RECENT HIGHLIGHTS IN
STRUCTURAL COMPLEXITY THEORY"

Uwe Schoning

UNIVERSITAT ULM
PosTFACH 4066
GERMANY

Abstract. Recently, several unexpected results about the comparison of certain complex-
ity classes have been obtained. The classes ®P and PP have been shown to be “hard”
for the polynomial-time hierarchy PH. The class of languages having interactive proofs,
I P, was shown to equal PSPACE. Furthermore, the GRAPH ISOMORPHISM problem
was shown to be “low” for certain complexity classes, and therefore is not likely to be
N P-complete. All these results are proved by certain counting techniques and arguments
that use probability theory.

Keywords: complexity classes, polynomial hierarchy, interactive proof systems, graph
isomorphism

1 Introduction

In the last years, in the area of structural complexity theory, several surprising and
counter-intuitive results have been obtained. The purpose of this paper is to review a
selection of them, to present at least sketches of the proofs in (what I hope is) an acces-
sible way for readers not familiar with the field.

We found the following results of the last years most remarkable:

Toda [20] has shown that certain counting complexity classes, like PP or &P are much
more powerful than expected previously. He shows that all languages in the polynomial-
time hierarchy are reducible to some language in these classes. Informally, this shows that
the concept of counting (even counting modulo 2, i.e. computing parity) in the context
of a nondeterministic, polynomial-time algorithm is at least as powerful as what can be
expressed in terms of (polynomially length-bounded) existential and universal quantifica-
tions, i.e.

v
reA e Iy Vo oo Fuk Ry, 92,5 Uk)

*Invited Lecture at SOFTSEM 91, Nizké Tatry (CSFR), 24.11.91-6.12.91.

where R is a polynomial-time computable relation, and A is the language to be defined.

Toda’s proof introduces in a significant way the application and analysis of certain opera-
tors, applied to complexity classes. We will present this approach by considering operators
for existential and universal quantification, for complementation, for the parity operation,
and for bounded-error probabilistic computation.

Another recent breakthrough result is due to Shamir [17], who showed that the class of sets
being “provable” in terms of an interactive proof system, I P, can capture precisely the
class PSPACE, so IP = PSPACE. Again, the definition of I P can be understood as an
application of appropriate operators. Shamir’s proof introduces the concept of interpreting
quantified Boolean formulas in an arithmetical way and treating them as polynomials over
some prime module.

A prominent example, and one of the first known examples, of a problem admitting
an interactive proof system, is GRAPH ISOMORPHISM, and also, more surprisingly,
GRAPH NONISOMORPHISM [8]. This, in some sense, brings the graph isomorphism
problem at least “close” to the class NP N co- NP. More precisely, it can be shown [15]
that GRAPH ISOMORPHISM belongs to the low hierarchy in NP [14] and therefore is
not N P-complete unless the polynomial hierarchy collapses.

That the graph isomorphism problem is “easier” than the N P-complete problems, yet
not necessarily polynomial-time solvable, is supported by another very recent result [10]:
GRAPH ISOMPORPHISM belongs to a very weak counting class called LW PP [6], and
therefore is low for PP.

We will also show that these are not isolated results but that there is a common “tool-
box” of techniques that is needed in each of the results. This is showing that Structural
Complexity Theory has developed into a well-founded, well-respected field, with its own
techniques and methods.

2 Basic Notions from Complexity Theory

Our notation is standard; for unexplained notions see [3].

We will consider several classes of languages, in this context called complezity classes,
some of which have natural computational interpretations — for example, P is the class
of problems considered to have feasible algorithms — others don’t have such nice inter-
pretations (especially when they come about using the operators discussed in the next
section) but it will be necessary and useful to consider such classes since they serve as
intermediate steps in certain proofs.

We mentioned already P, i.e.
P={ACY*| A= L(M) for some deterministic, polynomial-time Turing machine M}

In the following, we will also use P for the class of polynomial-time computable functions.

The question of whether P is equal to NP where

_ . A= L(M) for some nondeterministic,
NE= {A €| polynomial-time Turing machine M }

is a well-known open problem.

Let accpr(x) be the number of accepting computation paths of the nondeterministic ma-
chine M on input x. The class PP [7], sometimes called CP for “counting-P”, is defined
as

PP = {A x| there is some f € P and a nondeterministic, polynomial-time }

Turing machine M such that x € A < acey(x) > f(x)

It is clear that PP includes NP (namely, choose f(x) =1).

For a class of languages C, let co-C denote the set of complements of the languages in C,
co-C={ACY"|¥"—A € C}

This is a first (and simple) example of an operator, which applied to some complexity
class, yields a new complexity class. We will discuss an algebra of such operators in more
detail in the next section.

It is not known whether NP is closed under complementation, i.e. NP = co- NP. But
PP is easily seen to be closed under complementation (accepting and non-accepting final
states can be interchanged). Therefore, co- NP C PP.

3 Operators on Complexity Classes

Now we introduce several operators acting on complexity classes yielding new complexity
classes.

For a class C denote by 3-C the class of sets A for which there is a B € C and a polynomial
p such that

A=A{z |3y [lyl = p(lz]) A B(z,y)]}

For a class C denote by V-C the class of sets A for which there is a B € C and a polynomial
p such that

A={z|Vy [ly| = p(lz]) = B(z,y)]}
The polynomial time hierarchy [19, 22] is the following infinite sequence of classes:

EOZH():P

v
S, = 3-V---3.P k>0

v
M, = V-3.--3

P k>0
——————

k
PH = U = U,
k k

It is easy to see that PH is included in PSPACE, the class of languages recognizable
with a polynomially space-bounded machine. It is not known whether the ¥ and II classes
form a properinfinite hierarchy or whether PH “collapses”, i.e., PH = ¥, for some k. The
case of k = 0 corresponds to P = NP. The case of £ =1 is equivalent to NP = co- NP.

The following diagram sketches the classes of the polynomial-time hierarchy.

/" PSPACE
a PH N

Next, we define the parity operator. For a class C let @ - C be the set of all languages A
for which there is a B € C, a polynomial p, such that

A = {xz | there is an odd number of y, |y| = p(|z|), such that B(z,y)}

The following operator was introduced in [16]. For a class C we define BP-C as a probabilis-
tic generalization of C. (BP stands for bounded-error probabilistic ...) We let A € BP-C
if there is a B € C, € > 0, and a polynomial p, such that

1
Problzr € A & B(x,y)] > 3 +e€

Here, the probability is taken uniformly over all y, |y| = p(|z|).

For classes C having certain natural closure properties (closure under positive reductions,
closure under majority reducibility) it can be shown that the error probability can be
made exponentially small, e.g. in the above definition %—l—&“ can be substituted by 1 —2-1%l,

without changing the defined class (see [16]). This is called probability amplification. All
classes on which we apply the BP operator in the following enjoy such closure properties.

Some of the classes that can be obtained in terms of these operators have other familiar
names in the literature:

Proposition.
3-P NP = Y,
V-P = co-NP = 11
BP-P = BPP]11, 18]
BP-3-P = AM (or AM(2)[1]) = BP-NP
3-BP-P = MA (or MA(2) [1])
G- P ®P [12, 5]

The following inclusion relationships are known: BPP C MA C ¥, N1, [18, 11, 1],
AM CTIL, [1], ®P C PSPACE.

Now we summarize a collection of relationships between various operators. The notation
O — < means that the class OC is included in GC. Whenever we use < instead — equality
holds. The reader should keep in mind that some of the mentioned relationships hold only
for underlying classes C with certain closure properties. All classes that we consider here
do have these closure properties.

Theorem.
3.3 < 3 (1)
V-V &V (2)
S-D & & (3)
BP-BP < BP (4)
co-3 < Y-co (5)
co-¥ <« T-co (6)
co-d < D (7)
co-BP < BP-co (8)
co-co 4> € (9)
BP — 3.V (10)
BP — V-3 (11)
®-BP — BP-® (12)
J.BP — BP-3 (13)
V-BP — BP-Y (14)
i —- BP-@® (15)

The facts (1)—(4) are straightforward (but they require the class C to have certain encoding
possiblities for pairs of strings.)

Facts (5)—(9) are easily verified where (5),(6) are deMorgan’s laws. (7) requires the addi-
tion of certain dummy computation paths. In (9), ¢ is the empty operator.

The first non-trivial facts are (10),(11) which are generalizations of the inclusion BPP C
¥ N 11y proved in [18, 11]. Here the amplification properties of BP play a vital role.

Straightforward application of probability amplification (requiring the closure properties
mentioned above) are the facts (12),(13),(14).

Fact (15) is due to Valiant and Vazirani [21] (in the generalized version introduced by
Toda [20]): The idea is that the solution space (i.e. the set of y such that B(z,y) holds)
can be hit by a small number of probabilistic restrictions (which randomly cancel out
some of the solutions) so that with high probability an odd number of solutions remains
(in at least one of the restricted solution spaces). If there were no solutions to begin with,
then after any such restriction there are still no solutions so there is an even number of
solutions. The crucial problem is how to represent such a restriction for an exponentially
large space with only polynomially many bits.

4 Toda’s result

Toda shows that the class @ P is very powerful: Every set in PH can be randomly reduced
to some set in @ P. Formally, this is expressed by the following inclusion relationship.

Theorem [20) PH C BP-@-P

Proof: Let A € PH. Then there is some k such that A € ;. Hence we get

Y
Aey, = J:-V.--3.P

k

(9L(6) d-co-3-co--- co-3- P

k
(15)
€ BP - ®-co-BP-®-co---BP-®:P
*
C.0 pp.¢.BP-@---BP-@ P
k
(12)
C ﬁP.BP...BP;@.@...@.P
k *

=" BP-®-P
]

Corollary. If ®P is included in the polynomial hierarchy, then the polynomial hierarchy
collapses.

Proof: Suppose @P C PH. Then there is a fixed k such that @P C ¥;. (Since ®P has a
complete set, such a complete set would be in some ¥, and since ¥ is downward closed
under polynomial reductions, all of ®P is included in 3j.)

Therefore we get

PH BP-@P

k+1
= Hk+1

= Z3k+1

O

We mention another surprising result by Toda (whose proof builds upon the first result).
Theorem. [20] PH C P(PP).

(Therefore the class PP cannot be included in the polynomial hierarchy unless the PH
collapses.)

5 Shamir’s Result

Several years ago, the notion of an interactive proof system was introduced by Goldwasser,
Micali and Rackoff [8]. Among other interesting applications (e.g., zero knowledge proto-
cols) the idea can be used to define new (7) complexity classes. Phrased in the framework
given in the last sections, a language A can be proved by polynomially-bounded interactive
proof systems within k rounds, symbolically I P(k), if

A€ 3-BP-3-BP---3-BP-P
k

Such a class can be given an appealing interpretation in terms of two players, called prover
and verifier. Recall that a sequence of alternating 4 and V quantifiers can be interpreted
as a game: there exists a move for player 1 such that for all moves of player 2 there exists
a move for player 1 ...such that player 1 wins (meaning, the predicate becomes true when
evaluated with all the moves).

The role of the prover in this type of game here is the same as player 1 above who
corresponds to the existential quantifiers. The role of the verifier during the course of the
game is only to choose random moves. This can be interpreted (from the viewpoint of
player 1) as a game against nature.

Additionally, a game setting as described is only in accordance with the definition if either
there is a strategy for the prover to win with high probability or any prover strategy looses
with high probability. The former case corresponds to x € A, the latter case to © & A.

In an independent paper by Babai [1], the prover and the verifier are called Merlin and
Arthur, resp., and I P(k) is called AM (k).

The polynomial-time hierarchy (which is based on 3 and V) is believed to be an infinite
proper hierarchy. On the other hand, the I P(k) hierarchy (which is based on 3 and BP)
definitely collapses:

Theorem. [1,2] U, IP(k) = BP-3-P = BP-NP = AM(2)

Proof:
IP(k) = 3.BP-3.BP...3.BP.P
k
(13)
C BP-BP---BP.3.3...3.P
k k
LY pp.3.p

The class BP -3 - P (or AM(2)) is included in level TTy of the polynomial hierarchy:

(11)

BP-3-P C V-3.-3.-P
QO v.3.p
- I,

Therefore, U, I P (k) is included in II,.

Now we abuse our notation a bit, since we allow the number of operators to grow with
the input size. This is not quite admissible in the formal sense of our definition but one
can easily make the definition formally correct (for example, in terms of a generalization
of alternating Turing machines, having existential, universal, parity, and randomizing
states).

When we allow polynomially many rounds, we obtain the class I P(poly) (or just called
IP.)
IP = 31.BP-3-BP---3-BP-P

poly

Whether IP equals IP(k) for any fixed k£ is not known, in fact, in view of the next
important result, it seems very unlikely.

Theorem. [17] IP = PSPACE.

Proof: It suffices to show that some PSP AC E-complete set is in I P. For this purpose,
Shamir chooses the set QBF' that consists of all valid quantified Boolean formulas. Since
the syntax and semantics of such formulas play a crucial role in the proof, we elaborate
on this.

The syntaz of quantified Boolean formulas (gbf) is inductively defined as follows.

Any variable z; or its negation T; is a gbf.
If F and G are gbf’s, then so are (F AG), (F V Q).
If F'is a qbf and z; a variable, then dz;F' and Vx; F' are gbf’s.

Notice that negation is only allowed on variables.
We define bound and free variables in the usual way.

We will consider two different semantics for such formulas. The first semantics is the
usual Boolean interpretation: The universe is the set {0, 1}. Interpret A as logical and,
V as logical or, and 7; as logical negation of z;. Interpret dx;F' as there exists a value
€ {0,1} for z; such that F gets value 1 and Ya;F as for all values € {0,1} for x;, F gets
value 1. We call this the Boolean semantics and denote it by valpge(F).

Next we consider arithmetical semantics. The universe is the set of integer numbers, 7Z.
Interpret A as multiplication, V as addition, and T; as I minus the value of x;. Interpret
Jx; F' as the sum of the two values obtained from F' when setting x; to 0 and to 1 and
Va; F' as the product of the two values obtained from F' when setting x; to 0 and to 1. We
call this the arithmetical semantics and denote it by valy.qn(F).

If F is a closed formula, then valpee (F') (resp. valyi,(F)) evaluates to a constant € {0, 1}
(resp. € Z). It is easy to see that in this case,

valpoot (F) =0 < valgyn(F) =0
Again, the considered PSPAC E-complete set is

QBF = {F | valpo(F) = 1} = {F | valgun(F) # 0}

Notice, if F' contains free variables, then valy,e (F) resp. valy.iun(F) becomes a function on
{0,1} resp. on Z. In the arithmetical case such functions can be written as polynomials.
Such polynomials can be represented by the sequence of their coefficients. Notice that it
is computationally hard to find the corresponding polynomial for some given F'.

For a given closed formula F' (i.e., all variables are bound) define the formula F’ such
that it is equal to F' except that the first occurence of 3z; or Vz; is taken away. Then, F’
has one free variable and (in the arithmetical interpretation) there is a polynomial in one
variable that represents F".

Here is how the (boolean) value of a given gbf F' (with k occuring quantifiers) can be
determined in terms of IP(k). Here, the p; are polynomials as discussed above. The
following equivalence holds with high probability.

valpoot (F) =1 < 3py Rry...3pg Rry B(F,p1,7r1,. .., Pk, Tk)

This expression is to be read as follows: The “quantifier” R corresponds to the random
choices of the verifier (see the definition of the BP operator). The final predicate B has
to be evaluated as follows (letting o; be + if the i-th quantifier in F'is 3, and « if it is V).

(pl(o) 01 101(1) # 0

A p1(r1) = p2(0) 02 pa(1)

B(F,p1,71, .y DrsT) & :
A Pr-1(Te-1) = Pr(0) ok pe(1)

| A valarion (F* | oy=r,.op=r) = Dk (Tk)

The intention here is that polynomial p; represents F”, then the verifier produces a random
number r; to be assigned to the free variable 1 in F', hereby obtaining a new (arithmetical)
formula F7, the prover (the existential quantifier) provides a polynomial p, that represents
F| and so on, until there are no more variables in the formula, and a direct evaluation
of valys, is possible. Here, F'* is the matriz of F, i.e. all quantifiers are taken away, all
variables are free. The predicate B checks this final value (where the values rq,..., 7y
are substituted for z1,. .., x) against pg(rx), and checks also that the prover was indeed
following the above intention: p;(r;) has to be equal to p;11(0) 0,41 pi+1(1), and for the gbf
to be true, p1(0) oy p1(1) has to be # 0.

Now, if valpe(F) = 1, then the prover can provide the correct polynomials. Therefore
the above equivalence holds with probability one.

On the other hand, in the case of the qbf F' being false, there is only an exponentially small
probability that the verifier can provide the verifier with wrong polynomials (claiming that
the arithmetical value is # 0) and still passes the predicate B.

This shows that QBF € IP(k) where k is the number of quantifiers in the formula which
can grow linearly with the size of the formula. Therefore, PSPACE C IP(poly). The
inverse inclusion I P(poly) C PSPACE is trivial since a PSPACFE machine can traverse
the tree of all possible quantifications. Therefore I P(poly) = PSPACE. a

Notice that the above proof is just a sketch since we did not mention two details that
have to be considered. First, the arithmetical value of a gqbf can be double-exponential.
Such values cannot be represented with polynomially many bits. But one can see that it
is enough to restrict all arithmetical operations to some prime module. The value of such
a prime is just exponential, and thus can be represented with polynomially many bits.
The prover has to provide such a prime — together with a proof of primality (see [13]) in
the first round.

Second, the degree of the polynomials p; can be exponential in |F| and therefore the
coefficients cannot be represented with polynomially many bits. Also this can be fixed.

10

Shamir defines simple qbf’s to have a particular syntactic structure which causes the
degree to stay linear. He shows that the validity problem for simple qbf’s is still PSP ACE-
complete.

A third remark, connected to the previous one, is that simple formulas are not necessarily
in prefix form. Therefore, evaluating a polynomial at the points 0 and 1 and multiplying
or summing the values, as above, is not adequate. First one has to split F" into subformulas
F = Fy 0 Fy, o € {A,V}, where F; is variable-free, and thus can be directly evaluated,
and the polynomial provided by the prover refers to Fy only (see [17]).

6 Graph Isomorphism

One of the most studied algorithmic problems is graph isomorphism. It is immediate
that the language, encoding the graph isomorphism problem, denoted G1, is in NP. But
neither membership in P nor N P-completeness has been proved as yet.

We will present several negative results which show that G is not likely to be NP-
complete. (This does not imply that G is in P).

First, the complement of graph isomorphism, GI (which is not known to be in N P) has
a constant-round interactive proof.

Theorem. [8,9,4,15] GI € BP-3-P

Proof: Given two graphs G, G5 on n vertices, consider the number of pairs (G, p) such
that

(G is an isomorphic graph to either G or Gb,

p is an automorphism of G.

Let M be the set of such pairs (G, p). Notice that “(G,p) € M” is a NP predicate.

[t can be easily seen [15, 4] that
Gi~Gy, = |M|=n!

We specify random hash functions mapping the universe of all potential (G,p) to the
much smaller space of values {1,2,...,2n!} in terms of Boolean matrices with random
0,1 entries performing a linear transformation (over GF'(2)). The number of bits to specify
such a matrix is polynomial in n.

Now we have for some constant ¢ > 0,

1
Gi1# Gy = Proby[3 (G,p) e M: H(G,p):1]>§+8

1
Gy ~Gy = Proby[3 (G,p) e M : H(G,p):1]<§—6

11

Here, a uniform probability distribution over all such hash functions H is used.

Since the predicate “3 (G,p) € M : H(G,p) = 1" isin 3- P = NP, this proves that
GI € BP-3-P. O

In the prover-verifier terminology, the above proof can be read as follows.

First, the verifier picks a random hash funtion H and shows it to the prover.

Then, the prover presents a pair (G, p) — together with a proof of membership
of (G,p) in M — such that H maps (G, p) to the specific point 1.

If such a pair (G, p) can be provided, then the verifier accepts.

The analysis shows, in case of G| and G5 not being isomorphic (i.e. M| = 2n!), the prover
will be able to find such a (G, p) with probability % +e. If G; and G are isomorphic (i.e.
IM| = n!), the probability of success is ony % — ¢. By standard methods, the error
probability can be further pushed down to 27".

Theorem. [4, 15] If GI is NP-complete, then the polynomial hierarchy collapses.

Proof: If GI is N P-complete, then GT is co- N P-complete. Using the previous theorem,
co-NP=Y-P C BP-3d:P. Therefore,

c 4.BP-3-P
(13)
c BpP-3-3-P
Y pp.3.p
(11)
c VvV-4-3-P
O y.3.p
- I,
This means that the PH collapses to ¥y = IIy (even to BP - 3- P). O

In [15] this is further elaborated in terms of lowness. It is shown that the graph isomor-
phism problem is low for the operator ¥, that is, ©¢7 = 3,. (Equivalently, the same
holds for ITy). This is shown by proving such lowness result for the whole class BP - 3- P.
Roughly, this can be seen by:

(13) (1) (11 (1),(2)
v.-3.BP-3.-P CV-BP-3-3-PZV.-BP-3-PCV-¥Y-3-3.P " 27Vv.3.P

Finally, we want to mention a different type of lowness result, namely, w.r.t. to the count-
ing class PP. First we state the technical theorem, it refers to a class LW PP that was
introduced in [6].

12

Theorem. [10] GI € LWPP, that is, there is a nondeterministic polynomial-time
Turing machine M and two functions f,g € P, f < g, such that

Gl ~ G2 = G,CCM(Gl,GQ) = g(|(G1,G2)|)
G1 ¢ G2 = G,CCM(Gl,GQ) = f(|(G1,G2)|)

Using the results on LW PP proven in [6], we get:

Theorem. [10] GI islow for PP, i.e. PP%! = PP. Therefore, if the graph isomorphism
problem is N P-complete, then the polynomial hierarchy is low for PP, i.e. PPPH = PP.

The following picture gives an impression of the relative position of graph isomorphism
in NP.

N P-complete sets

[@ab)

NP

low sets
° —— GRAPH ISOMORPHISM

\@&D)

References

[1] L. Babai. Trading group theory for randomness. 17th ACM Symp. Theory of Comput.
1985, pp 421-429.

[2] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system and a
hierarchy of complezity classes. Journal of Computer and System Sciences 36, 1988,
pp 254-276.

(3] J.L. Balcazar, J. Diaz, J. Gabarrd. Structural Complexity Theory I + II. Springer-
Verlag, 1988 and 1990.

[4] R.B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Inform. Proc. Letters, 25, 1987, pp 27-32.

[5] J. Cai and L.A. Hemachandra. On the power of parity polynomial time. Symp. Theor.

Aspects of Comput. Science, Lecture Notes in Computer Science 349, Springer-
Verlag, 1989, pp 229-240.

13

(6]
7]
8]
9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

S.A. Fenner, L.J. Fortnow, S.A. Kurtz. Gap-definable counting classes. 6th Structure
in Complexity Theory Conf., IEEE, 1991, pp 30—42.

J. Gill. Computational complexity of probabilistic complexity classes. STAM Journ.
Comput. 6, 1977, pp 675-695.

S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof
systems. Proc. 17th ACM Symp. Theory of Computing, 1985, pp 291-304.

S. Goldwasser, M. Sipser. Private coins versus public coins in interactive proof sys-
tems. Proc. 18th ACM Symp. Theory of Computing, 1986, pp 59-68.

J. Kobler, U. Schoning, J. Toran. Graph isomorphism is low for PP. Tech. Report,
Fakultt fr Informatik, Universitt Ulm, 1991, submitted for publication.

C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Letters, 14, 1983,
pp 215-217.

C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of counting. 6th
GI Conf. on Theor. Comput. Science, Lecture Notes in Computer Science 145, pp
269-276, Springer-Verlag, 1983.

V. Pratt. FEwvery prime has a succinct certificate. SIAM Journal on Computing 4,
1975, 214-220.

U. Schoning. A low and a high hierarchy within NP. Journ. Comput. Syst. Science,
27, 1983, pp 14-28.

U. Schoning. Graph isomorphism is in the low hierarchy. J. Comput. System Science,
37, 1988, No. 3, pp 312-323.

U. Schoning. Probabilistic complezity classes and lowness. J. Comput. System Sci-
ence, 39, 1989, pp 84-100.

A. Shamir. IP = PSPACE. 31th IEEE Symp. Foundat. Comput. Science 1990, pp
11-15.

M. Sipser. A complexity theoretic approach to randomness. Proc. 15th ACM Symp.
Theory of Comput. Science 1983, pp 330-335.

L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Science, 3, 1977,
pp 1-22.

S. Toda. On the computational power of PP and @&P. 30th IEEE Symp. Found.
Comput. Science, 1989, pp 514-519.

L.G. Valiant and V.V. Vazirani. NP s as easy as detecting unique solutions. Theor.
Comput. Science, 47, 1986, pp 85-93.

C. Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput.
Science, 3, 1977, pp 23-33.

14

