
Universität Ulm

Fakultät für Informatik

Top-down Parsing with
Simultaneous Evaluation

of Noncircular Attribute Grammars

Thomas Noll

RWTH Aachen

Heiko Vogler

Universität Ulm

Nr. 92-02

Ulmer Informatik-Berichte

April 1992

°oNao°

Top-down Parsing with
Simultaneous Evaluation

of Noncircular Attribute Grammars

Thomas Noll Heiko Vogler
RWTH Aachen1 Universität Ulm2

Ulmer Informatik-Berichte Nr. 92-02

Abstract

This paper introduces a machinery called attributed top-down parsing au-
tomaton which performs top-down parsing of strings and, simultaneously, the
evaluation of arbitrary noncircular attribute grammars. The strategy of the
machinery is based on a single depth-first left-to-right traversal over the Syn
tax tree. There is no need to traverse parts of the syntax tree more than once,
and hence, the syntax tree itself does not have to be maintained.
Attribute values are stored in a graph component, and values of attributes
which are needed but not yet computed are represented by particular nodes.
Values of attributes which refer to such uncomputed attributes are represented
by trees over Operation symbols in which pointers to the particular nodes at
their leaves are maintained. Whenever eventuaily the needed attribute value
is computed, it is glued into the graph at the appropriate nodes.

'Lehrstuhl für Informatik II, Ahornstraße 55, W-5100 Aachen, Germany,
e-mail: nollQzeus. informatik.rwth-aachen.de

2Abt. Theoretische Informatik, Oberer Eselsberg, James-Franck-Ring, W-7900 Ulm,
Germany, e-mail: voglerQinformatik.uni-ulm.de

1 Introduction

Attribute grammars are an extension of context-free grammars. They were devised by
Knuth in his seminal paper [Knu68, Knu71] as a formalism to specify the semantics
of a context-free language along with its syntax. Since then, attribute grammars
were applied by Computer scientists in many investigations, but in particular they
have proved their appropriateness in the area of compiling programming languages.
The reader is referred to [DJL88] for a survey on the theoretical aspects of attribute
grammars, for a collection of Software Systems which are based on attribute grammars,
and for an extensive bibliography. In [DJ90] and [AM91], an overwiew of current
research trends in the area of attribute grammars is given. In the sequel we will only
consider noncircular attribute grammars.

Considering the transformational approach [EF81], an attribute grammar is a de-
scriptive device which specines a transformation from the set of syntax trees of strings
which are generated by the underlying context-free grammar Co, into a set A of se
mantic values. In order to compute the semantics of a string w € L(Gq), two steps
have to be performed:

(i) the parsing of w according to Gq\ this yields a syntax tree sw of w, and

(ii) the evaluation of the designated synthesized attribute <tq at the root of sw.

Then the value of cr0 at the root of sw is the semantic value of w. Actually, here we
are only interested in the semantic value of w and not in the values of every attribute
occurrence in sw. In the sequel we will restrict to top-down parsing.

On the one hand, many different parsing techniques have been investigated (cf.
[ASU86]). On the other hand, attribute evaluation algorithms are known, which co-
incide to differently powerful subclasses of the whole class of attribute grammars (cf.
[Eng84]). Now the question arises whether it is possible to interleave the two steps,
i.e., to parse the given input string and to compute its semantic value simultaneously.
The advantage of this combination is the possibility of saving storage space, because
there is no need to keep the syntax tree in the storage.

On first glance, the combination of parsing and attribute evaluation seems to be
impossible because of the following two contrary aspects. On the one hand, top-down
parsing of strings determines the syntax trees from the left to the right (and from the
root to the leaves). On the other hand, it may happen that the value of an inherited
attribute occurrence at a node x of the syntax tree depends on the value ofa synthesized
attribute occurrence at a node y which is located to the right of x. Thus, the part of
the syntax tree starting with y as root is not yet known, and hence, the synthesized
attributes of y are not yet computed. Even for x = y these contrary aspects may occur.
Let us give an example to illustrate this Situation.

Example 1.1 We consider an attribute grammar G which computes the decimal value
of a binary numeral. It is a slight modification of an example in [Knu68]. Among
others. the underlying context-free grammar contains a start production S —• L. The

1

nonterminal symbol L which represents bit lists is associated with three attributes:
The inherited attribute p holds the position of the leading bit within the list, assuming
Position 0 for the rightmost one. The attribute p depends on the synthesized attribute
/ which denotes the length of the list. The position information is transferred to
each of the single bits of the list such that their value can be computed individually.
Afterwards all values are summarized in the value attribute v of L. The Situation

concerning the start production is illustrated by Figure 1. In the specification of the
semantic rules, occurrences of nonterminal Symbols are associated with their position
within the production. The position of the left hand side symbol is denoted by the
empty word e.

If the top-down parser expands the nonterminal symbol L of the start production
S —*• L, then it has to evaluate the inherited attribute p of L by decrementing the value
of the length attribute / of L. But / is not yet known as the parser has not yet built
up the subtree with root label L. Hence, this is an instance of the general Situation in
which both nodes x and y represent the same node of the syntax tree. In Figure 5, a
complete syntax tree with attribution is shown. O

^Ty
(p,l)=dec((U))
(v,e) = (u, 1)

Figure 1: Dependency graph of S —» L.

In general, the problem of required but not yet computed synthesized attributes
disappears if the attribute grammar has the only-S property, i.e. if it does not contain
inherited attributes. The same holds if we consider L-attributed grammars [Boc.76]
only. Roughly speaking, in such grammars the dependencies between occurrences of
attributes always show from left to right, and hence the dependencies are compatible
with the scanning and parsing of the input string. But L-attributed grammars do not
have much expressive power.

Is it possible to combine top-down parsing and attribute evaluation for more pow-
erful subclasses of attribute grammars? At the time being, we know three techniques
which answer the question positively, and in each case except the last one, the combi
nation algorithm even applies to arbitrary noncircular attribute grammars.

The first technique [Knu71] solves the combination problem in a very drastical way:
Given an attribute grammar G which computes the function / from the set of syntax
trees to the set A of semantic values. Construct an attribute grammar Gxd with one
attribute a only; a is synthesized and may take syntax trees as well as elements of A

as semantic values. During top-down parsing, at every node x, the syntax tree which
corresponds to x is synthesized in a. At the root of the syntax tree, additionally the
function / is applied to the complete syntax tree. Thus, the whole semantic evaluation
is shifted into the semantic domain of the attribute grammar by adding / explicitely
as a semantic Operation.

The second technique [CM79] solves the problem in a more realistic way: Let G be
given as in the discussion of the first technique. The attribute grammar G' is obtained
from G by dropping all the inherited attributes of G. The carrier set A of the semantic
domain of G is lifted to the set Ops(A) = [Ak —» A] of Operations on A where k is the
number of inherited attributes of G. Intuitively, for the synthesized attribute a and
node x, G' computes the function f^>x) € Ops(A) which reflects the functional depen-
dency of the value of er at x from the values of the inherited attributes at x with respect
to G. Then, during attribute evaluation by (7, the funetions (i.e. attribute values) are
composed; since G is noncircular, eventuaily a constant function is computed which
represents a value in A. Since G' is an attribute grammar with synthesized attributes
only, the combination of parsing and attribute evaluation becomes trivial again.

Finally, the third technique applies to the class of pseudo-L attribute grammars as
defined in [Eng84]. The attribute evaluation algorithm is based on a depth-first left-to-
right traversal over the syntax tree. With respect to the local attribute dependencies,
it tries to evaluate as many attribute occurrences as possible. If the algorithm returns
to a node y and it has computed the value of a synthesized attribute occurrence at
y which was needed for the evaluation of an inherited attribute occurrence at node x
and either x = y or x occurs to the left of y, then the algorithm will traverse again the
subtree of the syntax tree with root node x. Thus, it it necessary to störe (parts of)
the syntax tree during attribute evaluation.

In this paper, we introduce a more efficient method of combining top-down parsing
and attribute evaluation, and we will develop our Solution in two steps. In the first
step, for every noncircular attribute grammar, we will construct an attribute evaluation
algorithm called evaL which is compatible with scanning and top-down parsing of input
strings. In the second step, we will equip the usual top-down parsing automaton with
the facilities needed to evaluate attribute values aecording to evo.l.

More precisely, our attribute evaluation algorithm eval takes the syntax tree sw of
a given string w as input, and it performs a single depth-first left-to-right traversal
over sw. In contrast to the approach of pseudo-L attribute grammars, the evaluator
computes a value for every attribute occurrence at the current node. Clearly, if an
inherited attribute occurrence (t, x) at node x depends on a synthesized attribute oc
currence (er, y)at node y, and if x = y or y occurs to the right of #, then the value of(t, x)
can only be an approximation fyt)Xj of its final value (cf. Figure 2). We will call such
intermediate values schematic approximations, because they are represented by trees
over the set Q of Operation Symbols and the set of attribute occurrences of sw viewed
as nullary Symbols. (In Figure 1, the algorithm computes on first visit to the first son
of S the schematic approximation dec((/, 1)) as value for the attribute occurrence (p, 1).)

Now assume that eval has returned to node x having parsed the frontier of the

Figure 2: General example.

subtree sub(sw,x) of sw with root node x and having computed a value t{a',x) for the
attribute occurrence (o~',x). If we assume that w.r.t. sub(sw, x), {cr\x) depends on
(i, x), then t(a',x) is a schematic approximation which contains the attribute occurrence
(cr,y). Next, eval visits the younger brothers of x and eventuaily it visits the node y.
After having parsed the subtree sub(sw, y) and having computed a value t{a,y) f°r the
synthesized attribute occurrence (a, y), eval can refine the approximations of attribute
occurrences to the left. In particular, it can refine the schematic approximation of
(ct',x) to be the tree i(<r',x>[(0'» 2/)/^,y)l which is obtained from t(a>,x) by replacing every
occurrence of (er, y) by t^,y)-

This refinement may lead to a ground term over the set Q of Operation symbols;
by applying the unique homomorphism h : Tq —* A from the initial term algebra Tq
to the semantic domain A of the attribute grammar, values in the carrier set A of A
are obtained. If, however, ^a>y) is also just a schematic approximation, then the result
of the Substitution is again a schematic approximation. But eventuaily, at the root
of sw, ground terms are computed, because the attribute grammar is noncircular. We
note that, if the attribute grammar is L, i.e. all dependencies show from left to right,
then our attribute evaluation algorithm will compute immediately, for every attribute
occurrence, its final value in A.

In the second step of our development, we construct a machinery which performs
both parsing of a given input string w and the computation of the semantic value of
w aecording to the evaluation algorithm construeted in the first step. The machinery,
called attributed top-down parsing automaton, works deterministically for context-free
grammars which are LL(fc). In this paper we will restrict ourselves to k = 1, but the
technique can be extended straightforwardly to any other k. The attributed top-down
parsing automaton is an extension of the usual top-down parsing automaton and it
is similar to the attributed pushdown machine [LRS74]; however, the main additional
component is a graph storage in which schematic approximations, ground terms, and
semantic values of A are stored and updated. In order not to be bothered with pure
evaluations in the semantic domain A of the attribute grammar and, in particular,

with the transformations of ground terms into values of A by means of the unique
homomorphism h, we will consider in our investigation attribute grammars only which
have the initial term algebra Tq as semantic domain.

How does the automaton störe and update schematic approximations? Whenever
the automaton creates a new schematic approximation t with an attribute occurrence
(<7, y) in its frontier, an additional application node is created which contains a pointer
to the graph representation of t and a pointer pt to the leaf labeled by(er, y). In fact,
using the well-known sharing technique, it suffices to represent (a,y) only once (cf.
Figure 3(a)). If in a later stage of the automaton, a schematic approximation t^ty^ of
the value of (er, y) is computed, then the automaton just stores the address of the root
of t^ty) into the node referenced by pt (cf. Figure 3(b)).

app < •

> r

pt pt

(a) (b)

Figure 3: Representation and refinement of schematic approximations.

Since the attribute evaluation algorithm which is implemented in the attributed
top-down parsing automaton, computes a schematic approximation for every attribute
occurrence at the current node, and since pointers to needed, but not yet computed
attribute occurrences are maintained until refinements are computed, there is no need
to call the attributeevaluator more than once at any node ofthe syntax tree sw. Thus,
the automaton does not have to störe parts of sw.

This paper is organized as follows. Section 2 provides the basic notions of context-
free grammars, pushdown automata, and top-down parsing automata for LL(1) gram-

mars. Although these topics are rather Standard, we would like to advice the reader
to glance at least at Section 2.2. The reason is that we present the top-down parsing
automaton in a formalism which is slightly diiferent from the usual one but more appro-
priate for an extension to attribute evaluation. In Section 3, we collect the definitions
concerning attribute grammars. In Section 4, we introduce our attribute evaluation al
gorithm. In Section 5 we extend the concept of pushdown automaton to the concept of
attributed pushdown automaton. In the same way as top-down parsing automata are
special instances of pushdown automata, we instantiate attributed pushdown automata
to attributed top-down parsing automata. Figure 4 gives a survey of the interrelations.

Context-free grammar

(Def. 2.1)

Section 2.2

Pushdown automaton

(Def. 2.4)

Section 2.2

Top-down parsing

automaton (Def. 2.6)

Section 3

Section 5.2

Section 5.3

Figure 4: Survey.

Attribute grammar

(Def. 3.4)

Section 5.2

Attributed pushdown

automaton (Def. 5.2)

Section 5.3

Attributed top-down parsing

automaton (Def. 5.6)

2 Context-free grammars and top-down parsing

2.1 Context-free grammars

Context-free grammars play a major role in the description offormal languages. They
supply the syntactic base of the attribute grammar formalism. We introduce some
basic concepts following mainly [ASU86].

Definition 2.1 (Context-free grammar)
A context-free grammar

G0=(N^7T,P,S)

consists ofa nonterminal aiphabet N, a terminal aiphabet E disjoint from N, a bijective
mapping tt : {1,...,|P|} -• P, a finite set P C {A -• a | A £ N,a £ (iVüS)*} of
productions and a designated start symbol S £ N. G0 is called reduced if for each
At N there exist o, /? £ (W UE)* and w £ E* such that 5 =>* a A ß =>* w where =*
denotes the derivation relation of G0. G0 is called start-separated if the start symbol
does not appear on the right hand side of any production. L(G0) = {w £ E* |S =>* w}
denotes the language generated by G0. A formal language which is generated by a
context-free grammar is called context-free. Two context-free grammars G0 and G\
are called equivalent if L(G0) = L(G\). O

In thesequel we assume that context-free grammars arereduced andstart-separated.
This can be achieved by the usual transformations.

We will use trees to represent derivations of context-free grammars. Tree nodes
are specified by means of the well-known Dewey notation, i.e. a tree node x is a string
ii.i-2 ...in with ij > 0. Intuitively, the Dewey notation of a node x indicates the path
from the root of the tree to x. Thus, the root itself is denoted by e.

Definition 2.2 (Syntax tree)
Let G'o = (N, E, 7r, P,5) be a context-free grammar. A syntax tree of G0 is a finite tree
s whose nodes are labeled by Symbols from -iVUE such that the following conditions
hold: The root e ofs is labeled by 5, and for each inner node x there is a production
p = X0 -> Xi ... Xn e P {X0 € N, Xi e NU E) such that x is labeled by X0, has n
successors x.l,..., x.n, and for every i £ {1,..., n}, x.i is labeled by X{. In this case
we say that p applies at x. The set of all syntax trees of G0 is denoted by TGo. O

2.2 Top-down parsing

The parser is the Compiler part which is dedicated to the syntactic analysis of the
token stream received from the Scanner. This process is also called parsing. Parsing
is done by pushdown automata. Each context-free language can be analyzed by a
pushdown automaton with one state only. This Statement is justified by the following
informal construction ofa pushdown automaton which supplies the foundation of both
(nondeterministic) top-down parsing and deterministic LL parsing .

Let Gq = (N, E, 7r, P, 5) be a context-free grammar. Note that Go is supposed to be
reduced and start-separated. If a nonterminal Xq lies on top of the pushdown, then the
parsing automaton nondeterministically selects a production p = Xq —> X\ ... Xn £ P,
pops Xq from the pushdown, and pushes the symbols Xn,...,X\ one by one. This
transition simulates the application of p and is called expansion of p. If a terminal
symbol a lies on top of the pushdown, then it is compared with the next symbol on the
input tape. If both symbols correspond, then a is popped from the pushdown. This
transition is called match transition. If the pushdown is empty, then the computation
stops.

As we can see immediately, this parsing method realizes a depth-first left-to-right
traversal of the (virtual) syntax tree. But it has some additional properties which will
turn out to be disadvantageous in connexion with evaluation of attribute grammars:

• It works nondeterministically.

• When expanding a production, its right hand side is pushed symbol by symbol.
Thus, the pushdown gives no explicit Information about which production is
analyzed at this moment.

• In particular, the complete recognition of its right hand side cannot be realized.

We will solve these problems in the following way (also cf. the construction in
Lemma 6.1 of [EV86]):

• We will restrict the class of context-free grammars which can be handled such
that deterministic parsing is possible. Here we choose LL(1) grammars.

• In the pushdown, we do not störe nonterminals and terminals, but we störe
LR(0)-items. These are known from bottom-up (or: LR) parsing and they con-
tain the required Information:

- the identification of the production which is analyzed at this moment,

- the specification of the suffix of its right hand side which has not yet been
parsed, and thus, in particular,

- the information about complete recognition of its right hand side.

Definition 2.3 (LR(O) item)
Let G'o = (N, E, 7r, P, S) be a context-free grammar. For any production A —> aa' £ P,
[A —> a.a'] is called an LR(0) item of G0. The set of all LR(0) items of G0 is denoted
by LR(0)(Go). O

Obviously, LR{0)(Go) is finite. An LR(0) item [A -> a.a'} £ LR(0){Go) on top of
the pushdown of the top-down parsing automaton has the following meaning:

• Production A —> a a' £ P is currently analyzed.

• The part of the input which was derived from the sentential form a, has al-
ready been accepted. If a = e, then the previously executed transition was an
expansion.

• A prefix of the current input has to be parsed according to the sentential form
a'. If a' = £, the production A —> a has been completely recognized.

The choice of the transition which the automaton has to execute next, is essentially
determined by the LR(0) item [A —> a.a'] £ LR(0)(Go) on top of the pushdown:

• If a' = B a" with B £ N', then the automaton selects an appropriate production
B —• ß. Thereafter, it puts the corresponding LR(0) item [B —* .ß] on top of the
pushdown by means of a push Operation.

• If a' = a et" with a £ E, then the automaton compares the terminal symbol a to
the next input symbol. If both correspond, then the LR(0) item on top of the
pushdown is modified to [A —• a a.a"] by a mod Operation.

• If a' = £, a pop Operation both removes the LR(0) item [,4 —> a.] on top of the
pushdown and changes the item [B —> ß.Aß'} below to [B —> ß A.ß'\. (For this
reason, the transition function has to take notice of the Upper two pushdown
entries.)

After this informal introduction, we describe in greater detail the concepts of pushdown
automaton, LL(1) grammar, and top-down parsing automaton. (Recall the overview
in Figure 4.)

The pushdown automaton presented in the following definition is able to read the
topmost two symbols of the pushdown. Moreover, the pop Operation performs the
deletion of the topmost symbol and, afterwards, it modifies the current topmost symbol.
It is obvious how to construct for a pushdown automaton of our type an equivalent
pushdown automaton of the usual type.

Definition 2.4 (Pushdown automaton)
A pushdown automaton

A0 = (Q,X,r,6,q0,lo,F)

consists of a finite set Q of states, an input aiphabet E, a pushdown aiphabet T, a
transition function S : Q x (E U {e}) x T2 ->• p(Q x {mod, pop, push} x V) (where
p denotes the power set Operator), a start state q° £ Q, a pushdown bottom symbol
7o £ r and a subset F C Q of final states. The set of instantaneous descriptions of Aq
is the cartesian product

IDAo = Q x E* x P.

The transition relation of Aq

\-AoC IDAo x IDAo

is given by: If (q',op,i') £ %,z,7i72) with q,q' £ Q, x £ EU {e}, 71,72,7' € T and
op £ {mod,pop,push}, then for every w £ E*, and every £ 6 T*

(g,*w,7i720 l-^0 (g',u7,{')

where

7772^ if op = mod
f' = < 7;f if op = pop

l'l\l2i if op = push.

The language accepted by Aq is the set

£(-40) = {w GE* | there are qf £ F,7 £V such that (<7°,w,7o7o) l~^0 (^»€,7)}.

A pushdown automaton Aq is called deterministic if for every q £ Q, and every 71,72 €
T either

(i) |£(g,£>7i72)| = 0, and for every a G E : |£(g,a,7i72)| < 1 or

(ii) |^(9,£,7i72)| = 1, and for every a £ E : |%, 0,7172)! = 0. O

Given a context-free grammar G0, we now want to construct a deterministic push
down automaton which accepts L(Gq), called top-down parsing automaton. Its deter-
minism will be achieved by giving him the capability to look ahead one character on
the input tape. Because the input aiphabet is finite, the corresponding informations
can be stored in the finite control of the automaton. Furthermore, we append a special
end marker $ to every input string. The class of context-free grammars which can
be parsed top-down in a deterministic way under these assumptions is well known as
LL(1).

Definition 2.5 (LL(1) grammar)
Let Gq = (N, E, 7r, P, S) be a context-free grammar. To each production p = A —> a £
P, we assign the look-ahead set

la{p) = {x £ EU{$} | there are w£H',ß,ß' £ (NU EU {$})" suchthat

S %^J wAß^iwaß =>f w x ß'}

vvhere =^/ denotes the leftmost derivation relation of Gq in which at every step the
leftmost nonterminal symbol of a sentential form is derived. Gq is called an LL(1)
grammar if for every nonterminal A £ iV, and for every pair of productions A —> a
and A —> 3 in P the following condition is true:

la(A->a)nla(A-+ß) = fa

The set of all LL(1) grammars is denoted by LL{\). O

10

There are algorithms which try to transform context-free grammars into equivalent
LL(1) grammars such as elimination of left recursion and left factoring (cf. [ASU86]).
However, it is well known that there are deterministic context-free languages which
cannot be generated by an LL(k) grammar for arbitrary k £ IN where IN denotes the
set of natural numbers including zero. Moreover, one has to keep in mind that such
transformations preserve the equivalence of grammars but not the syntactic structure
of the generated strings upon which their semantics is defined. Thus, similar trans
formations of attribute grammars are required. In [Akk86], left factoring is applied to
attribute grammars. In [ASU86J, elimination of left recursion in attribute grammars is
discussed.

Now, we formalize the construction of the top-down parsing automaton of Gq. Later
this automaton will be extended to the attributed top-down parsing automaton for an
attribute grammar with Go as underlying context-free grammar (cf. Definition 5.6).

Definition 2.6 (Top-down parsing automaton)
Let G'o = {N, E, 7r, P, S) be a context-free grammar. The top-down parsing automaton
of G'o is the pushdown automaton

TDA(G0) = (Q,A,r,6,q0,l0iF)

where:

• 0 = {o°^/}U{fla|a€EU{$}},

A = Eü{$},

r=L/?(0)(Go)U{H.5],H5.]},

6 : Q x (E U {$,£}) x T2 —> p(Q x {mod,pop,push} x T) where

(i) Initiation of look-ahead:
%°,a,[-> .S][-> .S]) = {(*a,mo£[- -S])}
for every a £ E U {$}

(ii) Expansion of start productions:
£(<7a,£,[-»• .£][-• -S]) 9 (qa,push,[S -> .et])
for every S —• et £ P, and a £ la(S —> et)

(iii) Expansion of non-start productions:
%„£,[i4-»a.ßa']7) 3 (qa,push,[B -* ./?])
for every B £ N, A -> a £ <*', £ -> /? € P, 7 € T, and a £ la{B -» /?)

(iv) Terminal symbol match:
<$(</„, 6, [v4 -» cv.a a'J7) = {(qh,mod, [A —> a a.a'])}
for every a £ E, A ->• a a a' € P, 7 € T, and 6 € E U {$}

(v) Reduction of non-start productions:
*(</«, c, [B - /i.p -> a.ß a']) = {(7a,pop, [4 - a £.a'])}
for every a £ E U {$}, and B -> <i, .4 -»• et B et' £ P

11

•

(vi) Reduction of start productions:
%$,£, [S -• <*.][-> .5]) = {(q$,pop, [-> 5.])}
for every S —> et £ P

(vii) Final transition:

*(«,«,[-. ÄlH -51) = {(«'.»h 5.])}
(viii) In all remaining cases:

%,*,7i72) = 0

• 7o = [—> .5] and

• P= {?'}• o

The following propositions are well known from the theory of LL grammars.

Lemma 2.1 For every context-free grammar Go, TDA(Gq) is deterministic iff Go is
an LL(1) grammar. O

Theorem 2.2 For every context-free grammar Go, the following equivalence holds:
w £ L(G'o) iff u>$ £ L(TDA(G0)). O

Example 2.1 The attribute grammar which has been sketched in Section 1 is based
on the following LL(1) grammar:

Go = ({5,L,£}, {0,1}, 7t,{h-,:S-> L, tt2 : L-> BL,-k2:L->s,

7t4 : £-+0,tt5 : B -> 1},5).

Its top-down parsing automaton is given by

rz)A(Go) = ((3,A,r,^,70,7o,P)

with the components

• Q = {70^;Wo,?h<?$}i

• A={0,1,$},

• r={[5->.L],[5->L.],...,[ß->l.],H.5],[->5.]},

• ^:(Jx{0,l,$,c} xP-> p(Q x {mod,pop,push} x Y) where

(i) Initiation of look-ahead:
Ä(o°,a,[-.5]H.5]) = {(9.,mod,[-.5])}

for every o 6 {0,1,$}

(ii) Expansion of start productions:
%a,£.H.5]H.S]) = {{ga,push,\S-> .L\)}

for every « G {0, 1,$}

12

(iii) Expansion of non-start productions:
8(qa,e, [5-> .L]~f) = {(qa,push,[L -» .B L\)}
6{q$,£,[S ^> .L]-y) = {(q$,push,[L^ .])}
8(qaie,[L^> .B L]f) = {(qa,push,[B -» .a])}
%,£,[L-4Öi]7) = {{qa,push, [L -> .B L])}
6{q$,e,[L -> ß.L]7) = {(g$,pu£Ä,[L -»- .])}

for every a6 {0,1}, and 7 £ T

(iv) Terminal symbol match:
*fa>,a,[£->.0]7) = {{q^mod^B^O.])}
^ajfl-.lfr) = {(9«,ISfid,[B->l.])}

for every a £ {0,1, $}, and 7 £ T

(v) Reduction of non-start productions:
%01£,[£-ßL.][5->.Z,]) = {(</„, pop, [S-^L.])}
%,£,[i:->ßl.][^ßl]) = {(9a,pop,[L->ßL.])}
%.,£,[£->.][$->.£]) = {(qa,pop,[S ^ L.])}
6(qa,e,[L^.][L^B.L]) = {(qa,pop,[L ^ B L.])}
6(qate,[B^0.][L^.BL]) = {(qa,pop,[L ^ B.L])}
6(qaie,[B-*l.][L-+.BL]) = {(qa,pop,[L-^ B.L])}

for every a £ {0,1, $}

(vi) Reduction of start productions:
«(«,e,[S-»£.][-. .S]) = {(gs.pop.H •?.])}

(vii) Final transition:
*(«,«,[-» 5.][-..S]) = {(9>,pop,H •?•])}

(viii) In all remaining cases:
%,*,7i72) = 0

7o = [—• -S] and

P ={<?/}. O

13

3 Attribute grammars

This section is dedicated to the definition of attribute grammars and their semantics.
First of all, we introduce basic notions from universal algebra which, together with the
context-free grammar, supply the foundation of attribute grammars.

3.1 Universal algebra

In the scope of our paper it suffices to consider only homogeneous, i.e. single-sorted,
algebras.

Definition 3.1 (Algebra)
A set of Operation symbols is a (possibly infinite) countable set ü in which with every
symbol /€fla natural number is associated. This number is called the arity of f. For
every n £ IN, ft(n) denotes the set of all symbols of arity n; the relationship / £ f2(n) is
indicated by /(n). For every set A and for every n £ IN, Ops^n)(A) = {/ | / : An -> A]
denotes the set of all Operations of arity n on A; we abbreviate UnellM Ops^(A) by
Ops(A). Mbreover, if <p : Ü -> Ops(A) such that <p(ft(n>) C Ops^(A), then A = (A,<p)
is called an ü-algebra with carrier set A and interpretation ip. O

Definition 3.2 (Homomorphism)
Let ü be a set of Operation symbols, and let A = (A,(p) and B = (B,if>) be two
Q-algebras. A mapping h : A —> B is called a homomorphism if for every n £ IN,
/ £ Q.(n\ and ai,... ,an £ A, the equation

h(ip(f)(au... ,an)) = ^(/)(Ä(a,),..., h(an))

holds. We also write h : A —> ß. If n = 0, then the above equation reduces to

h(<Af)) = 0(7). O

Definition 3.3 (Term algebra)
For every set of Operation symbols H and for every (arbitrary) set l/, Tq(U) denotes
the set of all finite, well-formed ü-terms (Ü-trees) in which leaves can be labeled by
elements of U. Let X be a countable set of variables. The Ü-term algebra Tq(X)
generated by X is the algebra

Ta(X) = (Ttt(X),ipr)

where

*>t(/)(*i,...,*») = /(*1i •••>*»)

for every n £ IN, / £ ü^n\ and *,,..., tn £ TÜ(X). Tq(X) is freely generated by X, i.e.
for every ft-algebra A = (A,y) and every assignment val : X —> A, there is exactly
one homomorphism val : Tq(X) —»• A such that ya[\x = ml- This property uniquely

14

determines 7^(0) up to isomorphism. 7q(0) is called initial in the class of 17-algebras,
and it is denoted by

7n = (7n,(/?T).

Given an Q-algebra A = (A,ip), an assignment va[: X —> A, and a term i £ Tq(X).
The argument list arg(t) is the duplicate-free list of variables which occur in a left—
to-right scan over the frontier of t, i.e. arg :Tq(X) —> X* is given by

arg = nodup o vor,

where tmr : 7n(X) —• X* and nodup : X* —> X"* are defined inductively by

i>ar(<) =

and

nodup(w) = <

a: if £ = x € X"

var(*i)...uar(*„) if t = f(h,...,tn),n £

£ if W = £

nodup(w') x \{ w = w' x and z does not occur in u/
nodup(w') \{ w = w' x and x occurs in u/.

Let t £ 7Yi(X) and arg(t) = x\...xn. Then the mapping derop(t) : An —> A,
called the derived Operation of £ in .4, is defined as follows: For every ai,...,an €
>4, rferog(<)(ai,...,an) = val(t) where i^a/ : X —> y4 with va/(jt-) = at for every
i £ {l,...,n}. O

3.2 Definition of attribute grammars

Now we extend context-free grammars to attribute grammars in two steps. First, we
augment them by adding an attribute scheme which specifies attributes and semantic
rules. Second, we add an appropriate algebra in which the Operation symbols occurring
in the attribute scheme can be interpreted. Recall that we only consider reduced and
start-separated context-free grammars.

Definition 3.4 (Attribute grammar)
Let Go = (N, E, w, P, S) be a context-free grammar, and let ü be a set of Operation
symbols. Let Inh and Syn be two finite, disjoint sets, and let Att = Inh U Syn.
With each nonterminal symbol A £ N, there is associated a set att(A) of attributes
which is partitioned into two sets inh(A) C Inh and syn(A) C Syn of inherited and
synthesized attributes, respectively. Let the start symbol S havea designated meaning
attribute a0 £ syn(S) and no inherited attributes, i.e. inh(S) = 0. To every production
p = A0 -> w0 Ai wi ... An wn £ P with A0, Au...,An £ N and w0,..., wn £ E*, we
assign the set of inside attributes occurrences

in(p) = {(tf, i) | d £ syn(Ap), i = e or d £ inh(A,). 1 < i < n}

and the set of outside attributes occurrejices

out(p) = {(i). i) | {} £ inh(An), i = £ or d £ syn(Aj), 1 <i <n).

15

For abbreviation, we defineatt(p) = in(p)Ugut(p) to be the set of attribute occun^ences
of p, and we define att(P) = I \r£Patt(p). For each production p £ P, let Rp : in(p) —>
Toioutlp)) be a mapping which assigns to every inside attribute a semantic ruh (more
exactly, the right hand side of a semantic rule). Furthermore, let R = (Rp)p€P. Then
we call the tuple

B = (ü, inh, syn, o~q, R)

an attribute scheme for G'o. If A is an fi-algebra, then

G = (Gq,B,A)

is called an attribute grammar with underlying context-free grammar Gq. O

The notion of inside and outside attributes is accepted from [Eng84]. In our defini-
tion of attribute grammars, semantic rules determine inside attribute values in terms of
outside attribute values, establishing a partition of the attribute occurrences and thus
preventing circular attribute dependencies within single productions. This property
is sometimes called (Bochmann) normal form and can be presumed without loss of
generality, as it is shown in [EF81].

The semantics of an attribute grammar can be defined as follows. For every terminal
string w of the underlying context-free grammar, weconstruct its syntax tree sw, assign
a storage cell to every occurrence of an attribute at every node of sw, and apply the
semantic rules within the context of this tree. Remember that we represent tree nodes
using the Dewey notation.

Definition 3.5 (Attributed syntax tree)
Let G = (Gq,B,A) be an attribute grammar with underlying context-free grammar
Go = (N, E,7r, P,S), attribute scheme B = (Ü,inh,syn,ao, R), and H-algebra A =
(A,tp). Let s £ Tg0 be a syntax tree of Go, and let x be a node of s labeled by
A £ N. The sets inh(x) = {(i, x) \ i £ inh(A)} and syn(x) = {(er, x) \a £ syn(A)} are
called set of inherited attribute occurrences and set of synthesized attribute occurrences
of x, respectively. The sets of attribute occurrences of x and of s are abbreviated by
att(x) = inh(x)Usyn(x) and att(s) = 1\{att(y)\v node of s}, respectively. Assumethat
production p £ P applies at x and that (i?,i) £ in(p) is an inside attribute occurrence
of p. Then (,d,x.i) = /?5((^,x.i)) is the semantic equation for (t?,a;.i) £ att(s) where
Rs((ti, x.i)) is obtained from Rp((-d,i)) by replacing every attribute occurrence (0,j) of
p by the corresponding attribute occurrence (0,x.j) of s. An attribution is a mapping
val : att(s) —» A which satisfies every semantic equation, i.e. for every (i^,x) £ att(s)
the equation vaU(i).x)) = val{RK{[d, x))) holds where val is the unique homomorphism
which extends val. The tuple (s.val) is called an attributed syntax tree of G. O

Since we are only interested in the value of the meaning attribute at the root
(i.e. the transformational approach [EF81]), we associate with an attribute grammar a
st,ring-to-value translation.

16

Definition 3.6 (String-to-value translation)
Let G = (Go,B,A) be an attribute grammar with underlying context-free grammar
Go = (N,E,ir,P,S), attribute scheme ß = (ü,inh,syn,cr0, R), and 17-algebra A =
(A,(p). The string-to-value translation of G is the set

tg = {(WsVal((<Tn.e))) £ L(G0) x A \(s,vaQ attributed syntax tree of w}. O

From the definition of an attribute scheme it follows that every attribute occur
rence of a syntax tree appears on the left hand side of exactly one semantic equation.
However, this does not imply that every attribute value is uniquely defined, because
circularities may occur.

Definition 3.7 (Attribute dependencies)
Let Go = (N, E, w, P, S) be a context-free grammar, and let B = (Ü,inh,syn,a0, R)
be an attribute scheme. Let p £ P be a production of Go. For every inside attribute
(i?, i) £ in(p) and every outside attribute(0,j) £ out(p) which occurs in /?p((i?, i)), we say
that (tf, i) depends on (9,j). The dependency set of(i?, i) is the set Dp((d, i)) C out(p) of
all outside attributes which (d,i) depends upon. The dependency graph DGP of p is the
tuple (DVP, DEP) where DVP = attip) is the set of vertices and DEP = {((0, j),(#,i)) €
out(p) x in(p) \(0,j) £ Z)p((i?,i))} is the set of edges. In an analogous way, we define
the dependency graph DGS of a syntax tree s £ Tg0- An attribute grammar G with
underlying context-free grammar Go and attribute scheme B is called noncircular if
for every syntax tree s £ Tg0, its dependency graph DGS is acyclic. O

Noncircular attribute grammars (also known as well-defined) admit the evalua
tion of every attribute occurrence in a syntax tree; the evaluation can be based on a
topological sort of its dependency graph, thus defining every attribute value uniquely.
In the case of a noncircular attribute grammar for which the underlying context-free
grammar G0 is unambiguous (e.g. an LL(1) grammar), its string-to-value translation
obviously can be regarded as a mapping

tg : L(G0) -• A

with tg(vj) = yal((a0,£)) where (s.val) is the unique attributed syntax tree of w.

Example 3.1 The attribute grammar which was mentioned in the introduction is
based on the following context-free grammar:

Go = ({S,L,B},{0,1},ir,{in-.S ^ L,tt2: L-> B L,w3: L-*£,
tt4 : £^0,7T5 :B-> 1},5).

The attribute scheme

B —(Ü,irih,syn,cro, R)

17

is given by

Ü = {zero(°\decM,inc(l\exp(l\addW},
inh(S) = 0,

inh(L) = inh(B) = {p},

syn(S) = syn(B) = {v},
syn(L) = {l,v},

Cq = V.

For every production p £ P, we represent Rp in the usual way as a set of semantic
rules.

#-, = {(p,l)=dec({l,l)),(v,£) = {v,l)},
R*2 = {{P, 1) = <P. e), (p,2)= dec((p, e)),

(/, £)= mc((l, 2)), (u,e> = add((v, l),(v, 2»},
^3 = {(l,£)= zero, (v,£)= zero},
Rir4 = {(v,£) = zero}, and
#7r5 = {(<;,£>= exp((p,e))}.

We complete the definition of the attribute grammar

G = (G0,B,A)

byadding the SValgebra A = (A,(p) which reflects the intuitive meaning ofall Operation
symbols, based on the carrier set A = IL of integer numbers. For every x, y £ IL, we let

«SS) - x- 1 ^«F)W =*,
V>(mc)(*) = x+li V(««)(*.») = *+y-

Figure 5 illustrates an attributed syntax tree of G together with its dependency graph.
Note that production L —> £ applies at the rightmost occurrence of L. As one can
easily see, the value of the meaning attribute v at the root corresponds to the decimal
value of the binary numeral which constitutes the front of the tree. O

Note that attribute dependencies are defined for attribute schemes without regard-
ing concrete algebras. Thus, when defining the notion of dependency, we consider the
"worst case" in the sense that we view every basic Operation as being strict in each
of its arguments. In fact, in the initial term algebra Tq over the set ü of Operation
symbols every basic Operation is strict. Recall from the introduction that, for technical
convenience, we will consider in our investigation about the combination of top-down
parsing and attribute evaluation only those attribute grammars in which the semantic
domain is an initial term algebra. Thus, our choice of semantic domain fits to the
handling of strictness of basic Operations.

18

0 B 1

•=m \

-1 L 0 0

V4/

Figure 5: An attributed syntax tree and its dependency graph.

19

4 Attribute evaluation during depth-first left-to-
right tree traversal

As discussed in the introduction, we abstract from the parsing problem in this section.
We will construct an attribute evaluation algorithm eval which, for every noncircular
attribute grammar G = (Gq,B,Tsi) and every parse tree s, computes the value of
the designated synthesized attribute at the root of s. Moreover, eval is compatible
with the scanning and parsing of input strings such that it can easily be integrated
into a usual top-down parsing automaton for performing both top-down parsing and
attribute evaluation simultaneously (cf. Section 5).

The algorithm eval is a simple refinement of the well-known attribute evaluation al
gorithm L-eval which is tailor-made for L-attributed grammars (cf. e.g. P2 of [Eng84]).
L-eval consists of a recursive procedure with one parameter of type "node of syntax
tree" and it performs a depth-first left-to-right traversal over the syntax tree. Figure 6
recalls the algorithm in our notational framework. Here val is the unique homomor
phism from Tn(att(s)) to 7q induced by val: att(s) —» Tq.

procedure L-eval (x : node);

begin

let p = Aq —>• Wq A\ vj\ ... An wn be the production which applies at x;

(* Process every successor of x *)

for i = \ to n do

(* Evaluate inherited attributes of x.i *)

for every t £ inh(Ai) do

val((i, x.i)) = val(RA{i, x.i)))
end;

(* Visit zth subtree *)

L-eval (x.i);

end;

(* Evaluate synthesized attributes of x *)

for every a £ syn(Ap) do

vaU(a, x)) = val(Rs((a,x)))
end;

end L-eval.

Figure 6: Attribute evaluation algorithm L-eval.

Let us now discuss the problems which occur when using L-eval for the evaluation

20

of attributes of an arbitrary noncircular attribute grammar which is not L. We consider
the production p = A —• B C D oi some context-free grammar and we assume that
it applies at some node x of the syntax tree sw of w. Let us assume that every
nonterminal symbol is associated with exactly one inherited attribute i and with cxactly
one synthesized attribute er. Let us further assume that the semantic rule of (t,2)
induces the dependency set Dp((i,2)) = {(t,£),(a, l),(cr,3)} as it is illustrated in Figure 7.

Figure 7: Attribute dependencies of (t,2).

Before the first visit of L-eval to node x, the value 2<t>x) of(t, x) is already computed.
Then L-eval computes the inherited attribute of the first son x. 1of x, i.e. the attribute
occurrence (i, x.i), and recursively calls itself to node x.i. If L-eval returns to x, then
the value ^,x.i> of (er,x.i) is known, and L-eval tries to compute the value of the
inherited attribute at x.2, i.e. the attribute occurrence (t,x.2). However, this is not
possible, because this value depends on (er, x.3) which is not yet known. Then we say
that (i, 2) is an open reference of (er, 3) in p, and we say that 2 is an open reference index
0f(<7,3).

Definition 4.1 (Open reference, open reference index)
Let G = (Go,B,Tn) be a noncircular attribute grammar with underlying context-free
grammar Go = (N, E, 7r, P, S), and attribute scheme B = (ü.inh,syji,crQ, R). Let
p £ P be a production, and let (er, i) £ out(p) be a synthesized outside attribute
occurrence of p. The set of open references of (er, i) in p is defined by

0P(((T,i)) = {(L,j)£in(p) \(cr,i)£Dp((i,j)), \<j< i}.

The set of open reference indices of (er, i) in p is defined by

Ip((cr,i)) = {j | (er, i) £ Dp((i,j)) for some (t,j) £ in(p) with l < j < i}. O

Clearly, for every production p, open references and open reference indices can be
detected by means of a simple static analysis. In our example, we have to deal with

21

the following problem: which value should be associated with (i, x.2)? Assume that the
semantic rule of (t, 2) is

(i,2)= f((L,£),g((cr,l),(a,3)),(cr,3))

where / and g are Operation symbols with rank 3 and 2, respectively. Our algorithm
eval implements the following Solution: It associates with (c, x.2) the term

t(L,x.2)= f(t(c,x),g(t{*,x.i)>(cr,x:3)),(cr,x:3)).

That is, the final value of (v, x.2) is only approximated, because there are still occur
rences of(er, x.3) in the term; wealso call fyt(X.2) a schematic approximation. Then, eval
is called recursively to node x.2 and after retUrning to x it has computed the value
t(<r,x.2) of the attribute occurrence (er, x.2). Let us assume that (er, x.2) depends on(t,x.2),
then ^,^.2) contains the tree t{tiX.2) as a subtree, and hence it contains (er, x.3) as a leaf.
Now assume that there is a semantic rule

(L,3)=h((l,£))

in G where h is a unary Operation symbol. Then, in the usual way, eval can associate
the value h(t(ltX)) with (t,x.3). Eventuaily, eval is called recursively to node x.3 and,
after returning to x, the value t^tX^ of(er, x.3) is known.

At this point, the algorithm can further approximate synthesized attributes at open
reference indices of (er, 3). In particular, the value ^^.2) can be further approximated
by replacing occurrence of(er, x.3) by t^,x.3). Finally, eval can compute the value of the
synthesized attribute occurrence at x and finish the recursive call to x.

Note that the computation of the ground term for the designated synthesized at
tribute c0 at the root of the syntax tree may involve several approximation steps. This
phenomenon is illustrated in Figure 8 which shows a syntax tree s and its dependency
graph of some attribute grammar which is not speeified here. We note however that,
since the attribute grammars which we consider are assumed to be noncircular, every
open reference which is involved in the computation of er0 at the root of s will be
resolved if eval returns to the root of s.

Obviously, our algorithm eval assigns to every attribute occurrence either a ground
term, i.e., an element in T&, or a schematic approximation, i.e., an element in Tn(att(s))\
Tq; the latter terms are also called functional terms because they induce derived Op
erations (cf. Section 3). Hence, eval deals with mappings of type att(s) —> Tn(att(s))
which we call intermediate attributions, and it begins with the start attribution valy
which is the intermediate attribution with val<fl({'0,s)) =($,s) for every (^,5) £ att(s),
i.e., val$ is the identity. Intuitively, val^ comprises the worst possible approximation
of every attribute occurrence. Then, during the traversal through s, eval computes
new intermediate attributions and, for every attribute occurrence ($,x) £ att(s), we
can distinguish three cases:

• vai((d,x)) = (i),x): eval did not start yet to compute some value for (tf,x). Note
that the equation really characterizes this Situation, because we are dealing with
noncircular attribute grammars.

22

Figure 8: Repeated approximation during depth-first left-to-right tree traversal.

23

• val({d, x)) £ Tq(oU(s)) \ (Tq U{($, x)}), i.e., val((d,x)) is a functional term which
is not equal to ($,x).

• val((fl<x)) £ Tfi, i.e., val((fl*x)) is a ground term. This represents the final value
in the semantic domain.

Eventuaily, when returning to the root of s, an intermediate attribution valjin is
computed such that valf;„({-d,x}) is a ground term for every ("0,x) £ att(s).

The algorithm eval is obtained from L-eval by inserting behind the recursive call to
the zth son a program piece which refines the approximation of synthesized attributes
at open reference indices of the ith son. Figure 9 shows the algorithm eval.

24

procedure eval (x : node);

begin

let p = Aq —> wq A\ vü\ ... An wn be the production which applies at x;

(* Process every successor of x *)

for i' = 1 to n do

(* Evaluate inherited attributes of x.i *)

for every t £ inhiA;) do

val((i,x.i)) = val(Rs((i,x.i)))
end;

(* Visit ith subtree *)

eval (x.i):

(* Refine approximations at open reference indices *)

for every er £ syn(Aj) do

for every j £ Ip((cr, i)) do

for every d £ syn(Aj) do

val((#,x.j)) = vä(ml((^,x.j)))
end;

end;

end;

end;

(* Evaluate synthesized attributes of x *)
for every er £ syn(A0) do

val((er,x)) = val(Rs((a,x)))
end;

end eval.

Figure 9: Attribute evaluation algorithm eval.

25

5 The parsing—evaluating automaton

In Section 2 we have recalled the concepts of context-free grammar, pushdown au
tomaton, and top-down parsing automaton. The latter automaton model serves for
the deterministic parsing of LL(1) grammars.

In Section 3 we have attached an attribute scheme and an algebra to context-
free grammars thereby defining attribute grammars. Here we extend in a similar way
the pushdown automaton, and thus, in particular, the top-down parsing automaton, in
order to deal with attribute evaluation. The addition to the top-down parsing automa
ton yields the desi"H automaton, called the attributed top-down parsing automaton,
which deterministically performs top-down parsing and füll attribute evaluation for ev
ery noncircular attribute grammar with underlying LL(1) grammar and with an initial
term algebra as semantic domain. It implements the attribute evaluation algorithm
eval as described in Section 4 without storing the syntax tree explicitly.

First of all, however, we have to consider the problem of how to represent attribute
values. The basic idea is to represent (ground or functional) terms by appropriate
graphs which contain special nodes supporting the management of open references.

5.1 Representation of terms by graphs

Definition 5.1 (Representing graph)
Let ü = UnelN ^"* De a set °f Operation symbols. An ü-graph is a labeled, ordered,
directed, and acyclic graph

g = (V,X,succ)

where V is the finite set of nodes (vertices) which is a subset of a countably infinite
universe U of nodes, A : V —*• ü denotes the labeling function, and succ : V —> V* is the
successor function such that A(x) £ ü^ iff |succ(x)| = n. If succ(x) = x\ .. . xn, then
we abbreviate succ^x) = x,; for i £ {1,... ,n}. The set of all Q-graphs is denoted by
DAGq. An O-graph g £ DAGq is said to represent the f2-term t = f(t\,...,tn) £ Tq
(n £ IN) if there is an /-labeled node x of g with no predecessor (called a root) such
that for every i £ {1,..., n}, the subgraph with root succ^(x) (denoted by g[succi(x)])
represents £,. O

So far, it is clear how to represent a ground term which has been computed as the
final value of an attribute. But how do we represent functional terms by graphs? We
recall the Situation where such terms can occur: During the visit of a node x of the
syntax tree with successors x.i,... , x.n, the evaluator may encounter open references
when Computing the value of any inherited attribute occurrence (l, x.i) £ att(s) where
i£ {\,....n}.

This representation problem is solved as follows. Let p be the production which
applies at x, and let t = Rp((t,i)) £ To(out(p)) be the right hand side of the semantic
rule for (t.x.i). From the argument list arg(t) of t, we can extract all attribute occur
rences for which (i,.r.i) is an open reference, by applying a filier Operation: For every

26

set X and predicate b : X —• {true, false}, the mapping filier : X* —> X" is given
inductively by:

filter.(w) = <
£ \{ W = £

x filier (w1) if w = x u/, 6(x) = h'-ue
filterAw') \iw = x w', b(x) = false

Then we define arg.(t) = filier (arg(t)) where bi((d,j)) = true for($,j) £ out(p) iff
j > i. Note that arg.(t) contains an attribute occurrence at most once. If \arg.(t)\ = k,
then (i,i) has to be associated with a function depending on all k attribute occurrences
in this list. For this function, a graph is constructed in which every node representing
an argument (er, j) is labeled by a designated constant Operation symbol nil. Later, this
nil will be replaced by a unary symbol ref, and eventuaily, the successor position of
ref represents the value of this synthesized attribute occurrence. Moreover, there is
an additional root node which is labeled by an Operation symbol app of arity k+l. Its
first successor is the root of the graph representation of t and the other successors are
the representations of the elements in arg.(t).

Example 5.1 Let A —> A B be a production of an attribute grammar. With every
nonterminal symbol there is associated one inherited attribute i and one synthesized
attribute er. Let the semantic rule for (i, 1)be specified as follows:

(i,\)=f((L,£),g((er,l),(a,2)),(a,2)).

Then, arg (Ra^ab{(^ 1))) = (o-, 1)(0", 2). Figure 10 depicts the attribute dependency
graph of a syntax tree with root node x where A —• A B applies twice and the. graph
which represents (i,x. 1.1) and (c, x.i). O

5.2 Attributed pushdown automata

In Section 2 we have introduced the general concept of pushdown automaton, and we
have refined this concept in order to handle top-down parsing of context-free gram
mars; this led to the notion of top-down parsing automata. In Section 3, context-free
grammars have been extended to attribute grammars. In the same way we are now
going to extend the pushdown automata by giving them the capability of Computing
attribute values and representing them by graphs. The resulting attributed push
down automata will be used as attributed top-down parsing automata to compute
the string-to-value translation for any noncircular attribute grammar with underlying
LL(1) grammar.

A pushdown automaton consists of the following components:

• An input tape,

• a pushdown and

27

/

\

l A er t B er

(i,x.\.\): app

((er,x.l.\)) ((cr,xA.2))

graph for(i,x)

((er, X.I)) ((CT, X.2))

Figure 10: Representation of open references.

• a finite control.

This concept is extended to attributed pushdown automaton

• by adding a graph for the representation of attribute values,

• by associating with every pushdown entry a set of registers each of which contains
a pointer to a subgraph of the graph,

• by adding a program störe containing Instructions which manipulate the graph
as well as the registers of the pushdown, and

• by adding a pointer pushdown which is used for intermediate computations.

Figure 11 summarizes the strueture of attributed pushdown automata.

Definition 5.2 (Attributed pushdown automaton)
An attributed pushdown automaton

A = (Aq, ü, act, REG, po)

28

Pushdown automaton Pushdown with registers

Input tape

/
PUSH

c

Program störe Pointer pushdown Graph

Figure 11: Organization of attributed pushdown automata.

consists of a pushdown automaton Aq = (Q, E, T,6, q°, 70, F), a set of Operation sym
bols Ü disjoint from {nil^°\ref^} and {app^ \n > 2}, an assignment of programs
act : T2 —• PGM, a finite set REG of register names, and an Output register p0 £ REG.
The set PGM of programs is given by PGM = (CMD {;})* where the Instruction set
CMD is decomposed into the set of register instructions

CMDReg = {C0PY(i)\i£ {l,2}}U{PUSH(p,i)|p6 REG,i £ {1,2,3}} U
{TOP(p) | p £ REG},

and the set of graph instructions

CMDGraph = {JOIN(fc) | k £ IN} U{MKAPP(n) | n £ IN} U {MKNIL} U
{MKN0DE(/) \f£Ü}U {MKREF(fc) | k £ IN} U
{SUCC(fc) | k £ IN} U {TOPCON(n) | n £ IN}.

An attributed pushdown automaton is called deterministic if its underlying pushdown
automaton is deterministic. The set of pointer pushdowns is the set

PPD = U*,

and the set of register assignments of A is the set

ASSA = {ass | ass : REG - -> U}.

29

Recall that U is the universe of graph nodes. The set of instantaneous descriptions of
A is the cartesian product

IDA = Q x S* x (r x ASSaT x DAGn>

where ü' is the extension of ü defined as follows:

{ Ü^U{niL{0)} ifn = 0
Ü^U{re£^} ifn = l

. üWu{appW} if n > 2.

The transition relation of A

H^C IDA x /£U

is defined as follows: If (q',op,~/') £ %,x,7i72) with q,q' £Q,x £ SU{£}, 71,7-2,7' €
T, op € {mod,pop, push}, then for every u; € £*, o5s1,o352 € ^55^, £ £ (T x j45'.S'.4)"\
and g £ DAGq>

where

and

(q,xw, (7!, 0550(72, gLss2)t,g) r~A (q',w,(',g')

{ (7', 055')(72,055.2)^ if op = mod
[Y, ass')Z if op = pop
(7/,a55/)(71,a551)(72,a552)^ if op = push

(gss',g') = ^[[0^(7172)1(0^1,0552,^). O

As one can see, transitions of an attributed pushdown automaton are performed in
dependency of the present state, the current input symbol and the Upper two pushdown
entries. The transition function of the underlying pushdown automaton determines the
next state as well as the kind of pushdown modification. Furthermore, the program
selected by the upper pushdown entries computes the register assignment of the new
top of pushdown, basing on the graph. For storing graph pointers, it makes use of the
pointer pushdown which is empty at the beginning of program execution.

Next we will define in a bottom-up fashion the semantics of attributed pushdown
automata ending up with the definition of the translation computed by an attributed
pushdown automaton. We start with the semantics of register instructions and graph
instructions and continue with the semantics of programs which was used in the defi
nition of the transition relation.

Definition 5.3 (Instruction semantics)
Let A = (An, ü,act, REG,p0) be an attributed pushdown automaton. The Instruction
semantics of A is the partial function

CA : CMD--* {ASSA x DAGq> x PPD--*ASSA x DAG& x PPD)

30

which, for every assl,ass2,ass3 £ ASSa, g = (V,\,succ) £ DAGq,, x,y,yi,... ,yn £
V, x' £ U \ V, £ £ PPD, i £ {1,2,3}, p £ REG, f £ ü, and k,n £ IN, is defined as
follows:

CaICOPY^Koss^ a552,o553,#,£) = (assl,gss2,assi,g,tl),
C^[J0IN(A:)J(o551,O552,a553,^,Xt/^) = (055^055.2, 0553,(/',T/^),

where g' = (V, X.succ') with succ' = succ[x/yi ... yk_x y yk+l ...yn]
where succ(x) = y\ ... yn,

CafMKAPP(re)](assl, ass7s ass3.g.() = (assl,g^s2,ass3,g,,x'£),
where g' = (V, X'.succ) with V = VU{x'}, and A' = A[x'/opp(n>],

C |̂[MKNIL](055^0552, 0553,5,^) = (assl, gss2,0553,g', x' t\),
where g' = (V, X',succ) with V =VU {x'}, and A' = X[xf/nil{0)],

C^[MKN0DE(/)J(o551,0552,0553,^,^) = (assi, MA2,0553, g', x' f),
where g' = (V, X',succ) with V =VU {x'}, and A' = A[x'//],

Ca|MKREF(k)]fassx. ass7,Q553. q.x y £) = (ass1,ass2,ass3,gf,c^),
where #' = (V, X', succ') with A' = \[succk(x)/ref],
and 5_ucc' = §ucc[succjc(x)/y],

OJPUSH(p, 1)1(055!, 0552, 0553,^,0 = (a551,a552,0553,^,055t(p)c;),
C>ifSUCC(fc)]|(a551, Q55g< ass3, a,x <f) = (055!, 055?, ass-*, q,5tzcci.(x) <f).
C>i[T0P(p)J(a551,055.2,0553,p,x£) = (055^0552,0553[p/x],5r,0, and
C^[T0PC0N(n)J(oM1,a552,a553,5',^yn...i/i f) = (assuass2,ass3,g',y £)

where g' = (\/, A,5_occ') with 5_occ' = 5ucc[x/t/i ... yn]. O

Definition 5.4 (Program semantics)
Let A = (Ao,Ü,act, REG,po) be an attributed pushdown automaton. The program
semantics of A is the partial function

VA : PGM - -h. (A9SJ x ZMGni - -> A55U x ZMGni)

which is given, for every program pgm £ PGM, by

VAlpgm] = OutputA 0J^fpqm] o input .
where the input mapping

inputA : ASS2A x DAGq, -> ASSA x £MGn, x PPD
is defined by

inputA(assi, 055?. q) = (055!, q.s.s?, 055^, 0.g)

for every om^o^ £ ASSa, and (7 € DAGq where assJb(p) is undefined for every
p 6 /?£6'. The Iteration semantics of a program is the partial function

1A : PGM-^ (ASS3A x DAGq, x PPD--+ASS*a x ZMG'n, x PPD)

31

which is defined by

Xa |[eJ(o551. Q55?< Q55. q, () = (assl, ass^, Q55. q. c*) and

lAlCipgm}(assuass2, 055,#,£) = lAh}9m]{^MlCj(assl,ass2,g^s,g,cl)).

for every gissl,ass2,ass £ ASSa, 9 £ DAGq,, £ £ PPD, C £ CMD, and pgm £
PGM. Furthermore, let the Output mapping

OutputA : ASSA x DAGq, x PPD -> ASSA x DAGq,

be given by
Output .(Q55] <Q55?,055. q, C*) = (o55, q)

for every 055x, ass2, ass £ ASSa, 9 € DAGq,, and £ 6 PPD. O

Definition 5.5 (Translation of an attributed pushdown automaton)
Let A = (Ao,Ü,act, REG,po) be an attributed pushdown automaton with underlying
pushdown automaton Aq = (Q, S, T,8,q°,70,F). The translation computed by A is
defined by

ta = {(u>,<7[a55_(po)]) € S* x DAGq, I there are q* £ F and 7 £ Vsuch that
(q°,w,(iro,Qss$)(jQ,assJil),g<d) \-A (qS,£, (l,ass),g)}

where g$ denotes the empty ft'-graph. O

If A is a deterministic attributed pushdown automaton, its translation may be
regarded as a partial function:

TA : T,*--^ DAGq,.

Note that the pointer pushdown only appears as an intermediate storage; it does
not occur in the instantaneous descriptions.

5.3 Attributed top-down parsing automata

For every given noncircular attribute grammar G with underlying LL(1) grammar
G'o, we now want to construct a deterministic attributed pushdown automaton which
parses an input string w% where w £ L(Gq) and simultaneously evaluates the meaning
attribute at the root of the corresponding syntax tree according to the algorithm eval
of Section 4. This automaton will be called an attributed top-down parsing automaton
and will be denoted by ATDA(G). As we have seen in Section 2, the LL(1) property
of G'o guarantees the determinism of ATDA(G). We will slightly deviate from the
algorithm eval as shown in Figure 9 in the sense that we do not refine approximations
of synthesized attributes at open reference indices. Rather we resolve open references,
i.e.. we recompute schematic approximations of inherited attributes at open reference

32

indices. The automaton is constructed in such a way that the pointer to the appro
priate application node is available in this Situation. Trying to follow the algorithm
of Figure 6 would result in the repeated insertion of pieces of trees between the appli
cation node and its first son. By resolving open references, the pieces of trees which
emerge during the tree traversal, can easily be built on top of the application node.
Thus, the attributed top-down parsing automaton implements the algorithm eval in
which the for Statement below the label (* Refine approximations at open reference
indices *) is replaced by the program piece which is shown in Figure 12.

(* Resolve open references *)

for every er £ syn(Aj) do

for every (i,j)£ Op((er,i)) do

val((t, x.j)) = val(val((i, x.j)))
end;

end;

Figure 12: Modifikation of eval.

To define ATDA(G) = (Ao,ü,act, REG,po), we have to construct its components
in dependency of the given attribute grammar G.

• The parsing part has already been investigated: As the underlying pushdown
automaton Aq, we choose the top-down parsing automaton TDA(Gq).

• The set Ü of Operation symbols which label the graph's nodes, is exactly the set
of Operation symbols used in the specification of the semantic rules.

• Since the registers receive pointers to attribute values, the set REG of register
names equals the set of all attribute occurrences of the productions.

• In particular, we identify the Output register po with the meaning attribute oc
currence (er0, £) of the start symbol.

• Next we have to construct an assignment act of programs, i.e., depending on the
upper two LR(0) items on the pushdown, we have to specify the program which
is to be executed. We distinguish between the same cases as in the construction
of the top-down parsing automaton (cf. Section 2):

(i) Initiation of look-ahead:
According to the definition of attribute grammars, the start symbol has
no inherited attributes. For this reason, no action is necessary; that is.
act([^.S][->.S]) = £.

33

(ii) Expansion of start productions:
In analogy with case (i).

(iii) Expansion of non-start productions:

\[A-> a.Ba' ass

push
[B - .ß] ass'

[A^a.Ba'] 055j

Assume that i = \filterrM(a)\ + 1» then, in order to evaluate every in-

herited attribute i £ inJi(B). we compute (t, i) using the semantic rule
(c,i) = ß^aßa'K^O)- The resulting ground or functional term is rep
resented as a subgraph of the graph, and a pointer to its root is stored in
the new register assignment ass' as oss'((l,£)). Open references are handled
by creation of an app node as described in Section 5.1.

(iv) Terminal symbol match:

[4 —»• a.a a'] ass^

mod
[A —> a a.a'] ass

Because terminal symbols do not have attributes, we only have to take over
the register assignment, i.e., 055' = 055].

(v) Reduction of non-start productions:

[B - ß.]

[A^a.Ba']

Ö55i

assr

pop

[A-^a B.a'] ass

Computing the new register assignment 055' involves four steps:

(1) Every attribute value of production A —> a B ex' which has been com
puted already and which has been stored in ass2, is copied into ass'.

(2) Since the inherited attribute values of B stored in ass^ still may exhibit
open references, they are also transferrred into ass'.

(3) Every synthesized attribute er £ syn(B) is evaluated using the semantic

34

rule (er, £)=• RB^ß((er,£)). At this point, open references can not occur.
Afterwards, the attribute value is stored as ass'((cr, i)) where we again
assume that i = \filter (a)\ + 1.

(4) The value of every synthesized attribute er £ syn(B) (which is known
now) has to be substituted, if necessary, at the corresponding argument
position of every open reference (t, j) £ Oa~q Ba'((c, z)).

(vi) Reduction of start productions:

[5 - a.} Q55t

[->.£] ass2

pop

[-5.] ass'

Since we are only interested in the value of the meaning attribute cr0, we
compute its value using the semantic rule (ctq,£) = Ps_a((<T0,£)), and we
störe it as a_ss'((ao, £)).

(vii) Final transition:

S.]

•s\

ass.

ass2

pop

S.} ass

In this case, we only have to copy Q551((crn.e)). the meaning attribute value,
intO Q55/((<7n.£)).

(viii) In all remaining cases:
No action is necessary because the top-down parsing automaton performs
no transition.

According to this informal explanation, weare now going to construct an attributed
pushdown automaton for every noncircular attribute grammar with underlying LL(1)
grammar. The code generation is done by appropriate compilation Schemata which
build up the programs. Program pieces are joined by means of a concatenation Operator
O which is defined as follows: For every finite ordered index set / = {ii,...,in} and
every /-indexed sequence (u>,),€/ of words over a given aiphabet,

Qwt = wi} ...wtn.
ie/

If the ordering of / is not given explicitly, it can be chosen arbitrarily.

35

Definition 5.6 (Attributed top-down parsing automaton)
Let G = (Gq,B,Tq) be a noncircular attribute grammar with underlying LL(1) gram
mar Go, and attribute scheme ß = (ü,inh,syn,a0, R). The attributed top-down pars
ing automaton of G is the attributed pushdown automaton

ATDA(G) = (A0,ü,act,REG,po)

which is given by:

• A0 = TDA(Gq),

mact-.r2^ PGM where

(iii) Expansion of non-start productions:
act([A -• a.B o/]7) = InhAttriA ->aBa', \filtercN(a)\ + 1)
for every B£N,A-^aBa'£P, and 7 £ F

(iv) Terminal symbol match:
act([A -> a.a a']j) = C0PY(1);
for every o £ E, A -> a a a' £ P, and 7 £ T

(v) Reduction of non-start productions:
act([B ->ß.][A ->a.Ba']) =

C0PY(2); InhCopy(B,i)
SynAttr(B -> ß, i) OpenRef(A -* a Ba', i)

for every B->ß,A->aBa'£P where i = \filter N(a)\ + 1
(vi) Reduction of start productions:

act([S -• «.][-> -S]) = ExpTrans(Rs^a((cr0,£)),(crQ,£), 0) T0P((<70,g));
for every S —> a £ P

(vii) Final transition:

ocl(H &][- -51) = PUSH(((70,£), 1);T0P(((70,£));
— In all remaining cases:

acL(lil2) = £

• REG = att(P), and

• Po = (<70, c). O

The compilation scheme InhAttr generates code which evaluates the inherited at
tribute occurrences of an expanded nonterminal symbol.

Scheme 5.1 (Evaluation of inherited attribute occurrences)
The compilation scheme

InhAttr : P x IN - -• PGM

is given by

InhAttr(p.i) = Q RuleTrans(pJi.i))

for every p = A0 —> w0 Ax wx . .. An wn £ P, i £ {1, 71}. O

36

InhAttr uses the scheme RuleTrans which compiles a semantic rule and which, in
its turn, calls ExpTrans to process right hand sides. In this Situation, we have to deal
with open references.

Scheme 5.2 (Application of semantic rules)
The compilation scheme

RuleTrans : P xgtt(P)-^> PGM

is given by

RuleTrans(p.(i9. i)) =

if i > max{j \(9,j)£ Dp((i9,i))} then

(* No open reference *)

ExpTrans(t,(d, i), 0) T0P((tf,£));
eise

(* At least one open reference *)

MKAPP(|or£.(0| + l);TOPp,£»;
ExpTrans(t,(d, i),0) PUSH((tf, e),3); J0IN(1);

endif

for every p £ P, (ti, i) £ in(p), and for t = Rp((ti, i)). O

When compiling the right hand side of a semantic rule, we have to keep track of
open references. For this purpose, ExpTrans is provided with a third parameter A
being the set of all attribute occurrences for which we have already created a nü node.
If we encounter such an attribute occurrence, then we only have to push a pointer to
the corresponding successor of the opp node. The successor position is given by the
partial function

argpos : att(p) x att(p) >IN

which is defined by argpos ((0,j),(d,i)) = k iff arg(Rp((d,i))) = w(0,j)w' such that
k = \w\ + 1.

Scheme 5.3 (Compilation of right hand sides)
The compilation scheme

ExpTrans : Tq(oü(P)) x att(P) x p(att(P)) - -> PGM

is given by

ExpTrans(c,(d, i), A) =

MKNODE(c);

ExpTrans(f(tl,...An),(i)a),A) =

37

Q ExpTrans (th(d,i),AU \J Arg.(tk)) MKNODE(/);TOPCON(n);
j=i V k=i *)

ExpTrans((Q, j),(tl) , i), A) =

if i = £ or j = £ or i > j then

(* Value is known *)

PUSH((0,j),l);

elsif (9,j)£ A then

(* nil node has been created *)

PUSH((i9, £), 3); SVCC(argposr((0,j),(ti, i)) + 1);
eise

(* Value is unknown *)

MKNIL;PUSH((i^e),3);J0IN(|/l| + 2);
endif

for every c £ ß<°>, n> 1, / £ 12<n>, U,...,tn£ Tq(oU(P)), (tf, i),(0,j) £ att(P), and
.4 C att(P). For every t £ ToiattiP)), and every i £ IN, Arg.(t) denotes the set of all
elements of the corresponding argument list arg.(t). O

When reducing a non-start production, the code sequence generated by InhCopy
copies all inherited attribute values of the reduced nonterminal symbol because these
may be required later again.

Scheme 5.4 (Copying inherited attribute values)
The compilation scheme

InhCopy : N x IN - -> PGM

is given by
InhCopy(B,i)= Q (P\JSH((i,£),\);TO?((c,i));)

lEinhlB)

for every B £ N, i £ IN. O

After that, the synthesized attributes are evaluated (SynAttr) and open references
are resolved (OpenRef), if necessary.

Scheme 5.5 (Evaluation of synthesized attributes)
The compilation scheme

SynAttr : P x IN - -• PGM

is given by

SynAttrjB -> ßj.) = Q (ExpTrans(RB^0((cr, e)),(a,e\ 0) T0P((<r,z)):)
<?€syn(B)

for every B -• 3 £ P. i £ IN. O

38

Scheme 5.6 (Resolving open references)
The compilation scheme

OpenRef : P x IN--> PGM

is given by

OpenRef(p,i) = Q Q (?JJSH((er,i),'S);?\JSE((t, j),3);
<r<=syn(A,)(t,j)€Op(((r,i))

MBEF(argposr((cr,i),(i,j)) + 1);)

for every p = Aq —> wq Ai w\... An wn £ P, i £ {1,... ,n}. O

Now, we are able to verify the construction of our attributed top-down parsing
automaton by comparing its translation relation to the string-to-value translation of
the attribute grammar.

Theorem 5.1 (Correctness of construction)
For any noncircular attribute grammar G = (G0,B,Tq) with underlying LL(1) gram
mar Go, the following equation holds:

rG = term o tATda(G)

where

term : DAGqi >Tq

is given by

f term(g[succi(r)]) if X(r) £ {app,ref}
term(g) = < fUermig^ucc^r)]).... ,term(g[succn(r)])) if A(?-) = f £ Ü^

{ and n £ IN

for every Q'-graph g = (V, X,succ) £ DAGqi with exactly one root r. O

Example 5.2 For the attribute grammar G described in Section 3, the attributed
top-down parsing automaton ATDA(G) = (An* Ü. act, REG* pn) looks as follows:

• Aq = TDA(Gq) (cf. Section 2),

• Ü = {zero^,dec^,inc^,exp^,add^},

• act : T'2 -> PGM where

(iii) Expansion of non-start productions:
act([S -> .L]-y)

39

= InhAttriS -> L,\)
= RuleTjwis(S—> L,(p,\))
= MKAPP(2);T0P((p,£));

ExpTrans(dec((l, l)),(p, 1), 0)
PUSH((p,e),3);J0IN(l);

= MKAPP(2);T0P((p,e));
MKNIL;PUSH((p,£),3);JOIN(2);MKNODE(o,ec);TOPCON(l);
PUSH((p,£),3);J0IN(l);

gct([L-> .B L]7)
= InhAttriL^ B LA)

= RuleTransiL -> B LAvA))
= ExpTrott5((p,4(p,l),0)TOP((p,g));
= PUSH((p,£),l);TOP((p,£));

ocl([L -• ß.L]7)
= PUSH((p,e), l);MKNODE(o'ec);TOPCON(l);TOP((p,£));

for every 7 £ T

(iv) Terminal symbol match:
ocl([J5 -• .0)7) = C0PY(1);
act([B^ .1]7) = C0PY(1);

for every 7 E T

(v) Reduction of non-start productions:
act([L^ BL.][S-*.L])

= C0PY(2); InhCopy(L,\) SynAttr(L -> B L, 1)
OpenRef(S -> Z,,l)

= C0PY(2);PUSH((p,£), l);T0P((p, 1));
ExpTrans(inc((l, 2)),(/,g), 0)TOP((/, 1));
ExpTrans(add((v, \),(v,2)),(v,e), 0) T0P((u, 1));
PUSH((/, 1), 3); PUSH((p, 1), 3);MKREF(2);

= C0PY(2);PUSH((p,£), l);T0P((p, 1));
PUSH((/,2),l);MKN0DE(mc);T0PC0N(l);T0P((/, 1));
PUSH((^l),l);PUSH((i;,2),l);
MKN0DE(oo,o,);T0PC0N(2);T0P((t;,l));
PUSH((/, l),3);PUSH((p,l),3);MKREF(2);

od([L^ ßL][L^ B.L])
= C0PY(2);PUSH((p,4 l);T0P((p,2));

PUSH((/, 2), 1); MKNODE(mc); T0PC0N(1); T0P((/, 2));
PUSH((u,l),l);PUSH((i;,2),l);
MKN0DE(oo^);T0PC0N(2);T0P((i;,2));

act([L-+ .][£-•.£])
= C0PY(2);PUSH((p,£),l);T0P((p,l));

MKN0DE(^ero);T0P((/, 1)): MKNODEf zero); T0P((t>, 1));
PUSH«/, l),3);PUSH((p, 1),3);MKREF(2);

act[[L^.][L^B.L])

40

= C0PY(2);PUSH((p,e), l);T0P((p,2));
MKNODE(zero); T0P((/, 2)); MKNODE(zero); T0P((z;, 2));

act([B — 0.][L -+ .B L])
= C0PY(2);PUSH((p,4 l);T0P((p, 1));

MKN0DE(zero);T0P((v, 1));
act([B^> l.][L-> .BL])

= C0PY(2);PUSH((p,4 l);T0P((p, 0);
PUSH((6, £), 1);PUSH((p, £), 1);MKNODE(exp);
TnPC0N(2);T0P((u, 1));

(vi) Reduction of start productions:
act([S -• £.][-> .S])

= ExpTrans((v,l),(v,£),fb)TOP((v,£));
= PÜSH((t;,l),l);T0P((t;,£»;

(vii) Final transition:
od(H &][-> .S]) = PUSH((ü,4 \);T0?((v,£));

• REG = att(P) = {(ti,i)\ti £ {p,l,v},i£ {£, 1,2}}, and

• PO =(cr0,£) = (v,£).

Figures 13 to 15 illustrate the computation of the string-to-value translation for the
input string 1$. The registers (attribute occurrences) of each pushdown entry are
represented by the corresponding attributed production where recent evaluations result
in adding a pointer to the graph. O

41

State Input

q\

<7i

<?i

<7i

Register pushdown

[-.5] SO

H-5]

H.5] sD

[-».5]

[5 - .1] ößb
[-»•si

H-S]

[L -> .ß i]

[S-.Z,]

.5]

.5]

[B-.1] 1

1

[Z, -» .ß L\

[S -» .L]

H-S]

H -5]

Figure 13: Computation protocol of ATDA(G).

42

Graph

qpp

dec

mt

app

dec

nil

State

9$

9$

<7$

<7$

Input Register pushdown

[*-»!•]
^2P

i
[L -» .ß I]

[5 - .£•]

H.5]

H.5]

[L -» ß.Z,]

[5 - .L]

H.S]

[-».5]

[£•-•]

U^l 1 1

£

[L -> ß.i]

[5 -.L\

H-SJ

H -s]

[L-* B L]
ULLLL

[S -> .L]

H.5]

H -s]

Graph

qpp

dec

7ll7

dec

exp

app

nil

exp dec

app

dec

nil

exp dec

app

dec

nil

zero zero

Figure 14: Computation protocol of ATDA(G) (continued).

43

State

<7$

Input Register pushdown

[5 -» L.\

[-».S]

[-»•5]

[-5.] *D

[-».$]

Graph

add

exp dec

app zero

dec

dec

ref
T
ine

:ero

exp dec

app zero

ref

nie

zero

dec

add

exp dec

app zero

ref
TT
ine

zero

Figure 15: Computation protocol of ATDA(G) (continued).

44

6 Conclusions

Attribute grammars are a useful and intuitively appealing method for specifying the
semantics of context-free languages. We have presented an aigorithm which is able to
evaluate all attribute occurrences of a syntax tree during a single top-down left-to-
right treewalk. This aigorithm was implemented by extending the top-down parsing
automaton of the underlying context-free grammar to a parsing-evaluating automa
ton, called attributed top-down parsing automaton, which performs both parsing and
attribute evaluation simultaneously.

There are some optimizations and extensions of our approach which one can think
of in order to improve both emciency and Computing power:

•

•

The present version of our aigorithm computes the value of every attribute occur-
rence of the current production. Instead, we could conflne ourselves to evaluate
only the useful attribute occurrences, i.e. those whose values contribute to the
value of the meaning attribute at the root of the tree. In [Saa78], this optimiza-
tion has been formalized for the Kennedy-Warren aigorithm [KW76] and it has
been called the output-oriented approach.

Note that the set of all useful attribute occurrences of the syntax tree can not be
determined statically at compile-time because it depends on the composition of
the tree. Instead, only an upper-bound estimation is possible.

In order to augment the set of all context-free languages that can be parsed
with our method, one could take into consideration to use bottom-up (or: LR)
parsing. (Recall that the set of all languages generated by LL grammars is
properly contained in the set of all languages generated by LR(1) grammars.)
In [AMT90], one can find a survey of the various subclasses of L-attributed
grammars for LR parsing.

45

References

[AkkS6] Rieks op den Akker. Deterministic Parsing of Attribute Grammars, Part 1:
Top-Down Strategies. memorandum I F-86-19, Onderafdeling der Informat-
ica, Technische Hogeschool Twente, 1986.

[AM91J Henk Alblas and Bofivoj Melichar, editors. Attribute Grammars, Appli
cations and Systems (SAGA), volume 545 of Lecture Notes in Computer
Science. Springer-Verlag, June 1991.

[AMT90] Rieks op den Akker, Bofivoj Melichar, and Jorma Tarhio. The Hierarchy ol
LR-Attributed Grammars. In Pierre Deransart and Martin Jourdan, editors,

Attribute Grammars and their Applications (WAGA), volume 461 of Lecture
Xotes in Computer Science, pages 13-28. Springer-Verlag, September 1990.

[ASU86] Alfred V. Aho. Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley. 1986.

[Boc76] Gregor V. Bochmann. Semantic Evaluation From Left to Right. Communi
cations of the ACM 19(2):55-62, February 1976.

[CM79] Laurian M. Chirica and David F. Martin. An Order-Algebraic Definition of
Knuthian Semantics. Mathematical Systems Theory, 13(l):l-27, 1979.

[DJ90] Pierre Deransart and Martin Jourdan, editors. Attribute Grammars and
Their Applications (WAGA), volume 161 of Lecture Notes in Computer Sci
ence. Springer-Verlag, September 1990.

[DJL88] Pierre Deransart. Martin Jourdan, and Bernard Lorho. Attribute Gram
mars: Definitions, Systems and Bibliography, volume 323 of Lecture Notes
in Computer Science. Springer-Verlag, August 1988.

[EF81] Joost Engelfriet and Gilberto File. The Formal Powerof One-Visit Attribute
Grammars. Acta Informatica, 16(3):275-302, 1981.

[Eng84] Joost Engelfriet. Attribute Grammars: Attribute Evaluation Methods. In
Bernard Lorho, editor, Methods and Toolsfor Compiler Construction, pages
103-138. Cambridge University Press, 1984.

[EV86] Joost Engelfriet and Heiko Vogler. Pushdown machines for the macro tree
transducer. Theoretical Computer Science, 42:251-367. 1986.

[Knu68] Donald E. Knut.h. Semantics of Context-Free Languages. Mathematical
Systems Theory, 2(2):127 115. June 1968.

[Knu7l] Donald E. Knutli. Semantics of Context-Free Languages: Corrertion. Math
ematical Systems Thiory. 5(1):95- 96. June 197 1.

46

[KW76] Ken Kennedy and Scott K. Warren. Automatic Generation of Efficient Eval
uators for Attribute Grammars. In Srd ACM POPL, pages 32-49. ACM,
January 1976.

[LRS74] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed translations.
Journal of Computer and System Sciences, 9(3):279-307, December 1974.

[Saa78] Mikko Saarinen. On Constructing Efficient Evaluators for Attribute Gram
mars. In G. Ausiello and C. Böhm, editors, 5th ICALP, volume 62 of Lecture
Notes in Computer Science, pages 382-397. Springer-Verlag, July 1978.

47

Liste der bisher erschienenen Ulmer Informatik-Berichte:

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe:
Instance Complexity.

91-02 K. Gladitz, H. Fassbender, H. Vogler:
Compiler-Based Implementation of Syntax-Directed Functional Programming.

91-03 Alfons Geser:

Relative Termination.

91-04 Johannes Köbler, Uwe Schöning, Jacobo Toran:
Graph Isomorphism is low for PP.

91-05 Johannes Köbler, Thomas Thierauf:
Complexity Restricted Advice Functions.

91-06 Uwe Schöning:

Recent Highlights in Structural Complexity Theory.
91-07 Frederic Green, Johannes Köbler, Jacobo Toran:

The Power of the Middle Bit.

91-08 V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano,
M. Mundhenk, M. Ogiwara, U. Schöning, R. Silvestri, T. Thierauf:
Reductions to Sets of Low Information Content.

92-01 Vikraman Arvind, Johannes Köbler, Martin Mundhenk:
Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets.

92-02 Thomas Noll, Heiko Vogler:
Top-down Parsing with Simultaneous Evaluation of Noncircular Attribute Grammars.

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber: Fakultät für Informatik

Universität Ulm, Oberer Eselsberg, W-7900 Ulm

