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Abstract

This paper studies the class MP of languages which can be solved in poly�
nomial time with the additional information of one bit from a �P function f �
The middle bit of f�x� is shown to be as powerful as any other bit� whereas the
O�logn� bits at either end are apparently weaker� The polynomial hierarchy
and the classes ModkP� k � �� are shown to be low for MP� They are also low
for a class we call AmpMP which is de	ned by abstracting the 
ampli	cation�
methods of Toda �SIAM J� Comput� �� ����� ��������� Consequences of
these results for circuit complexity are obtained using the concept of a Mid�
Bit gate� which is de	ned to take binary inputs x�� � � � � xw and output the
blog��w���c

th bit in the binary representation of the number
Pw

i�� xi� Every
language in ACC can be computed by a family of depth�� deterministic cir�
cuits of size ��logn�

O���
with a MidBit gate at the root and AND�gates of fan�in

�logn�O��� at the leaves� This result improves the known upper bounds for the
class ACC�

� Introduction

The celebrated results of Toda �Tod ��� have sparked renewed interest in the com�

plexity classes �P �Va ���	 PP 
probabilistic polynomial time �Gi ����	 and �P 
pa�
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rity polynomial time �PaZa �	 GoPa ����� One relationship among these classes is

that �P comprises exactly those languages which are decided with the information

in the rightmost bit of a �P function f 	 and PP	 those decided with the information

in the leftmost bit� 
For the latter statement we arrange	 as described later	 that

binary values f
x� are padded with leading ��s out to a length which depends only

on jxj�� Toda�s two main theorems are that the polynomial�time hierarchy 
PH�

is contained in BPP�P	 and that the evidently larger class PP�P is contained in

P�P� The observation which inspired the present work is that in Toda�s proof of

the second result	 the full power of P�P is not needed� Namely	 the P�P machine

M in the proof makes only one query x to its oracle f � �P	 and furthermore the

machine�s decision depends on only one bit of the answer f
x� in binary notation�

Hence it is natural to ask which other languages can be decided by looking at just

one bit of a �P function� The class of languages with this property is de�ned by�

De�nition ��� A language L is in MP if there exists a �P function f and a

polynomial�time function g such that for all x� x � L� 
bf
x���g�x�c mod �� � ��

Put another way	 x � L i� there is a � at position g
x� in the standard binary

representation of f
x�� We call g a bit�selection function� The �M� stands for

�middle bit	� since we show	 by judicious padding of values f
x� to odd length	

that g can be the function which indexes the middle bit of the binary representation

of f
x�� In Section  we establish some basic properties of the class MP	 including

that MP is closed downward under polynomial�time many�one reductions and has

complete problems�

One motivation for studying MP is that very little is known about the structure of

classes in the neighborhood of P�P	 even under relativizations� Indeed	 it is not even

known whether there exists an oracle set A for which PP�PA �� PSPACEA� hence no

A for which P�PA��� �� PSPACEA is known either� One surprising property of P�P���

which follows from the proof of Toda�s theorem is that a rich array of languages A

are low for the class	 meaning that P�PA��� � P�P���� The main result of this paper

is that all of the languages that are known to be low for P�P��� are also low for the

possibly smaller class MP� As shown in Section �	 the class BPP
�P from Toda�s �rst

theorem is low for MP� In proving these lowness results	 we interpret the familiar

probability ampli�cation in Toda�s �rst theorem as a means of inserting many ��s to

the right of the important bit	 and the novel �amplifying polynomials� in his second

theorem as a means of inserting ��s to the left of that bit� We abstract these two

properties to de�ne the subclass AmpMP of MP languages whose representations
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in De�nition ��� can be transformed to insert any desired number of ��s on both the

left and the right of the selected bit� We show that any class C � AmpMP which

is closed under both �p
ctt and �p

dtt 
that is	 under polynomial�time conjunctive

and disjunctive truth�table reducibilities	 respectively� is low for both MP and for

AmpMP itself� It follows that if MP � AmpMP	 or even if C�P � AmpMP	 then

the entire counting hierarchy �Wa ��� collapses to MP� We had hoped to be able

to show lowness without any extra closure conditions on C� However	 very recently

K�obler and Toda �K�oTo �� showed that if the class AmpMP de�ned in this paper

is low for MP	 then the counting hierarchy likewise collapses� We return to this

question and give other open problems about MP in our concluding Section ��

While it is immediate that �P � MP	 it is not obvious �a priori that Mod	P �

MP	 since in order to decide whether a number written in base � is congruent to �

modulo 	 one needs the information of all of its bits� Nevertheless	 in Section � we

show that for all k � �	 all languages in ModkP 
see �CaHe ��b	 He ��	 BeGi ����

are low for MP� Sections � and � together present our main application	 which is an

improvement on previous simulations of the circuit class ACC 
originally de�ned

by Barrington �Ba �����

Some background and explanation of how our work builds on prior techniques is

in order� It is by now well known that relationships among Turing machine classes	

both with and without relativization	 correspond closely to circuit simulations or

circuit�class separations� Toda proved his �rst theorem	 PH�BP��P	 using tech�

niques introduced by Valiant and Vazirani �ValVaz ���� The circuit analogue of

this result was proved by Allender �Al ���	 using polynomial methods introduced

by Razborov �Raz ��� and Smolensky �Smo ���� It states that any AC
 predicate is

computed with high probability by a family of circuits of quasi�polynomial size 
i�e�	

size ��logn�
O���

� which consist of a parity gate connected to AND gates which are

small 
i�e�	 have polylog fan�in�� Allender and Hertrampf �AlHe ��� subsequently

applied the Valiant�Vazirani technique to obtain a uniform version of Allender�s

result�

Yao �Yao ��� then used these techniques to obtain the �rst non�trivial upper

bound for ACC� By combining the Valiant�Vazirani method with improved versions

of Toda�s �amplifying polynomials	� he showed that every language in ACC is

recognized by a family of depth�� probabilistic circuits of quasipolynomial size with

a symmetric gate at the root and small AND gates at the leaves� Then Beigel and

Tarui �BeTa ��� simpli�ed Yao�s proof and strengthened the result in two respects�


�� the circuits given by Yao can be made deterministic without increasing their





size	 and 
�� the simulation applies not only to ACC circuits	 but also to circuits

consisting of one symmetric gate 
at the root� connected to ACC subcircuits� This

is the circuit analogue of the result that PH and all the ModkP classes are low for

P�P���	 and shows that this lowness relationship holds relative to all oracles�

In the results of both �Yao ��� and �BeTa ���	 the symmetric gate at the root

depends on the number of inputs and the types of modular gates used in the ACC

circuit� It seems very hard to work directly with depth�� circuits of the type given

in �Yao ��� or �BeTa ��� in proving lower bounds	 since all that can be said about

the gates at the root is that they belong to an in�nite subfamily of the symmetric

functions� Our improvement is that such circuits can be restricted to have a sym�

metric gate of type MidBit at the root and still have the power of ACC� A MidBit

gate over w inputs x�� � � � � xw is a gate which outputs the value of the blog�
w���c
th

bit in the binary representation of the number
Pw

i�� xi� Let the term MidBit� refer

to families of depth�� deterministic circuits of quasipolynomial size with a MidBit

gate at the root and small AND�gates at the leaves 
see De�nition ����� Our result

is that ACC circuits can be simulated by MidBit� circuits� Furthermore	 as follows

from our lowness results	 even a circuit consisting of a Midbit of ACC circuits can

be simulated by MidBit� circuits� Much of the above can be proved by applying the

ideas and techniques of �BeTa ���� Our main technical contribution regarding the

ACC problem is a means of converting representations involving counting modulo

some prime p into �Midbit� representations in binary notation� By multiplying by

a carefully chosen number which is not too large	 the rightmost �bit� of a number

written in base p can be represented as a single bit in the middle of a binary string


Lemma ����� By choosing an appropriate Toda polynomial	 the bit can be �isola�

ted� from the rest of the string	 and this leads to our Theorem ���	 and in circuit

form	 Theorem ���

Yao �Yao ��� conjectured that there are languages in TC
 which cannot be com�

puted by probabilistic circuits consisting of a symmetric gate over small AND�s	

and Beigel and Tarui �BeTa ��� make a similar	 nominally weaker conjecture for

deterministic circuits of this kind� Likewise	 we believe that there are TC
 langua�

ges that cannot be computed by MidBit� circuits� The study of these circuits may

therefore provide a way to show that TC
 is not contained in ACC�
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� Preliminaries and Notation

All languages considered here are over the alphabet � � f�� �g� The length of a

string x � �� is denoted by jxj� If n is a natural number	 jnj denotes the length

of its binary encoding	 namely jnj � dlog�
n � ��e� For a set A	 jAj denotes its

cardinality� The characteristic function of a set A is denoted by �A� The set

f�� �� �� � � �g of non�negative integers is denoted by N � We �x some standard means

of injectively encoding sequences 
x�� � � � xk� of strings	 where k � � is arbitrary	 by

single strings hx�� � � � � xki	 such that jhx�� � � � � xkij depends only on
Pk

i�� jxij	 and

both the encoding and decoding are computable in polynomial time� Where intent

is clear we write f
x�� � � � � xk� or �A
x� y� in place of f
hx�� � � � � xki� or �A
hx� yi��

We write FP for the class of deterministic polynomial�time computable functions�

To every polynomial�time bounded nondeterministic Turing machine 
NTM� we

associate the counting function �accN
x�	 de�ned to be the number of accepting

computations which N has on input x� The class of such functions is denoted by

�P� A language L belongs to the class PP if there is an NTM N with polynomial

time bound p such that for all x	 x � L i� �accN
x� � �p�jxj���� For any natural

number k � �	 L belongs to the class ModkP if there exist N and p such that for

all x	 x � L i� �accN
x� �	 � 
mod k�� With k � � we have x � L i� �accM
x� is

odd	 and this class is called �P 
�parity�P���

It is well�known that �P is closed not only under addition and multiplication but

also under summation of exponentially many �P functions and multiplication of

polynomially many �P functions� That is	 if f
�� �� is in �P and p is a polynomial	

then the functions
P

y�jyj�p�jxj� f
x� y� and
Q
m�p�jxj� f
x� �

m� are also in �P�

An oracle machine M may have a function f instead of a language as its oracle�

M is nonadaptive if for every computation path leading up to some query z	 the

set of possible next queries does not depend on the answer f
z�� Otherwise M

is adaptive� The class of languages 
respectively	 functions� computed by such

machinesM with an oracle from some class C is denoted by PC
tt 
respectively	 FP

C
tt��

WhenM is deterministic and nonadaptive	 and accepts i� at least one of its queries

is answered �yes� 
respectively	 i� all of its queries are answered �yes��	 M is said

to compute a polynomial�time disjunctive 
resp� conjunctive� truth�table reduction	

and the corresponding reducibility relations are denoted by �p
dtt and �

p
ctt� Finally	

given k � �	 a relativizable language class C	 and a class D of either languages or

functions	 CD�k� is the class of all languages in CD witnessed by a machine of type

C which asks at most k queries on every computation path� these queries may be
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adaptive� The class D is low for C if the class D	 when used as an oracle for C	

does not increase the power of C	 that is	 CD � C� Further information on these

concepts may be found in �BaDiGa ��	 Sch�o ����

� Bits of �P Functions and Counting Classes

If a given pair of functions f � �P and g � FP satisfy De�nition ��� for some

language L	 then we say L � MP via f and g� For visual convenience we also

use a second representation which involves a bounding polynomial for f 	 meaning

a polynomial p such that for all x	 f
x� � �p�jxj�� Then f
x� is written as a

binary string of length exactly p
jxj�	 using leading ��s if necessary	 with the least

signi�cant bit numbered � and written rightmost	 and the most signi�cant bit

numbered p
jxj�
�� As noted in Section �	 PP consists of the languages decided by

the leftmost bit under this representation	 and �P	 those decided by the rightmost

bit� The name MP comes from our �rst result	 which shows that all languages

L � MP have MP�representations by which membership of x in L is decided by the

middle bit�

Proposition ��� Let L � MP� Then there is a �P function f such that for all x�

jf
x�j is odd� and x � L i� the middle bit of f
x� is a �� Furthermore� the index

of the middle bit is given by a polynomial in jxj alone�

Proof� Take f
 � �P and g � FP such that L � MP via f
 and g	 and let p

be a bounding polynomial for f
� Let p be a bounding polynomial for f � Then

we may also suppose without loss of generality that for all x	 g
x� � p
jxj�� Then

the function f de�ned by f
x� � ��p�jxj�� �p�jxj��g�x�f

x� belongs to �P� Since for

all x	 f

x� � �p�jxj�	 we have f
x� � ��p�jxj���	 and so jf
x�j � �p
jxj� � �� 
Thus

no leading ��s are needed�� The bit of f

x� originally selected by g
x� is now in

position p
jxj�	 which is the middle bit of f
x�� �

We note that in this and later proofs	 in place of asking for one bit of the con�

structed �P function f evaluated on the input x	 one can ask for the same bit of the

�P�complete function �SAT evaluated at some other argument y � h
x� where

h is a polynomial�time computable polynomially honest function� The next result

implies that	 modulo the belief that PP and �P are proper subclasses of P�P���	

the bits at distance O
log n� 
where n � jxj� from either the left or right end of
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�SAT are easier than the middle bit 
this follows easily from known results�� On

the other hand	 it is possible to push the decision bit of any MP language quite

close to either end of the binary string representing f
x�	 in comparison with the

length of f
x�� That is	 for any L �MP	 for any � � �	 there is a �P function f

such that the deciding bit for x � L is as close as jf
x�j� to either end of the binary

representation of f
x�� In this sense	 a wide range of bits around the middle are

equally as powerful as the middle bit�

Proposition ���

�a� Let L be in MP via a function f � �P and a bit selection function g � FP�

If g
x� � O
log
jxj��� then L � �P� while if jf
x�j 
 g
x� � O
log
jxj��� then

L � PP�

�b� Let L � MP� Let � � � � �� and let g be a polynomial�time computable

function which takes a string x and a number m as arguments� such that

always m� � g
x�m� � m 
m�� Then there exists a �P function f � with

bounding polynomial p� such that upon taking g�
x� � g
x� p�
jxj�� as bit�

selection function� L � MP via f � and g��

Proof� 
a� The statement for �P is immediate from �BeGi ���� The statement

for PP follows quickly from the result PPP�O�logn�� � PP in �BeReSp ���� Let c

be a constant such that jf
x�j 
 g
x� � c log�
jxj� for all x � ��� Then f
x� �

�g�x��c log��jxj�	 and the bits at the positions g
x� � c log�
jxj� 
 �� � � � � g
x� in the

binary representation of f
x� can be computed in polynomial time by binary search

asking c log�
jxj� many queries to the PP oracle set fhx� ii j f
x� � ig�


b� Let f and the middle�bit selector p be as in Proposition ��	 and let p�
n� �


p
n����d���e� With g� as given in the statement of this proposition	 de�ne f �
x� �

�p
��n��� � �g

��x��p�n�f
x�	 where n � jxj� Then bit number p
n� of f
x� is the same

as bit number g�
x� of f �
x�� Because g� is in FP and g�
x� � p�
n�� � p
n�	 f � is in

�P� Hence f � and g� form an MP representation for L� 
Note that p� also serves

as a bounding polynomial for f ��� �

With m � p�
n�	 the selected bit may be as low as m� or as high as m 
 m�	

depending only on g� We do not have any quantitative results on the di�culty of

the bits in positions between O
logn� andm�� Next we collect some basic structural

properties of MP�
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Proposition ���

�a� PP�P �MP � P�P����

�b� MP has complete sets under �p
m�

�c� MP is closed downward under �p
m� and is closed under complements and join�

�d� MP � PMP����

�e� MP is closed under intersection if and only if MP �
S
k��P

MP�k��

Proof� 
a� The inclusion PP�P � MP follows from inspection of Toda�s proof

�Tod ��� that PP�P � P�P	 as discussed in Section �� The inclusion MP � P�P���

is obvious�


b� The language UMP � fhN�x� �k� �mi j N is a nondeterministic TM and there

is a � at position k in the binary representation of the number of all accepting paths

of length � m of N on input xg is easily seen to be complete for MP under �p
m�

Complete languages based on counting satisfying assignments to Boolean formulas

can also be de�ned�


c� Let B be in MP via some fB � �P and g � FP	 and suppose that A �p
m B

via some FP function h� Then the function fA � fB � h is in �P	 and the function

g � h is in FP� For all x � ��	 x � A if and only if there is a � at position g
h
x��

in the binary representation of f
h
x��	 so A � MP�

For complements	 consider the function f �
x� � f
x���g�x�	 which belongs to �P

and  ips the bit at position g
x� in the binary representation of f
x�� Given A�B �

MP with �P functions fA and fB respectively	 the join �A � �B is represented by

the �P function f de�ned by f
�x� � fA
x�	 f
�x� � fB
x��


d� This holds for any class which contains P and has the closure properties in


c��


e� Likewise	 since MP contains P and is closed under �p
m	 it follows 
see

�K�oScWa ���� that
S
k��P

MP�k� coincides with the Boolean closure of MP	 which

equals MP i� MP is closed under intersection� �

Finally we compare the polynomial�time Turing and truth�table closures of MP�

Proposition ���

�a� PMP � PPP � P�P�
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�b� FPMP
tt � FP�P

tt � FP�P����

�c� PMP
tt � P�P����

Proof� Part 
a� is obvious	 and 
c� follows immediately from 
b�� The �rst equality

in 
b� follows from the fact that the value of a �P function can be computed

in polynomial time by asking nonadaptive queries to an MP oracle� The second

equality	 namely that a round of nonadaptive queries to a �P oracle function can

be simulated by one query to a �P oracle function	 is shown in �CaHe ��a�� �

Fortnow and Reingold �FoRe ��� proved that PP is closed downward under

polynomial�time truth�table reductions 
�p
tt�� Since their result relativizes	 the

class PP�P is also closed downward under �p
tt� Hence if MP � PP�P	 then both

classes equal P�P���� The open problems of whether MP � PP�P or whether MP is

closed under intersection are discussed at the end of the paper�

� The Class AmpMP

In this section we introduce a subclass AmpMP of MP that will be very useful in

obtaining lowness results for a variety of complexity classes including�P	 BPP	 PH	

and ModkP	 k � �� Toda�s proof	 which as mentioned in Proposition �
a� yields

PP�P � MP	 actually shows that languages L in PP�P have MP�representations

of a special kind� Namely	 for every polynomial r	 there is a �P function f such

that for all x	 not only does the middle bit of f
x� equal � i� x � L	 but also the

r
jxj� bits to the left of this bit are always �� We call this property �ampli�cation

on the left of the decision bit�� As noted below	 familiar probability�ampli�cation

methods for languages L in BPP yield �P functions which allow ��s to be inserted

to the right of the bit �L
x�� When the construction implicit in the whole of Toda�s

paper is carried out on a language L in the polynomial hierarchy 
more precisely	

to L in BPP�P�	 any desired number m of ��s 
bounded by a polynomial in jxj�

can be inserted on both the left and the right of the decision bit� This motivated

us to study the class of all languages with this ampli�cation property	 and to call

the class AmpMP�

De�nition ��� A language L is in AmpMP if there are functions f � �P and

u � FP such that for all x � �� and m � � there exist nonnegative integers a and
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b with b � �u�x�

m� such that

f
x� �m� � a�u�x�

m���m�� � �L
x��

u�x�
m��m � b�

Put another way	 L is in AmpMP if there are functions f � �P and u� v � FP such

that for every x � �� and m � �	 the binary representation of f
x� �m� is of the

form

av�x�
m��� � � � a
 � � � � �� �z �
m times

�L
x� � � � � �� �z �
m times

bu�x�
m��� � � � b
� 
��

We say the functions f� u� v form an AmpMP representation of L� Here and later	 it

is understood that av�x�
m��� � � � a
 and bu�x�
m��� � � � b
 are strings which may depend

on x and m� only their lengths and not their actual values matter�

Proposition ��� BPP and �P are subclasses of AmpMP�

Proof� Let L � BPP� The standard method for reducing the error probability

to ���m��� 
see e�g� �Sch ��� takes the majority result of O
m� trials� Making

m a second argument yields a �P function f
x� �m� and a polynomial p
n�m�

with the following property� Whenever x � L	 f
x� in binary begins with �m��


or equals �p�n�m��	 and when x �� L	 f
x� begins with �m��� Then the function

f �
x� �m� � f
x� �m� � �p�n�m���m��� belongs to �P and has the decision bit �L
x�

in position p
n�m�	 followed by �m to its right� Since �L
x� is the leading bit	 this

satis�es De�nition ��� with a � ��

Given L � �P	 Toda�s amplifying polynomials yield a �P function f such that for

all x andm	 if x � L then f
x� �m� 	 � 
mod �m�	 and if x �� L	 then f
x� �m� 	 
�


mod �m� 
see �Tod ����� De�ning f �
x� �m� � �m
f
x� �m��� � �� then places �m

on the right as well as the left of the bit �L
x�� �

It follows by bit�shifting methods similar to those of Proposition �� that every

AmpMP language L has a representation as in 
�� above	 in which u and v are

polynomials in m and jxj� In fact	 one can arrange that v � u	 so that the decision

bit �L
x� is in the middle� However	 we prefer to keep v and u separate�

Lemma ���

�a� AmpMP is closed under complementation�

�b� AmpMP is closed under intersection�

��



�c� AmpMP is closed under bounded truth�table reductions�

Proof� 
a� Let L be in AmpMP	 and let u� v � FP and f � �P provide the

AmpMP representation as in 
��� Here and below we write v and u as short for

v
x� �m� and u
x� �m�� Consider the function f �
x� �m� whose value in binary is

av�� � � � a
 � � � � �� �z �
m times

�L
x� � � � � �� �z �
m times

bu�� � � � b
�

Since this equals f
x� �m� plus some powers of � determined by m and u alone	

f � is in �P� Let p� be a polynomial which bounds the running time of some

nondeterministic Turing machine N whose counting function �accN is the same as

f �� Then	 by interchanging accept and reject states in N 	 the function f ��
x� �m� �

�p
��jhx�
mij��� 
 � 
 f �
x� �m� is also in �P� In f ��
x� �m�	 the complement of the bit

�L
x� is  anked by m ��s�


b� Let L�� L� be two sets in AmpMP	 with respective representations f�� u�� v�

and f�� u�� v�� Then f�
x� �
m� has the form

av��� � � � a
 � � � � �� �z �
m times

�L�
x� � � � � �� �z �
m times

bu��� � � � b
�

Let h
x� �m� � v�
x� �m� � �m � � � u�
x� �m�	 which bounds the length of

f�
x� �m�� Let v�� abbreviate v�
x� �h�x�

m��	 and let u�� abbreviate u�
x� �h�x�


m���

Then f�
x� �h�x�

m�� has the form

a�v���� � � � a
�

 � � � � �� �z �
h�x�
m� times

�L�
x� � � � � �� �z �
h�x�
m� times

b�u���� � � � b
�

�

for some strings a� and b�� The function f	
x� �m� � f�
x� �m� � f�
x� �h�x�

m�� also

belongs to �P� Because of all the ��s around the bit �L�
x�	 the value �L�
x� �

f�
x� �
m� appears as a substring of f	
x� �

m�	 and in particular	 the decision bit

�L�
x� � �L�
x� for L�  L� appears at position u� �m� u�� � h
x� �m��


c� Since by 
a� and 
b� AmpMP is closed under Boolean operations	 it su�ces to

show that AmpMP is closed under many�one reductions� Suppose A �p
m L where

L � AmpMP� Let f 	 u	 and v provide the representation as in 
�� for L	 and let

t be the polynomial�time computable function used in the reduction� De�ne the

function f �
x� �m� � f
t
x�� �m�� The value f �
x� �m� has the form

av�t�x��
m��� � � � a
 � � � � �� �z �
m times

�L
t
x�� � � � � �� �z �
m times

bu�t�x��
m��� � � � b
�

��



Then �L
t
x�� � �A
x�	 and the functions u�
x� �m� � u
t
x�� �m� and v�
x� �m� �

v
t
x�� �m� complete an AmpMP�representation for A� �

The technical key to our lowness results is a lemma which shows that the value

of a function which is in �P with a bounded number of queries to AmpMP can

be obtained as a substring of the value of a function in �P	 with no queries� By


c� above	 for any k � �	 PAmpMP�k� � AmpMP� Hence �PAmpMP�k� � �AmpMP	

where �AmpMP equals the class of functions f such that for some language A in

AmpMP and polynomial q	 and all x � ��	

f
x� �
X

y�f
��gq�jxj�

�A
x� y�� 
��

Lemma ��� For every function f � �AmpMP there is a function f � � �P such

that for all x � �� and m � �� the binary representation of f �
x� �m� has the form

av�� � � � a
 � � � � �� �z �
m times

f
x� � � � � �� �z �
m times

bu�� � � � b
�

As usual we suppose that f
x� is written as a string of length exactly p
jxj�	 where

p is some bounding polynomial� Then the above states that bf �
x� �m���u�mc is

congruent to f
x� modulo �p�jxj��m�

Proof� Given f 	 take A � AmpMP and the polynomial q from 
��� By the remarks

following Proposition ���	 there are polynomials u� v and a �P function fA such

that for all pairs hx� yi � �� and k � �	 the binary representation of fA
hx� yi� �k�

has the form

av�n��k��� � � � a
 � � � � �� �z �
k times

�A
x� y� � � � � �� �z �
k times

bu�n� �k��� � � � b
� 
�

where n� � jhx� yij� By our particular choice of tupling function in Section �	 and

since jyj � q
jxj�	 jhx� yij depends only on jxj� Thus the position of the bit �A
x� y�

is the same for all y� Now given x � �n and m � �	 take k � m � q
n� � �	 and

de�ne

f �
x� �m� �
X

y�f
��gq�n�

fA
hx� yi� �
k��

Then f � � �P� The binary representation of f �
x� �m� is obtained by summing

the representations in 
�	 and by Eq� 
�� and the choice of k	 f
x� appears as a

substring of length exactly q
n� � �  anked by m ��s on both sides� 
Also note u

and v are polynomials in n and m�� �

��



Corollary ���

�a�
S
k��MPAmpMP�k� � MP�

�b�
S
k��AmpMPAmpMP�k� � AmpMP�

Proof� Given L � MPAmpMP�k�	 L has a representing function f � �PAmpMP�k��

Then the function f � in Lemma ��� provides an MP�representation for L!here m

is immaterial and can be �xed to �� For 
b�	 if f is an AmpMP�representation	

then so is f �� �

The limitation of this corollary is that it only applies to bounded truth�table re�

ductions to AmpMP� To apply it for full Turing reductions	 we seek technical

conditions on subclasses C of AmpMP under which any number of queries to C

made by a nondeterministic machine can be replaced by two queries�

Theorem ��	 Let C be a subclass of AmpMP which is closed downward under both

�p
ctt and �

p
dtt� Then C is low both for MP and for AmpMP�

Proof� Let L � MPA where A � C� Let B � f�hx�� � � � � xki � each xi belongs to

Ag	 and let C � f�hx�� � � � � xki � some xi belongs to Ag� By the closure properties

of C	 B and C belong to C	 and by the closure properties of AmpMP	 the language

D � B � C belongs to AmpMP� Let N be a nondeterministic oracle TM such

that the counting function �accNA
x� gives an MP representation for L� By a

standard trick	 replace N by a nondeterministic OTM N � which on any input x

guesses a computation path of N
x� and also guesses the oracle answers along the

path� Let y�� � � � � yk denote the query strings whose answers were guessed as �yes�

along this path	 and z�� � � � � zl	 those guessed �no�� Then this path by N � accepts

i� �hy�� � � � � yki � B	 �hz�� � � � � zli �� C	 and the path guessed by N accepts� N �

need make only two queries to its AmpMP oracle D	 and since this trick does not

change the number of accepting computations	 Corollary ��� implies that L � MP�

The case AmpMPA � AmpMP is similar� �

Since BPP and �P are closed under polynomial�time Turing reductions 
�p
T�

�Ko ��	 PaZa ��	 it follows from Proposition ��� and Theorem ��� that they are

low for both MP and AmpMP� We can quickly show the same lowness property

for the class BPP�P shown in �Tod ��� to contain the polynomial hierarchy 
PH��

Proposition ��
 BPP�P and PH are low for MP and for AmpMP�

�



Proof� Proposition ��� relativizes to show that for any oracle set A	 BPPA �

AmpMPA� Hence BPP�P � AmpMP�P� Since �P is low for AmpMP	 it follows

that BPP�P � AmpMP� Since BPP�P is closed downward under �p
T	 it too is low

for AmpMP� Lowness for MP is similar	 and the conclusions for PH follow since

PH � BPP�P� �

By careful examination of the proof in �Tod ���	 we �nd that the lowness of

BPP�P for MP is a consequence of the more general result that any �PBPP
�P

function reduces to the �middle bits� of some �P function 
see �ToWa ��� for

related results about �PPH�� Furthermore	 the bits can be isolated any distance m

from the left part of the string	 independent of the input length jxj�

Theorem ��� For every function f in �PBPP
�P

there exist a function h � �P

and a polynomial p such that for all x and m�

f
x� 	 bh
x� �m���p�jxj�c 
mod �m��

Proof� Let f be in �PBPP�P� Since PBPP�P � BPP�P	 there exist a language

A � BPP�P and a polynomial q such that for all x � ��	

f
x� �
X

y�f
��gq�jxj�

�A
x� y��

By Proposition ��� for BPP relativized to �P	 we obtain a function f � � �P�P and

a polynomial u such that for all x and y	 the binary representation of f �
hx� yi� �m�

has the form

�A
x� y� � � � � �� �z �
m times

bu�jhx�yij��� � � � b
�

For all x	 with n � jxj	 de�ne

g
x� �
X

y�f
��gq�n�

f �
hx� yi� �q�n���

Because of the choice m � q
jxj�	 the sum of the bu�� � � � b
 terms does not spill

any carries into the sum of the �A
x� y� terms� Since jhx� yij depends only on n for

y � �q�n�	 there is a polynomial p
n� such that for all x	 g
x� has the form

g
x� � f
x�b�p�jxj��� � � � b
�

�

��



Now g also belongs to �P
�P� Since P�P � �P	 there exists a language B � �P

and a polynomial r such that for all x	

g
x� �
X

z�f
��gr�jxj�

�B
x� z��

Next	 by using Toda�s amplifying polynomials as in the proof of Proposition ���	

we obtain a function g� � �P such that for all x� z � �� and m � N 	

g�
x� z� �m� 	 �B
x� z� 
mod �m��

Finally de�ne

h
x� �m� �
X

z�f
��gr�jxj�

g�
x� z� �m��

Then h � �P	 and for all x and m	

h
x� �m� 	 g
x� 
mod �m��

The conclusion follows on noting that bg
x���p�jxj�c � f
x�� �

We return to this in connection with open problems about AmpMP in Section ��

Before presenting our new idea which gives analogous lowness results for the classes

ModkP	 k � 	 we observe one more consequence of the results in this section�

Proposition ��� If C�P � AmpMP� then CH � MP�

Proof� Assume that C�P � AmpMP� Since the class C�P is closed under

disjunctive and conjunctive reductions 
�Tor ��	 GuNaWe ��	 Gr �	 BeChOg ���

it follows from Theorem ��� that C�P would be low for MP� However	 from the

result of �Tor ��� that PPPP � PPC�P	 this would give PPPP � MPC�P � MP	

implying that the entire counting hierarchy collapses to MP� �

� Lowness of Mod Classes for the Class MP

In this section we show that for any k	 ModkP is low for MP and AmpMP� The

key to this result is the following lemma	 which says that the �ampli�cation� of

a �P�function in k�adic representation can	 in some sense	 be saved in dyadic

representation�

��



Lemma ��� Let k � �� let f � �P with bounding polynomial s� and let FP func�

tions q and r be given such that for all z� �q�z� and kr�z� are at most �s�jzj�� For

all z write a
z� � bf
z��kr�z�c and b
z� � f
z� mod kr�z�� Suppose that for all z�

b
z� � kr�z���q�z���� Then there exist a �P function h� an FP function u� and a

non�negative integer�valued function a� such that for all z�

h
z� � a�
z�a
z��u�z��q�z� � b
z��u�z� � c
z�� where c
z� � �u�z�� 
��

Proof� We have that for all z	 f
z� � a
z�kr�z��b
z�	 where b
z� � kr�z���q�z���� We

�rst claim that we can �nd g � �P	 a polynomial u	 and a function b� � �� 
� N

such that for all z	

g
z� � a
z��u�z� � b�
z�� where b�
z� � �u�z��q�z��

For all z � ��	 let u
z� � q
z�� s
z��� and g
z� � f
z�d�u�z��kr�z�e� The quantity

d�u�z��kr�z�e is polynomial�time computable	 because the functions u
z� and r
z�

are bounded by a polynomial in jzj� Hence g is in �P�

Clearly g
z� � a
z��u�z�� Then

g
z�
 a
z��u�z� � f
z�

�
� �

�u�z�

kr�z�

�

 a
z��u�z�

� f
z� � 
a
z�kr�z� � b
z��
�u�z�

kr�z�

 a
z��u�z�

� f
z� � b
z�
�u�z�

kr�z�

� �s�z� � �u�z��q�z��� � �u�z��q�z��

The last line follows by f
z� � �s�z�	 b
z� � kr�z���q�z���	 and the de�nition of u�

This proves the claim� Now de�ne

h
z� � f
z��u�z� � g
z�i
z��

where i
z� is the unique integer which satis�es � � i
z� � �q�z� and i
z� 	 
kr�z�


mod �q�z��� Then it follows that

h
z� � a
z�kr�z��u�z� � b
z��u�z� � a
z��u�z�i
z� � b�
z�i
z�

� a
z��u�z��kr�z� � i
z�� � b
z��u�z� � b�
z�i
z��

where b�
z�i
z� � �u�z� and kr�z� � i
z� 	 � 
mod �q�z��� �

��



Theorem ��� For every prime k� ModkP � AmpMP�

Proof� Let A be a set in ModkP and let r be the FP function r
x� �m� � �m� �	

so that kr�x�

m� � ��m��� Since k is prime	 we can adapt results from Toda �Tod ���

and Beigel and Gill �BeGi ��� to obtain a function fA � �P such that for all x and

m	

fA
x� �
m� 	 �A
x� 
mod km��

Now let f
x� �m� � fA
x� �r�x�

m�� ��m� Then f � �P	 and there is a function

a
 � �� � N such that for all x and m	

f
x� �m� � a

x� �
m��mkr�x�


m� � �A
x��
m�

where �A
x��m � kr�x�

m���m��� With reference to the statement of Lemma ���

and the quantities a
z� and b
z� in the proof	 taking z � hx� �mi	 we have a
z� �

a

x� �m��m	 b
z� � �A
x��m	 and q
z� � m� �� Then Lemma ��� yields h � �P	

a polynomial u	 and a�� c � �� � N such that for all x and m	

h
x� �m� � a�
x� �m�a

x� �
m��m � �u�x�


m��m�� � �A
x��
m�u�x�
m� � c
x� �m��

where c
x� �m� � �u�x�

m�� In binary representation	 this places m ��s on both the

left and the right of the bit �A
x�� �

Corollary ��� For any k � �� ModkP is low for MP and for AmpMP�

Proof� First suppose k is prime� Then ModkP is closed under �p
T �BeGi ���� Hence

by Theorems ��� and ���	 ModkP is low for MP and for AmpMP� Now suppose k is

composite� then one can write k � pek� where p is prime	 e � �	 and gcd
p� k�� � ��

Then by the representation theorem of Hertrampf �He ���	

ModkP �ModpP
Mod

k�
P�

Since the above lowness proof for the prime case relativizes	 the lowness of ModkP

follows by iterating this argument for all the prime factors of k� �

The next statement follows quickly from the above by a proof similar to that of

Theorem ����

��



Corollary ��� For any k � � and every function f in �PModkP there exist a

function g � �P and a polynomial p such that for all x�

f
x� 	 bg
x� �m���p�jxj�m�c 
mod �m��

As a side remark	 let ModPH be the closure of P under the operations C �� NPC

and C �� ModkP
C for k � �� This is intuitively an extension of the polynomial hier�

archy by the ModkP classes	 and can be regarded as the polynomial�time analogue

of the circuit class ACC�

Corollary ��� ModPH is low for MP and for AmpMP�

� A New Upper Bound for ACC

The methods of the preceding section relativize� It is thus not surprising that

there are analogous circuit results� In this section we prove them directly� Our

main result in this section is that there is one particular symmetric function which	

together with AND gates of small fan�in	 can capture all of ACC� namely	 the

symmetric function which outputs the middle bit of the sum of the inputs�

De�nition 	�� A MidBit gate over w inputs x�� ���� xw is a gate which outputs the

value of the blog�
w���c
th bit in the binary representation of the number

Pw
i�� xi�

A Modk gate over w inputs x�� ���� xw is de�ned to output � if
Pw

i�� xi �	 �


mod k� and � otherwise�

In our simulations circuits consisting of a particular gate over small AND gates

arise frequently	 so we introduce the following notation�

De�nition 	�� Let G be a Boolean gate� A family of circuits fCng is called a

family of G� circuits if there is a polynomial p such that for each n� Cn consists

of a gate of type G at the root whose inputs are at most �p�logn� AND gates each of

size at most p
logn�� A family of Boolean functions ffng is computable by a family

of G� circuits fCng if for each n� fn
x�� ���� xn� � Cn
x�� ���� xn��

Note that we will always speak of families of MidBit� or Mod�k circuits� Even

when we refer to a MidBit� or Mod�k circuit individually	 it should be understood

that what is meant is a member of a particular family of such circuits�

��



The following theorem gives the circuit analogue of Corollary ���� We �nd that

for any family of functions which can be expressed as sums of Mod�k circuits	 there

is a family of low�degree polynomials whose middle bits agree with the bits of the

original functions�

Theorem 	�� Let k be prime and let fbng be a family of functions such that there

exists a polynomial r where for each n� bn is of the form

bn
x�� ���� xn� �
wX
i��

ci
x�� ���� xn��

where each ci is a Mod�k circuit and w � �r�logn�� Then for any polynomial t there

are polynomials p and q and a family of polynomials fhng of degree p
logn� such

that for each n�

bn
x�� ���� xn� 	 bhn
x�� ���� xn���
q�logn�c 
mod �t�logn���

Proof� This is similar to the proof of Theorem ���� To simplify notation	 un�

less explicitly stated	 p� p�� q� r� s� and t denote p
logn�	 p�
log n�	q
log n�� r
log n��

s
log n�� and t
log n�	 respectively� Also denote any function g of x�� ���� xn as g
x��

We have that each Mod�k circuit ci outputs � if and only if a certain sum 	i of

AND�gates is nonzero mod k� 
From an observation of Beigel and Gill �BeGi ���	

without loss of generality 	i is always � or � 
mod k�	 by Fermat�s little theorem��

Note that we can think of each 	i as a polynomial in fx�� ���� xng of polylog degree�

We make use of polynomials of a type �rst constructed by Toda �Tod ��� and suc�

cessively improved by �Yao ��	 BeTa ���� The modulus�amplifying polynomials Qd

have the property that for every k � � and X � �	

X 	 � 
mod k� � Qd
X� 	 � 
mod kd��

X 	 � 
mod k� � Qd
X� 	 � 
mod kd��


The modulus�amplifying polynomials constructed by Beigel and Tarui �BeTa ���

have degree �d
 ��� Now it follows that

bn
x� �
wX
i��

h
Qd
	i� mod k

d
i
�

We choose d � p�
logn� where p� is a polynomial such that kp
�
� �r�t��� Then

bn
x� � �r � kp
�
� Now the outer sum in the equation above for bn is less than kp

�
	

so the �mod� can be moved outside�

bn
x� 	

�
wX
i��

Qp�
	i�

�

mod kp

�

��

��



We write

fn
x� �
wX
i��

Qp�
	i��

Then

fn
x� � an
x�k
p� � bn
x�

for some an
x�� Note that for some polynomial s	 fn
x� � �s� Also note that since

	i is a polynomial of polylog degree	 there is some polynomial p such that fn is a

polynomial of degree p
log n� in the variables x�� ���� xn� De�ne the degree p
logn�

polynomial hn as follows�

hn
x� � i
n�
l
�q�kp

�
m
fn
x� � �qfn
x��

where i
n� 	 
kp
�

mod �t� and q is a polynomial such that q � s� t��	 following

the proof of Lemma ���� Analogously we �nd that d�q�kp
�
efn
x� � an
x��q� b�n
x�	

where b�n
x� � �q�t��� Hence

hn
x� 	 �qbn
x� � i
n�b�n
x� 
mod �q�t��

where i
n�b�n
x� � �q��� This completes the proof� �

Corollary 	�� Let k be prime and fCng be a family of circuits where for each n�

Cn consists of a MidBit gate over �polylog Mod�k circuits� Then fCng is computable

by a family of MidBit� circuits�

Proof� Each Cn is the MidBit of a sum bn of Mod�k circuits� Using the previous

theorem and adopting the notations of the proof	 we can �nd a family of polylog�

degree polynomials fhng obeying

hn
x� 	 �qbn
x� � cn
x� 
mod �q�t� 
��

for some cn
x� � �q��� Choose t � r� We can express hn 
mod �q�t� as a sum of

non�negative terms with coe�cients � �q�t� This can further be rewritten as a sum

h�n
x� of AND gates by replacing terms with coe�cients � � by a sum of identical

terms with unit coe�cients� Reducing the right hand side of the congruence 
��

mod �q�t	 we obtain �q
bn
x� mod �t� � cn
x�� Now the output bit of Cn is in

position br��c of bn
x� and is therefore in position q � br��c of h�n
x�� We can

multiply the sum by repeated addition so that this is precisely the middle bit� �

��



We now turn our attention to MidBit gates at the root and pure ACC subcircuits

�Yao ���� A family fCng of circuits belongs to pure�ACC if there is a �xed m such

that for all n	 every gate in Cn is a Modm gate� This theorem as well as its proof

is the circuit analogue of Corollary ���

Theorem 	�� Let fCng be a family of depth�d circuits consisting of a MidBit gate

at the root and Modm gates at remaining levels� Then fCng is computable by a

family of MidBit��circuits�

Proof� Beigel and Tarui �BeTa ��� have shown that a Modm gate can be simulated

by a �strati�ed� circuit of Modk��Modk� � ����Modkl gates where k�� k�� ���� kl are the

prime divisors of m	 on levels �� �� ���� l	 respectively	 and polylog fan�in AND gates

on the lowest level� They also showed that a polylog�size AND of Modk gates


for k prime� can be switched with the Modk�s to produce a Mod�k circuit� Using

these facts	 Corollary ��� and an inductive argument as in the proof of Lemma �

in �BeTa ���	 each layer of Modki gates can be �absorbed� in the MidBit gate	 and

the resulting polylog fan�in AND gates �pushed� down to the leaves� The resulting

circuit is a MidBit� circuit� �

The following main theorem uses a combination of the above results	 techni�

ques of Valiant and Vazirani �ValVaz ���	 Toda �Tod ���	 Allender and Hertrampf

�AlHe ���	 and the lowness methods of Section �� It says that circuits consisting

of a MidBit gate over ACC subcircuits can be simulated by MidBit� circuits� The

proof is similar to those of Theorems � and � in �BeTa ����

Theorem 	�	 Let fCng be a family of depth�d circuits of size �polylog�n� consisting

of a MidBit gate at the root and Modm� AND� OR� and NOT gates at remaining

levels� Then fCng is computable by a family of MidBit��circuits�

Proof� Let Cn � � i� the blog�
s���c
th bit of S is �	 where S �

Ps
i�� ci	 with

each subcircuit ci consisting of AND	 OR	 NOT	 and Modm gates	 and without

loss of generality	 s � �q�logn� where q is a polynomial� The AND and OR gates in

each ci can be replaced by probabilistic Mod�m circuits with polylog�many random

bits	 using the techniques of �ValVaz ��� as applied by �AlHe ���� By pushing the

AND�gates to the leaves	 as in the preceding theorem	 ci can be simulated by a

probabilistic circuit c�i comprised of Modm gates and AND gates of polylog fan�in

at the lowest level	 so that Pr�c�i �� ci� � ��q�logn���� It is possible to simulate ci with

��



such a c�i using t
logn� random bits where t is a polynomial such that t � q � ��

Let c��i denote the sum of c�i over all possible settings of the random bits of c�i	

and let S� �
Ps

i��
c
��
i � �t�logn��q�logn����� One can show that S� � �t�logn�S � r

where r � �t�logn�� The output of the desired MidBit� circuit is the bit in position

blog�
s���c � t
logn� of S�� �

� Conclusion and Open Problems

The class MP is important not only for its role as the implicit upper bound in

Toda�s proofs �Tod ���	 but also for its place at the frontier of counting classes whose

relationships are not well understood� We have established several properties of the

class which make it a natural and attractive object of study	 and used results about

it to improve the known upper bounds on the circuit class ACC� The �rst open

problem is whether one can construct an oracle relative to which the inclusions in

Proposition �
a� are proper� It is not even known whether there exists an oracle

A such that PP�PA is di�erent from PSPACEA�

A second problem which seems amenable to attack is whether MP is equal to

PP�P� If so	 then by Proposition ��	 both classes are equal to P�P���� Interestingly	

we can entertain intuitive arguments both for and against MP � PP�P� Let L be

in MP via the �P function f and midbit�selecting polynomial p� On the �for�

side	 one can seek a probabilistic hashing construction whose object is to divide

the number of witnesses by ��p�n�	 and try to prove a slight correlation between

bit p
n� of f
x� being � and the reduced number of witnesses being odd� On the

negative side	 every language L � PP�P has an MP representation which allows

��s to be inserted to the left of the bit �L
x�	 and it would be noteworthy if every

MP language had this property� A sub�problem is whether MP is closed under

intersection� The direct attempt to solve this by writing polynomial equations	

after the fashion of the proof that PP is closed under intersection �BeReSp ���	

leads to the following purely numerical question	 which we have circulated among

mathematicians� 
Say x is top modulo �k if 
x mod �k� � �k����

In terms of k	 what is the minimum degree of an integer�valued poly�

nomial p
x� y� such that for some polynomial t and all x and y	 p
x� y�

is top modulo �t�k� �� both x and y are top modulo �k"

The simplest polynomial we know which satis�es this congruence relation 
with

��



t
k� � k� is p
x� y� �
	

x
�k��


	
y

�k��



�k��� A� Odlyzko and M� Coster �personal com�

munication	 ����� have found solutions with degree and coe�cient size that are

smaller	 but still ���k�� If such p can be found with degree polynomial in k	 then p

can be written as a polynomial�sized sum of small binomial coe�cients in x and y	

which can then be used in building polynomial�time NTMs� Then by �lining�up�

decision bits as in the proof of Proposition ��	 it would follow that MP is closed

under intersection� A similar congruence relation modulo �k with the same open

problem is p
x� y� � � �� 
x � � � y � ���

The remaining discussion is motivated by the important general problem of com�

paring the power of computing mod � versus computing mod k for k � �� First	 we

ask whether the class MP remains the same when values f
x� are written in some

other prime or composite base	 where the acceptance condition may be de�ned

either as the selected bit being a �	 or as its being nonzero� If MP � PP�P then the

answer is immediately yes	 but unconditionally we have not been able to extend

the methods of Section � to show this� In view of the strong belief that the classes

ModkP are di�erent for all di�erent values of k	 it would not seem surprising if the

answer were no�

Second	 it follows from the proof of Theorem ��� 
which is essentially Toda�s

proof� that languages in BPP�P enjoy a property which is somewhat stronger than

our de�nition of AmpMP in Section ��

Proposition 
�� For every language L � BPP�P there are functions f � �P and

u� v � FP such that for all x � �� and m��m� � N � f
x� �m� � �m�� has the form

av�x�m��m���� � � � a
 � � � � �� �z �
m� times

�L
x� � � � � �� �z �
m� times

bu�x�m���� � � � b
� 
��

The point is that u
x�m�� is independent of m�� Intuitively speaking	 this says

that languages L � BPP�P have AmpMP representations in which one can �rst

amplify on the right of the bit �L
x�	 �x the length of the �garbage term� b	 and

then amplify on the left to insert as many ��s as desired�

However	 we were unable to obtain this stronger ampli�cation property given

L � ModkP	 k �  
and k prime�� In Theorem ���	 the trick was to multiply fA

by �m to get f 	 and this makes it hard to separate m into m� and m�� Moreover	

the polynomial u which bounds the length of the �garbage term� c depends on

a bounding polynomial for f 	 which in turn depends on the number of ��s to be

inserted on the left anyway�

�



The interest in whether these results can be improved was heightened by recent

work of one of the present authors and Toda �K�oTo ��� They de�ne a language L

to belong to the class ModP if there are functions f � �P and g � FP such that for

all x	 g
x� � �p where p is prime	 and x � L �� f
x� �� � 
mod p�� Then they

prove that ModP � AmpMP and that PModP
tt � P�P���� Hence if either AmpMP or

ModP is low for MP	 then the counting hierarchy collapses to MP� This is fairly

strong evidence that AmpMP itself is not low for MP	 and that Theorem ��� cannot

be improved much further� However	 intuitively speaking	 the proof in �K�oTo ��

that a given language L in ModP belongs to AmpMP �rst ampli�es on the left of

the bit �L
x� 
�Claim �� in �K�oTo ���	 and then on the right 
�Claim ����

We considered the stronger ampli�cation property 
�� in early work on this paper	

but rejected it because the simpler De�nition ��� expedited our main results� With


�� we were able to weaken the condition on the class C in Theorem ��� from closure

under �p
ctt and �

p
dtt to closure under �p

m� This still does not achieve our desire for

a natural structural condition for a language to be low for MP 
or for P�P�� We

leave as our �nal open problem the question of whether the stronger ampli�cation

property does capture lowness for MP	 or to the contrary	 whether the arguments

of �K�oTo �� can be applied to this case as well� This last problem may seem very

arcane	 but the results of �K�oTo �� show that a slight technical distinction can

make a large di�erence in the power of a class	 and we suspect that at least some of

the keys to unlocking the secrets of counting classes may be concealed in problems

like this one�
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