	M	 Heyker	 The term
generating power of context
free hypergraph
grammars and attribute grammars	 Technical Report ��
��� Rijksuniversiteit te Leiden�
Vakgroep Informatica� ����	


Eng��� J	 Engelfriet	 Tree transducers and syntax directed semantics	 Technical Report Memo

randum ���� Technische Hogeschool Twente� ����	


ES��� J	 Engelfriet and G	 Slutzki	 Extended macro grammars and stack controlled machines	
Journal of Computer and System Sciences� ����������� ����	


EV��� J	 Engelfriet and H	 Vogler	 Pushdown machines for the macro tree transducer	 Theoretical
Computer Science� ����������� ����	


Fa���� H	 Fa�bender	 Implementierung der call
by
need Auswertungsstrategie f�ur macro tree

to
string transducer auf nested
stack Maschinen mit geschachtelten Ausgabeb�andern� De

cember ����	 Diplomarbeit� RWTH Aachen	


FV��� H	 Fa�bender and H	 Vogler	 A call
by
need implementation of syntax directed func

tional programming	 Technical Report ��� Aachen University of Technology� Fachgruppe
Informatik� Ahornstr	 ��� W
���� Aachen� FRG� ����	


Gor��� M	J	 Gordon	 The denotational description of programming languages� an introduction	
Springer
Verlag� ����	


Ind��� K	 Indermark	 Functional compiler description	 Banach Center Publications� �����������
����	


Ind��� K	 Indermark	 Grundlagen funktionaler Programmiersprachen	 Lecture Notes at the
Aachen University of Technology� ����	


Iro��� E	T	 Irons	 A syntax directed compiler for ALGOL ��	 Comm� Assoc� Comput� Mach��
�������� ����	


Knu��� D	E	 Knuth	 Semantics of context
free languages	 Math� Syst� Theory� ���������� ����	
correction� Math	 Syst	 Theory � ������ ��
��	


Kos��� C	H	A	 Koster	 A�x grammars	 In Proc� of the IFIP working conf� on ALGOL�� imple�

mentation� ����	 Amsterdam� North
Holland	


RV��� M	 Rodriguez
Artalejo and H	 Vogler	 Note on a narrowing machine for syntax directed
BABEL	 Technical Report ��� Aachen University of Technology� Fachgruppe Informatik�
Ahornstr	 ��� W
���� Aachen� FRG� ����	



REFERENCES ��


SS��� D	 Scott and C	 Strachey	 Towards a mathematical semantics for computer languages	 In
J	 Fox� editor� Computers and Automata� pages �����	 Wiley� New York� ����	


