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� Overview

This paper is concerned with three basic questions about sparse sets�

Question � With respect to what types of reductions might NP have hard or complete

sparse sets��

Question � If a set A reduces to a sparse set� does it follow that A is reducible to some

sparse set that is �simple� relative to A�

Question � With respect to what types of reductions might NP have hard or complete

sets of low instance complexity� and� relatedly� what is the structure of the class of

sets with low instance complexity�

With respect to the �rst and third questions� intuitively one would expect that even with

respect to �exible reductions NP is unlikely to have complete sets whose information content

is low	 With respect to the second question� one might intuitively feel that the structure

imposed on a set by the fact that it reduces to a sparse set makes it plausible that we can

indeed �nd a simple sparse set that can masquerade as the original sparse set	 These two

intuitions are in many ways certi�ed by the current literature� and by the results of this

paper	

The rest of this section summarizes the results of this paper and compares them with

previous work	

With regard to Question ��

� We show that if any NP
complete set conjunctively reduces to a sparse set�� then

P � NP	 This result� which has been obtained independently by Ranjan and

Rohatgi �RR
� extends Mahaney�s Theorem �Mah��
 and is incomparable with the

strongest previously known result� which is due to Ogiwara and Watanabe� if any

NP
complete set bounded truth
table reduces to a sparse set� then P � NP �OW��
	

In fact� a more general result holds regarding the impossibility �if P �� NP� of NP


complete sets reducing to sparse sets� if any NP
complete set bounded truth
table

reduces to a set that conjunctively reduces to a sparse set� then P � NP �AKM
	

�For the reductions we will discuss� the question of sparse hard sets is equivalent to asking what type of
reductions might reduce many�one complete sets for NP to some sparse set� we will often use this formulation�

�A conjunctive reduction from A to B means that there is a Turing machine with oracle B that accepts
A� and the Turing machine�s acceptance mechanism is that it accepts if and only if every string it queries is
a member of B �LLS����
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� One might ask whether in the above
mentioned result of Ogiwara and Watanabe the

bounded truth
table case is optimal� or whether it can be extended by making the

bound on the number of queries bigger than constant� for example� by making it

some function that is ��logn�	 We show that there are relativized worlds in which

the boolean hierarchy does not collapse and yet there are tally NP
complete with

respect to such reductions	 This provides relativized upper bounds to the work of

Ko� Orponen� Sch�oning� and Watanabe �KOSW���Orp���OKSW
� of Ogiwara and

Watanabe �OW��
� and of the current paper	 Our result strengthens a result of

Homer and Longpr�e �HL��
� who independently of the work of this paper showed that

there are relativized worlds in which there are sparse sets that are NP
complete with

respect to such bounds and yet �relativized� P �� NP	

With regard to Question ��

� In the context of recent comparisons between equivalence and reducibility to sparse

sets �AHOW�GW��
� it is interesting to know� for various classes of sets that reduce

to sparse sets� the complexity of the easiest sparse sets to which such sets reduce	

We show that any set A that disjunctively reduces �respectively� disjunctive bounded

truth
table reduces� �
truth
table reduces� to a sparse set in fact disjunctively reduces

�respectively� disjunctive bounded truth
table reduces� �
truth
table reduces� to a

sparse set that is in PNP
A
�respectively� PNP

A�log�� PNP
A�log��	� Thus� for such

sets� reducing to some sparse set implies reducing to some relatively simple sparse

set	 The nearest previous result is one of Allender� Hemachandra� Ogiwara� and

Watanabe �AHOW
� If P � NP and set A �
truth
table reduces to a sparse set�

then A truth
table reduces to some sparse set that itself truth
table reduces to A	

However� A does not two
truth
table reduce to the particular sparse set constructed

in �AHOW
	 Via census
functions� graph
coloring� and the Erd�os
Rado sun�ower

lemma� our techniques avoid the level of explicit coding �and thus the complexity of

reduction� required by previous methods	

With regard to Question ��

� We completely characterize the sets of low instance complexity �that is� the

class IC�log� poly
 �KOSW���Orp���OKSW
� in terms of reductions to tally sets�

�The �log� means that there is an O�log n� bound on the number of calls made to the NPA oracle
�see �Wag�
���
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IC�log� poly
 is exactly the class of sets that both disjunctively and conjunctively

reduce to tally sets	

� We show that Orponen�s result �Orp��
 on �
truth
table
complete sets for NP

generalizes to disjunctive and conjunctive reductions� If P �� NP and A is �p
c 
hard or

�p
d
hard for NP� then A �� IC�log� poly
	

Section � discusses the results associated with Question �	 Section � discusses the results

associated with Question �	 Section � discusses the results associated with Question �	 The

Appendix provides a simple direct proof of one of our corollaries	

� Notation

A set T is said to be a tally set if T � ��	 S�n will denote the length n strings in S

�when S is our alphabet� �� we will simply write �n�� and S�n �respectively� S�n� will

denote the strings in S of length at most �respectively� strictly less than� n	 A set S is said

to be sparse if it has at most polynomially many elements at each length� S is sparse if

and only if for some polynomial p it holds that ��n��jjS�njj � p�n�
	 We use TALLY and

SPARSE to represent� respectively� the classes of tally and sparse sets	 Tally and sparse sets

have come to play a large role in modern complexity theory �see� e	g	� the surveys �Mah���

Mah���HOW
�	

The reductions discussed in this paper are polynomial
bounded reductions de�ned by

Ladner� Lynch� and Selman �LLS��
	 Table � lists the abbreviations we will use for various

types of reductions	

We will use the following notation to describe downward closures of classes under various

reductions	

Notation ��� �BK���AHOW	 For any reducibility �p
r and any class of sets C� let

Rpr�C� � fA
��� ��B � C��A �p

r B
g	

The interrelations among Rpr�SPARSE� classes have been studied by Book and

Ko �BK��
� Ko �Ko��
� Allender� Hemachandra� Ogiwara� and Watanabe �AHOW
� and

Gavald�a �Gav��
	 All the inclusions shown in Figure � are proper	�

� Rp
m�SPARSE�

�

�� Rp
b�SPARSE� and Rp

m�SPARSE�
�

�� Rp
c�SPARSE� are respectively from �BK���

and �Ko���� From the result of �AHOW� that Rp
b�SPARSE� � Rp

d�SPARSE� and the result of �Gav��� that

Rp
c�SPARSE� �� Rp

d�SPARSE�� it follows that R
p
b�SPARSE�

�

�� Rp
b �R

p
c�SPARSE��� From the result of �Ko���

that Rp
b�SPARSE� �� Rp

c�SPARSE�� it follows that Rp
c �SPARSE�

�

�� Rp
b �R

p
c�SPARSE��� It remains only to

�



Name Notation

many
one �p
m

one truth
table �p
�
tt

k truth
table �p
k
tt

k disjunctive �truth
table or Turing� �p
k
d

bounded �truth
table or Turing� �p
b

f�n� truth
table �p
f�n	
tt

conjunctive �truth
table or Turing� �p
c

disjunctive �truth
table or Turing� �p
d

bounded conjunctive �truth
table or Turing� �p
bc

bounded disjunctive �truth
table or Turing� �p
bd

Turing �p
T

nondeterministic conjunctive �truth
table or Turing� �NP
c

Table �� Polynomial
time Reductions

� Sets Reducing to Sparse Sets

The study of sparse complete sets was sparked by the conjecture of L	 Berman and

J	 Hartmanis �BH��
 that there are no sparse NP
complete sets� they were motivated

to make this conjecture since if it fails then there are NP
complete sets that are not

polynomial
time isomorphic �and at that time they conjectured that all NP
complete sets

were polynomial
time isomorphic� though recent work has dimmed hopes on that issue

�JY���KMR��
�	

The �rst result along the lines of their sparseness conjecture was P	 Berman�s proof that

P � NP if some subset of �� is NP
complete �Ber��
	 This result was quickly followed by

Fortune�s proof that if there is a sparse coNP
complete set� then P � NP �For��
	 Finally�

Mahaney obtained the striking result that P � NP if any NP
complete set many
one reduces

to a sparse set �Mah��
	

Although Mahaney obtained the complete collapse of the polynomial hierarchy in the

show that Rp
b�SPARSE�

�

�� Rp
d�SPARSE�� �AHOW� shows that Rp

b�SPARSE� � Rp
d�SPARSE�� and from this

it follows that coSPARSE � Rp
d�SPARSE�� which in turn implies SPARSE � Rp

c�coSPARSE�� and hence
Rp
c�SPARSE� � Rp

c�R
p
c �coSPARSE�� � Rp

c �coSPARSE�� If R
p
b�SPARSE� � Rp

d�SPARSE�� then� since R
p
b���

classes are closed under complement� Rp
b�SPARSE� � Rp

c�coSPARSE�� The previous two sentences imply
Rp
c�SPARSE� � Rp

b �SPARSE�� and thus Rp
c�SPARSE� � Rp

d�SPARSE�� contradicting the result of �Gav����

�



case of many
one reducibility� possible collapses in the case of more �exible reducibilities

have remained an active research area	 For the case of Turing reductions� it is known that

the existence of sparse Turing
complete sets for NP would collapse the polynomial hierarchy

to PNP�log� �Kad��
� and the existence of sparse Turing
hard sets for NP would collapse the

polynomial hierarchy to �p�
T
 p
� �KL��
� both these results are known to be essentially

optimal with respect to relativizable proof techniques �Kad���Hel��
	

As just noted� for the cases of many
one and Turing reductions the consequences of

sparse NP
complete sets are well
understood	 However� with respect to reductions whose

strength lies between Turing and many
one reductions� the question of extending Mahaney�s

many
one result has proved considerably more challenging	 For the case of bounded truth


table reductions� Ukkonen �Ukk��
 generalized Berman�s result �Ber��
 by showing that

if there is a tally bounded truth
table hard set for NP� then P � NP	 Yesha �Yes��


generalized Fortune�s result �For��
 by showing that if there is a sparse bounded positive

truth
table hard set for coNP� then P � NP	 Yesha also �partially� generalized Mahaney�s

Theorem �Mah��
 by showing that if there is a sparse bounded positive truth
table complete

set for NP� then P � NP	 These results regarding bounded truth
table reductions have

been recently subsumed by Ogiwara and Watanabe ��OW��
� see also �Wat��
 and �JY���

footnote �
�� who successfully extended Mahaney�s result and showed that if there is a sparse

bounded truth
table hard set for NP� then P � NP	

For the case of conjunctive reductions� Ukkonen �Ukk��
 and Yap �Yap��
 generalized

Fortune�s result �For��
 by showing that if there is a sparse conjunctive hard set for coNP�

then P � NP	 Yap �Yap��
 also �partially� generalized Mahaney�s Theorem �Mah��
 by

showing that if there is a sparse set that is both conjunctive and disjunctive complete for

NP� then P � NP	 However� in the decade since Mahaney�s Theorem� it has remained an

open question whether his result can be extended to the case of conjunctive reductions	

Section �	� resolves this question	

��� NP� PP� and C�P

We show that if there is a sparse set that is conjunctive hard for NP� then P � NP

�Corollary �	��	 In fact� in Corollary �	� we establish that if NP � Rpb�R
p
c�SPARSE��

then P � NP� thus extending the result of Ogiwara and Watanabe �OW��
 �see Figure ��	

Theorems �	�� �	�� and �	� originally appeared in �AKM
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Rpb �R
p
c�SPARSE��

Rpc�SPARSE�

Rpm�SPARSE�

Rpb�SPARSE�

Rpd�SPARSE�

Figure �� Inclusion structure of some reduction classes to sparse sets� all inclusions indicated

are proper �see Footnote ��	

De
nition ��� �OW��	 Let A be in NP� let W be a set in P� and let q be a polynomial

such that A � f x
��� ��w � �q�jxj	� �hx� wi � W 
 g	 For x � A let wmax�x� � maxfw �

�q�jxj	
��� hx� wi � W g	 We will say that Left�A� � f hx� wi

��� x � A� w � �q�jxj	 and w �

wmax�x�g is the left set of A	



Theorem ��� If A � NP and Left�A� � Rpb �R
p
c�SPARSE��� then A is in P	

Although the next result is a direct consequence of the above theorem� a simple direct

proof for it is given in Appendix A	

Theorem ��� If A � NP and Left�A� � Rpc �SPARSE�� then A is in P	

From Theorem �	�� it immediately follows that Mahaney�s Theorem generalizes to the

case of conjunctive reductions	 Corollary �	� was obtained independently by Ranjan and

Rohatgi �RR
	

Corollary ��� If any NP
complete set conjunctively reduces to a sparse set� then

P � NP	

Indeed� Left�A� �p
m A for any NP
complete set A� and thus the above theorems apply

to the case in which some NP
complete �or NP
hard� set reduces �via the reductions named

above� to some sparse set	

�The left set tacitly depends on the particular witness relation chosen�

�



Corollary ��
 If any NP
complete set is in Rpb�R
p
c�SPARSE��� then P � NP	

The rest of this section is devoted to proving Theorem �	�� and to giving applications

of the obtained results to other complexity classes	 The following characterization� due to

Hausdor!� of the boolean closure of certain classes of sets plays a central role in our proof

of Theorem �	�	

Theorem ��� �Hau���Wec�
	 Let K be any class of sets closed under �nite unions

and intersections that includes � and ��	 Let BC�K� be the closure of K under �nite

union� �nite intersection� and complement	 Every A � BC�K� can be represented as

A �
Sk
i���A�i�� 	 A�i�� where Aj � K �for � � j � �k� and A� 
 A� 
 � � � 
 A�k	

In order to use this characterization for sets in Rp
b�R

p
c�SPARSE��� we need to show

the closure of Rp
c�SPARSE� under �nite unions and intersections	 By the recent result of

Buhrman� Longpr�e� and Spaan �BLS��
 showing that SPARSE
�
�� Rp

c�TALLY�� it follows

that Rp
b�R

p
c�SPARSE�� � Rp

b�R
p
c�TALLY��	 The following lemma is straightforward and is

stated without proof	

Lemma ��� Rp
c�TALLY� is closed under �nite unions and intersections	

Now we are ready to prove Theorem �	�	

Proof of Theorem ����

Let q be a polynomial and let PA be a polynomial
time set such that A � fx j ��w �

�q�jxj	��hx� wi � PA
g	 Recall that Left�A� � fhx� wi j x � A � w � �q�jxj	 � w � wmaxg�

where wmax � maxfw � �q�jxj	 j hx� wi � PAg	 In the following we describe an algorithm

for testing membership in A� that computes wmax �the lexicographically largest witness�

if it exists� by a breadth
�rst search of the tree of pre�xes of all potential witnesses	 In

order to do this we use the set prefix�Left�A�� � fhx� yi j ��z��hx� yzi � Left�A�
g	 Each

pre�x y actually represents the interval of all possible extensions of y to length q�jxj�	

It is not hard to see that prefix�Left�A�� is many
one equivalent to Left�A� and thus

prefix�Left�A�� � Rp
b�R

p
c�SPARSE�� � Rp

b�R
p
c�TALLY��	

Using Lemma �	� and the representation theorem of Hausdor! stated as Theorem �	��

it is easy to see that there exists a tally set T and sets Ci � Rp
c�T �� Di � Rp

d�T � such that

prefix�Left�A�� �
Sk
i���Ci 	Di� and C� 
 D� 
 C� 
 D���� 
 Ck 
 Dk	

Let fi be the conjunctive reduction that witnesses Ci � Rp
c�T � and gi be the disjunctive

reduction that witnesses Di � Rp
d�T �	 Without loss of generality� we assume that these

reductions are all computable in time bounded by a �xed polynomial p	

�



We �rst give an intuitive overview of the polynomial
time� algorithm recognizing A	 As

stated above� this algorithm performs a breadth
�rst search through the tree of witness

pre�xes for an input x	 Let x be an element of A� and let N � fy�� � � � � ytg be a

lexicographically ordered set of pre�xes �all the same length� that includes the pre�x of

wmax of that length	 We exploit some crucial properties of the Hausdor! representationSk
i���Ci	Di� of prefix�Left�A�� for the design of a procedure pruning N to a polynomially

size
bounded set that still includes the pre�x of wmax	

Let ym be the pre�x of wmax in fy�� � � � � ytg	 Then� letting d � � and l��� � �� it holds

that

fhx� yl�d��	i� � � � � hx� ymig � Cd

Let r�d� be the largest index r such that fhx� yl�d��	i� � � � � hx� yrig � Cd and let l�d� be

the least index l such that � � l � r�d� " � and fhx� yli� � � � � hx� yr�d	ig � Dd	 Observe

that since fhx� yl�d��	i� � � � � hx� ymig � Cd it follows that r�d� 
 m	 Similarly� since

fhx� ym��i� � � � � hx� yr�d	ig � Dd� it holds that l�d� � m " �	 We consider the following

two cases separately	

�	 hx� ymi � Dd	

Then l�d� � m" � since ym �� fyl�d	� � � � � yr�d	g� i	e	� l�d� � m	

�	 hx� ymi �� Dd	 �This case is only possible if d � k	�

In this case� ym � fyl�d	� � � � � yr�d	g	 Since fhx� yl�d	i� � � � � hx� ymig � prefix�Left�A��

but fhx� yl�d	i� � � � � hx� ymig � Dd� it follows that fhx� yl�d	i� � � � � hx� ymig � Cd��� and

the above analysis can be repeated	

If we could compute the pre�xes yl�d	 and yr�d	 de�ned above in polynomial time� we

could use the above properties in order to design a recursive procedure that collects all the

pre�xes yl�d	�� found in the recursive calls	 This procedure would return a small subset of

N containing ym	 Starting with N � f�g� the overall algorithm can repeatedly use such a

pruning step at each level of the tree of possible witness pre�xes by �rst expanding all the

pre�xes y in N to y� and y� �thus doubling N� and then pruning N back to a small subset	

In that way� the algorithm �nally computes a small subset of �q�jxj	 that� if x � A� contains

wmax	

Although we cannot explicitly compute the required pre�xes yl�d	 and yr�d	� instead we

can compute� given yl�d��	� in polynomial time �polynomially size
bounded� sets Jright�d�

�It is implicit in this section that polynomial time and polynomial size always mean polynomial in jxj�

�



and Jleft�d� of pre�xes such that yr�d	 � Jright�d� and yl�d	 � Jleft�d�	 This su#ces since

for each pre�x candidate y � Jleft�d�� the search for yl�d��	 can be done recursively	 Since

the depth of the recursion is a constant� namely k� the resulting sets Jleft�d� of candidates

for yl�d	 still have polynomially bounded cardinality	

We now describe the algorithm in detail	 The algorithm calls a recursive pruning

procedure PRUNE� which in turn calls two functions SEARCH
RIGHT and SEARCH


LEFT	 SEARCH
RIGHT is used to search for candidates for yr�d	 that are to the right

of previously found candidates for yl�d��	� resulting in a polynomially size
bounded set

Jright�d� containing yr�d		 SEARCH
LEFT is used to search to the left of the pre�xes in

Jright�d�� to form a polynomially size
bounded set Jleft�d� containing yl�d		

SEARCH
RIGHT�d�N� yl� x�

�$ returns a set J � N � fy�� � � � � ytg that includes the largest pre�x

yr � N such that fhx� yli� � � � � hx� yrig � Cd $�

begin

J �� fytg

for j �� � to p�jxj� do

J �� J � fyh j yh�� is the smallest y in N s	t	 y 
 yl and �
j � fd�hx� yi�g

end

return J

end

Claim � Function SEARCH
RIGHT�d�N� yl� x�� when called with parameter yl � yl�d��	�

returns a set J containing yr�d		

Proof of Claim �� There are two cases	 If r�d� � t� then yr�d	 is clearly in the returned

set J 	 Otherwise� since fhx� yl�d��	i� � � � � hx� yr�d	ig � Cd and hx� yr�d	��i �� Cd� all the

queries in the sets fd�hx� yl�d��	i�� � � � � fd�hx� yr�d	i� are in T but at least one query �j in

fd�hx� yr�d	��i� is not in T 	 Thus yr�d	�� is the smallest pre�x y in N such that y 
 yl�d��	

and �j � fd�hx� yi�� i	e	� yr�d	 is included in J in the j
th run of the for
loop	

SEARCH
LEFT�d�N� yr� x�

�$ returns a set J � N � fy�� � � � � ytg that includes the smallest pre�x

yl � N such that fhx� yli� � � � � hx� yrig � Dd $�

begin

��



J �� fy�g

for j �� � to p�jxj� do

J �� J � fyh j yh�� is the largest y in N s	t	 y � yr and �
j � gd�hx� yi�g

end

return J

end

Claim � Function SEARCH
LEFT�d�N� yr� x�� when called with parameter yr � yr�d	�

returns a set J containing yl�d		

Proof of Claim �� Again� there are two cases	 If l�d� � �� then yl�d	 is clearly in the

returned set J 	 Otherwise� since fhx� yl�d	i� � � � � hx� yr�d	ig � Dd and hx� yl�d	��i � Dd� all

the queries in the sets gd�hx� yl�d	i�� � � � � gd�hx� yr�d	i� are outside of T but at least one query

�j in gd�hx� yl�d	��i� is in T 	 Thus yl�d	�� is the largest pre�x y in N such that y � yr�d	

and �j � gd�hx� yi�� i	e	� yl�d	 is included in J in the j
th run of the for
loop	

PRUNE�N� J �left� d� x�

�$ returns a subset of N � fy�� � � � � ytg that contains the pre�x ym of wmax if

ym � N 	 Cd and fyl� � � � � ymg � Cd for a yl � J �left with l � m $�

begin

if d � k " � then return � end

Jright �� �

for each z � J �left do

Jright �� Jright � SEARCH
RIGHT�d�N� z� x�

end

Jleft �� �

for each z � Jright do

Jleft �� Jleft � SEARCH
LEFT�d�N� z� x�

end

return fyl�� j yl � Jleftg � PRUNE�N� Jleft� d" �� x�

end

Claim � If ym � Nu� hx� ymi � Cd� and yl�d��	 � J �left then function PRUNE�N� J
�
left� d� x�

returns a set I containing ym	

��



Proof of Claim �� If ym � N and hx� ymi � Cd then hx� ymi is also in the sets

Dd��� � � � � D�	 By the above analysis �since case � always happens up to d � �� it follows

that fhx� yl�d��	i� � � � � hx� ymig � Cd	 Since yl�d��	 � J �left� using Claim �� yr�d	 is included

in Jright by the call of SEARCH
RIGHT�d�N� yl�d��	� x�	 Using Claim �� yl�d	 is included

in Jleft by the call of SEARCH
LEFT�d�N� yr�d	� x�	 Now we can prove by induction that

ym is included in the set returned by PRUNE	 If hx� ymi � Dd �which must be true in the

base case d � k�� then ym � yl�d	�� and ym is included in the set returned by PRUNE	 If

hx� ymi �� Dd then hx� ymi is in Cd�� and we can use the induction hypothesis	

We complete the algorithm with a description of the main program	

input x

begin

N �� f�g

for i �� � to q�jxj� do

N �� fy� j y � Ng � fy� j y � Ng �$ expand the pre�xes to length i $�

N �� PRUNE�N� fy�g� �� x�

end

�$ N now includes wmax if x � A $�

if there is a witness for x in N then accept else reject end

end

In order to prove the correctness of the algorithm it su#ces to observe that it follows

from Claim � that the pre�x ym of wmax is included in the pruned set returned by

PRUNE�N� fy�g� �� x�� provided that ym is in N 	 Also� since the sets returned by SEARCH


RIGHT and SEARCH
LEFT are bounded in size by p�jxj� " �� it follows inductively that

the set Jleft computed by PRUNE at level d is bounded in size by �p�jxj�"��
�d	 Thus� since

the depth of recursion of function PRUNE is bounded by a constant� the �nally returned

set%being the union of all the Jleft�s%is polynomially size
bounded� and it is easy to see

that the algorithm runs in polynomial time	

The Hausdor! characterization of boolean closures of classes of sets has turned out to be

also useful in proving related results concerning randomized reductions and nondeterministic

reductions to sparse sets �see �AKM
�	

We now brie�y discuss the application of the above results to the classes UP� PP and

C�P	 Since for every set A � UP it holds that Left�A� is in UP� it also follows that

if UP is contained in Rpb�R
p
c�SPARSE�� then P � UP	 This strengthens the results of
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Watanabe �Wat��
� who showed that if P �� UP then there exists a set in UP that does not

many
one polynomial
time reduce to any sparse set	

Consider the set fhx�mi
��� there are at least m satisfying assignments for xg� which

has properties similar to left sets and is complete for PP	 Under the assumption that

this set is in Rpb�R
p
c�SPARSE��� we can use the algorithm described in the proof of

Theorem �	� to compute in polynomial time a set of numbers that includes &SAT�x��

the number of satisfying assignments of formula x	 Now we can use the result of Cai and

Hemachandra �CH��
 and Toda �see �ABG��
� that P � PP if there is an FP function that

computes on input x a set of numbers that includes &SAT�x�	 Alternatively� Theorem �	�

could be proved along the same lines as Theorem �	�	

Theorem ��� If PP is contained in R
p
b�R

p
c�SPARSE��� then P � PP	

We can also show that if C�P is contained in R
p
b�R

p
c�SPARSE�� then P � C�P	

Theorem ��� If C�P is contained in R
p
b�R

p
c�SPARSE�� then P � C�P	

Proof of Theorem ����

There exist complete sets in C�P that are one word
decreasing self
reducible �OL
	 Balcaz�ar

has shown that every one word
decreasing self
reducible set in RpT �SPARSE� is in �
p
� �Bal��
	

So it follows from the assumption of the theorem that C�P � �p�	 Furthermore� since

coNP � C�P� if C�P � Rpb �R
p
c�SPARSE�� then also NP � Rpb�R

p
c�SPARSE��� and it

follows from Corollary �	� that P � �p�	

��� ModkP

ModkP �CH���BGH��
 is the class of sets L for which there is a nondeterministic

polynomial
time Turing machine M such that for every x� x � L if and only if the number

of accepting computation paths of M on x is not a multiple of k	

By applying a di!erent proof technique we obtain results similar to Corollary �	� for the

classes ModkP� k 
 �	

De
nition ���� A set L is rotatively one word�decreasing self�reducible if there exist a

deterministic polynomial
time Turing transducer M and a polynomial p satisfying the

following conditions�

�	 L is a set of strings of the form hx� y� ii with i � p�jxj��

��



�	 for every x and for every y� z� there is some d � p�jxj� such that for every i � p�jxj��

�L�hx� y� ii� � �L�hx� z� i � di�� where i � d � �i" d� mod p�jxj�� and

�	 for every x and y� either

�a� M�x� y� outputs �L�hx� y� �i� � � ��L�hx� y� p�jxj�� �i� � �p�jxj	� or

�b� M�x� y� outputs d � p�jxj� such that for every i � p�jxj�� �L�hx� y� ii� �

�L�hx� pred�y�� i � di�	

Theorem ���� Any rotatively one word
decreasing self
reducible set that conjunctively

reduces to a sparse set is in P	

Since each set in ModkP� k 
 �� is many
one reducible to a rotatively one word


decreasing self
reducible set in ModkP �in fact� these are essentially the strictly one word


decreasing self
reducible sets of �OL
 that are complete for ModkP� we have the following

corollary	

Corollary ���� For each k 
 �� if ModkP has a sparse conjunctively
hard set then P �

ModkP	

Proof of Corollary ����

Let L be an arbitrary set in ModkP	 Let W be in P and let p be a polynomial such that

for all x

x � L�� jjf y � �p�jxj	 j hx� yi � W gjj �� ��modk��

De�ne A to be the set of strings of the form hx� y� ii such that z is not equivalent to i

modulo k� where z is the number y� � �p�jxj	 such that y� � y and hx� y�i � W 	 Note that

� A is rotatively one word
decreasing self
reducible and

� for every x� x � L i! hx� �m�jxj	� �i � A� and thus� L is many
one reducible to A	

So� if ModkP has a sparse conjunctively
hard set S� then A �p
c S� and so A � P	 Thus

L � P	

Proof of Theorem �����

Let L be a rotatively one word
decreasing self
reducible set� as certi�ed by machine M and

polynomial p as in De�nition �	��	 Suppose that L is Rc
reducible to a sparse set S via

a function f 	 We will give a polynomial
time algorithm for L	 Without loss of generality�

we may assume that there exist polynomials q and r such that for every w� f�w� is an

encoding of a set in ��q�jwj	 and for every n� jjS�q�n	jj � r�n�	 Let w
 � hx
� y
� i
i be a
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�xed input whose membership in L we are testing	 As we have �xed the input� let p� q� and

r denote p�jx
j�� q�jw
j�� and r�jw
j�� respectively	 Let I � f�� � � � � q � �g	 For a� b � I � let

a � b � �a" b� mod q	

For a string y� let 	�y� denote �L�hx� y� �i� � � ��L�hx� y� p� �i�	 For a string u � �p and

d � I � let 
�u� d� denote ud�� � � �upu� � � �ud	 Note that� by de�nition� for every y� it holds

that

��� M�x
� y� is either 	�y� or d � I such that 	�y� � 
�	�pred�y��� d�	

For a string y and i � I � let w�y� i� denote hx
� y� ii	 An argument sequence is a sequence

�A
� � � � � Ap��� with each Ai � ��q	 An argument sequence A � �A
� � � � � Ap��� is said

to be correct for a string y if for every i � I � w�y� i� � L i! Ai � S	 Note that if

A � �A
� � � � � Ap��� is correct for y� then for every i � I with jjAijj � r� w�y� i� �� L

because jjS�qjj � r	 For an argument sequence A � �A
� � � � � Ap��� and d � I � A�d�

denotes an argument sequence �Ad� � � � � Ap��� A
� � � � � Ad���	 Let A � �A
� � � � � Ap��� and

B � �B
� � � � � Bp��� be given two argument sequences	 We write B �L A to denote that for

every i � I with jjAijj � r� Bi � Ai	 Also� A
S
B denotes �A


S
B
� � � � � Ap��

S
Bp���	

For y� 'y denotes the argument sequence de�ned by �f�w�y� ���� � � � � f�w�y� p� ����	 Note

that 'y is correct for y for every y	

Claim � Let A � �A
� � � � � Ap��� and B � �B
� � � � � Bp��� be argument sequences that are

correct for y and z� respectively	 Let d � I be such that B�d� �L A	 Then� 
�	�z�� d� � 	�y�	

Proof of Claim � Let A� B� y� z� and d be as in the hypothesis	 Since A is correct for

y� for every i � I � w�y� i� � L i! �jjAijj � r and Ai � S�	 Since B�d� �L A� for every i � I

with jjAijj� Bi�d � Ai� and thus� for every i � I with w�y� i� � L� w�z� i � d� � L	 Since B

is correct for z� this implies that for every i � I with w�y� i� � L� w�z� i � d� � L	 Since the

number of i with w�y� i� � L is equal to the number of i with w�z� i� � L� we have that for

every i � I with w�y� i� �� L� w�z� i � d� �� L	 Thus� 
�	�z�� d� � 	�y�

Claim 
 Let A � �A
� � � � � Ap��� and B � �B
� � � � � Bp��� be argument sequences that are

correct for y and z� respectively	 Let d � I be such that B�d� �L A	 Then

�	 if M�x
� z� � u for some u � �p� then 
�u� d� � 	�y�� and

�	 if M�x
� z� � e for some e � I � then 
�	�pred�z��� e � d� � 	�y�� and A
S
'y�e � d� �

�A

S
f�w�pred�z�� e � d��� � � � � Ap��

S
f�w�pred�z�� �p� �� � �e � d���� is correct for

y	

��



Proof of Claim 
 Let A� B� y� z� and d be as in the hypothesis	 From Claim �� we have

	�y� � 
�	�z�� d�	 Suppose that M�x
� z� � u for some u � �p	 By de�nition� u � 	�z��

and thus 	�y� � 
�u� d�	

On the other hand� suppose that M�x
� z� � e for some e � I 	 As discussed previously�

it holds that 	�z� � 
�	�pred�z��� e�	 By taking 
��� d� of both sides� we have 
�	�z�� d� �


�
�	�pred�z��� e�� d�� and thus� 	�y� � 
�	�pred�z��� e � d�	

By de�nition� �f�w�pred�z�� ���� � � � � f�w�pred�z�� p� ���� is correct for pred�z�	 Thus�

for every i � I � w�y� i� � L i! Ai � S i! w�y� i � d � e� � L i! f�w�y� i � d � e�� � S	 So�

w�y� i� � L i! Ai
S
f�w�y� i � d � e�� � S	 This proves the claim	

Now we de�ne the algorithm	 We operate on d� a string y� and an argument sequence

A � �A
� � � � � Ap���	 Initially� we set y to y
� d to �� and Ai to f�w�y
� i�� for each i � I � so

that the following two conditions are satis�ed�

�c�� A is correct for y
� and

�c�� 
�	�y�� d� � 	�y
�	

The main part of the algorithm is the repetition of two steps de�ned below	 We require

that at the beginning of the �rst step both �c�� and �c�� hold	

First� we �nd z � y such that

�d�� for some c � I � 'z�c� �L A� and

�d�� either M�x
� z� � �
p or there is no e such that 'pred�z	�e� �L A	

Note that� under the assumption that �c�� and �c�� hold at the beginning of this step� we

have �i� every z � y satis�es at least one of these conditions� �ii� z � y satis�es �d��� and

�iii� z � � satis�es �d��	 So� by executing a simple divide
and
conquer algorithm over ��� y
�

we can easily �nd z for which �d�� and �d�� are satis�ed	 We set c to one of the values

establishing �c��	

Next� we compute M�x
� z�	 If this is in �p� from Claim �� 	�y
� � 
�	�z�� c� �


�M�x
� z�� c�	 So� w
 � w�y
� i
� is in L i! w�z� i
 � c� � L� and this is easily computed

from the output of M 	 Hence� if this is the case� we obtain �L�w
� and we accept w


i! it is �	 If M�x
� z� is not in �p� i	e	� it is in I � let e be the value and we set Ai to

Ai
S
f�w�z� i � c � e�� for every i� and set A to the resulting sequence	 We claim that A

is correct for y
	 This is seen as follows	 Clearly� 'pred�z	 is correct for pred�z�	 Since

M�x
� z� � e� 'pred�z	�e� is correct for z	 Since 'z�c� �L A� 'pred�z	�c � e� is correct for y
	

So 'pred�z	�c � e�
S
A is correct for y
	

��



After executing the above two steps� we set y to pred�z� and d to c � e	 At this point�

if Ai� has more than r elements� then since Ai� � S i! w
 � L and it is impossible that

Ai� � S� we reject w
 and terminate the algorithm	 If Ai� has at most r elements� we go

back to the start of the �rst step and repeat these two steps	

Note that each time A is updated there is some i � I such that Ai gets at least one

new element	 So the loop is executed at most O�pr� times� and this is bounded by some

polynomial in jw
j	 It is not hard to see that all the other operations can be done in time

polynomial in jw
j� and the algorithm correctly decides whether w
 � L	 So L � P	

��� Nearly Near�Testable Sets

For nearly near
testable sets �HH��
� the class of sets that have �implicit� polynomial


time membership tests� a similar result holds	

De
nition ���� �HH��	 A set A is nearly near�testable if there exists a polynomial
time

function N � �� � ftrue� false��� ��g such that for every x one of the following holds �x��

denotes the string lexicographically preceding x��

� N�x� � true and x � A

� N�x� � false and x �� A

� x �� � and N�x� �� and �x � A�� x� � � A�

� x �� � and N�x� � �� and �x � A�� x� � �� A�

Theorem ���� Any nearly near
testable set that conjunctively reduces to a sparse set is

in P	

Proof of Theorem �����

Let A be a nearly near
testable set such that A �p
c S� where S is a sparse set	 Let f

be the function that witnesses the reduction	 Let P be the function associated with the

nearly near
testability of A� as mentioned above	 In this proof we consider the conjunctive

reduction function f on input x as generating a set f�x� of strings	 Thus� by de�nition� for

any string x it holds that x � A i! f�x� � S	

Since the function f is computable in polynomial time� and since there is a polynomial

that bounds the number of strings of each length in S� there exists some polynomial p�n�

that bounds the number of di!erent strings belonging to S that can appear in f�x� on
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inputs x up to length n� i	e	� for all n�

jjfz � S
��� ��x � jxj � n��z � f�x�
gjj � p�n�

Now we de�ne a function SEARCH�z��z��R�z��� which is used in the polynomial
time

algorithm that decides A	 Given a polynomial
time computable predicate R on ��� and

two strings z� and z� such that z� � z� and R�z�� and �R�z�� hold� the function outputs a

string y� with z� � y � z�� such that R�y� and �R�y � �� hold	

This is done by a binary search	 For a string x let ord�x� be the natural number whose

binary representation is �x	

SEARCH�z��z��R�z��

begin

a �� z�

b �� z�

while a �� b" � do

set c to the string such that ord�c� � b�ord�a� " ord�b����c

if R�c� then a �� c else b �� c end

end

return a

end

Since at each iteration of the loop SEARCH halves the range of the search� the initial

�possibly exponential� range is reduced to one in a polynomial number of iterations	 It can

be seen that R�a� and �R�b� are loop invariants	 So when SEARCH exits the loop� the

string found satis�es the desired conditions	

With the help of SEARCH we will develop a polynomial
time algorithm that decides A	

The algorithm uses two sets C� and C� with the initial values C� � f�x� and C� � �	 The

algorithm has the following three invariants	

x � A�� C� � S ���

if C� �� � � x �� A�� C� � S ���

if C� �� � � C� � S �� C� �� S ���

��



Consider the following polynomial
time predicate Q	

Q�x� � �f�x� � C� � f�x� � C�


For any string w such that Q�w� is true� we de�ne s�w� as the smaller integer i � f�� �g

such that f�w� � Ci	 We say that a string w is connected if Q�w� is true and f�w� � S ��

Cs�w	 � S	

The algorithm uses a function CONNECT repeatedly in a loop in order to either increase

the size of one of the sets C� and C� or to �nd a connected string whose membership in A

is already determined	 In the case that the cardinality of one of the sets C� or C� exceeds

p�jxj�� the algorithm can correctly decide the membership of x in A by the above invariants	

The function CONNECT has two inputs u� v� and assumes that u is connected and

u � v	 CONNECT can decide membership of x �considered as a global variable� in A or�

otherwise� its output is a tuple �b�� b�� b�� w� that satis�es one of the following conditions

�b�� b� and b� are boolean variables and w is a string� v � w � u��

�c�� b� � true and v is connected

�c�� b� � false� b� � true and �Q�w�

�c�� b�� b� � false and �w � A�� b� � true�	

We now de�ne the function CONNECT	 Note that when b� � true it is not necessary

to de�ne the rest of the tuple� and when b� � false and b� � true� the value of b� is not

used� the value of the irrelevant components of the tuple will be denoted with %	

CONNECT�u�v�

begin

��� if not Q�v� then return �false�true�%�v� end

K �� f�v�

w �� v

repeat

if f�u� � K then w �� u

else

w �� SEARCH�u�w��f�z� �� K
�

��� if N�w� � ftrue� falseg then return �false�false�N�w��w� end

if f�w� � Cs�v	 then

��� if N�w� ��� then accept i! s�v� � �

��



��� else K �� K � f�w�

end

else

if f�w� � C��s�v	 then

��� if N�w� �� then return �false�false�true�w�

��� else return �true�%�%�%�

end

��� else return �false�true�%�w�

end

end�$if$�

end �$if f�w� � K $�

until w � u

��� if s�u� � s�v� then return �true�%�%�%�

��� else if s�u� � � then accept else reject end

end

end

Note that in lines ��� and ��� CONNECT can actually accept or reject the input x	 The

following claim proves the correctness of CONNECT	

Claim The function CONNECT either decides x correctly or it returns a tuple ful�lling

condition �c��� �c��� or �c��	

Proof of Claim� In order to prove the claim we analyze certain parts of function

CONNECT	 The statements of the algorithm are referred to by their line numbers	

Line ���

We show that this line ensures the following is an invariant for the repeat loop	

f�v� � S �� K � S ���

The invariant is clearly true when the loop is �rst entered	 In order to prove that it holds

at the beginning of each iteration we need only check that it is preserved after executing

line ���� since at any other numbered line in the loop� the loop is exited	 At line ��� we can

observe �by the nested if statements� that w � A�� w� � � A and that f�w � �� � K	

Suppose that f�v� � S	 We assume that� in this case� K � S	 By the preceding

observations� f�w � �� � S and thus f�w� � S	 So we have that the new K� which is the

union of the old one and f�w�� must be included in S	 This proves that ��� is an invariant	
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Lines ���� ��� and ���

In these cases� it is easy to see that the output satis�es the conditions	

Line ���

In line ���� membership of w in A is given by N�w�	 This corresponds to condition �c��	

Line ���

Since N�w� ���� either f�w� �� S or f�w � �� �� S	 In either case we get the same

conclusion	

� Suppose that f�w� �� S	 Since f�w� � Cs�v	� it follows that Cs�v	 �� S	

� Suppose that f�w � �� �� S	 The string w has been computed by SEARCH� which

assured us that f�w� �� �� K	 We have that K �� S	 By invariant ���� it follows that

f�v� �� S� and hence Cs�v	 �� S	

In both cases Cs�v	 �� S �and thus C��s�v	 � S�	 Hence� x is in A i! s�v� � �	

Line �
�

We show that w is in A� i	e	� the output ful�lls condition �c��	 The call to SEARCH

ensures that f�w� �� � K	 The conditions in the two preceding if statements ensure that

f�w� � C��s�v	 and w � A �� w � � � A	 Suppose that w �� A	 Then w � � �� A and

consequently K �� S �using the above observations�	 Invariant ��� implies that v is not in

A� hence Cs�v	 �� S and C��s�v	 � S	 Thus w � A� which is a contradiction	

Line ���

Observe that f�w � �� � K and that the two if statements preceding line ��� assure

that f�w� � C��s�v	 and that w � A �� w � � �� A	 This last fact can also be written as

f�w� � S �� f�w � �� �� S	

We prove the implication f�v� � S �� Cs�v	 � S� which shows that v is connected	

Suppose that f�v� � S	 By invariant ��� we have that K � S� hence f�w � �� � S	 This

implies that f�w� �� S and C��s�v	 �� S	 Thus� by invariant ���� Cs�v	 � S	

Lines ��� and ���

Note that at the end of each iteration of the loop it is true that f�w� � K� and at the

end of the loop w � u	 Thus when the repeat loop is exited we have f�u� � K	 Since u

is connected it follows from invariant ��� that f�v� � S implies f�u� � S� which in turn

implies Cs�u	 � S	

��



Thus if s�u� � s�v� it follows that v is connected and the output in line ��� is correct	

On the other hand� if s�u� �� s�v�� consider the following two cases	

� If v � A then f�v� � S	 This in turn implies that f�u� � S	 Since u is connected� it

follows that Cs�u	 � S	

� If v �� A then Cs�v	 �� S	 By invariant ��� and since s�u� �� s�v� it follows that

Cs�u	 � S	

In either case we have Cs�u	 � S	 Hence CONNECT correctly decides the input x	

End of Proof of Claim

Now we are ready to give the algorithm for A	

input x

begin

C� �� f�x�

C� �� �

b�� �� false

b�� �� �A���

while �jjC�jj � p�jxj�� and �jjC�jj � p�jxj�� do

a �� x

b �� �

while b" � � a do

set c to the string such that ord�c� � b�ord�a� " ord�b����c

�b��b��b��w� �� CONNECT�a�c�

if b� then a �� c

else

b �� w

b�� �� b�

b�� �� b�

end

end �$while$�

if N�a� � ftrue� falseg then

if �N�a� � true� xor �s�a� � �� then accept else reject end

else

if b�� then ADD�b�

else if �s�a� � �� xor b�� xor �N�a� ��� then accept else reject end

��



end

end�$if$�

end �$while$�

if jjC�jj � p�jxj� then accept else reject end

end

It is easy to see that at the end of the inner loop� a is connected and a � b " �	

Furthermore� either �Q�b� holds �in the case b�� � true� or �in the case b�� � false�

membership of b in A is determined by b��	

If N�a� � ftrue� falseg then it is easy to see that membership of x in A is correctly

decided	

If b�� � false� then the membership of a in A is given by b�� and function P � and hence�

since a is connected� membership of x is also determined	

Finally� if b�� is true� at least one new element can be added to C� or C� while preserving

the invariants	 The method for adding new elements is the following�

ADD�y�

begin

if �N�y " �� ��� then Cs�y��	 �� Cs�y��	 � f�y�

else C��s�y��	 �� C��s�y��	 � f�y�

end

end

It is easy to see that the running time of the algorithm is polynomially bounded	 What

remains is to show that invariant ��� and invariant ��� are preserved by ADD �invariant

��� is a consequence of these two invariants�	

C� is increased only if either �a� N�a� �� and s�a� � �� or �b� N�a� ��� and s�a� � �	

In either case it is easy to see that C� � S if and only if f�b� � S	

Next we consider the case when C� is increased	 ADD increases C� if either �a�N�a� ���

and s�a� � �� or �b� N�a� �� and s�a� � �	 In order to prove invariant ���� we consider

two subcases� When ADD includes elements in C� for the �rst time� since a is connected�

it holds that s�a� � �	 Hence N�a� ��� and it follows that x �� A if and only if f�b� � S	

In subsequent increases of C� it is not hard to see that C� � S if and only if f�b� � S	

This shows that invariant ���� invariant ���� and invariant ��� are preserved by ADD	

��



��� An Upper Bound

As discussed previously� Ogiwara and Watanabe �OW��
 showed that if for some k NP

has a k
truth
table hard sparse set then P � NP	 It is natural to ask whether the result

of Ogiwara and Watanabe can be extended to truth
tables that have non
constant bounds

on their number of queries	 This section shows that� even with respect to the weakened

conclusion that the boolean hierarchy �CGH����CGH���
 collapses� the Ogiwara
Watanabe

result cannot be improved to ��logn�
bounded truth
table reductions by any relativizable

proof technique	 Our result strengthens the work of Homer and Longpr�e �HL��
� who

independently of the work of this paper showed that there are relativized worlds in which

there are sparse sets that are NP
complete with respect to such bounds and yet P �� NP	

The strongest earlier result was the result of Kadin ��Kad��
� see also �IM���CGH���
� that

for every nice function f�n� � o�logn� there are relativized worlds in which the polynomial

hierarchy does not collapse to PNP�f�n	� yet NP has sparse Turing complete sets	 Since

NP has sparse Turing complete sets if and only if NP has sparse truth
table complete

sets%this can be seen either directly� via the parallel census technique discussed later in

this subsection� or as a consequence of Hartmanis�s sparse set that is truth
table complete

for the sparse sets in NP ��Har��
� only Turing completeness is stated� but Hartmanis�s

set is clearly truth
table complete�%Kadin�s result applies equally well to the �seemingly

stronger� truth
table case	

The boolean hierarchy �CGH����CGH���
 is the closure of NP under boolean

operations� equivalently� it is the class of sets that can be accepted by �nite amounts

of hardware applied to NP predicates	 For the purposes of this paper� we will de�ne the

hierarchy via one if its normal forms%namely� as the union of di!erences of NP sets	

De
nition ���
 ��CGH���	�

�	 For k 
 �� the k
th level of the boolean hierarchy is de�ned by� L � NP�k� if and only

if there exist L�� � � � � Lk � NP such that

L �

��
�
�L� � L�� � � � �� �Lk�� � Lk��� � Lk if k is odd

�L� � L�� � � � �� �Lk�� � Lk� if k is even	

�	 coNP�k� � fL
��� L � NP�k�g	

�	 BH �
S
k��

NP�k�� de�nes the boolean hierarchy	

��



Like the polynomial hierarchy� the boolean hierarchy does have downward separation�

if for some k
 it holds that NP�k
� � coNP�k
�� then NP�k
� � BH �CGH���
	 In such a

case� we say that the boolean hierarchy collapses �to level k
�	

Theorem ���� If f is a polynomial
time computable� nondecreasing function such that

f�n� � ��logn�� then there exist a set A and a tally set T such that BHA does not collapse

and T is �p�A
f�n	
tt
complete for NP

A	

One part of the proof of Theorem �	�� is a diagonalization ensuring that the boolean

hierarchy does not collapse	 Such a diagonalization was �rst accomplished by Cai

et al	 �CGH���
 via �forcing� machines to accept	 Unfortunately� each �forced� acceptance

potentially adds a polynomial number of strings to the oracle	 As will become clear in

our proof of Theorem �	��� adding so many strings would taint our requirement that the

relativized world have complete sets with respect to parallel reductions making far fewer

than a polynomial number of queries	 A di!erent separation technique is needed	 In the

proof below� we separate the boolean hierarchy by exploiting its logical structure� this allows

us� via adding at most k strings to the oracle� to keep any particular NPA�k� machine from

accepting a certain coNPA�k� language	

Proof of Theorem ����

A will be of the form QBF �X � X will be constructed below	 The tally set T will be an

encoding of X 	

We will construct a particular X relative to which the boolean hierarchy does not

collapse	 X will potentially have strings only at certain lengths� and will contain at most

one word of each length� this will help us create the tally set T 	

For any set X and for any n and i� we de�ne the predicate Pn
i �X� � �X

�n�i �� ��	 We

use the following test languages for even k

Tk�X� � f �n
���
k���
i��

�
Pn
�i���X� � �Pn

�i�X�
�
g�

Clearly Tk�X� � coNP
X�k�	 We construct the set X in stages� such that Tk�X� �� NP

X�k�

for all even k� thereby separating the entire boolean hierarchy	

In fact� in order to �eventually� keep small the number of truth
table queries needed to

make T complete� we will use only a small segment of words of each length� and thus the

strings we use will have relatively low �information content	� For m � n let

Sn�mi � fw�n�i�jwj
��� w � �m g�

��



Note that Sn�mi � �n�i for all m � n and i 
 �	

Let N�� N�� � � � be an enumeration of NP machines in which each machine is enumerated

in�nitely often	 For each i 
 �� let pi�n� � ni " i	 Let power ��� � � and power�t� �

�power�t��	 for t 
 �	 Let h� � �i be a standard multi
arity pairing function� e	g	� that of �OH��


�see Section � for more details�	

Initially X is empty and n
 � �	

At stage s � hk� ii for even k and i � hi�� � � � � iki� we diagonalize against Ni� � � � � � Nik

�and at other stages we do nothing�	 We use ps as the polynomial
time clock of these

machines	

For ns and l�ns� appropriately chosen� as will soon be described� we will put at most one

word of each of the k segments S
ns�l�ns	
� � � � � � S

ns�l�ns	
k into X �and will put no other words

in X�� in the process freezing the queries of no more than k computation paths of the NP

machines	 To guarantee that there are unfrozen words in each segment� we choose ns to be

the smallest number such that

�	 ns � power�t� for some t�

�	 ns � ns��� and

�	 �l�ns	 � k ps�ns�� where l�ns� � bf�p��s �ns���k� �c	

The choice of l�ns� will become clear below	 Note that since f�n� � ��logn�� such an ns

always exists	

De�ne the NPX�k� set

Lk�X� �
k���
j��

	
L�NX

i�j��
�� L�NX

i�j�


�

Let J � f�� �� � � � � k��g	 De�ne Lk�J �X� to be the subset of Lk�X� that unions together

only those pairs �agged by J 	

Lk�J �X� �
�
j	J

	
L�NX

ij
�� L�NX

ij��
�



We show how to extend X so that Lk�X� �� Tk�X�	

Extension of X 	

J �� f�� �� � � � � k� �g �$ Lk�J �X� � Lk�X� $�

repeat �$ �ns � Tk�X� $�

��



if �ns �� Lk�J �X� then exit

else

let j be some element of J satisfying �ns � L�NX
ij
�� L�NX

ij��
�	

Freeze the queries of an accepting path of NX
ij
��ns� and

put an unfrozen word from S
ns�l�ns	
j�� into X 	

�$ Now Pns
j���X� is true� and so �

ns �� Tk�X�	$�

if �ns �� L�NX
ij��

� then exit �$ �ns � Lk�X� $�

else

freeze the queries of an accepting path of NX
ij��
��ns� and

put an unfrozen word from S
ns�l�ns	
j into X 	

�$ Now Pns
j �X� is true� and so �

ns � Tk�X� yet �
ns �� L�NX

ij
��L�NX

ij��
�	

Note that the fact that �ns �� L�NX
ij
�� L�NX

ij��
� will be preserved

throughout the rest of the construction	 $�

end

end

J �� J � fjg

until J � �

Each iteration of the repeat loop either terminates �by coming to an exit� in which case

we clearly are done� or cancels an index j from J � in which case we have have diagonalized

against L�NX
ij
��L�NX

ij��
� �while adding at most two more strings to the oracle�	 This can

continue until J � �	 However� if we reach the case J � �� then �ns �� L�NX
ij
� � L�NX

ij��
�

for all odd j � k �and so �ns �� Lk�X��� yet� by our construction� �
ns will belong to Tk�X��

thus successfully diagonalizing	

The above process will ensure that NPX�k� �� coNPX�k� for all k 
 �	 It is not hard

to see that all the machines above having X as their oracle could instead have been given

QBF � X � yielding a separation relative to A � QBF � X � rather than relative to X 	

Henceforth� we assume that this was done	

De�ne the tally set T � which we will see to be an encoding of sorts of X � by

T � f �hn�j�bi
��� ��w � X�n��the j�th bit of w is b
g�

We show that T is �p�A
f�n	
tt
complete for NP

A� thus completing the proof	

Clearly T � NPX � NPA	

Let L � L�MA� � NPA and let polynomial pt be the time bound of M 	 Note that on

input jxj� the longest strings in X that might be touched during the run of machine MA

��



on input x are of length at most ns " k� where ns � ns�x� t� � maxfnj
��� nj � pt�jxj� g	 If

jxj � nt� we use table lookup to determine whether x belongs to L� henceforth� suppose

jxj 
 nt and thus s 
 t	

We �rst show that there is a PT machine that� on input x� �nds exactly the set of strings

of lengths ns"�� � � � � ns"k in X and uses at most f�jxj� queries in parallel to T 	 Note that

s � hk� ii� ns� and l�ns� are computable in polynomial time in jxj	 By the construction of

X � for � � i � k� there is at most one word of length ns " i in X � which �if it exists� will

have the form w�ns�i�jwj� where jwj � l�ns�	 These words can be constructed by asking in

parallel the following set Q �
Sk
i��Qi of queries

Qi � f �hns���
i g � f �hns�i��i
��� � � i � l�ns� g�

It is clear that� for all � � i � k� the length ns " i strings of X can be reconstructed from

the set Qi of queries �see Theorem �	�� for a more general reconstruction�	

There are at most f�jxj� words in Q�

jjQjj � �� " l�ns��k

� f�p��s �ns�� � since l�ns� � bf�p��s �ns���k� �c

� f�p��t �ns�� � since t � s� and thus pt � ps

� f�jxj� � since f is nondecreasing	

So a PA machine%that is additionally allowed f�jxj� truth
table accesses to T and that

uses those accesses to obtain the length ns strings ofX%can decide whether x � L as follows�

Since X�ns � X�logns � all words in X�ns can be computed by simply enumerating ��logns

and asking X directly �recall our machine has access to A�� for each word� whether that

word is in X 	 Now all the relevant words of X are known� and the remaining computation

of MQBF
X�x� can be solved by one query to QBF 	

The coding mentioned at the end of the proof is itself of independent interest	 In the

case of preceding proof� we ensured via our construction that X had only one word of each

length� and this made it easy to recover X via few parallel accesses to an NP set	 However�

not all interesting sets have at most one string per length	 Thus� it is natural to ask� given

a set S of low density �for example� a sparse set�� whether we can �nd its elements via

parallel access to some NPS set �rather than using the obvious sequential pre�x
searching

algorithm�	 The answer� perhaps surprisingly� is that parallel access su#ces	 Though the

tools to note this have been implicit since the important sparse set research of Hartmanis�

��



Immerman� and Sewelson �HIS��
� it is noted most clearly%in slightly di!erent form%in a

recent paper of Selman ��Sel��
� see that paper for a fuller discussion of the history of this

notion�	

The following result states that one can tighten the bound on the number of queries

needed slightly beyond that found in �Sel��
� and can extend the range of applicability of

the technique beyond the sets in NP	

Theorem ���� Let S be a sparse set and let d be a polynomial
time computable function

such that d�n� � nO��	 and ��n��jjS�njj � d�n�
	 There is an FP
NPSc �TALLY�
��n�d	n
��

� �
�

tt
algorithm�

that� on input �n� outputs all length n strings belonging to S	�

Proof of Theorem ���� �Following �Sel��	��

We code S as a tally set T using the encoding scheme developed by Hartmanis� Immerman�

and Sewelson �HIS��
�

�hn�m�i�j�bi � T �� ��w� �lex � � � �lex wm��� � � � � � � m�

�w� � S�n and the j�th bit of wi is b
�

We claim that� for any given n� the length n strings of S can be computed by asking

the following set of queries to T 	

Q � f �hn�������
ig � f �hn�m�i�j��i
��� � � m � d�n�� � � j � m� � � i � n g�

First we look for the largest value m such that there exist i and j such that a word

�hn�m�i�j��i is in T � call that value m
	 If there is such a word in T � then m
 is the number of

length n elements in S	 If not� then either �hn�������
i is in T � in which case there is exactly

one length n string in S� namely �n� or �hn�������
i is not T � in which case S contains no

length n strings	 Knowing the correct census� c� of S�n� we can construct all the words of

length n in S by looking at the queries in Q having m � c	

Since a conjunctive reduction is a positive reduction� if S is in NP� then NPSc � NP	

In this case� the above result states and generalizes Selman�s result that all sparse NP sets

�That is� a polynomial�time machine given ��n
�
d	n
��

�

�
parallel queries to a set in NPSc � the class of sets

that nondeterministically conjunctively reduce �LLS��� to S�
�Clearly� the algorithm requires no queries for the case d�n� � 
� and it can be seen that there are

relativized worlds in which for some set S having at most one string of each length it holds that ��n
�
���
�

�
�

n�� queries are actually required� We commend to the reader the open question of whether the ��n
�
d	n
��

�

�
bound can be replaced in general by some tighter bound� we conjecture that it cannot� At issue here is the
rather interesting question of the exact amount of parallel access needed to recover information about sparse
sets�
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are printable via parallel access to NP	 Recall that a set L is P
printable �HY��
 if there is

a polynomial
time computable function f such that� for every n� on input �n the function

f outputs a list of all strings in L of length at most n� relativized P
printability is de�ned

analogously	

Corollary ���� If S is a sparse set� then S is P
NPS

c�TALLY
tt 
printable	 In particular�

all sparse sets are PTALLYtt 
printable �Rub��
� and all sparse NP sets are PNP�TALLYtt 


printable �Sel��
	

� Reductions to Simple Sparse Sets

In this section� we explore the second question mentioned in the introduction�

If a set A reduces to a sparse set� does it follow that A is reducible to some

sparse set that is �simple� relative to A�

Earlier work along these lines has been done both for the case �which is also the case of

this paper� of reductions less �exible than Turing reductions �AHOW
 and for the case of

Turing reductions �GW��
	 However� both these papers are concerned with �equivalence��

and this saddles the results with weaknesses that are best illustrated by an example	

Theorem ��� ��AHOW	� If P � NP and set A �
truth
table reduces to a sparse set S�

then there is another sparse set bS to which A is truth
table equivalent	
The key point to notice here is that no claim is being made that A �
truth
table reduces

to bS� the �equivalence� claim hides a slippage �from �
truth
table potentially to truth


table� though in fact �AHOW
 holds the slippage to �
truth
table� of the complexity of the

reduction from A	 This is not a trivial point� the slippage is crucial to the structure of

earlier proofs	 When reducing a set A to a sparse set via a certain �xed reducing function

�we speak now not of the reduction type� such as �
truth
table� but of the actual function

that generates the queries�� there will in general be many possible sparse sets to which A

reduces� however� for the sparse set to be consistently de�ned by a reduction back to A�

exactly one such set must be selected	 The slippage in earlier results occurs exactly because

of the cost of the disambiguating down to a single sparse set	

We now show that one can obtain results that contain no slippage at all	 Very informally�

to do this we avoid coding too much of the disambiguating information into the sparse set	

Using this type of approach� we obtain the following results about �
truth
table and bounded

disjunctive reductions	 �Note that Theorems �	� and �	� are incomparable	�

��



Theorem ��� If A �p
bd S for some sparse set S� then there is a sparse set bS such that

A �p
bd
bS and bS � PNPA�log�	

Theorem ��� If A �p
�
tt S for some sparse set S� then there is a sparse set

bS such that
A �p

�
tt
bS and bS � PNPA �log�	

Theorem ��� For k � � and k � �� If A �p
k
d S for some sparse set S� then there is a

sparse set bS such that A �k
d bS and bS � PNP
A	
We also have the following results for unbounded disjunctive and unbounded conjunctive

reductions	

Theorem ��
 If A �p
d S for some sparse set S� then there is a sparse set bS such that

A �p
d
bS and bS � PNPA 	

Theorem ��� If A �p
c S for some sparse set S� then there is a sparse set bS such that

A �p
c
bS and bS � NPA	

The rest of this section is devoted to proving the above results	

We introduce some notations and lemmas that will be helpful in proving Theorem �	�	

A collection of distinct sets a�� � � � � ah is called an h
sun�ower if the intersection ai 	 aj is

the same for every pair of distinct indices� the common part ai 	 aj is called the center of

the sun�ower	 A collection W of sets is called h
compact if there are no subcollections of

W that are �h " ��
sun�owers	 The following combinatorial lemma about sun�owers� due

to Erd�os and Rado �ER��
 �see also �BS��
�� will be used extensively	

Lemma ��� ��ER��	� If W is an h
compact collection of sets� each of cardinality at most

k� then there are at most hkk( sets in W 	

We say that A �p
k
d B via 
 if 
 is a polynomial
time function such that� for all x�

jj
�x�jj � k and x � A�� 
�x� 	B �� �	

Let h�� �i� denote a �non
onto� pairing function over �nite strings with the standard nice

computability� and invertibility properties� and such that ��x� y��jhx� yi�j � �jxj" jyj
	 For

every k 
 �� let hy�� y�� � � � � yki denote hk� hy�� hy�� h� � � � hyk��� yki� � � � i�i�i�i�	

The proof of Theorem �	� is obtained from the following technical lemma	

Lemma ��� Let k 
 �	 Suppose that A �p
k
d S via 
 and B� D are two sets such that�

�	 S is a sparse set�

��



�	 D � NPA
B � S 	D � �� and

�	 there exists a polynomial
time function r such that� for all z and y� z � 
�y� � jyj �

r��jzj�� and for some polynomial p� ��n� �r��n� � p�n�
	

Then there is a sparse set bS such that A �p
k
d

bS via 
� bS � PNPA�B �log�� and bS 	D � �	

Proof of Lemma ����

The proof is by induction on k	 If k � �� de�ne bS � fz
��� ��y��jyj � r��jzj� and y � A and

z � 
�y�
g	 It is easy to verify that bS satis�es the thesis	 Indeed� in this case it even holds
that bS � NPA	

Let k � �� and suppose that A �p
k
d S via 
 and B� D are two sets that satisfy

conditions ���
���	 Since 
 is computable in polynomial time and S is a sparse set� there

exists a polynomial p such that� for all y and z� z � 
�y� � jzj � p�jyj�� and� for all n�

jjS�njj � p�n�	 Let q be a polynomial such that q�n� � p�p�r��n���	 The crucial fact that

allows us to apply the inductive hypothesis is the following claim� which follows from the

sparseness bound and is stated without proof	

Claim � Let n be an integer and h � q�n�	 If y�� � � � � yh � A are such that jy�j � � � � �

jyhj � r��n�� and the collection of sets 
�y��� � � � � 
�yh� is an h
sun�ower whose center is c�

then c	 S �� �	

Observe that� in the case described in Claim �� the cardinality of the center c certainly

is strictly less than k	 For each m � �� � � � � k � �� de�ne Am and 
m as follows�

Am � fhn� y�� � � � � yhi
��� h � q�n� and y�� � � � � yh � A and jy�j � � � � � jyhj � r��n� and

f
�y��� � � � � 
�yh�g is an h
sun�ower whose center has cardinality m g� and


m�y� �

�������
������

c if y � hn� y�� � � � � yhi and h � q�n� and

jy�j � � � �� jyhj � r��n� and f
�y��� � � � � 
�yh�g is

an h
sun�ower whose center c has cardinality m

� otherwise	

Now� we prove that for all m� � � m � k � �� it holds that Am �p
m
d S via 
m	

Take m such that � � m � k � �	 Suppose that y � Am	 Then there are n� y�� � � � � yh

such that y � hn� y�� � � � � yhi� h � q�n�� y�� � � � � yh � A� jy�j � � � � � jyhj � r��n�� and

f
�y��� � � � � 
�yh�g is an h
sun�ower whose center c has cardinality m� thus 
m�y� � c� and

from Claim � it holds that c 	 S �� �� and so 
m�y� 	 S �� �	 If y � hn� y�� � � � � yhi �� Am�

then we have two cases� if there is a string yi that does not belong to A� then 
�yi�	S � �

and thus 
m�y�	 S � � �since 
m�y� � 
�yi��� on the other hand� if every yi belongs to A�

then� since y �� Am� it must be the case that 
m�y� � �	

��



Let OUT � fz
��� ��y��jyj � r��jzj� and y �� A and z � 
�y�
g� i	e	� the set of strings

that are �provably� out of S	 Let D� � D � OUT 	 It is easy to see that� for all m�

� � m � k � �� it holds that Am� S� 
m� A � B� and D� satisfy conditions ���
��� �with

Am � A� S � S� 
m � 
� A � B � B� D� � D�� so we can apply the inductive

hypothesis� which ensures� for every � � m � k��� the existence of a sparse set Sm such that

Am �p
m
d Sm via 
m� Sm � PNP

Am�	A�B
�log�� and Sm 	D� � �	 De�ne S� � S� � � � ��Sk���

since Am � PA� it holds that S� � PNP
A�B �log�	 Furthermore� if y �� A then 
�y� 	 S� � �

�since S� 	D� � ��	 Unfortunately� if y � A we cannot prove that 
�y� 	 S� �� �� thus we

have to add other elements to S�	 Consider the collection of sets that are not �covered� by

S� � V � fa
��� ��y��y � A and 
�y� � a
 and a 	 S� � �g	 This collection of sets can be

subdivided into subcollections� Vn � fa
���a � Hn and a	S� � �g� where Hn � fa

�����y��y � A

and jyj � r��n� and 
�y� � a
g	 Clearly V �
S
n Vn	 The collection Vn has the following

important property	

Claim � If a � Vn then there is no collection E such that E � Hn� a � E� and E is a

q�n�
sun�ower	

Proof of Claim �� Let a � Vn	 Suppose that there exists a collection E � Hn with

a � E� and E is a q�n�
sun�ower	 Then there exist y�� � � � � yh with h � q�n�� such that

y�� � � �yh � A� 
�y�� � a� and f
�y��� � � � � 
�yh�g � E	 Let c be the center of E� and

m � jjcjj � k	 Thus it holds that hn� y�� � � � � yhi � Am and 
m�hn� y�� � � � � yhi� � c� and�

since Am �p
m
d Sm� it follows that c 	 Sm �� �	 Furthermore� c � 
�y�� � a� and thus

a 	 Sm �� �� which contradicts the assumption that a � Vn	

End of Proof of Claim �

Claim � suggests consideration of the following collection� Wn � fa
��� a � Hn and

there is no collection E such that E � Hn� a � E� and E is a q�n�
sun�ower g	 De�ne

S�� � fz
��� ��a��a � Wjzj and z � a
g �D�� and bS � S� � S��	 From the de�nition of Wn it is

clear that Wn is �q�n� � ��
compact� thus by Lemma �	� S
�� is a sparse set	 Furthermore�

it is not hard to verify that A �p
k
d

bS via 
	 It remains to show that S�� � PNPA�B�log�	 A
na�)ve algorithm� based directly on the de�nitions of S�� and Wn� yields only S

�� � �p�A
B� 	

In order to accomplish our goal we need the following algorithm� which� given a collection

of sets T and an integer h� �approximately� checks whether or not T is h
compact	 We

assume a total ordering of all �nite sets of strings	
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APPROX�T �h�

begin

for each subset c of some set a � T do

I �� �

m �� �

while m � � do

�nd �if such exists� the minimum �with respect to

the total ordering of �nite sets� set a � T

such that� ��� a �� I � ��� c � a� and ��� ��b � I��b 	 a � c


if such a exists then I �� I � fag

else m �� jjI jj

end

end �$while$�

if m � h then reject end

end �$for$�

accept

end

It is not hard to see that the above algorithm has the following properties	

�	 If the cardinalities of the sets of the input collection T are bounded by a constant

then APPROX runs in polynomial time	

�	 If ��a � T ��jjajj � k
 and APPROX�T �h� accepts then T is kh
compact	

�	 If APPROX�T �h� rejects then T is not h
compact	

�	 If APPROX�T �h� accepts and APPROX�T � fag�h� rejects then there is a collection

E � T � fag such that a � E and E is a �h" ��
sun�ower	

Claim � If T � Hn and APPROX�T �q�n�� accepts then APPROX�T �Wn�q�n�� accepts	

Proof of Claim �� By induction on the cardinality ofWn� using property ��� of APPROX	

End of proof of Claim �

Let mn � maxfjjT jj
��� T � Hn and APPROX�T �q�n�� acceptsg	 From Claim � we have

that if T � Hn� APPROX�T �q�n�� accepts and jjT jj � mn �T is maximal�� then Wn � T 	

Thus� if we knew mn and jjWnjj� then given any string z with jzj � n we could check via

one query to a suitable NPA oracle whether or not there is a set a � Wn such that z � a	

��



In fact� an NPA machine can guess a collection T � Hn and verify that jjT jj � mn and that

APPROX�T �q�n�� accepts �observe that from property ��� of APPROX and Lemma �	�

there is a polynomial that bounds mn�� subsequently �let h � mn � jjWnjj� the NP
A

machine guesses sets a�� � � � � ah and collections E�� � � � � Eh such that Ei � Hn� ai � Ei 	 T �

and ai �� aj � and veri�es that for every i it holds that Ei is a q�n�
sun�ower� at this point�

the computation accepts if and only if there is a set a � T � fa�� � � � � ahg such that z � a	

It is not hard to see that mn and subsequently jjWnjj can be computed in polynomial

time via O�logn� queries to a suitable NPA oracle	

Proof of Theorem ����

Let A �p
k
d S via 
� and let S be a sparse set	 De�ne S

� � fh�l� xi�

��� x � S and l 
 �g�

and� for each x� 
��x� � fh�jxjp�jxj	� yi�

��� y � 
�x�g� where p is a polynomial such that� for

all y and z� z � 
�y� � jzj � p�jyj�	 It is easy to verify that A �p
k
d S

� via 
�� and that

A� S�� and 
� satisfy conditions ���
��� of Lemma �	� �with B � D � ��	 Thus� applying

Lemma �	�� we obtain a sparse set bS such that A �p
k
d

bS and bS � PNPA�log�	

We now turn to the proof of Theorem �	�	 Recall� as we discussed earlier� that when

reducing a set A to a sparse set via a certain �xed reducing function� there will usually be

many possible sparse sets to which A reduces	 For the sparse set to be consistently de�ned

by a reduction back to A� exactly one such set must be selected	 The following proof tries to

eliminate this ambiguity as follows	 Via a series of binary searches for census information�

the machine to accept a sparse set �via access to the original set� obtains information about

it	 The searches are deeply �promise�
like �see� e	g	� �Sel��
� in that each round is passed

a census that is too complex for it to certify correct	 Finally� the machine for the sparse

set has obtained census information about certain subsets of the strings in and out of itself�

using this� it reduces �taking the case of Proposition �	�� as an example� all remaining

ambiguity to a feasible coloring problem	 Crucially� all inputs �of the same size� will obtain

the same coloring problem� and this will cause the sparse set to be consistently and correctly

de�ned	

Proof of Theorem ����

Without loss of generality� it is assumed that exactly two queries are asked in the �
truth


table reductions	 Given an input y� a �
truth
table reduction generates a truth
table as well

as a pair of queried strings� the acceptance of the input is decided by looking up the truth


table using the result of queries as an index	 There are sixteen di!erent truth
tables that

can be generated� they are shown in Figures �*�	 �In the tables� entry � means acceptance�
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and � means rejection	� Let ��y� denote the truth
table generated on the input y� and� let T

be the set of sixteen truth
tables of arity two	 It is easily seen that the input string domain

is completely covered by disjoint sets each of which is associated with the corresponding

truth
table	 For each t � T � let Ct � fy � ��
��� ��y� � tg	 Since � is a single
valued total

function� the following proposition is clear	

Proposition ��� ��t� t� � T ���t �� t� �� Ct 	 Ct� � ��
 and
S
t	T Ct � �

�	

The proof of Theorem �	� hinges on the observation that the query string domain

as well as the input string domain can be grouped into disjoint sets each of which is

associated with the corresponding truth
table	 Because of this� each truth
table can be

handled independently in its own domain� and the �nal results can be combined together

without causing any adverse side e!ects	 In order to be able to discuss separately each of the

truth
tables that may be used in a �
truth
table reduction� we introduce several de�nitions	

De
nition ���� Fixed truth�table reductions �Wec�
	 A truth
table reduction is

called a �xed truth
table reduction if it uses the same truth
table for all its inputs	 We

denote such a reduction with �p
t � where t denotes a truth
table� A �p

t B means A �p
tt B

with the �xed truth
table t	 We also denote such a reduction with �p
ftt� i	e	� A �p

ftt B with

t means A �p
tt B with the �xed truth
table t	 Similarly� A �p

k
ftt B with t means A �p
k
tt B

with the �xed truth
table t	

Recall that the de�nitions of polynomial
time reductions in �LLS��
 are of the form�

L� �
p
r L� if there exists a polynomial
time computable relation R of type r such

that x � L� �� RL��x�	

Here� we de�ne a generalization of polynomial
time reductions	

De
nition ���� Base�limited reductions A � B �p
r S � Q if there exists a polynomial


time computable relation R of type r such that

�i� if x � B� then x � A�� RS�x�� and

�ii� if x � B� then all strings queried in RS�x� are members of Q	

We call B and Q as the input base and the query base� respectively	

If the input base is ��� the base
limited reductions are equivalent to traditional reductions

except that the set of queried strings is localized within the query base	
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The next proposition establishes that if the query bases are pairwise disjoint� we can

�nd a sparse set independently in each query base of the corresponding �xed truth
table

reduction� and combine the results together to form a full sparse set	

Proposition ���� Let Q � fQt � �
�
���t � T g be such that ��t� t� � T ��t �� t� �� Qt	Qt� �

�
	 Assume that� for all t � T � A � Ct �
p
t St � Qt and St � Qt	 Let bS � St	T St	 Then

�i� A �p
�
tt

bS� and
�ii� if St is sparse for all t � T � then bS is sparse	
Proof of Proposition ����� �i�� On input y� the �
tt reduction simulates the reduction

of A � C��y	 �
p
��y	 S��y	 � Q��y	� but uses the oracle bS instead of S��y		 Since the queries are

in Q��y	� and Q��y		S��y	 � Q��y		 bS� bS answers each query exactly as S��y	 would	 Thus�
it is clear that this �
tt reduction accepts y if and only if the corresponding base
limited

reduction whose input base contains y accepts	

�ii�� Clear since the union of a �nite number of sparse sets is itself sparse	

If S
 is sparse and A �p
�
tt S
� there exist a sparse set S and a �
tt reduction g such that

A �p
�
tt S via g and the query bases are pairwise disjoint as required in Proposition �	��	

To see this� consider an input y to the original �
tt reduction� and let q��y� and q��y�

be the �rst queried string and the second queried string� respectively	 It is easy to see

that g�y� � fh�jyj� ��y�� �� q��y�i� h�
jyj� ��y�� �� q��y�ig is the desired reduction function with

oracle S � fh�n� t� i� xi
���n is integer �t � T � i � f�� �g�x � S
g	 Clearly� g is honest and S

is sparse	 In the remaining part of the proof of Theorem �	�� we assume that this reduction

g is used all the time	

Note that the set of input bases and the set of query bases remain �xed by our choice of g	

Armed with the �partitioning� ability of g and the �recombining� power of Proposition �	���

we are now ready to consider individual base
limited ftt reductions	 In each individual ftt

case� St � Qt can be maintained by choosing members of St only from actually queried

strings	 In the proofs of Propositions �	��*�	��� we choose sparse St while preserving the

corresponding ftt reduction and keeping the complexity of St within PNP
A�log�	 As a result�

Proposition �	�� will automatically establish Theorem �	�	

Let�s de�ne some notations before diving into individual �xed truth
table reductions	

Given g� it is clear that there exist polynomial
time functions 
�� 
�� and 
� that compute

the �rst three components of a queried string x� respectively	 
� is used only in the proof

of Proposition �	��	 Recall that Ct is the equivalence class whose elements� when reduced�

generate the truth
table t	 Note that membership in Ct can be checked deterministically�
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this is very handy since� by using Ct as a deterministic �lter� we can treat a base
limited

reduction as if it were an ordinary reduction	 Thus� in the following propositions� we do

not use base
limited reduction notation� it will be understood that appropriate safeguards

are employed when using Ct	

Proofs of the following two propositions are immediate� and thus are omitted	

Proposition ���� If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in PA such that A �p
�
ftt S

� via g with the same

truth
table	

Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

� � � � �

� � � � �

Figure �� Trivial truth
tables of arity two	

Proposition ���� If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in NPA such that A �p
�
ftt S

� via g with the same

truth
table	

Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

� � � � �

� � � � �

� � � � �

� � � � �

Figure �� �
tt
related truth
tables of arity two	

In the proof of the next proposition� the decision to split �rst queries from second queries

is amply repaid	

Proposition ���
 If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in NPA such that A �p
�
ftt S

� via g with the same

truth
table	

��



Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

� � � � �

� � � � �

� � � � �

�� � � � �

Figure �� Implication
related truth
tables of arity two	

Proof of Proposition ���
� These tables are variations of the truth
table for implication	

We prove for the case of t � truth�table ��	 The other cases can be proved similarly	

Let FirstQuery�x� be true if and only if 
��x� � �	 Let SecondQuery�x� be true if and

only if 
��x� � �	 Let S� � fx
��� FirstQuery�x�� ��y��y � Ct 	 A� x � g�y�
g	 S� has the

strings in S that guarantee all the strings in A to be rejected	 However� some of the strings

in A may also get rejected if S� is used instead of S in the reduction	 In order to remedy this

problem� we add S� to S
�� where S� is given by S� � fx

���SecondQuery�x�� ��x�� y�� y���y� �
Ct	A� y� � Ct	A�FirstQuery�x

���x� � g�y��� g�y�� � fx�� xg
g	 Since S� contains only

second queries� there is no more chaining of side e!ects	 Note that� if the �rst and second

queries were not separated� some strings in S� might be used as �rst queries� potentially

leading to a chain of side e!ects	 It is easy to verify that S� � S� � S� satis�es the

condition	

The following proposition is essentially a special case of Theorem �	�	 We omit its proof	

Proposition ���� If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in NPA such that A �p
�
ftt S

� via g with the same

truth
table	

Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

�� � � � �

�� � � � �

Figure �� Conjunctive
related truth
tables of arity two	

The following proposition is essentially a special case of Theorem �	�	 We omit its proof	
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Proposition ���� If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in PNP
A�log� such that A �p

�
ftt S
� via g with the

same truth
table	

Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

�� � � � �

�� � � � �

Figure �� Disjunctive
related truth
tables of arity two	

Proposition ���� If A �p
�
ftt S via g with any of the truth
tables of Figure �� and S is

sparse� then there exists a sparse set S� in PNP
A�log� such that A �p

�
ftt S
� via g with the

same truth
table	

Table First Query Answered �yes� First Query Answered �no�

Number �nd Ans	 �yes� �nd Ans	 �no� �nd Ans	 �yes� �nd Ans	 �no�

�� � � � �

�� � � � �

Figure �� Exclusive
or
related truth
tables of arity two	

Proof of Proposition ����� These tables are variations of the truth
table for exclusive


or	 We prove for the case of t � truth�table ��	 The other case can be proved similarly	

We will show that� given a string x that satis�es 
��x� � t� we can determine whether

x � S� for some unambiguously determined S�� that is a well
behaved approximation to S	

Although we cannot guarantee S� � S� we can make sure that S� is sparse and satis�es the

requirements of the proposition	

Let Bx � fy
��� 
��x� � �jyj � 
��x� � ��y�g� i	e	� the equivalence class whose elements�

when reduced� might query x	 Let g�A� �
S
y	A g�y�	 Since g is honest� it follows that

jjg�Bx� 	 Sjj is bounded by a polynomial in jxj� let s�jxj� denote this polynomial bound	

Let G� � fg�y�
��� y � Bx	Ag� G� � fg�y�

��� y � Bx 	Ag� and G � G��G�	 The problem

can be easily visualized using the graph de�ned by the set of edges G	 G consists of two

di!erent types of edges� exclusive
or type and coexistence type	 The edges in G� are of

exclusive
or type� of the two nodes of each edge in G�� one is in S while the other is in S	
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The edges in G� are of coexistence type� the two nodes of each edge in G� either both are

in S or both are in S	

Suppose that a sparse set S� is chosen� and that all the elements in S� are given the same

color while those in S� are given another color	 It is easy to see that� in order to satisfy

the requirement of the above proposition� it su#ces to show that the two endpoints of each

edge in G� are colored di!erently while those of each edge in G� have the same color	 Thus�

the problem of choosing S� can be considered as a two
coloring problem in which the sets

G� and G� has to be preserved	 We now describe a P
NPA�log� algorithm to choose such as

S�	

��� Find H � the set of heavily linked elements in S each of which is characterized by too

many incident edges in the graph G�	 This can be found along some computation

path of an NP machine� once jjH jj is known� note that jjH jj can be obtained by a

binary search using the NPA oracle de�ned by the following machine description	

Machine MA
H on input h�m� xi

Guess m distinct strings� x�� x�� ���� xm	

For each xi�i � �� ���� m� guess s�jxj� " � distinct edges	

If all the guessed edges of all the nodes x�� ���� xm belong to the graph G� �that

is� x�� x�� ���� xm � H�� then accept	

�Similar approaches can be used in the following steps to �nd the various sets involved	

In the remainder of this proof� we omit the details of �nding such sets	�

Find H � � H � fv
��� ��w��w � H � v and w are in the same connected component of

G�
g	

��� Find GL � fe
��� e � G�� e 	H � �g� i	e	� the graph obtained from G� by removing all

the edges incident on the nodes in H 	 Clearly� jjGLjj � s��jxj�	

��� Find D � fv
��� v � Se	GL e� v is in a connected component of G in which the number

of the elements in S exceeds s�jxj�g	 �This can be done by two
coloring the connected

component of G to which v belongs� as soon as the size of one color group is found

to exceed s�jxj�� we know that the group is a subset of S	 While �nding D� for each

v � D� it can be easily checked whether v � S	�

Find also DS � D 	 S	

Find D�
S � DS � fv

��� ��w��w � DS � v and w are in the same connected component of

G�
g	

��



��� Find Gs � fe
�����e���e� � GL � e�	D � � � e and e� are in the same connected component

of G
g	 Clearly� jjGsjj � s��jxj�	

�
� Two
color Gs using a �xed polynomial
time two
coloring algorithm	 Let Vs be the set

of elements in one �xed color group	 Put the elements of H � � D�
S � Vs in S�	 It is

easy to see that jjH � �D�
S � Vsjj is bounded by some polynomial	

��� If x � H � �D�
S � Vs� then accept� else reject	

It is easy to see that S�� via the reduction g� preserves G� and G�� this proves the correctness

of the algorithm	 It is not hard to �ll in the details of the algorithm in a way that guarantees

that S� � PNP
A�log�	

The above propositions� via Proposition �	��� prove Theorem �	�	

Proof of Theorem ����

We prove Theorem �	� for the case k � �	 Let A �p
�
d S via 
� where S is a sparse set	

Without loss of generality� we assume that ��x��jj
�x�jj � �
	 We need that the reduction

be honest so we de�ne S� � fh�l� zi
���z � S and l 
 �g and� for each x� 
��x� � fh�jxj� zi

���z �

�x�g	 It is easy to verify that S� is a sparse set and that A �p

�
d S
� via 
�	 Let p be a

polynomial such that ��x���y � 
��x���jyj � p�jxj�
 and ��n��jjS��njj � p�n�
	

We need some notations	 De�ne R � ft � ��
��� ��x��
��x� � t
g and RA � ft �

��
��� ��x��
��x� � t and x � A
g	 Clearly� RA � R	 For all l 
 � and z � �� de�ne

��h�l� zi� � l	 It holds that ��t � R���y � t����y� � jyj � p���y��
 and� for every x� if


��x� � fy�� y�� y�g then ��y�� � ��y�� � ��y�� � jxj	

Now we introduce some concepts that are crucial for the rest of the proof	 We say that a

collection T � R is a two��ower �one��ower� if there exists a set c � �� such that jjcjj � �

�jjcjj � ��� for every t� r � T with r �� t� t 	 r � c� and jjT jj � p�p���u��� " � for u � c	

The set c is called the center of T 	 A collection T � R is said a super��ower if there exist

T�� � � � � Th and y � �� such that h � p�p���y��� " �� T � T� � � � � � Th� and T�� � � � � Th are

two
�owers whose centers c�� � � � � ch are such that� for all distinct i� j� ci 	 cj � fyg	 The

set fyg is called the center of the super
�ower T 	

The basic fact about ��owers� is the following Claim� which follows from the sparseness

bound and is stated without proof	

Claim � If T is either a one
�ower� a two
�ower� or a super
�ower whose center is c� then

T � RA �� c 	 S� �� ��

��



The set bS will be de�ned as the union of three sets� bS�� bS�� and bS�	 In order to de�nebS� consider the following sets�
SF � fy

��� fyg is the center of a super
�owerg
OF � fy

��� fyg is the center of a one
�owerg�
It is easy to see that SF�OF � NP	 Furthermore� using pre�x search and by Claim �� it is

not hard to show that �SF �OF �	 S� belongs to PNP
A	 We de�ne bS� � �SF �OF �	 S�	

Thus� bS� allows us to decide whether a string y � SF �OF belongs to S� or not	 Now we

consider the case in which y �� SF � OF 	 First of all� we show that SF �OF � OUT �

PNP
A� where OUT � fy
��� ��x��y � 
��x� and x �� A
g i	e	� the set of strings that are

�provably� out of S�	 In order to do that we need the following simple fact about graph�

which is stated without proof	

Claim � Suppose that k is any positive integer and G is a graph such that each vertex has

degree at most k and G does not contain k " � mutually disjoint edges	 Then the number

of edges of G is at most k��k� ��	

Claim � SF �OF �OUT � PNP
A

Proof of Claim �� For the sake of brevity� let X � SF �OF � OUT 	 Given a string

y� �rst we check whether y � eR� where eR � fu
��� �t � R � u � tg �if y �� eR then y � X�	

Successively� we check whether y � SF �OF � which can be done in PNP	 It remains to

decide whether or not y � OUT � when y � SF �OF 	 eR	 Assume that y � SF �OF 	 eR
and consider the following sets�

TFy � fu
��� fy� ug is the center of a two
�ower g

Ty � ffy� v� wg � ��
��� ��x��
��x� � fy� v� wg and v� w �� TFy 
g

It is not hard to see that� y �� OUT if and only if ��u � TFy��fy� ug	S � �� �
 and Ty � RA	

Thus� it is quite easy to see that� if jjTFyjj and jjTyjj were bounded by a polynomial in

the length of y then we could check� by a PNP
A algorithm� whether or not y � OUT 	

Since y �� SF � it holds that jjTFyjj � p�p���y���	 With regard to Ty consider the graph

G � �V�E� de�ned by E � ffv� wg
��� fy� v� wg � Tyg and V � fu

��� ��a � E��u � a
g	

Clearly jjEjj � jjTyjj	 Since ��u � V ��u �� TFy
� each vertex of G has degree � p�p���y���	

Furthermore� since y �� OF � G does not contain p�p���y��� " � mutually disjoint edges	

Thus� graph G satis�es the hypotheses of Claim � with k � p�p���y���	 It follows that

jjTyjj � jjEjj � p�p���y�����p�p���y���� ��	

End of proof of Claim �

��



Let TFS be the set de�ned by

TFS � fy
��� ��u��fy� ug is the center of a two
�ower T with T � RA and u �� bS�
g�

We de�ne bS� � �SF �OF 	 TFS�� OUT 	 According to Claim �� for proving that bS� �
PNP
A it is enough to show that SF � OF 	TFS � PNP
A� and this can be done in a way

similar to that in the proof of Claim �	

It remains to de�ne bS�	 Let NTF be the set de�ned by

NTF � fy
��� ��x� u� v��
��x� � fy� u� vg� and u� v �� bS� and fu� vg is not the center of

a two
�ower T with T � RA
g�

We de�ne bS� � �SF � OF 	 TFS 	NTF � � OUT 	 Using Claim � it is not hard to show

that bS� � PNP
A	
At this point we can de�ne bS � bS� � bS� � bS�	 We have proved that bS � PNP
A	 Now

we show that A �p
�
d

bS via 
�	 Let x
 be any string in A	 Then 
��x
�	 S� �� �	 Two cases

are possible	


��x
� 	 bS� �� � � In this case 
��x
� 	 bS �� �	


��x
� 	 bS� � � � Let 
��x
� � fy�� y�� y�g	 Without loss of generality� suppose that y� � S�	

Since 
��x
� 	 bS� � �� y� � SF �OF 	 Distinguish two cases	

y� � TFS � In this case� since y� �� OUT � y� � bS�	
y� �� TFS � We have to distinguish other two cases	

y� � NTF � In this case y� � bS�	
y� �� NTF � Then� since y�� y� �� bS�� it must be the case that fy�� y�g is the

center of a two
�ower T with T � RA	 Thus by Claim �� fy�� y�g 	 S
� �� �	

Without loss of generality� suppose that y� � S�	 It holds that y� � S��

y� � SF � OF � y� �� OUT � and y� � TFS	 Hence y� � bS�	
In any case it holds that 
��x
� 	 bS �� �	

Conversely� let x
 be any string not in A	 Then 

��x
�	 S

� � �� that is� 
��x
� � OUT 	

Furthermore� it is clear that bS 	 OUT � �	 Thus 
��x
� 	 bS � �	

It remains to show that bS is a sparse set	 In order to do that we prove that bS�� bS�� andbS� are sparse sets	 Clearly� bS� is sparse since bS� � S�	 To prove that bS� is sparse it is enough
to show that TFS is sparse	 For any u� let Iu � fy

��� fu� yg is the center of a two
�ower T
with T � RAg	 Note that� if juj � p���u�� then Iu � �� if y � Iu then jyj 
 ��u�� and if

��



u �� SF then jjIujj � p�p���u���	 Furthermore� if y � TFS�S� then ��u � S���u � SF � OF

and y � Iu
	 Thus� for any n� TFS
�n � S��n �

S
u	S��SF�OF 
��u	�n Iu	 Thus�

jjS��n �
�

u	S��SF�OF 
��u	�n

Iujj � p�n� "
X

u	S��SF�OF 
��u	�n

jjIujj

� p�n� "
X

u	S��SF�OF 
juj�p�n	

p�p�n��

� p�n� " p�p�n��p�p�n���

Thus jjTFS�njj � p�n� " p�p�n��p�p�n��	 Hence TFS is a sparse set	

To prove that bS� is a sparse set it is enough to show that �TFS	NTF ��OUT is sparse	

For the sake of brevity� letX � �TFS	NTF ��OUT 	 For any u� let Iu � fy
�����x� v��
��x� �

fy� u� vg and fu� vg is not the center of a two
�ower 
g	 It is easy to see that if y � X�S� then

��u � S���u � SF �OF and y � Iu
	 Thus� we have that X � S��
S
u	S��SF�OF �Iu	TFS�

and so� for any n� X�n � S��n �
S
u	S��SF�OF 
��u	�n�Iu 	 TFS�	 It follows that

jjX�njj � p�n� "
X

u	S��SF�OF 
��u	�n

jjIu 	 TFSjj�

We have to �nd a bound for jjIu 	 TFSjj when u � S� 	 SF �OF 	 Let Iu 	 TFS �

fy�� � � � � yhg and� for all i � �� � � � � h� let vi� xi be such that 

��xi� � fyi� u� vig and fu� vig is

not the center of a two
�ower	 Observe that� since yi � TFS� u � S�� and u �� S�	SF � OF �

it holds that fu� yig is not the center of a two
�ower	 Consider the graph G � �V�E� de�ned

by E � ffvi� yig
��� i � �� � � � � hg and V � fv�� � � � � vh� y�� � � � � yhg	 Clearly� jjV jj 
 h and

jjEjj 
 h��	 Since for all i � f�� � � � � hg it holds that fu� yig and fu� vig are not centers of

two
�owers� any vertex of G has degree at most p�p���u���	 Furthermore� since u �� OF � G

does not contain p�p���u��� " � mutually disjoint edges	 Thus� G satis�es the hypotheses

of Claim � with k � p�p���u���	 It follows that jjEjj � p�p���u�����p�p���u���� ��	 Thus�

jjIu	TFS jj � �jjEjj � �p�p���u�����p�p���u������	 We conclude that� for any n� jjX�njj �

p�n� " �p�n�p�p�n����p�p�n��� ��	

We now turn to the proof of Theorem �	�	

Proof of Theorem ��
�

Let A �p
d S via 
� where S is a sparse set	 We need that the reduction be honest so we

de�ne S� � fh�l� xi
��� x � S and l 
 �g� and� for each x� 
��x� � fh�jxj� zi

��� z � 
�x�g	 It is

easy to verify that S� is a sparse set and that A �p
d S

� via 
�	

��



We need some notations	 Let E be a collection of sets	 We denote the union of the

sets of E by eE � that is eE �
S
Y 	E Y 	 A set H is called a hitting set for E if H � eE

and� for all Y � E � Y 	 H �� �	 Our problem is to �nd a �simple� sparse hitting set

bS for the collection G � fZ
��� ��y��y � A and 
��y� � Z
g with bS 	 OUT � �� where

OUT � fz
��� ��y��y �� A and z � 
��y�
g	 The collection G can be subdivided into �nite

subcollections� Gn � fZ
��� ��y��y � A and jyj � n and 
��y� � Z
g	 Thus� it is su#cient to

�nd� for each n� a hitting set Hn for Gn with� at most� a polynomial number of elements�

and such that Hn 	OUT � �	 In fact the following holds	

Claim � Suppose that�

�	 for all n� Hn is a hitting set for Gn with Hn 	OUT � �� and

�	 there exists a polynomial q such that� for all n� jjHnjj � q�n�	

Then the set bS � SnHn is such that A �p
d
bS via 
� and bS is sparse	

Proof of Claim �� Firstly� we prove that A �p
d
bS via 
�	 If y � A then 
��y� � Gjyj and�

since Hjyj is a hitting set for Gjyj� it holds that 

��y� 	Hjyj �� �� and thus 
��y� 	 bS �� �	 If

y �� A then 
��y� � OUT and so 
��y� 	 bS � �	 Now� we prove that bS is sparse	 Let r be
a polynomial such that� for all y and z� z � 
��y� �� jyj � r�jzj�	 If z � bS then there is
a k such that z � Hk � Gk � for which there is a string y such that z � 
��y� and jyj � k�

and thus k � r�jzj�	 This proves that bS�n � S��k�r�n	Hk and� since jjHkjj � q�k�� it holds

that jj bS�njj � r�n�q�n�	

End of Proof of Claim �

Observe that� for all z� z � bS �� z �
S
��k�r�jzj	Hk	 From this observation and Claim

� it follows that if there exists a PNP
A
algorithm that� given n� produces a set Hn that

satis�es conditions ���
��� of Claim �� then the set bS � SnHn satis�es the thesis	

Consider the following algorithm	

HITTING�n�

begin

Hn �� �

while there is an x � A�n such that 
��x�	Hn � � do

by pre�x search construct such an x

Hn �� Hn � �
��x��OUT �

end

end

��



Clearly after the above algorithm terminates� Hn is a hitting set for Gn withHn	OUT �

�	 It is also clear that at each iteration at least a new string in S� 	 fGn is added to Hn	

This and the fact that S� is a sparse set imply that the number of iterations of the above

algorithm is bounded by a polynomial	 Thus� the cardinality of Hn is also bounded by a

polynomial	 Furthermore� the test in the while loop can be done in NPA and the pre�x

search can be done in PNP
A
	 Thus� HITTING is a PNP

A
algorithm that� given n� produces

a set Hn that satis�es conditions ���
��� of Claim �	

Finally� we turn to the proof of Theorem �	�	

Proof of Theorem ����

Assume A �p
c S via g	 Without loss of generality� assume that g is honest	 Let bS �

fx
��� ��y��y � A�x � g�y�
g	 Clearly� bS � NPA� and A �p

c
bS via g	

� Low Instance Complexity and Polynomial�Time

Reductions

Instance complexity� as de�ned by Ko� Orponen� Sch�oning� and Watanabe �KOSW���

Orp���OKSW
� is a notion of the complexity of speci�c instances of a problem%a topic

that standard complexity theory is ill
suited to study �as any single instance is trivial�	 In

this paper� we are primarily concerned with sets of �low� instance complexity� IC�log�poly


�introduced in �KOSW��
�	

De
nition 
�� We say that a set A is in IC�log�poly
 if there exist a constant c � �� a

polynomial t and a set  � �� of programs� such that for every x � ��

�	 there exists a p �  �c log �jxj	 such that p decides x in time t�jxj� according to A� and

�	 for every p �  it holds that if p decides x in time t�jxj� then p decides x according

to A	

We show that the sets of low instance complexity are intimately related to the study

of reductions to sets of low information content	 In particular� a set A is of low instance

complexity if and only if it both conjunctively and disjunctively reduces to tally sets �say T


and T�� respectively�	 Note that this implies that A reduces disjunctively and conjunctively

to the single tally set� f��i
��� �i � T
g � f�

�i��
��� �i � T�g	


For a  xed e!cient universal machine� In fact� �p decides x in time � � �� in this de nition refers to the
run of the  xed universal machine on hp� xi� We refer the reader to �Orp�
� p� ��� for details of the universal
machine scheme�

��



Theorem 
�� A is in IC�log�poly
 if and only if there exist tally sets T
 and T� such that

A �p
c T
 and A �p

d T�	

Proof of Theorem 
���

For A � IC�log�poly
� let c be a constant� t be a polynomial and  be a set of programs

as in De�nition �	�	 Recall that we denote by ord�p� the position of the string p in the

lexicographical enumeration of ��	 We can encode  into the tally set T � f�ord�p	
���p �  g	

Let g be a truth
table condition generator that on input x computes the disjunction of the

encodings �ord�p	 for all programs p of length c log�jxj� that accept x in time t�jxj�	 Then

A �p
d T via g since x is in A if and only if there exists a program in  �c log �jxj	 that accepts

x in time t�jxj�	

Similarly� consider the truth
table generator h that on input x computes a conjunction

of the encodings �ord�p	 for all programs p of length c log�jxj� that reject x in time t�jxj�	

Then A �p
c ��

��T � via h since x is in A if and only if no program rejecting x in time t�jxj�

is in  �c log �jxj		

For the reverse inclusion� let A �p
c C and A �p

d D where C and D are tally sets� and

gc and gd are the respective polynomial
time truth
table condition generators	 We assume

that all generated queries are in ��	 For every �i �� O� it is easy to construct a program

pci that on input x computes gc�x� � y�� � � � � ym and rejects if �i � fyj
��� � � j � mg	

Otherwise pci goes into an in�nite loop	 It is clear that the running time of p
c
i is polynomially

bounded on all inputs that it rejects� and that the size of pci is O�log�i��	 For every x �� A

the conjunction gc�x� contains a query �j �� C	 Thus for every x �� A there exists an index

j� polynomially bounded in jxj� such that �j �� C and pcj on input x rejects	

Similarly� for every �i � �� there is a program pdi that on input x computes gd�x� �

z� � � � �� zm and accepts if �i � fzj
��� � � j � mg	 Otherwise it goes into an in�nite loop	

The programs pdi are also O�log�i�� in size and have polynomial running time on all inputs

that are accepted	 For every x � A the disjunction gd�x� contains a query �
j � D	 Thus

for every x � A there exists an index j� polynomially bounded in jxj� such that �j � D and

pdj on input x accepts	

Hence� taking  � fpdj

��� �j � Dg � fpcj

��� �j �� Cg as the set of programs� it follows that

A � IC�log�poly
	

Ko �Ko��
 showed that SPARSE �� Rpd�TALLY�	 From this result and Theorem �	�� it

follows that there exist sparse sets that don�t have low instance complexity� a result that is

a corollary to the proof of the result of �OKSW
 that P�lin �� IC�log�poly
	

��



Corollary 
�� SPARSE �� IC�log�poly
	

Using the above characterization of IC�log�poly
 it is easy to see that IC�log�poly
 is

closed under bounded truth
table reductions �a di!erent proof that explicitly constructs

programs appears in �OKSW
��

Theorem 
�� �OKSW	 IC�log�poly
 is closed downward under �p
b 
reductions	

Proof of Theorem 
���

It is easy to see that coRpd�TALLY� � R
p
c�TALLY�� which immediately implies the closure of

Rpd�TALLY�	R
p
c �TALLY� under complementation	 In fact� for every set A in R

p
d�TALLY�	

Rpc�TALLY� there exists a single tally set T such that A and A are in Rpd�T � 	 R
p
c�T � and

thus R
p
d�TALLY� 	 R

p
c�TALLY� is also closed under one truth
table reductions	

The second observation is that Rpbc�R
p
d�TALLY�� � Rpd�R

p
bc�TALLY�� �

Rpd�R
p
m�TALLY�� � Rpd�TALLY�	 Here we use that Rpbc�TALLY� � Rpm�TALLY�

�see �Ko��
�	

Similarly� Rpbd�R
p
c�TALLY�� � Rpc�TALLY�� and thus it follows that

Rpd�TALLY� 	 R
p
c �TALLY� is closed under bounded conjunctive and bounded disjunctive

reducibilities	 Combining this� we get

Rpb�IC�log�poly
� � Rpb�R
p
d�TALLY� 	 R

p
c�TALLY��

� Rpbc�R
p
bd�R

p
��tt�R

p
d�TALLY�	 R

p
c�TALLY����

� Rpd�TALLY� 	 R
p
c�TALLY� � IC�log�poly
�

Corollary 
�
 �OKSW	 If P �� NP and A is �p
b 
hard for NP� then A �� IC�log� poly
	

Proof of Corollary 
�
�

Suppose that a bounded truth
table hard set for NP is in IC�log�poly
	 It follows by

Theorem �	� that NP � IC�log�poly
	 From the result of �KOSW��
 that if a set of low

instance complexity is many
one hard for NP then P � NP� it follows that P � NP	

Using Theorem �	� and the fact that NP has neither �p
c 
hard tally sets nor �

p
d
hard

tally sets unless P � NP� it follows that NP has neither �p
c 
hard sets nor �

p
d
hard sets in

IC�log�poly
 unless P � NP	

Corollary 
�� If P �� NP and A is �p
d
hard for NP� then A �� IC�log� poly
	

��



Proof of Corollary 
���

Suppose that a disjunctive truth
table hard set for NP is in IC�log�poly
	 Since

Rpd�IC�log�poly
� � R
p
d�TALLY� � R

p
d�coSPARSE�� it follows from Ukkonen�s result �Ukk��


that P � NP	

Corollary 
�� If P �� NP and A is �p
c 
hard for NP� then A �� IC�log� poly
	

Proof of Corollary 
���

Suppose that a conjunctive truth
table hard set for NP is in IC�log�poly
	 Since

Rpc�IC�log�poly
� � R
p
c �SPARSE�� it follows from Corollary �	� that P � NP	

Finally� using Theorem �	�� and the fact that every tally set is in IC�log� poly
� we can

conclude that for truth
tables of size ��logn�� no analog of Corollary �	� can be proven by

any relativizable proof technique	
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A A Direct Proof for the Conjunctive Cases

In this section� we give a simple direct proof of Theorem �	�	

Theorem ��� If A � NP and Left�A� � Rpc�SPARSE�� then A is in P	

Proof of Theorem ����

Let q��� be a polynomial and let PA be a polynomial
time set such that A � fx
��� ��w �

�q�jxj	��hx� wi � PA
g and Left�A� � fhx� wi
��� x � A � w � �q�jxj	 � w � wmaxg

where wmax � maxfw � �q�jxj	
��� hx� wi � PAg	 Let S be the sparse set such that

Left�A� � Rpc�S� and let s be a polynomial such that jjS
�njj � s�n� for every n	 In

order to do a breadth
�rst search on the tree of possible witness pre�xes we use the set

prefix�Left�A�� � fhx� yi
�����z��hx� yzi � Left�A�
g	 It is easy to see that prefix�Left�A��

is many
one equivalent to Left�A�� and so it follows that prefix�Left�A�� � Rpc �S�	 The

corresponding truth
table condition generator can be expressed as

g�hx� yi� � z�� � � � � zm�

where z�� � � � � zm are conjunctive queries to S and m � r�jxj� for some polynomial r	 Let

Q�y� denote the set fz�� � � � � zmg and� for a set M of pre�xes� let Q�M� denote
S
y	M Q�y�	

Note that hx� yi � prefix�Left�A�� if and only if Q�y� � S	 Let ,m be the length of the

longest string in any of the Q�y�� � � jyj � q�jxj�	 Clearly ,m is bounded by a polynomial

in jxj	 What follows is the polynomial
time algorithm for A	

input x

begin

N �� f�g

for l �� � to q�jxj� do

N �� fy�
��� y � Ng � fy�

��� y � Ng �$ expand pre�xes to length l $�

�$ let y�� � � � � yt be the pre�xes in N in lexicographical order $�

M �� fy�g

i �� �

repeat

i �� i" �

if Q�yi� �� Q�M� then M ��M � fyig end �$ Q�M� � Q�fy�� � � � � yig� $�

until jjQ�M�jj � s� ,m� or i � t �$ jjM jj � s� ,m� " � $�

N �� fyi��
��� yi �Mg � fytg

��



if there is a witness in N then accept else reject end

end

It is immediate that the above algorithm runs in polynomial time since N never has

more than ��s� ,m� " �� many elements	

To prove the correctness of the algorithm� assume that x is in A �if x �� A there is no

witness and x is certainly rejected�	 We will show inductively that N always contains a

pre�x of wmax	 When the for loop is entered� N � f�g and thus certainly contains a pre�x of

wmax	 Also� if there is a pre�x of wmax in N before the expansion of the pre�xes then there

is one afterwards	 Thus let yh be the pre�x of wmax in N � fy�� � � � � ytg after the expansion

of its members	 We will show that yh is included in N after the repeat loop	 Since yt is

always included in N we can assume that h � t	 Then hx� yh��i �� prefix�Left�A�� and

for all j � h� hx� yji � prefix�Left�A��	 Thus Q�yh��� �� S and for all j � h� Q�yj� � S�

i	e	� Q�yh��� �� Q�fy�� � � � � yhg� and jjQ�fy�� � � � � yhg�jj � s� ,m�	 This shows that yh�� is

included in M and thus yh remains in N after the repeat loop	
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