COMPLEXITY-RESTRICTED ADVICE FUNCTIONS*

Jouannes KOBLER! AND Tromas THiEravr!#

Abstract. We consider uniform subclasses of the nonuniform complexity classes de-
fined by Karp and Lipton [23] via the notion of advice functions. These subclasses are
obtained by restricting the complexity of computing correct advice. We also investigate
the effect of allowing advice functions of limited complexity to depend on the input rather
than on the input’s length. Among other results, using the notions described above, we
give new characterizations of (a) NPNPNSPARSE - ()
oracle and (c) the odd levels of the boolean hierarchy.

As a consequence, we show that every set that is nondeterministically truth-table
reducible to SAT in the sense of Rich [35] is already deterministically truth-table reducible
to SAT. Furthermore, it turns out that the NP reduction classes of bounded versions of
this reducibility coincide with the odd levels of the boolean hierarchy.

NP with a restricted access to an NP
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1. Introduction. In their fundamental paper, Karp and Lipton [23] introdu-
ced the notion of advice functions and investigated nonuniform complexity classes
which they denoted by C/F, where C is a class of sets and F is a class of (advice)
functions. A typical class is P/poly, where poly is the set of polynomially length
bounded functions. The interest in P/poly stems from the fact that it consists
exactly of the languages that can be computed by polynomially size-bounded cir-
cuits [34].

Intuitively, a set A is in C/F, if A can be solved by a machine of type C
that gets, in addition to the input x, the advice f(x), where f is a function in F
depending only on the length of x. Many researchers have considered nonuniform
classes where the function class F is defined by a quantitative length restriction
such as poly and log (see, for example, [3, 5, 23, 36]). Note that for such F there are
nonrecursive functions in F, and therefore C/F contains nonrecursive languages.
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Here, we consider uniform language classes obtained by imposing complexity
bounds on the advice functions. Note that Kamper [22] investigates refinements of
the original C/F definition by delimiting the complexity of proof sets, i.e., special
sets of correct advice. In contrast to this, we directly bound the complexity of
computing correct advice. With this concept, we are able to show characterizations
as well as finer distinctions of several complexity classes. For example, we show

that the class NPMTSPARSE ¢oincides with the class NP /OptP[O(log n)], a subclass
of NP/log, where correct advice is computable by an OptP function [29], i.e.,

(1.1) NPNPASPARSE — NP /OptP[O(log n)).

One can interpret equality (1.1) as stating that (exactly) the languages in
NPNPOSPARSE ¢an be computed in the following way: on input z of length n, at
first an OptP[O(logn)] precomputation takes place that gets as input only 1".
The (logarithmically length-bounded) output of this precomputation is then pas-
sed along with x to the subsequent NP computation, that decides the membership
of z.

Motivated by the relativized separation of P and NP of Baker, Gill, and Solo-
vay [2] (exploiting the fact that an NP oracle machine can ask superpolynomially
many queries), Book, Long, and Selman [11] introduced restricted relativizations
of NP by bounding the number of oracle queries in various ways. Subsequently,
Long [32] investigated the relationship between restricted access of nondetermini-
stic machines to an oracle and full access to a sparse oracle set. Let NP4 be the
class of all languages whose membership in NP4 is witnessed by an oracle machine
such that the number of potential oracle queries in A (asked on some oracle) is
polynomially bounded. From this definition, it is clear that NPNPTSPARSE 1o contai-
ned in NPR'. Since also coNP is contained in NPR', NPNTSPARSE o0 NPRF are
different unless the polynomial hierarchy collapses [21]. By considering the proof of
equality (1.1), we will see that if we let the OptP[O(logn)] advice function depend
not only on the length of the input but on the input itself, we get a characterization
of NPEY'. This leads us to define the class C//F, that is defined in the same way as
C/F, but with the advice functions depending on the input. Thus, we obtain the
following characterization of NP},

(1.2) NPR" = NP //OptP[O(log n)]

The characterizations (1.1) and (1.2) give insight into the difference between re-
stricted access to NP oracles and full access to sparse NP sets.

It seems that the notion of C//F is an appropriate concept for studying different
kinds of truth-table reducibilities. Let 3T be the k-ary characteristic function of
SAT. Then, P//x?*T oFP is the class of sets that are k-truth-table reducible to some
NP set. It is known that these classes are interleaved with levels of the boolean

hierarchy: NP(k) C P//x§*ToFP C NP(k+1) for all k > 1[28]. Since P//\$*ToFP



is closed under complementation, these classes are all different unless the boolean
hierarchy collapses.

NP //x?*T o FP is the class of sets that are k-truth-table reducible to some NP
set, where the evaluator is an NP machine. These classes turn out to coincide with
the odd levels of the boolean hierarchy, giving for the first time a charcterization
of the levels of the boolean hierarchy in terms of reduction classes,

NP(2k 4 1) = NP//\$AT o FP.

Furthermore, we show that NP(2k + 1) = NP}, where NP}, is the class
of sets that are nondeterministically k-truth-table reducible to a set in NP in the
sense of [35]', whereas in the unbounded case all sets nondeterministically truth-
table reducible to SAT are already deterministically truth-table reducible to SAT,
i.e., NPNF = PNP. The latter result also holds for the strong nondeterministic
truth-table reducibility <N introduced by Long [31], i.e., we show that {A | A <5N
SAT} = {A | A <E SAT}.

The paper is organized as follows. Section 2 introduces notation and gives
basic definitions. In Section 3, we prove the above mentioned characterizati-
ons of NPNPMSPARSE 3 NPRY and we show that changing from OptP[O(logn)]
to the larger function class FewOptP (containing all functions whose member-
ship in OptP is witnessed by an NP transducer that generates only polynomially
many different outputs) does not increase the power of NP/OptP[O(logn)] and
NP //OptP[O(log n)].

In Section 4, we separate some of these complexity classes in relativized world;
the main result is a separation of P/OptP[O(logn)] and PNPOSPARSEIO(logn)]

In Section 5, we give several characterizations of certain levels of the boolean
hierarchy in terms of various complexity restricted advice function classes.

2. Preliminaries and Notation. All languages considered here are over the
alphabet ¥ = {0,1}. For astring x € ¥*, |z| denotes its length. We assume the exi-
stence of a pairing function (-,-) : £* x £* — ¥* that is computable in polynomial
time and has inverses also computable in polynomial time. (-,-) can be extended to
encode finite sequences (x1,...,x;) of strings into a string (xq,...,z) € ¥*. For a
set A, |A| denotes its cardinality. The complement ¥* — A of A is denoted by A.
AS" is the set of all strings in A of length less than or equal to n.

A languages S is sparse, if there is a polynomial p such that for all n, the
number of words in S up to length n is at most p(n). Let SPARSE be the class
of all sparse languages. A set T is tally, if T is a subset of 1*. Let TALLY be the
class of all tally sets.

We assume that the reader is familiar with (nondeterministic, polynomial-time
bounded, oracle) Turing machines and complexity classes (see [4, 36]). FP is the

! By requiring the NP generator to be single valued, Rich [35] has modified the nondeterministic
truth-table reducibility originally defined by Ladner, Lynch, and Selman [30].



class of functions computable by a deterministic polynomial-time bounded Turing
transducer. An NP transducer is a nondeterministic polynomial-time bounded
Turing machine T' that on every branch either accepts and writes a binary number
on its output tape or rejects. The set of outputs generated by T on input z is
denoted by outr(x).

Krentel [29] defines an NP metric Turing machine to be an NP transducer
that accepts on every branch. For an NP metric Turing machine 7" and an input
x € ¥* let maxy(x) [ming(x)] be the maximum [minimum| output generated by T
on input  on any accepting computation of T'. The class OptP [29] of optimization
functions is defined as

OptP = { maxy, miny | T is an NP metric Turing machine }.

For a class R of functions on the natural numbers (called restricting functions), we
define the subclass

OptP[R] = {f € OptP |Ir € RV z € ¥ : |f(x)| < r(|z])}

containing all optimization functions f € OptP such that the length of f(z) in

binary is bounded in |z| by a function from R.

PNP PNP

[R] denotes the class of sets whose membership in can be witnessed by
an oracle machine M making for some r € R at most r(n) many queries on inputs
of length n. In the case that R is a singleton set {r} we simply write OptP[r] and
PNPUL respectively. Throughout the paper we assume that for every restricting
function r the function @ — r(|z|) is computable in polynomial time.

Karp and Lipton [23] introduced the notion of advice functions in order to
define nonuniform complexity classes. For a class C of sets and a class F of functions
from ¥* to ¥* let C/F be the class of sets A such that there is a set B € C and a

function & € F such that for all z € ¥*
reA o (z,h1F) eB.

Note that the advice function h depends only on the length of x. By canceling this
restriction we obtain the class C//F of all sets A such that there is a set B € C and
a function h € F such that for all x € ¥*

r€A & (x,h(x)) €B.

By definition, C/F is a subset of C//F for each class of sets C and each class of
functions F which fulfills the condition that if A € F, then also x — h(1Fl) € F.
Special advice function classes considered in the literature are poly = {h : ¥* —

Y* | there exists a polynomial p such that for all z, |h(2)| < p(]z|)} and log = {h:
5+ 0 5 | [h()] = O(los(|]))}.



3. NPNPPSPARSE yersus NPR'. In this section we show that NPNPTSPARSE ¢ap
be characterized as the class NP /OptP[O(logn)], i.e., the class of sets that are
accepted by an NP machine with advice of a logarithmically length bounded OptP
function. Further, it turns out that the related class NP%P (see definition below)
coincides with NP //OptP[O(logn)]. For the latter two classes we can show that
they are also equal to P//OptP[O(logn)] which, by a result of Krentel [29], is
identical to PNPIOUegn)],

DEFINITION 3.1.  [11] For any oracle Turing machine M and any string
x € X let Q(M, A, x) be the set of all oracle queries that M may ask on input x
using oracle A, i.e., the set of all strings y € X* such that in some computation of
M on input x under oracle A the oracle is queried about y. Q(M,x) us the set of all
oracle queries of M on input & using any oracle, v.e., Q(M,x) = Uycxe Q(M, A, x).

For any set A, NPr(A) is the class of sets L € NP(A) whose membership is
witnessed by a machine M such that the number of potential oracle queries in A s
polynomaially bounded, i.e., there exists a polynomial p such that |Q(M,x) N A| <
p(lx|) for all x.

Our first theorem states that if a language L is accepted by an NP oracle
machine M using an NP oracle A in such a way that the number of potential oracle
queries that are in A is polynomially bounded, then L is in NP //OptP[O(logn)],
i.e., membership to L can be tested by an NP machine which gets along with the
input the precomputed value of an OptP[O(log n )] function. In the special case that
A is sparse this containment can be strengthened to NP/OptP[O(logn)], i.e., for
all inputs of the same length the advice function yields the same result. The proof
is by a census argument similar to that used by Hemachandra [18] and Kadin [21].

THEOREM 3.2.

i) NPYF C NP //OptP[O(log n)],

i1) NPNPOSPARSE € NP /Opt P[O(log n)].

Proof. Let L = L(M, A) for an NP machine M and an oracle A in NP, and let
p be a polynomial that bounds the running time of M.

To show ) let r be a polynomial such that |Q(M,x)N A| < r(|x|) for all z. An
NP machine knowing the size of the set Q(M,x) N A can guess this set (note that
the problem to decide for given strings x and y whether y is in Q(M,z) N A is in
NP). Define the function

h(z) = |Q(M,z) N Al
and the set
B={{x,k) | IX CQM,2)NA:|X|=Fkand x € L(M, X)}.

Then B € NP and h € OptP[O(log |x|), since h(x) is the maximum output of the
following algorithm.



On input « guess k < r(|z]) and vy < ... < ay € e,
if aq,...,2p € Q(M,2) N A, then output k, else output 0.

Now, it holds for all # € ¥* that @ € L if and only if (¢, h(x)) € B. Therefore, L
is in NP//OptP[O(log n)].

For ii) let A be sparse and r be a polynomial such that |ASP(M| < p(n), for
all n. Define the function

h(z) = | ASe(el)
and the set
B={(z,k)|3X C A%D : |X| = k and = € L(M, X)}.

By a similar argument as in the proof of i), « € L if and only if (z, h(11*)) € B.
This shows that L is in NP /OptP[O(logn)]. O

Combining Theorem 3.2 1) with the result of Balcdzar and Schéning [5] that
NP /log N coNP C NPNPTSPARSE (g0 also [3]), it follows that for every coNP set in
NP /log correct advice can already be computed by an OptP function.

COROLLARY 3.3. NP/log N coNP = NP/OptP[O(logn)] N coNP.

To show the reverse containments of Theorem 3.2, we make use of the following
lemma. It states that every OptP function i can be computed by a deterministic
polynomial-time oracle machine by asking |h(x)| many queries to an NP oracle.

LEMMA 3.4. [29] OptP[r] € FPNPU for any restricting function r.

COROLLARY 3.5.

i) NPRY = NP //OptP[O(log n)],

”) NPNPOSPARSE — NPNPOTALLY — NP/OptP[O(log n)]

Proof. By Theorem 3.2, it only remains to show the inclusions from right to
left.

To show ¢), let L be in NP//OptP[O(logn)] via an NP machine N and an
optimization function A. Then L can be accepted by an NP machine M that
computes deterministically by binary search the value of i according to Lemma 3.4
asking O(logn) many queries to an NP oracle, and then simulates N without asking
further oracle queries. Since Q(M,x) is polynomially bounded, it follows that L is
in NP

If h is a function that depends only on the length of its argument, then h(x)
can be computed by binary search using the tally NP set T = {1{"F) | & < h(17)}.
This proves ¢i). 0O

Note that the above proof shows that every language in NP //OptP[O(logn)]
(and thus in NP%P) can in fact be accepted by an NP oracle machine M such that
Q(M, z) is polynomially bounded.

In the next lemma, we show that an NP computation getting along with the
input the result h(2) of an OptP precomputation can be transformed into a P com-
putation by precomputing one additional bit. Note that this bit actually depends
on x even if h(x) only depends on the length of .
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LEMMA 3.6. NP//OptP[r] C P//OptP[r + 1], for any function r.
Proof. Let L be in NP//OptP[r], witnessed by an NP set B and an OptP[r]
function h = maxy for some NP metric machine 7. Define the OptP[r+ 1] function

Vo) — { h(z)l, if (2, h(z)) € B,

h(x)0, otherwise.

Then it holds for all « that (x,h(z)) € B < (x,h/(x)) € B’, where the set
B’ ={{(x,k) | k is odd} isin P. The case that h = miny can be proved analogously.
U

Combining Corollary 3.5 ¢) and Lemma 3.6 we obtain a further characte-
rization of the class NPRX" and its closure under complementation. Note that
P//OptP[O(log n)] = PNFIOUesn)] [29],

COROLLARY 3.7. NP} = P//OptP[O(logn)).

COROLLARY 3.8. NP%P 18 closed under complementation.

REMARK 3.9. The results stated in Corollary 3.5 can be extended to the clas-
ses of the polynomaial-time hierarchy [37]. In order to do so, we define restricted
relativizations of the X-levels of the polynomaial hierarchy. Z%R 18 the class of all
sets L accepted by a k-alternating polynomial-time Turing machine [16] using an
oracle A from C such that |Q(M,x)N A| us polynomially bounded. Then, the results
stated in Corollary 8.5 can be extended to

E%kﬁSPARSE = %/0pt Bp_1[O(logn)],
Siln — 5,//Opt Ty [O(logn)] = PExOlesn],

where OptC 1s the class of optimization functions computable by an NP transdu-
cer using some oracle in the class C. Since Yp/Opt Xp_1[O(logn)] us included in
pPuklOUogn)] 4his sharpens the recent result in [13] that S+ °PARSE € pEalO(iogn)],

REMARK 3.10. The advice (even depending on the input) provided by an
OptP[O(logn)] function does not increase the power of the probabilistic class
PP: PP//OptP[O(logn)] = PP. This follows from the result by Toda [40] that
PPYF = PP, since PP//OptP[O(logn)] coincides with the class PP //FPNFIOMosn)]
(see Lemma 8.4) that is clearly contained in PPRY.

Next, we consider uniform subclasses of P/log and P/poly. Whereas the
proof of Corollary 3.5 ) also yields the inclusion of P/OptP[O(logn)] in
PNPOSPARSE[O(logn)] the census technique of Theorem 3.2 cannot be applied to obtain
the reverse containment. The next theorem is proved by constructing (long enough
initial segments of) a sparse NP set by an OptP computation. The underlying
technique was used by Mahaney [33] to show that NPNFISPARSE © pNP

THEOREM 3.11. PNPMSPARSE € p/OptP.



Proof. Let L = L(M,S), for a P machine M and a sparse NP set S. Let p
and r be polynomials such that p bounds the running time of M and [S<"| < r(n).
Define

h(z) = <5§p(|x|)>‘
Then, h € OptP, since h(x) is the maximum output of the following algorithm.

On input 1" guess k < r(p(n)) and z; < ... < x;, € B=PUD;
if x1,...,2 € S, then output (1,...,xx), else output 0.

Now, the computation of M using oracle S on input x can be simulated by a P
machine answering oracle questions according to the set h(171). 0O

Let FewOptP be the class of functions f € OptP computed by an NP trans-
ducer that produces at most a polynomial number of different outputs. Clearly,
OptP[O(log n)] € FewOptP, and obviously, this is a proper inclusion.

However, as shown by the next theorem, the classes NP/OptP[O(logn)] and
NP //OptP[O(log n)] remain unchanged when the function class OptP[O(logn)] is
replaced by the larger class FewOptP.

THEOREM 3.12.

i) NP //FewOptP = P//FewOptP = P//OptP[O(logn )],

it) NP/FewOptP = NP /OptP[O(log n)].

Proof. Let L be a set in NP //FewOptP via A € NP and f € FewOptP. Let T
be an NP metric machine for f, i.e., f = maxy (the proof for f = miny is similar),
and the number of different outputs of T is polynomially bounded. Define the
function

h(z) = [outr(x)|
and the set
B={{x,m) |3z <...<zm €outp(x): (x,z,) € A}.

It is easy to see that h € OptP[O(logn)] and B € NP. Now, z is in L if and only if
(x,h(x)) is in B, and therefore, L is in NP //OptP[O(logn)] = P//OptP[O(logn)].
The latter equality follows from Corollaries 3.5, part ¢), and 3.7. The proof of i)
is analogous, we only have to replace outr(x) by outr(11). O

The technique used in the previous proof cannot be applied to show that
the classes P/OptP[O(logn)] and P/FewOptP are equal. However, the proof of
P/OptP[O(log n)] C PNPOSPARSEO(ogn)] (ysing binary search, see the proof of Co-
rollary 3.5 i2)) can be refined to show the following theorem. It states that a set
in P/FewOptP can be decided in polynomial time by querying a sparse NP oracle
(polynomially often).

THEOREM 3.13. P/FewOptP C PNPNSPARSE



Proof. Let f be in FewOptP and let T' be an NP transducer computing f.
Using the sparse NP set

S={(1"m,i,2z) | Tz1 < ... < zp € outp(1") I2': 22 =2z}

as oracle, f(x) can be computed in polynomial time by determining first |outy(1")]
and then applying a prefix search to find the optimum value in outy(1%). O

The known relationships of the language classes considered in this section are
summarized in the diagram of Figure 3.1.

NP /poly =
NPSPARSE
/ PP//OptP
P
P/poly = PNP = P//OptP
PSPARSE = NP //OptP
PP =PP}F =
PP //OptP[O(logn)]
NP/OptP -~
/ PNP[O(log n)] — NP%P
= P//OptP[O(logn)]
P/OptP ~~ = NP//FewOptP
NPNP NSPARSE _
NP /OptP[O(logn)]
/ = NP/FewOptP

PNPNSPARSE
— pPNPNTALLY
- Ptt

N

PNPNSPARSE[O(log n)]

P/FewOptP / BH

P/OptP[O (logn)] NP

P

Fia. 3.1. Inclusion structure of some considered complexity classes; thick lines indicate that
there are relativized separations (see Section 4).

4. Relativized Separations. Since Baker, Gill, and Solovay [2] separated P
from NP relative to some oracle, relativizations have been an important subject in
complexity theory. In this section, we discuss which of the inclusions in Figure 3.1
are strict, at least in some relativized world.

Since there are nonrecursive sets in P /poly and in NP /poly, these two classes
are clearly different from all other (recursive) classes considered here. Whether
there are any other strict inclusions in the diagram of Figure 3.1 is not known.



For some of the inclusions, however, the question whether they are proper can be
linked to central open problems in complexity theory.

For example, by the result of Karp, Lipton, and Sipser (see [23]) that NP C
P /poly implies the collapse of the polynomial hierarchy to its second level, it follows
that if PH # 35, then NP is not contained in any of the classes on the left column
of Figure 3.1. Since this holds in all relativized worlds, and since there exists an
oracle separating PH from X, [24], it follows that relative to this oracle all the
inclusions between the first and the second column are proper.

Similarly, using the result of Kadin [21] that coNP C NPNFOSPARSE §rplies
PH = PNPOUogn] it follows that if PH # PNPIOUosn)]  thepn NPNTNSPARSE
PNPOUogn)]  Gince, as it is easily seen, the inclusion coNP C NP /OptP implies
PH = PP, we can state the following theorem.

THEOREM 4.1. PH # PN' = NP/OptP # P//OptP.

Furthermore, by the recent result of Toda [39] that PH C P'Y it follows that
pNPlOUesn)] £ PP and PNF #£ PP //OptP unless PH = PNF,

Beigel [7] constructed an oracle A such that PNF* — PP4 £ (.  Since
pNPOUesn)l C PP [9], oracle A also separates PNPIOUesm] and PNP (for a direct
proof see [14]).

Cai et al. [15] showed the existence of an oracle A such that relative to A the
boolean hierarchy is infinite, i.e., Yk : NPA(k) # coNP?(k). In fact, Cai et al.
construct the oracle A in such a way that, for all k, some tally test language Ly(A)
is in coNP#(k) — NP%(k). Because it holds for every oracle set B that

NPP(2F — 1)U coNPP(2¥ —1) C P//OptPP[k] C NPP(2F)
[43, 28, 8], it follows that Lox_;(A4) € P//OptP?[k] N TALLY C P/OptP4[k], i.e.,
JA VEk>1:P/OptPAk] — NPA(2F — 1) £ §.

Since P/OptP[k] is contained in the 2*-th level of the boolean hierarchy, this result
is optimal.

Clearly, if the boolean hierarchy is proper, it does not have complete sets.
Since the class P/OptP[O(logn)] has complete sets, it is not contained in BH in
any relativized world where the boolean hierarchy is infinite, i.e.,

JA:P/OptP*[O(logn)] — BH* £ (.

The main result in this section is a separation of the classes P/OptP[O(logn)]
and PNPOSPARSE[O(ogn)] - T fact, we show that for any fixed polynomial ¢ there is
a relativization such that NP contains sparse sets that are not in the nonuniform

class P/q (defined as P/{h | |h(x)| < q(|z])}).
THEOREM 4.2. For every polynomial q there exists a set A such that

(NP4 N SPARSE) — P4 /¢ # 0.
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Proof. For an arbitrary set A we define a sparse set L(A) € NP4 as follows.
For a given n and a suitable choosen function I(n), we partition the 2/(") words
of length I(n) into ¢(n) + 1 intervals (with respect to the lexicographic ordering)
I{(n) I'™  such that

v Aty

T e +1

For each interval containing a word in A, we put a word into L(A): let wi, w7, ...

J, for k=1,...,q9(n)+ 1.

be an enumeration of X" in lexicographic order and let [(n) = n+ ¢(n). Define the

NP4 set
LA ={w!|n>1, 1<k<qgn)+1and I N A£p}

Clearly, there are at most ¢(n) + 1 words of length n in A, ie., L(A) is sparse.
Now we construct a set A in stages such that L(A) ¢ P/q. Let My, M,,... be an
enumeration of all polynomial-time bounded Turing machines with running times
P1, P2, ..., respectively.

Stage 0. A:=0; ng:=min{n |[Vm >n: ¢(m)< 2"}

Stage s > 1. Choose n, minimal such that n, > max{p;/(ns—1) | ¢ < s} and
2 > 2p,(n,) (g(n,) + 1),

The algorithm in Figure 4.1 determines the words of length I(n,) that are
included in A. This is done by diagonalizing against machine M, and all potential
advice for M, on an input of length n,.

Let M be any P machine. We show that M, taking advice of any ¢-length
bounded function, does not accept L(A). Let s be an index such that M = M;.
There are 24"+ — 1 potential words as advice for M, on inputs of length n, (that
are stored in ADVICE). Each execution of the for-loop diagonalizes against at least
half of the possible advice for M,. Since log(21")*! — 1) < ¢(n,) + 1, ADVICE
becomes empty at the end of the algorithm. The construction further guarantees
that for every advice a, |a| < ¢(n;), there exists a k < ¢(ns) + 1 such that

(wpe,a) € L(M;,A) < w;* ¢ L(A).

Therefore, it suffices to show that the algorithm can always find a y € I,i(ns)—

QUERY. In every execution of the for-loop and for every advice no more than

ps(ns) words are added to the set QUERY, i.e.,
| QUERY | < (g(n,) + 1) 2/ py(n,).
Thus, we have for 1 < k< q¢+1,

1" — QUERY | > |I/)|—| QUERY |

11



ADVICE := x=a(ne);
(* ADVICE contains all potential advice against that we have to diagonalize *)
QUERY := ;
(* In QUERY we freeze the oracle queries of M, during the construction *)
for k:=1to ¢(n;) +1 do
ACC := {a € ADVICE | MA(w}*,a) accepts };
REJ := ADVICE — ACC;
if |ACC| > |REJ| then
(* I,i(ns) N A remains empty, i.e., no word in ACC is advice for w}* *)
ADVICE := REJ;
QUERY := QUERY U U, cpce Q(My, 4, (1], a)) ;
else

(ns)

(* put a word in I,i YN A, e, no word in REJ is advice for w;* *)

ADVICE := ACC;
QUERY := QUERY U U,erpy Q(M;, 4, (wi*, a)) ;
choose a y € I,i(ns)—QUERY;
A:=AUu{y}
end (* if *)
end (* for ).

Fia. 4.1. Algorithm used in the proof of Theorem 4.2.

2ns+q(n5) 1 2q(n )+1
eI ILRIARY Po(1s)
2q(ns)+1 (2”5_1 — (q(ns) + 1)2 ps(ns)) -1
= q(ns) +1
29(ns)+1
> 2 by choice of n,
q(ns) +1
> 0.

a

COROLLARY 4.3. 34 : (NP* N SPARSE) — P4 /log # 0.

Using a “Kolmogorov-argument”, Corollary 4.3 was already shown by Hema-
chandra [19]. An immediate consequence of Corollary 4.3 is the existence of an
oracle separating P/OptP[O(logn)] and PNPNSPARSE[O(ogn)]

COROLLARY 4.4. 34 : PA/OptP*[O(log n)] # PNPANSPARSE[O(logn)]
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5. Bounded Advice versus the Boolean Hierarchy. The levels of the
boolean hierarchy build as their union the boolean closure of NP, i.e. the smallest
class of sets that contains NP and is closed under union, intersection, and com-
plementation. In this section, we give several characterizations of the odd levels
of the boolean hierarchy. First, we show that NP machines that get as advice the
value of the k-ary characteristic function Y341 of SAT, where 34T is evaluated on
a k-tuple that is computed from the input by an FP function, accept exactly the
languages in the (2k + 1)-th level of the boolean hierarchy. The same is true if
the advice consists only of the information of how many out of k¥ words that are
produced from the given input by an FP function are in SAT.

Cai et al. [15] give several characterizations of the boolean hierarchy, we take
the following.

DEFINITION 5.1. A set L is in the k-th level NP(k) of the boolean hierarchy,
iof there exist sets Ly, ..., Ly € NP such that

I (L1 — LQ) Uu...u (Lk_g — Lk—l) U Lk, Zf k 18 odd
(Ly — Ly)U ... U (Lg—1 — Ly), if k 1s even
The union Uys, NP (k) of all the levels of the boolean hierarchy is denoted by BH.
For a set A, x* denotes the characteristic function of A. X1 is the k-ary

characteristic function of A, #2 gives the number out of k words, that are in A,
and &3 1s the parity of this number, i.c.,

X?(wlv"'vxk) = XA(xl)"'XA(xk)v
k
#?(wlv"'vxk) = ZXA(xi)v
=1
M1, ... k) = #(xy,...,25) mod 2.

The unbounded version of xi is x2' = U x&.
E>1

Clearly, every set L € NP(k) is k-truth-table reducible to SAT, i.e., L €
P//x3*T o FP (here and in the following, the composition operator o takes pre-
cedence over //). Every set that is k-truth-table reducible to SAT is in NP(k + 1)
([28], see also [8]), thus

(5.1) NP(k) CP//xi* o FP C NP(k +1).

Since P//x?*T o FP is closed under complementation, the classes in (5.1) are all
different unless BH (and therefore PH [20]) collapses. It is interesting to note that
a P machine needs only to know the parity of the number of k queries in SAT in
order to decide a set in P//x54T o FP ([43], see also [8]),

(5.2) P//\AT o FP = P//#32T o FP = P// 54T oFD.
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We show in the next theorem that the first equality in (5.2) also holds for the
nondeterministic counterparts of these classes which furthermore coincide with the
(2k + 1)-th level of the boolean hierarchy. Since, as it is easily seen, NP // G74T oFP
is contained in P//Xg_g o FP, we cannot replace P by NP, for £ > 2, in the second
equality of (5.2), unless BH, and thus PH, collapse. It is an open question whether
also the classes NP // @341 oFP characterize some levels of the boolean hierarchy.

We denote the bitwise ordering on strings of the same length by =<, ie.,
ap...ap by . bp, ifa; < b, fore=1,... k.

THEOREM 5.2. NP(2k+1) = NP //#3*ToFP = NP//\}*T o FP, for all k > 0.

Proof. Let L be in NP(2k + 1). Then there exist sets Ly, ..., Logy1 € NP such
that L = (Ly — Ly) U ... U (Lgk—1 — Laj) U Logy1. Define the function

k

Flz) =3 x"(x)

=1

and let A be the set defined as

(x,m) €A & & € Lypyq or there exist I C{2i | @ € Ly;} and j < k
such that [I| =m, @ € Lyj_y, and 25 & I.

Clearly, f € #3*1 o FP and A € NP, and it holds that z € L if and only if
(x, f(x)) € A. To see this, observe that there is exactly one set I C {2¢ | @ € Ly;}
of cardinality f(z), namely I = {2i | # € Ly;}. Therefore, L € NP //#54T o FP.

It is clear that NP//#3AT o FP C NP//x?AT o FP. It remains to show that
NP//xi4T o FP C NP(2k + 1). For this we adapt a proof technique used by Buss
and Hay [14]. Let L be in NP//x54T o FP, i.e., there exist a set A € NP and a
function f € FP such that z € L if and only if (z,x3*T(f(x))) € A. For m > 0,
consider the NP sets

B, = {z|#" (f(x) = m},

k
A, = {z]Ja=ay...a, € " > a;=m, a < M (F(x)), and (z,a) € A}.
=1

It is easy to see that A, C B,, and B,,;1 C B,,. Furthermore, B,, — B,,11 =
o | #50(f(2)) = m} and Ay, — By = (& € By — B | (1P (f(2))) € AJ.
The latter equality follows from the fact that for any = € B,, — B,,41, there is
only one string a € ¥* containing m 1’s and fulfilling a < x74T(f(x)), namely
a = ;M (f(x)). Therefore, z € L if and only if x € A,, — B,.41, for some m < k.
Since Byy1 = 0, it follows that L = (Ag — By) U ... U (Az_1 — Br) U Ay, O
Hemachandra [18] (see also Buss and Hay [14]) has shown that the classes
PNPOUogn)] and P //xSAT o FP coincide. By a slight modification in the above proof
we get the following corollary yielding a further characterization of PNPIOUogn)],

COROLLARY 5.3. P//x"AT o FP = NP//\5AT o FP.

w
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Beigel [8] shows that P//OptP[k] = P//x5it, o FP. From Theorem 5.2 and
the following Theorem 5.4, it follows that this equation remains valid when P is
replaced by NP. Theorem 5.4 restates an observation in [26] that #5:1 is complete
for OptP[k].

THEOREM 5.4. [26] OptP[k] = #3527, o FP U #5AT o FP, for all k > 0.

COROLLARY 5.5. NP(2F! — 1) = NP//OptP[k], for all k > 0.

Ladner, Lynch, and Selman [30] transformed the recursion theoretic truth-table
reducibility into complexity theory. They also give a definition of a nondeterministic
truth-table reduction in the following way: A is nondeterministically truth-table
reducible to B, if there exists an NP transducer G (the generator) and an NP

machine E (the evaluator) such that for every z,

r €A &  there exists a branch of G(x) yielding an output
y = {(y1,...,yx) such that E(x, xB(y1,...,yx)) accepts.

It is known that this definition is equivalent with the nondeterministic Turing
reducibility [30] and therefore does not lead to a new reducibility notion. We
modify the above definition by restricting the generator G to be a single-valued
NP transducer, i.e., the output must be the same on every accepting branch. Let
NPSV be the set of functions computed by single-valued NP transducers [11].

This reducibility first appeared in [11] (there denoted by NP.UNIF.ALL), and
was explicitely called nondeterministic truth-table reducibility by Book and Ko [10].
Subsequently, Book and Tang [12] and Rich [35] introduced the following termino-
logy.

DEFINITION 5.6. A set A s nondeterministically truth-table reducible to B
(A <BY B), if A € NP//xP o NPSV. A is nondeterministically k-truth-table
reducible to B (A <Nt B), if A € NP//xP o NPSV. For a class C of sets let NPS,
be the class {A | 3B € C: A <N B} of all sets <N -reducible to some set in C,
and let NP$_,, = {A|3B cC: A<\F B}

In [11], it is shown that there exist recursive sets A and B such that A <JF B
and A £8P B. This means that <}F is properly stronger than <}'. The question
whether <P is properly stronger than <X is equivalent to the P =?NP problem [11,
35]. However, as we will see in Corollary 5.8, every set A that is nondeterministically
truth-table reducible to some NP-complete set B is also deterministically truth-
table reducible to B, i.e.,

A< B= A< B

Thus, we have the surprising result that while the definition in [30] of a non-
deterministic truth-table reduction was too weak, the definition of Rich seems
to be too strong to yield a new reduction class between {L | L <! SAT} and
{L| L <}F SAT}. As a further consequence of Theorem 5.7, we get a characteri-
zation of the odd levels of the boolean hierarchy in terms of the nondeterministic
k-truth-table reducibility notion.
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THEOREM 5.7.
1) it o NPSV = AT o FP for all k > 1,
i1) x>AT o NPSV C FP{M,
Proof. To see i) let f be in NPSV and define the NP set

A={{x,m) | Fz1,...,2k: f(2) =(21,...,2) and z,, € SAT}.

Then AT (f(z)) = x#({(x,1),...,(z, k) for all z, and thus, x}*T o f € Y o FP C
SAT
i o FP.
For the proof of i¢) define the NP set

B = {(x,k,m,b> | 3217-"7Zk: f(l‘) = (Zlv-"vzk) and bg XSAT(Zm)}v

SAT

w

and observe that y>*'(f(z)) can be read off B's answers to the parallel queries
(x,k,m,b), for k=1,...,p(Jx|), m=1,...,k, and b = 0,1, where p is a polynomial
bounding the running time of the NP transducer that computes f. 0O
COROLLARY 5.8.
i) NP(2k 4 1) = NPYE,, for all k> 1,

i) PNP = NPIF,

REMARK 5.9. Book and Tang [12] especially consider the O(logn) bounded
VETSIONn §ﬁgn_tt of the nondeterministic truth-table reduction obtained by logarith-
macally bounding the number of queries produced by the NPSV generator. It fol-
lows from (appropriately modified versions of ) Theorem 5.7, Corollary 5.3, and

Lemma 3.6 that

NP _ pNP _ pNP[O(1)+loglogn].
NPlogn-tt - Plogn-tt =P

This class is also considered by Wagner [42] (there denoted by PWP[O(log n)]), who
shows that it coincides with the class of languages that are full-truth-table reducible®
to SAT. As a consequence, 1t follows that A §ﬁgn_tt SAT of and only if A s full-
truth-table reducible to SAT.

REMARK 5.10. Book and Tang [12] generalized the nondeterministic truth-
table reducibility to a Xy truth-table reducibility by gqiving the generator and the
evaluator access to a Ly oracle: A 1s Xy truth-table reducible to B (A §§k B),
if A€ Np//xB o NPSV™-1. For a class C of sets let S be the class {A| 3B €

C: A< B}. Then Corollary 5.8 i) generalizes to

P, = PEr = pRotos],

i.e., every set that s Xy truth-table reducible to a set in Xy 1s already (determini-
stically) truth-table reducible to a set in 3y

2 A set A is full-truth-table reducible [28, 14] to a set B, if there is a function ¢ € FP such that
for all #, g(x) is of the form {ag...asm_1,41,...,Ym}), where a; € {0,1} (0 < ¢ < 2™ — 1), and
yi € ¥* (1 <4 < m), and it holds that € 4 & a; = 1, where j is the number whose binary
representation is given by xZ(y1,.. ., ym).
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Thierauf [38] showed that allowing the generator in the nondeterministic truth-
table reduction to produce polynomially many different outputs (i.e., to compute
an NPPV function [11]) does not increase the class of sets reducible to SAT.

THEOREM 5.11. [38] Let L is a set, G an NPPV transducer, and E an NP set
such that

< SAT

el < Flyr,...,yx) € oute(x): (v, X" (Y1,--.uk)) € E,

then L 1s in PRF.

We end this section by proving that also the strong nondeterministic truth-table
reducibility, introduced by Long [31], when applied to SAT, is only as powerful as
<P. Like in the definition of Ladner, Lynch, and Selman [30], the generator in
a strong nondeterministic truth-table reduction can produce exponentially many
different outputs, but the evaluator either has to accept all the outputs or it has
to reject all of them.

DEFINITION 5.12. [31] A s strong nondeterministic truth-table reducible to B
(A <8N B), if there is an NP transducer G and a P machine E such that for all x the
set outg(x) is nonempty, and for all (y1,...,yx) n outg(x), E(z,xB(y1,...,y)) =
x*(x). For a class of sets C we denote by SNY, the class {A|IB € C: A <3N B}.

Clearly, <8N lies in strength between <! and <J¥. Long [31] showed that <3N
is properly stronger than <5' by constructing two sets A and B such that A 5N B
and A <§P B. The question whether <! is properly stronger than <3N is closely
related to two major open questions in complexity theory [31]:

P#£NPNcoNP = <} #<N = P £NP,

THEOREM 5.13. SNIF = PP,

Proof. Let L be in SNY via a generator G, an evaluator E, and a set A € NP.
In order to decide membership of a given input z, it suffices to find out whether there
is some output (y1,...,ys) of G(z) such that F accepts (z, x2(y1,...,ys)). But this

becomes an NP problem, provided that the maximum number #2(y1, ..., yx) of yes-
answers from A over all outputs (y1,...,yx) of G(x) is given along with the input
x.

More precisely, define the function
hiz) = max{#;(y1, - oyn) | (v, 90) € outa(2)}
and let B be the set defined as

(x,m)€B & Ja=ay...ap €S° I(yr,...,yp) € outg(z)

k
Ya;=m, a=xlyi,....,yx) and E(z,a) = 1.

=1

Then h € OptP[O(log n)] and B € NP, and it holds for all « that « € L if and only
if (x,h(z)) € B, i.e., Lisin NP//OptP[O(logn)] = P//OptP[O(logn)]. O
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Note that by the above proof, Theorem 5.13 remains true if the evaluator F is
allowed to be an NP machine.
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