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Abstract� We consider uniform subclasses of the nonuniform complexity classes de�
�ned by Karp and Lipton ���� via the notion of advice functions� These subclasses are
obtained by restricting the complexity of computing correct advice� We also investigate
the e	ect of allowing advice functions of limited complexity to depend on the input rather
than on the input
s length� Among other results� using the notions described above� we
give new characterizations of �a
 NPNP�SPARSE� �b
 NP with a restricted access to an NP
oracle and �c
 the odd levels of the boolean hierarchy�

As a consequence� we show that every set that is nondeterministically truth�table
reducible to SAT in the sense of Rich ���� is already deterministically truth�table reducible
to SAT� Furthermore� it turns out that the NP reduction classes of bounded versions of
this reducibility coincide with the odd levels of the boolean hierarchy�

Key words� nonuniform complexity classes� advice classes� optimization functions�
restricted oracle access� sparse NP sets� relativization� boolean hierarchy� truth�table redu�
cibility
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�� Introduction� In their fundamental paper� Karp and Lipton ���� introdu�
ced the notion of advice functions and investigated nonuniform complexity classes

which they denoted by C�F � where C is a class of sets and F is a class of �advice	
functions
 A typical class is P�poly� where poly is the set of polynomially length
bounded functions
 The interest in P�poly stems from the fact that it consists
exactly of the languages that can be computed by polynomially size�bounded cir�

cuits ����

Intuitively� a set A is in C�F � if A can be solved by a machine of type C

that gets� in addition to the input x� the advice f�x	� where f is a function in F
depending only on the length of x
 Many researchers have considered nonuniform

classes where the function class F is de�ned by a quantitative length restriction
such as poly and log �see� for example� ��� 
� ��� ���	
 Note that for such F there are
nonrecursive functions in F � and therefore C�F contains nonrecursive languages
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Here� we consider uniform language classes obtained by imposing complexity

bounds on the advice functions
 Note that K�amper ���� investigates re�nements of
the original C�F de�nition by delimiting the complexity of proof sets� i
e
� special
sets of correct advice
 In contrast to this� we directly bound the complexity of
computing correct advice
 With this concept� we are able to show characterizations

as well as �ner distinctions of several complexity classes
 For example� we show
that the class NPNP�SPARSE coincides with the class NP�OptP�O�log n	�� a subclass
of NP� log� where correct advice is computable by an OptP function ����� i
e
�

NPNP�SPARSE � NP�OptP�O�log n	����
�	

One can interpret equality ��
�	 as stating that �exactly	 the languages in
NPNP�SPARSE can be computed in the following way� on input x of length n� at

�rst an OptP�O�log n	� precomputation takes place that gets as input only �n

The �logarithmically length�bounded	 output of this precomputation is then pas�
sed along with x to the subsequent NP computation� that decides the membership

of x

Motivated by the relativized separation of P and NP of Baker� Gill� and Solo�

vay ��� �exploiting the fact that an NP oracle machine can ask superpolynomially
many queries	� Book� Long� and Selman ���� introduced restricted relativizations

of NP by bounding the number of oracle queries in various ways
 Subsequently�
Long ���� investigated the relationship between restricted access of nondetermini�
stic machines to an oracle and full access to a sparse oracle set
 Let NPA

R be the
class of all languages whose membership in NPA is witnessed by an oracle machine

such that the number of potential oracle queries in A �asked on some oracle	 is
polynomially bounded
 From this de�nition� it is clear that NPNP�SPARSE is contai�
ned in NPNP

R 
 Since also coNP is contained in NPNP
R � NPNP�SPARSE and NPNP

R are
di�erent unless the polynomial hierarchy collapses ����
 By considering the proof of

equality ��
�	� we will see that if we let the OptP�O�log n	� advice function depend
not only on the length of the input but on the input itself� we get a characterization
of NPNP

R 
 This leads us to de�ne the class C��F � that is de�ned in the same way as

C�F � but with the advice functions depending on the input
 Thus� we obtain the
following characterization of NPNP

R �

NPNP
R � NP��OptP�O�logn	���
�	

The characterizations ��
�	 and ��
�	 give insight into the di�erence between re�
stricted access to NP oracles and full access to sparse NP sets


It seems that the notion of C��F is an appropriate concept for studying di�erent

kinds of truth�table reducibilities
 Let �SATk be the k�ary characteristic function of
SAT
 Then� P���SATk �FP is the class of sets that are k�truth�table reducible to some
NP set
 It is known that these classes are interleaved with levels of the boolean
hierarchy� NP�k	 � P���SATk �FP � NP�k��	 for all k � � ����
 Since P���SATk �FP
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is closed under complementation� these classes are all di�erent unless the boolean

hierarchy collapses

NP���SATk �FP is the class of sets that are k�truth�table reducible to some NP

set� where the evaluator is an NP machine
 These classes turn out to coincide with
the odd levels of the boolean hierarchy� giving for the �rst time a charcterization

of the levels of the boolean hierarchy in terms of reduction classes�

NP��k � �	 � NP���SATk � FP�

Furthermore� we show that NP��k � �	 � NPNP
k�tt� where NPNP

k�tt is the class
of sets that are nondeterministically k�truth�table reducible to a set in NP in the

sense of ��
��� whereas in the unbounded case all sets nondeterministically truth�
table reducible to SAT are already deterministically truth�table reducible to SAT�
i
e
� NPNP

tt � PNP
tt 
 The latter result also holds for the strong nondeterministic

truth�table reducibility �SN
tt introduced by Long ����� i
e
� we show that fA j A �SN

tt

SATg � fA j A �P
tt SATg


The paper is organized as follows
 Section � introduces notation and gives
basic de�nitions
 In Section �� we prove the above mentioned characterizati�

ons of NPNP�SPARSE and NPNP
R and we show that changing from OptP�O�log n	�

to the larger function class FewOptP �containing all functions whose member�
ship in OptP is witnessed by an NP transducer that generates only polynomially
many di�erent outputs	 does not increase the power of NP�OptP�O�logn	� and

NP��OptP�O�log n	�

In Section �� we separate some of these complexity classes in relativized world�

the main result is a separation of P�OptP�O�log n	� and PNP�SPARSE�O�logn��

In Section 
� we give several characterizations of certain levels of the boolean

hierarchy in terms of various complexity restricted advice function classes


�� Preliminaries and Notation� All languages considered here are over the
alphabet � � f�� �g
 For a string x � ��� jxj denotes its length
 We assume the exi�
stence of a pairing function h�� �i � �� ��� 	 �� that is computable in polynomial
time and has inverses also computable in polynomial time
 h�� �i can be extended to

encode �nite sequences �x�� � � � � xk	 of strings into a string hx�� � � � � xki � ��
 For a
set A� jAj denotes its cardinality
 The complement �� 
 A of A is denoted by A

A�n is the set of all strings in A of length less than or equal to n


A languages S is sparse� if there is a polynomial p such that for all n� the

number of words in S up to length n is at most p�n	
 Let SPARSE be the class
of all sparse languages
 A set T is tally� if T is a subset of ��
 Let TALLY be the
class of all tally sets


We assume that the reader is familiar with �nondeterministic� polynomial�time

bounded� oracle	 Turing machines and complexity classes �see ��� ���	
 FP is the

� By requiring the NP generator to be single valued� Rich ��	� has modi�ed the nondeterministic
truth�table reducibility originally de�ned by Ladner� Lynch� and Selman �����
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class of functions computable by a deterministic polynomial�time bounded Turing

transducer
 An NP transducer is a nondeterministic polynomial�time bounded
Turing machine T that on every branch either accepts and writes a binary number
on its output tape or rejects
 The set of outputs generated by T on input x is
denoted by outT �x	


Krentel ���� de�nes an NP metric Turing machine to be an NP transducer
that accepts on every branch
 For an NP metric Turing machine T and an input
x � �� let maxT �x	 �minT �x	� be the maximum �minimum� output generated by T

on input x on any accepting computation of T 
 The class OptP ���� of optimization
functions is de�ned as

OptP � f maxT �minT j T is an NP metric Turing machine g�

For a class R of functions on the natural numbers �called restricting functions	� we
de�ne the subclass

OptP�R� � ff � OptP j � r � R �x � �� � jf�x	j � r�jxj	g

containing all optimization functions f � OptP such that the length of f�x	 in

binary is bounded in jxj by a function from R

PNP�R� denotes the class of sets whose membership in PNP can be witnessed by

an oracle machine M making for some r � R at most r�n	 many queries on inputs
of length n
 In the case that R is a singleton set frg we simply write OptP�r� and

PNP�r�� respectively
 Throughout the paper we assume that for every restricting
function r the function x 
	 r�jxj	 is computable in polynomial time


Karp and Lipton ���� introduced the notion of advice functions in order to
de�ne nonuniform complexity classes
 For a class C of sets and a class F of functions

from �� to �� let C�F be the class of sets A such that there is a set B � C and a
function h � F such that for all x � ��

x � A � hx� h��jxj	i � B�

Note that the advice function h depends only on the length of x
 By canceling this
restriction we obtain the class C��F of all sets A such that there is a set B � C and

a function h � F such that for all x � ��

x � A � hx� h�x	i � B�

By de�nition� C�F is a subset of C��F for each class of sets C and each class of
functions F which ful�lls the condition that if h � F � then also x 
	 h��jxj	 � F 

Special advice function classes considered in the literature are poly � fh � �� 	
�� j there exists a polynomial p such that for all x� jh�x	j � p�jxj	g and log � fh �
�� 	 �� j jh�x	j � O�log�jxj		g


�



�� NPNP�SPARSE versus NPNP
R � In this section we show that NPNP�SPARSE can

be characterized as the class NP�OptP�O�log n	�� i
e
� the class of sets that are
accepted by an NP machine with advice of a logarithmically length bounded OptP
function
 Further� it turns out that the related class NPNP

R �see de�nition below	

coincides with NP��OptP�O�log n	�
 For the latter two classes we can show that
they are also equal to P��OptP�O�logn	� which� by a result of Krentel ����� is
identical to PNP�O�logn��


Definition ���� ���� For any oracle Turing machine M and any string

x � �� let Q�M�A� x	 be the set of all oracle queries that M may ask on input x
using oracle A� i�e�� the set of all strings y � �� such that in some computation of
M on input x under oracle A the oracle is queried about y� Q�M�x	 is the set of all
oracle queries of M on input x using any oracle� i�e�� Q�M�x	 �

S
A��� Q�M�A� x	�

For any set A� NPR�A	 is the class of sets L � NP�A	 whose membership is
witnessed by a machine M such that the number of potential oracle queries in A is
polynomially bounded� i�e�� there exists a polynomial p such that jQ�M�x	 � Aj �
p�jxj	 for all x�

Our �rst theorem states that if a language L is accepted by an NP oracle
machine M using an NP oracle A in such a way that the number of potential oracle
queries that are in A is polynomially bounded� then L is in NP��OptP�O�log n	��

i
e
� membership to L can be tested by an NP machine which gets along with the
input the precomputed value of an OptP�O�logn	� function
 In the special case that
A is sparse this containment can be strengthened to NP�OptP�O�log n	�� i
e
� for
all inputs of the same length the advice function yields the same result
 The proof

is by a census argument similar to that used by Hemachandra ���� and Kadin ����

Theorem ����

i	 NPNP
R � NP��OptP�O�logn	��

ii	 NPNP�SPARSE � NP�OptP�O�logn	��

Proof
 Let L � L�M�A	 for an NP machine M and an oracle A in NP� and let
p be a polynomial that bounds the running time of M 


To show i	 let r be a polynomial such that jQ�M�x	�Aj � r�jxj	 for all x
 An
NP machine knowing the size of the set Q�M�x	 �A can guess this set �note that

the problem to decide for given strings x and y whether y is in Q�M�x	 � A is in
NP	
 De�ne the function

h�x	 � jQ�M�x	 �Aj

and the set

B � fhx� ki j �X � Q�M�x	 � A � jXj � k and x � L�M�X	g�

Then B � NP and h � OptP�O�log jxj	� since h�x	 is the maximum output of the

following algorithm


	



On input x guess k � r�jxj	 and x� � � � � � xk � ��p�jxj��
if x�� � � � � xk � Q�M�x	 �A� then output k� else output �


Now� it holds for all x � �� that x � L if and only if hx� h�x	i � B
 Therefore� L
is in NP��OptP�O�logn	��

For ii	 let A be sparse and r be a polynomial such that jA�p�n�j � r�n	� for

all n
 De�ne the function

h�x	 � jA�p�jxj�j

and the set

B � fhx� ki j �X � A�p�jxj� � jXj � k and x � L�M�X	g�

By a similar argument as in the proof of i	� x � L if and only if hx� h��jxj	i � B


This shows that L is in NP�OptP�O�log n	�

Combining Theorem �
� ii	 with the result of Balc�azar and Sch�oning �
� that

NP�log � coNP � NPNP�SPARSE �see also ���	� it follows that for every coNP set in
NP�log correct advice can already be computed by an OptP function


Corollary ���� NP�log � coNP � NP�OptP�O�logn	� � coNP�
To show the reverse containments of Theorem �
�� we make use of the following

lemma
 It states that every OptP function h can be computed by a deterministic
polynomial�time oracle machine by asking jh�x	j many queries to an NP oracle


Lemma ���� ���� OptP�r� � FPNP�r� for any restricting function r�
Corollary ����

i	 NPNP
R � NP��OptP�O�logn	��

ii	 NPNP�SPARSE � NPNP�TALLY � NP�OptP�O�logn	��
Proof
 By Theorem �
�� it only remains to show the inclusions from right to

left

To show i	� let L be in NP��OptP�O�log n	� via an NP machine N and an

optimization function h
 Then L can be accepted by an NP machine M that
computes deterministically by binary search the value of h according to Lemma �
�
asking O�logn	 many queries to an NP oracle� and then simulates N without asking
further oracle queries
 Since Q�M�x	 is polynomially bounded� it follows that L is

in NPNP
R 


If h is a function that depends only on the length of its argument� then h�x	
can be computed by binary search using the tally NP set T � f�hn�ki j k � h��n	g

This proves ii	


Note that the above proof shows that every language in NP��OptP�O�logn	�
�and thus in NPNP

R 	 can in fact be accepted by an NP oracle machine M such that
Q�M�x	 is polynomially bounded


In the next lemma� we show that an NP computation getting along with the
input the result h�x	 of an OptP precomputation can be transformed into a P com�
putation by precomputing one additional bit
 Note that this bit actually depends
on x even if h�x	 only depends on the length of x


�



Lemma ���� NP��OptP�r� � P��OptP�r � ��� for any function r�

Proof
 Let L be in NP��OptP�r�� witnessed by an NP set B and an OptP�r�
function h � maxT for some NP metric machine T 
 De�ne the OptP�r��� function

h��x	 �

���
��
h�x	�� if hx� h�x	i � B�

h�x	�� otherwise


Then it holds for all x that hx� h�x	i � B � hx� h��x	i � B�� where the set

B� � fhx� ki j k is oddg is in P
 The case that h � minT can be proved analogously


Combining Corollary �

 i	 and Lemma �
� we obtain a further characte�

rization of the class NPNP
R and its closure under complementation
 Note that

P��OptP�O�logn	� � PNP�O�logn�� ����

Corollary ��	� NPNP

R � P��OptP�O�logn	��
Corollary ��
� NPNP

R is closed under complementation�

Remark ���� The results stated in Corollary ��� can be extended to the clas�
ses of the polynomial�time hierarchy ���	� In order to do so� we de
ne restricted
relativizations of the ��levels of the polynomial hierarchy� �C

k�R is the class of all
sets L accepted by a k�alternating polynomial�time Turing machine ���	 using an

oracle A from C such that jQ�M�x	�Aj is polynomially bounded� Then� the results
stated in Corollary ��� can be extended to

��k�SPARSE
k � �k�Opt �k���O�logn	��

��k
k�R � �k��Opt�k���O�logn	� � P�k �O�logn���

where Opt C is the class of optimization functions computable by an NP transdu�
cer using some oracle in the class C� Since �k�Opt �k���O�logn	� is included in
P�k�O�logn��� this sharpens the recent result in ���	 that ��k�SPARSE

k � P�k �O�logn���

Remark ����� The advice 
even depending on the input� provided by an
OptP�O�logn	� function does not increase the power of the probabilistic class
PP� PP��OptP�O�log n	� � PP� This follows from the result by Toda ���	 that

PPNP
R � PP� since PP��OptP�O�logn	� coincides with the class PP��FPNP�O�logn��


see Lemma ���� that is clearly contained in PPNP
R �

Next� we consider uniform subclasses of P�log and P�poly
 Whereas the
proof of Corollary �

 ii	 also yields the inclusion of P�OptP�O�logn	� in

PNP�SPARSE�O�logn��� the census technique of Theorem �
� cannot be applied to obtain
the reverse containment
 The next theorem is proved by constructing �long enough
initial segments of	 a sparse NP set by an OptP computation
 The underlying
technique was used by Mahaney ���� to show that NPNP�SPARSE � PNP


Theorem ����� PNP�SPARSE � P�OptP�

�



Proof
 Let L � L�M�S	� for a P machine M and a sparse NP set S
 Let p

and r be polynomials such that p bounds the running time of M and jS�nj � r�n	

De�ne

h�x	 � hS�p�jxj�i�

Then� h � OptP� since h�x	 is the maximum output of the following algorithm


On input �n guess k � r�p�n		 and x� � � � � � xk � ��p�jxj��
if x�� � � � � xk � S� then output hx�� � � � � xki� else output �


Now� the computation of M using oracle S on input x can be simulated by a P
machine answering oracle questions according to the set h��jxj	


Let FewOptP be the class of functions f � OptP computed by an NP trans�

ducer that produces at most a polynomial number of di�erent outputs
 Clearly�
OptP�O�logn	� � FewOptP� and obviously� this is a proper inclusion


However� as shown by the next theorem� the classes NP�OptP�O�logn	� and
NP��OptP�O�log n	� remain unchanged when the function class OptP�O�log n	� is

replaced by the larger class FewOptP

Theorem �����

i	 NP��FewOptP � P��FewOptP � P��OptP�O�log n	��
ii	 NP�FewOptP � NP�OptP�O�logn	��

Proof
 Let L be a set in NP��FewOptP via A � NP and f � FewOptP
 Let T
be an NP metric machine for f � i
e
� f � maxT �the proof for f � minT is similar	�
and the number of di�erent outputs of T is polynomially bounded
 De�ne the
function

h�x	 � joutT �x	j

and the set

B � fhx�mi j � z� � � � � � zm � outM�x	 � hx� zmi � Ag�

It is easy to see that h � OptP�O�logn	� and B � NP
 Now� x is in L if and only if
hx� h�x	i is in B� and therefore� L is in NP��OptP�O�logn	� � P��OptP�O�log n	�

The latter equality follows from Corollaries �

� part i	� and �
�
 The proof of ii	

is analogous� we only have to replace outT �x	 by outT ��jxj	

The technique used in the previous proof cannot be applied to show that

the classes P�OptP�O�logn	� and P�FewOptP are equal
 However� the proof of
P�OptP�O�log n	� � PNP�SPARSE�O�logn�� �using binary search� see the proof of Co�

rollary �

 ii		 can be re�ned to show the following theorem
 It states that a set
in P�FewOptP can be decided in polynomial time by querying a sparse NP oracle
�polynomially often	


Theorem ����� P�FewOptP � PNP�SPARSE�






Proof
 Let f be in FewOptP and let T be an NP transducer computing f 


Using the sparse NP set

S � fh�n�m� i� zi j � z� � � � � � zm � outT ��n	 � z� � z z� � zig

as oracle� f�x	 can be computed in polynomial time by determining �rst joutT ��n	j
and then applying a pre�x search to �nd the optimum value in outT ��n	


The known relationships of the language classes considered in this section are

summarized in the diagram of Figure �
�
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Fig� ���� Inclusion structure of some considered complexity classes� thick lines indicate that
there are relativized separations �see Section ���

�� Relativized Separations� Since Baker� Gill� and Solovay ��� separated P
from NP relative to some oracle� relativizations have been an important subject in

complexity theory
 In this section� we discuss which of the inclusions in Figure �
�
are strict� at least in some relativized world


Since there are nonrecursive sets in P�poly and in NP�poly� these two classes
are clearly di�erent from all other �recursive	 classes considered here
 Whether

there are any other strict inclusions in the diagram of Figure �
� is not known







For some of the inclusions� however� the question whether they are proper can be

linked to central open problems in complexity theory

For example� by the result of Karp� Lipton� and Sipser �see ����	 that NP �

P�poly implies the collapse of the polynomial hierarchy to its second level� it follows
that if PH �� �	� then NP is not contained in any of the classes on the left column

of Figure �
�
 Since this holds in all relativized worlds� and since there exists an
oracle separating PH from �	 ����� it follows that relative to this oracle all the
inclusions between the �rst and the second column are proper


Similarly� using the result of Kadin ���� that coNP � NPNP�SPARSE implies
PH � PNP�O�logn��� it follows that if PH �� PNP�O�logn��� then NPNP�SPARSE ��
PNP�O�logn��
 Since� as it is easily seen� the inclusion coNP � NP�OptP implies
PH � PNP� we can state the following theorem


Theorem ���� PH �� PNP � NP�OptP �� P��OptP�
Furthermore� by the recent result of Toda ���� that PH � PPP� it follows that

PNP�O�logn�� �� PP and PNP �� PP��OptP unless PH � PNP

Beigel ��� constructed an oracle A such that PNPA 
 PPA �� �
 Since

PNP�O�logn�� � PP ���� oracle A also separates PNP�O�logn�� and PNP �for a direct
proof see ����	


Cai et al
 ��
� showed the existence of an oracle A such that relative to A the
boolean hierarchy is in�nite� i
e
� � k � NPA�k	 �� coNPA�k	
 In fact� Cai et al


construct the oracle A in such a way that� for all k� some tally test language Lk�A	
is in coNPA�k	
NPA�k	
 Because it holds for every oracle set B that

NPB��k 
 �	 � coNPB��k 
 �	 � P��OptPB�k� � NPB��k	

���� ��� ��� it follows that L	k���A	 � P��OptPA�k� � TALLY � P�OptPA�k�� i
e
�

�A � k � � � P�OptPA�k�
NPA��k 
 �	 �� ��

Since P�OptP�k� is contained in the �k�th level of the boolean hierarchy� this result
is optimal


Clearly� if the boolean hierarchy is proper� it does not have complete sets


Since the class P�OptP�O�log n	� has complete sets� it is not contained in BH in
any relativized world where the boolean hierarchy is in�nite� i
e
�

�A � P�OptPA�O�logn	�
 BHA �� ��

The main result in this section is a separation of the classes P�OptP�O�logn	�
and PNP�SPARSE�O�logn��
 In fact� we show that for any �xed polynomial q there is
a relativization such that NP contains sparse sets that are not in the nonuniform
class P�q �de�ned as P�fh j jh�x	j � q�jxj	g	


Theorem ���� For every polynomial q there exists a set A such that

�NPA � SPARSE	
 PA�q �� ��

��



Proof
 For an arbitrary set A we de�ne a sparse set L�A	 � NPA as follows

For a given n and a suitable choosen function l�n	� we partition the �l�n� words
of length l�n	 into q�n	 � � intervals �with respect to the lexicographic ordering	

I
l�n�
� � � � � � I

l�n�
q�n�
� such that

jI l�n�k j �

�
�l�n�

q�n	 � �

�
� for k � �� � � � � q�n	 � ��

For each interval containing a word in A� we put a word into L�A	� let wn
� � w

n
	 � � � �

be an enumeration of �n in lexicographic order and let l�n	 � n� q�n	
 De�ne the
NPA set

L�A	 � fwn
k j n � �� � � k � q�n	 � � and I

l�n�
k � A �� �g�

Clearly� there are at most q�n	 � � words of length n in A� i
e
� L�A	 is sparse

Now we construct a set A in stages such that L�A	 �� P�q
 Let M��M	� � � � be an

enumeration of all polynomial�time bounded Turing machines with running times
p�� p	� � � �� respectively

Stage �
 A �� �� n� �� minfn j �m � n � q�m	 � �mg

Stage s � �
 Choose ns minimal such that ns � maxfpi�ns��	 j i � sg and

�ns � � ps�ns	 �q�ns	 � �		

The algorithm in Figure �
� determines the words of length l�ns	 that are

included in A
 This is done by diagonalizing against machine Ms and all potential
advice for Ms on an input of length ns


Let M be any P machine
 We show that M � taking advice of any q�length
bounded function� does not accept L�A	
 Let s be an index such that M � Ms

There are �q�ns�
�
 � potential words as advice for Ms on inputs of length ns �that
are stored in ADVICE	
 Each execution of the for�loop diagonalizes against at least

half of the possible advice for Ms
 Since log��q�ns�
� 
 �	 � q�ns	 � �� ADVICE
becomes empty at the end of the algorithm
 The construction further guarantees
that for every advice a� jaj � q�ns	� there exists a k � q�ns	 � � such that

hwns
k � ai � L�Ms� A	 � wns

k �� L�A	�

Therefore� it su�ces to show that the algorithm can always �nd a y � I
l�ns�
k 


QUERY
 In every execution of the for�loop and for every advice no more than
ps�ns	 words are added to the set QUERY� i
e
�

j QUERY j � �q�ns	 � �	 �q�ns�
� ps�ns	�

Thus� we have for � � k � q � ��

jI l�ns�k 
 QUERY j � jI l�ns�k j 
 j QUERY j

��



ADVICE �� ��q�ns��

�� ADVICE contains all potential advice against that we have to diagonalize �	

QUERY �� ��

�� In QUERY we freeze the oracle queries of Ms during the construction �	

for k �� � to q�ns	 � � do

ACC �� fa � ADVICE jMA
s �wns

k � a	 accepts g�

REJ �� ADVICE 
 ACC�

if jACCj � jREJj then

�� I l�ns�k �A remains empty� i
e
� no word in ACC is advice for wns
k �	

ADVICE �� REJ�

QUERY �� QUERY �
S
a�ACCQ�Ms� A� hw

ns
k � ai	 �

else

�� put a word in I
l�ns�
k � A� i
e
� no word in REJ is advice for wns

k �	

ADVICE �� ACC�

QUERY �� QUERY �
S
a�REJQ�Ms� A� hw

ns
k � ai	 �

choose a y � I
l�ns�
k 
QUERY�

A �� A � fyg

end �� if �	

end �� for �	


Fig� ���� Algorithm used in the proof of Theorem ����

�

�
�ns
q�ns�

q�ns	 � �

�

 �q�ns	 � �	 �q�ns�
� ps�ns	

�
�q�ns�
� ��ns�� 
 �q�ns	 � �		 ps�ns		

q�ns	 � �

 �

�
�q�ns�
�

q�ns	 � �

 � by choice of ns

� ��

Corollary ���� �A � �NPA � SPARSE	
 PA�log �� ��
Using a �Kolmogorov�argument�� Corollary �
� was already shown by Hema�

chandra ����
 An immediate consequence of Corollary �
� is the existence of an

oracle separating P�OptP�O�log n	� and PNP�SPARSE�O�logn��

Corollary ���� �A � PA�OptPA�O�logn	� �� PNPA�SPARSE�O�logn���

��



�� Bounded Advice versus the Boolean Hierarchy� The levels of the

boolean hierarchy build as their union the boolean closure of NP� i
e
 the smallest
class of sets that contains NP and is closed under union� intersection� and com�
plementation
 In this section� we give several characterizations of the odd levels
of the boolean hierarchy
 First� we show that NP machines that get as advice the

value of the k�ary characteristic function �SATk of SAT� where �SATk is evaluated on
a k�tuple that is computed from the input by an FP function� accept exactly the
languages in the ��k � �	�th level of the boolean hierarchy
 The same is true if

the advice consists only of the information of how many out of k words that are
produced from the given input by an FP function are in SAT


Cai et al
 ��
� give several characterizations of the boolean hierarchy� we take
the following


Definition ���� A set L is in the k�th level NP�k	 of the boolean hierarchy�
if there exist sets L�� � � � � Lk � NP such that

L �

���
��

�L� 
 L		 � � � � � �Lk�	 
 Lk��	 � Lk� if k is odd

�L� 
 L		 � � � � � �Lk�� 
 Lk	� if k is even

The union
S
k�� NP�k	 of all the levels of the boolean hierarchy is denoted by BH�

For a set A� �A denotes the characteristic function of A� �Ak is the k�ary
characteristic function of A� �A

k gives the number out of k words� that are in A�
and �A

k is the parity of this number� i�e��

�Ak �x�� � � � � xk	 � �A�x�	 � � � �
A�xk	�

�A
k �x�� � � � � xk	 �

kX
i��

�A�xi	�

�A
k �x�� � � � � xk	 � �A

k �x�� � � � � xk	 mod ��

The unbounded version of �Ak is �A� �
S
k��

�Ak �

Clearly� every set L � NP�k	 is k�truth�table reducible to SAT� i
e
� L �
P���SATk � FP �here and in the following� the composition operator � takes pre�
cedence over ��	
 Every set that is k�truth�table reducible to SAT is in NP�k � �	
������ see also ���	� thus

NP�k	 � P���SATk � FP � NP�k � �	��

�	

Since P���SATk � FP is closed under complementation� the classes in �

�	 are all
di�erent unless BH �and therefore PH ����	 collapses
 It is interesting to note that

a P machine needs only to know the parity of the number of k queries in SAT in
order to decide a set in P���SATk � FP ������ see also ���	�

P���SATk � FP � P���SAT
k � FP � P���SAT

k �FP��

�	

��



We show in the next theorem that the �rst equality in �

�	 also holds for the

nondeterministic counterparts of these classes which furthermore coincide with the
��k��	�th level of the boolean hierarchy
 Since� as it is easily seen� NP���SAT

k �FP
is contained in P���SATk
	 � FP� we cannot replace P by NP� for k � �� in the second
equality of �

�	� unless BH� and thus PH� collapse
 It is an open question whether

also the classes NP���SAT
k �FP characterize some levels of the boolean hierarchy


We denote the bitwise ordering on strings of the same length by �� i
e
�
a� � � � ak � b� � � � bk� if ai � bi� for i � �� � � � � k


Theorem ���� NP��k��	 � NP���SAT
k �FP � NP���SATk �FP� for all k � ��

Proof
 Let L be in NP��k � �	
 Then there exist sets L�� � � � � L	k
� � NP such
that L � �L� 
 L		 � � � � � �L	k�� 
 L	k	 � L	k
�
 De�ne the function

f�x	 �
kX
i��

�L�i�x	

and let A be the set de�ned as

hx�mi � A � x � L	k
� or there exist I � f�i j x � L	ig and j � k

such that jIj � m� x � L	j��� and �j �� I�

Clearly� f � �SAT
k � FP and A � NP� and it holds that x � L if and only if

hx� f�x	i � A
 To see this� observe that there is exactly one set I � f�i j x � L	ig
of cardinality f�x	� namely I � f�i j x � L	ig
 Therefore� L � NP���SAT

k � FP�

It is clear that NP���SAT
k � FP � NP���SATk � FP� It remains to show that

NP���SATk � FP � NP��k � �	
 For this we adapt a proof technique used by Buss
and Hay ����
 Let L be in NP���SATk � FP� i
e
� there exist a set A � NP and a
function f � FP such that x � L if and only if hx� �SATk �f�x		i � A
 For m � ��

consider the NP sets

Bm � fx j �SAT
k �f�x		 � mg�

Am � fx j � a � a� � � � ak � �k �
kX
i��

ai � m� a � �SATk �f�x		� and hx� ai � Ag�

It is easy to see that Am � Bm and Bm
� � Bm
 Furthermore� Bm 
 Bm
� �
fx j �SAT

k �f�x		 � mg and Am 
 Bm
� � fx � Bm 
 Bm
� j hx� �SATk �f�x		i � Ag

The latter equality follows from the fact that for any x � Bm 
 Bm
�� there is

only one string a � �k containing m � s and ful�lling a � �SATk �f�x		� namely
a � �SATk �f�x		
 Therefore� x � L if and only if x � Am 
 Bm
�� for some m � k

Since Bk
� � �� it follows that L � �A� 
B�	 � � � � � �Ak�� 
Bk	 �Ak


Hemachandra ���� �see also Buss and Hay ����	 has shown that the classes
PNP�O�logn�� and P���SAT� �FP coincide
 By a slight modi�cation in the above proof
we get the following corollary yielding a further characterization of PNP�O�logn��


Corollary ���� P���SAT� � FP � NP���SAT� � FP�

��



Beigel ��� shows that P��OptP�k� � P���SAT	k�� � FP
 From Theorem 

� and

the following Theorem 

�� it follows that this equation remains valid when P is
replaced by NP
 Theorem 

� restates an observation in ���� that �SAT

	k�� is complete
for OptP�k�


Theorem ���� ���� OptP�k� � �SAT
	k�� � FP ��SAT

	k�� � FP� for all k � ��

Corollary ���� NP��k
� 
 �	 � NP��OptP�k�� for all k � ��
Ladner� Lynch� and Selman ���� transformed the recursion theoretic truth�table

reducibility into complexity theory
 They also give a de�nition of a nondeterministic

truth�table reduction in the following way� A is nondeterministically truth�table
reducible to B� if there exists an NP transducer G �the generator	 and an NP
machine E �the evaluator	 such that for every x�

x � A � there exists a branch of G�x	 yielding an output

y � hy�� � � � � yki such that E�x� �B� �y�� � � � � yk		 accepts


It is known that this de�nition is equivalent with the nondeterministic Turing

reducibility ���� and therefore does not lead to a new reducibility notion
 We
modify the above de�nition by restricting the generator G to be a single�valued
NP transducer� i
e
� the output must be the same on every accepting branch
 Let
NPSV be the set of functions computed by single�valued NP transducers ����


This reducibility �rst appeared in ���� �there denoted by NP
UNIF
ALL	� and
was explicitely called nondeterministic truth�table reducibility by Book and Ko ����

Subsequently� Book and Tang ���� and Rich ��
� introduced the following termino�
logy


Definition ���� A set A is nondeterministically truth�table reducible to B


A �NP
tt B�� if A � NP���B� � NPSV� A is nondeterministically k�truth�table

reducible to B 
A �NP
k�tt B�� if A � NP���Bk �NPSV� For a class C of sets let NPC

tt

be the class fA j �B � C � A �NP
tt Bg of all sets �NP

tt �reducible to some set in C�
and let NPC

k�tt � fA j �B � C � A �NP
k�tt Bg�

In ����� it is shown that there exist recursive sets A and B such that A �NP
T B

and A ��NP
tt B
 This means that �NP

tt is properly stronger than �NP
T 
 The question

whether �P
tt is properly stronger than �NP

tt is equivalent to the P �!NP problem ����
�
�
 However� as we will see in Corollary 

�� every set A that is nondeterministically
truth�table reducible to some NP�complete set B is also deterministically truth�
table reducible to B� i
e
�

A �NP
tt B � A �P

tt B�

Thus� we have the surprising result that while the de�nition in ���� of a non�
deterministic truth�table reduction was too weak� the de�nition of Rich seems

to be too strong to yield a new reduction class between fL j L �P
tt SATg and

fL j L �NP
T SATg
 As a further consequence of Theorem 

�� we get a characteri�

zation of the odd levels of the boolean hierarchy in terms of the nondeterministic
k�truth�table reducibility notion


�	



Theorem ��	�

i	 �SATk �NPSV � �SATk � FP for all k � ��
ii	 �SAT� �NPSV � FPSAT

tt �

Proof
 To see i	 let f be in NPSV and de�ne the NP set

A � fhx�mi j � z�� � � � � zk � f�x	 � �z�� � � � � zk	 and zm � SATg�

Then �SATk �f�x		 � �Ak �hx� �i� � � � � hx� ki	 for all x� and thus� �SATk � f � �Ak � FP �
�SATk � FP


For the proof of ii	 de�ne the NP set

B � fhx� k�m� bi j � z�� � � � � zk � f�x	 � �z�� � � � � zk	 and b � �SAT�zm	g�

and observe that �SAT� �f�x		 can be read o� B�s answers to the parallel queries

hx� k�m� bi� for k � �� � � � � p�jxj	� m � �� � � � � k� and b � �� �� where p is a polynomial
bounding the running time of the NP transducer that computes f 


Corollary ��
�

i	 NP��k � �	 � NPNP
k�tt� for all k � ��

ii	 PNP
tt � NPNP

tt �
Remark ���� Book and Tang ���	 especially consider the O�log n	 bounded

version �NP
logn�tt of the nondeterministic truth�table reduction obtained by logarith�

mically bounding the number of queries produced by the NPSV generator� It fol�
lows from 
appropriately modi
ed versions of� Theorem ���� Corollary ���� and
Lemma ��� that

NPNP
logn�tt � PNP

logn�tt � PNP�O���
loglogn��

This class is also considered by Wagner ���	 
there denoted by PNP
jj �O�log n	��� who

shows that it coincides with the class of languages that are full�truth�table reducible	

to SAT� As a consequence� it follows that A �NP
logn�tt SAT if and only if A is full�

truth�table reducible to SAT�
Remark ����� Book and Tang ���	 generalized the nondeterministic truth�

table reducibility to a �k truth�table reducibility by giving the generator and the

evaluator access to a �k�� oracle� A is �k truth�table reducible to B 
A ��k
tt B��

if A � �k���
B
� � NPSV�k�� � For a class C of sets let �C

k�tt be the class fA j �B �

C � A ��k
tt Bg� Then Corollary ��� ii� generalizes to

��k
k�tt � P�k

tt � P�k �O�logn���

i�e�� every set that is �k truth�table reducible to a set in �k is already 
determini�

stically� truth�table reducible to a set in �k�

� A set A is full�truth�table reducible ��
� ��� to a set B� if there is a function g � FP such that
for all x� g�x� is of the form ha� � � � a�m��� y�� � � � � ymi� where ai � f�� �g �� � i � �m � ��� and
yi � �� �� � i � m�� and it holds that x � A � aj � �� where j is the number whose binary
representation is given by �B� �y�� � � � � ym��

��



Thierauf ���� showed that allowing the generator in the nondeterministic truth�

table reduction to produce polynomially many di�erent outputs �i
e
� to compute
an NPPV function ����	 does not increase the class of sets reducible to SAT


Theorem ����� ���� Let L is a set� G an NPPV transducer� and E an NP set
such that

x � L � �hy�� � � � � yki � outG�x	 � hx� �SAT� �y�� � � � � yk	i � E�

then L is in PNP
tt �

We end this section by proving that also the strong nondeterministic truth�table

reducibility� introduced by Long ����� when applied to SAT� is only as powerful as
�P
tt
 Like in the de�nition of Ladner� Lynch� and Selman ����� the generator in

a strong nondeterministic truth�table reduction can produce exponentially many
di�erent outputs� but the evaluator either has to accept all the outputs or it has

to reject all of them

Definition ����� ���� A is strong nondeterministic truth�table reducible to B


A �SN
tt B�� if there is an NP transducer G and a P machine E such that for all x the

set outG�x	 is nonempty� and for all hy�� � � � � yki in outG�x	� E�x� �B� �y�� � � � � yk		 �
�A�x	� For a class of sets C we denote by SNC

tt the class fA j �B � C � A �SN
tt Bg�

Clearly� �SN
tt lies in strength between �P

tt and �NP
T 
 Long ���� showed that �SN

tt

is properly stronger than �NP
T by constructing two sets A and B such that A ��SN

tt B

and A �NP
T B
 The question whether �P

tt is properly stronger than �SN
tt is closely

related to two major open questions in complexity theory �����

P �� NP � coNP � �P
tt ���SN

tt � P �� NP�

Theorem ����� SNNP
tt � PNP

tt �
Proof
 Let L be in SNNP

tt via a generator G� an evaluator E� and a set A � NP

In order to decide membership of a given input x� it su�ces to �nd out whether there
is some output hy�� � � � � yki of G�x	 such that E accepts hx� �A� �y�� � � � � yk	i
 But this

becomes an NP problem� provided that the maximum number �A
� �y�� � � � � yk	 of yes�

answers from A over all outputs hy�� � � � � yki of G�x	 is given along with the input
x


More precisely� de�ne the function

h�x	 � maxf�A
� �y�� � � � � yk	 j hy�� � � � � yki � outG�x	g

and let B be the set de�ned as

hx�mi � B � � a � a� � � � ak � �k � hy�� � � � � yki � outG�x	 �
kX
i��

ai � m� a � �A� �y�� � � � � yk	 and E�x� a	 � ��

Then h � OptP�O�log n	� and B � NP� and it holds for all x that x � L if and only
if hx� h�x	i � B� i
e
� L is in NP��OptP�O�log n	� � P��OptP�O�logn	�


��



Note that by the above proof� Theorem 

�� remains true if the evaluator E is

allowed to be an NP machine
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