
Universität Ulm /nönft

Fakultät für Informatik

Consistency in Stochastic Networks

Hermann von Hasseln

Laura Martignon

Universität Ulm

Nr. 92-09

Ulmer Informatik-Berichte

November 1992



Consistency in
Stochastic Networks

Hermann von Hasseln and Laura Martignon

University of Ulm
Department of Neural Information Processing

Oberer Eselsberg,W-7900 Ulm(Donau)

ABSTRACT

Stochastic networks are given by graphs, whose vertices (nodes,
neurons or spins) can take one out of a finite number of states at
any given time. The way each Vertex changes its State over time
is determined by the edges connecting it with other vertices. The
edges represent probabilistic dependencies. Updating is usually
performed in a parallel or sequential way.
Stochastic networks are used to model expert sytems; in this
context confidence numbers are given as dependencies between
vertices and the problem is to see, to what extent they are sto-
chastically consistent. Given a graph and a set (or subset) of con
fidence numbers, we give a procedure that, starting from these
confidence numbers, leads to local characteristics which are con
sistent with the graph.
KEYWORDS: Stochastic networks, Markov networks, updating,
Gibbs distribution, confidence numbers, local characteristics.



0 Introduction

Stochastic networks have been proposed asexact inferencemachines in expert
Systems dealing with uncertain reasoning by Pearl and his school [4, 16, 17].
When modellinga real life Situation into a Markov or Bayes network (see [17])
one of the problems is that the confidence numbers describing the dependen
cies between facts are obtained statistically from experiments and may have
little to do with exact probabilistic dependencies. The dilemma of establis-
hing criteria for the consistency of confidence numbers is of epistemological
nature. Choosing stochastic networks as modeis of reality means that we are
(explicitly or implicitly) assuming that every phenomenon we are treating
can be described in terms of a certain "expected value" associated with it.
This means that our Systems are governed by probability distributions (and
therefore allow no "dissipation" or "contraction") and that consistency of
data has to be defined as stochastic coherence or compatibility with those
probability distributions. In this paper we propose a natural definition of sto
chastic consistency of confidence numbers and introduce an algorithm that
corrects inconsistent data, while producing coherent stochastic modeis.
Section 1 is an overview of sequential and parallel updating in Markov net
works. We present a modification of the Gibbs sampler introduced by Geman
and Geman [5] and give a new, short proof of their theorem on stochastic
relaxation. We also prove that parallel and sequential updating are equiva-
lent in Markov networks. Section 2 is devoted to the question of consistency
of confidence numbers. Consistency is defined in terms of local characteri
stics and the Confidence Correcting Algorithm we introduce, is a strongly
ergodic inhomogenous Markov chain, whose convergence is guaranteed by
theorems on positive matrices. In the case that a given set of confidence
numbers is already consistent, the algorithm coincides with the Gibbs samp
ler. Section 3 is an excursion into another field of application. We propose
Markov networks as modeis of (biological) neural networks and the Confi
dence Correcting Algorithm as a global learning process, where the task is
the adaptation to a new edge structure of the underlying graph.



1 Updating in Markov Networks

Let A= {1,..., N} and assume that each t GArepresents a vertexin a graph
G. The graph G is determined by the vertices numbered 1 through N and a
set of edges connecting some pairs ofvertices. G is fully interconnected if
each pair of vertices of G is connected by an edge.1
Throughout this article, we will assume that G is simply connected (or path
connected). This means that foreach pair t, j in Athere is a path connecting
i with j, where a path is a union ofedges tlj, fcife, ••-j^n-ii-
We assume that each vertex can be in one out of a finite number of states.
To simplify matters we will assume that there are only two possible states,
namely 0 and 1 (others prefer to call them +1 and —1, or "on" and "off").
Each arrangement of O's and l's on the vertices of the graph will be called a
configuration and Ct will denote the set of all configurations on G. By X{
we denote the outcome function from Ü in {0,1}, mapping configuration u>
onto its value cj,- at the vertex z.

Definition 1 We say that a probability measure

fi: V{ü) -> iß*

defines a stochastic network on G if:

1. ß(u) > 0 for every w6fi

We say that \i defines a Markov network with respect to the edges of G if

2. Pr(xi = u)i \ Xj = UjJ ^ i) =
Pr(x{ = Ui | Xj = ujj, for all j € A such that there is an
edge connecting i with j),
for x = (xi,..., xn) and i £ A.

As usual, Pr(A \ B) denotes the conditional probability of A given B.
Observe that if \i satisfies Condition 1 only, it has no numerical connection to
the graph. On the other hand, if the graph is fully interconnected, Condition
2 is trivially satisfied by any // satifying Condition 1.
In the theory of Markov chains knowledge on the dependence of a given time

lIf we make no further specification an edge will always be an undirected edge.



Figure 1: A fully interconnected graph of four vertices

Figure 2: The Symmetrie cycle of four vertices

instance upon the whole past is equivalent to knowledge on its dependence on
the immediate predecessor. This equivalence is called the one-sided Markov
property. Clearly (see for instance [8], Prop. 12.4.) every Markov chain
with a strictly positive invariant distribution satisfies the two-sided Markov
property: knowledge on the dependence ofa timeinstance upon a set of time
instances containing it, is equivalent to knowledge on its dependence upon
the preceding and following time instances. In stochastic networks which
are not fully interconnected (i.e., strict Markov networks) Condition 2 is a
generalization of the two-sided Markov property.

1.1 The characterization of Markov Networks

Consider a graph G consisting of four vertices 1,...,4. We maintain the
assumption that these vertices can take only two possible states, namely 0
and 1. The set of configurations Ü can be viewed as the set {0, ...,15},
written in binary form. We assume now that G is fully interconnected as
in Figure 1. Then, of course, any strictly positive normalized vector \i =
(/i0, •••, ^15) determines a Markov network on G since Condition 2 of Def. 1
is trivially satisfied.
If we omit the two diagonal edges and consider G as represented by Figure
2 then, for instance:

Pr{xx = 0 | x2 = 0,x3 = 0,x4 = 0) = Pr(xx = 0 | x2 = 0,x3 = 0)



and so ß has to satisfy

/j(oooo) /j(oooo) +m(oooi)
^(0000) + //(1000) " ^(0000) + ^(1000) + ^(0001) + //(1001)

A computation shows that \i given by

H =

(0.02721,0.03161,0.09483,0.05537,0.09499,0.11035,0.09033,0.05274,
0.04296,0.05741,0.14970,0.10054,0.02342,0.03131,0.02228,0.01496)

respects the edge structure of this graph and therefore defines a Markov net
work. (Remark: Thesenumbers were obtained using the procedure described
in Section 2.)
Apparently, it was Dobrushin [3] who first conjectured that probability mea-
sures defining Markov networks are given by Gibbs distributions. In a fa-
mous and yet unpublished paper of 1968 [9] Hammersley and ClifFord proved
that Markov networks are characterized as Gibbs distributions determined

by neighbor potentials (see for example [8]). In what follows, we present a
sketch of this characterization.

The edges of the graph define a system Af of neighborhoods in A given by
Ni = {j | there is an edge connecting i with j}.
These neighborhoods are Symmetrie in the sense that i € Nj ifF j 6 N{. A
subset C of A is called a clique if every pair {i, j} contained in C satisfies
i € Nj and j € N{.
A potential U on A is a family {Ua : A C A} of funetions Ua : ^ —• R with
the property that Ua{u) = Ua(w*) if wt- = w/,- for all i G A. The energy Hu
of the potential U is given by Hu = Eaca Ua- The potential U is said to be
normalized if wt- = 0 for some i € A implies C/a(w) = 0 . If Af is a system of
neighborhoods on A and C denotes the set of all cliques in A, a potential U
is called a neighbor potential if Ua = 0 whenever A &C.
In the terminology of neighborhoods Condition 2 in Definition 1 now reads

Pr(x{ = u{ | Xj = UjJ ^ i) = Pr(xi = w,- | Xj = u)jtj € N{).

The number Pr(xi = w* | Xj = UjJ ^ i) is called the local characteristic
of the vertex i 6 A evaluated at u) and is denoted by //A(w). The funetions



/zA are the local characteristicsof the graph. Using these symbols, Condition
2 is expressed by /zA = fr \
The theorem of Hammersley and ClifFord states that if G is a graph on A
with a neighborhood system M then \i defines a Markov network on G ifF \l
is given by

M«) =je**4 (1)

where Z = £w exp(Hu(u)) and /fo is the energy of a neighbor potential
U. If one makes the requirement that U is a normalized potential then U is
uniquely determined by \l and it is called the canonical potential associated
to fi. Observe that if the graph is fully interconnected, the edges loose their
significance (constraining p, to satisfy Condition 2 of Definition 1) but it still
makes sense to speak of energy and potentials.
In accordance with the terminology stemming from Statistical Mechanics a
measure given by the expression in (1) as the normalized exponential of an
energy is called a Gibbs measure or Gibbs distribution, Hu is also called
a Hamiltonian and Z is the partition function.

1.2 Updating

Given a Markov network (AjA^ft,^), we begin by describing a stochastic
sequential updating on f2. Our treatment is inspired by the beautiful con-
tribution to the theory of the Boltzmann machines by P.Mazaika in [14].
Starting with any probability distribution on the space Cl we introduce a
Markov chain over the sequence of time instances, whose "states" are the
configurations of Cl and whose entries are the transition probabilities bet-
ween pairs of configurations. This is the analogon to the random sequential
updating of the Boltzmann machine [1] and corresponds to a modified Ver
sion of the Gibbs sampler introduced by Geman h Geman in [5]. We begin
with a strictly positive probability distribution on A, which we denote py
p. This probability distribution represents the frequeney with which we will
visit each vertex of A during the updating process.
We are now ready to define the following transition probabilities on the space
Ü of all configurations: The probability of going from a configuration w to
another configuration w/ is zero if they difFer in more than one component.



If they only difFer, say, in the i'th component then

Finally

Pr(uj -> uf) = p(i)Pr(xi = wt/1 Xj = w,-/ = WjJ GNi)

= p(»>?V) (2)

Pr(w->w) = l- X) P(0^K*< = W.7 l*i=Wj' = «i»i€^) (3)

Observe that if u and ul difFer only in the i'th component, we have

/ i>th . \
Pr(u - w/) = p(i)- ^ —- ^ -. (4)

/i(u>i,..., Wj /,...,Wjv) + ^(Wi,..., u>t-,...,u>N)

The second term in this equality is

jf(w)
e

P(*) ei/(a;/) +e#(ü/) "* PW 1+e#(u/)-tf (u//)

= P(*)1+eAff(u;,a,/r ^
The last expression is given by the selection probability p(i) multiplied by
the Fermi function calculated in A^(w,w/). Thus, in the case of configurati
ons difFering in one component we recognize in eq.(5) the expression for the
Glauber dynamics [6]. A word should be said about detailed balanee in
this context. The property of detailed balanee is expressed by the equation

Pr(u -> u!)p(lj) = p(ul)Pr(ojl -> u) (6)

which is always satisfied in this network, as an easy computation shows. It
is interesting to stress that this is in fact true for any Markov network, re-
gardless of the properties of H. If H is given for example by H(u) = £ü>«7o>,
where J is a matrix, any possible asymmetry of J does not alter detailed
balanee, as the energy is always Symmetrie. This point is discussed further
in Section 3.

We denote by U the updating 2^ x 2^ matrix determined by the entries
(£4//,u/) = Pr(u>t —> w). This transition matrix is positive, stochastic, irre-
ducible and even primitive. It is irreducible because we can go from any u>



to any other u>t in a finite number of time steps. It is primitive because,
by construction, we have strictly positive entries on the diagonal [13, 19].
Thus the only eigenvalue ofU on the unit circle is 1. The Jordan block ofU
corresponding to 1 is one-dimensional since || U ||i= 1 and the Jordan form
of U is

/ 1 \
Ji

J2J(U) = (7)

\ Jk)
where J^ i = 1,..., A:, are the Jordan blocks corresponding to the eigenvalues
of modulus less then one. The positive powers of J{U) converge to

/ 1 0 0 0
0 0

0

0

V •

\

/

(8)

Since U and J(U) are similar the positive powers ofU converge to a projec-
tion, which is the projection on the one-dimensional space spanned by the
strictly positive Perron eigenvector ofUT (the transpose ofU) associated to
the eigenvalue 1. On the other hand, our Gibbs distribution is clearly inva
riant under the action of U from the left, in symbols pU = p or UTp = p.
Since p is strictly positive, p has to coincide with the normalized strictly
positive Perron eigenvector of UT associated with the eigenvalue 1 [13, 19].
A moment's reflection shows that all we have said is valid for any choiee of
the strictly positive selection probability on A that describes the frequeney
visiting each vertex. These simple reflections furnish a new transparent proof
of the Theorem on stochastic relaxation by Geman and Geman.

Theorem 1 (Geman & Geman [5]) Let (A,.A/,ft,//) be a Markov network
and U be the updating matrix determined by any choiee of the selection proba
bility p on A. The updating process described by action of the positive powers
ofU converges to the equilibrium distribution p.

A word should be said about parallel updating in Markov networks (see,
for instance [2]). The parallel updating transition matrix is unambiguously



defined by

N

Pr(u -> w/) = IJ Pr(x{ = Wil \Xj = wjj € Mi) (9)

and, of course, requires no selection probability since each transition from one
configuration to another happens in one step. We easily deduce the following
result:

Theorem 2 Parallel updating and sequential updating are equivalent
in Markov networks.

PROOF: What we want to prove is that parallel updating also converges to-
wards the invariant equilibrium distribution on the Markov network. To this
end we observe that the transition matrix whose entries are given equation
(9) is again positive, stochastic, irreducible and primitive. Therefore it has
a unique, normalized right invariant vector to which the updating process
converges. But since the defining distribution n is obviously right invariant
we must have that subsequent application of parrallel updating also conver
ges to 7r. Thus, the same argument used in the case of sequential updating
applies for parallel updating as well.Q

2 Consistency in Markov Networks and

the Confidence Correcting Algorithm

In the plethora of applications of Markov networks one promises to be par-
ticularly relevant in the realm of artificial intelligence, namely the modelling
of stochastic expert Systems. Expert Systems consist of data bases and infe-
rence machines that use the "knowledge" of the data bases in intelligent way,
in order to formulate reasonable answers to the queries posed by the user.
Judea Pearl and his school have promoted probabilistic intelligent Systems
in [4, 16, 17]
Bayes networks have a Consolidated tradition as inference machines, whe-
reas Markov networks have only recently ([11, 20]) made their appearence
in this context. Both kinds of networks are given by stochastic graphs. The
fundamental difference is of semantie nature and is made clear by the use
of (undirected) edges in the Markov and of arrows in the Bayes model. In
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Figure 3: A Markov chain

a Markov network an edge between two vertices (nodes, Statements, data)
A and B signifies conditional dependence of A upon B and, necessarily vice
versa. In a Bayes network an arrow from A to B means B is conditionally
dependent upon A and we deliberately concentrate our attention on
this dependence while neglecting the dependence of A upon B. Thus, the
term causal dependence becomes appropriate here and the directed "tree"
that the set of arrows determine, represents situations ruled by causality,
where this causality is defined probabiUstically. In both types of networks if
A is connected with B and B with C (but C is not connected with A) then
A is independent of C over B. In Symbols

Pr(A\BAC) = Pr{A\B).

Markov chains are usually represented by graphs like that in Figure 3, which
are causal graphs, in the sense we have just described. If the invariant dis
tribution is strictly positive a Markov chain is both a Bayes and a Markov
network.

Clearly, Bayes networks admit embeddings into Markov networks [11, 20]
and therefore allow similar treatments.

In the setting of expert Systems one of the main problems is the fact that con
fidence numbers are given from Statistical observations and may have little
to do with an underlying graph of conditional dependence. Once we look
for the adequate graph to model the data base, we are eonfronted with the
problem of "Converting" confidence numbers into looal characteristics.
The following definition is natural:

Definition 2 Let G = (A,A/\ft) be a graph and let
/cf^(u) := ac(x,' = uj{ | Xj = UjJ 6 Ni) represent the "confidence" we have
that x, = u>i if we know that Xj = Uj for j 6 N{. We say that the confi-
dences {k^ \ i G A} are stochastically consistent if they are the are local
characteristics of a Markov network on G.



Assume now that we are given a complete set of confidence numbers on
a graph G = (A,A/\n). By complete we mean that /cf'Xw) is known, for
every i G A, Ni neighborhood of i and u a configuration in H. Of course,
the least confidence numbers are supposed to satisfy is that the confidence of
the union of mutually exclusive and complementary events is equal to one.
Consistency with the neighborhood structure is a further requirement, which
forces the implicit existence of a probability distribution p on fl such that

m,» = ftw'M = «f'H-

As we know, if such a p exists, then it is the normalized left invariant
vector of U, where U is the sequential updating matrix induced by
the numbers

/zAH = p^iu) = K?*(w),i eKNieM^eü

(see equations (2) and (3) in Section 1.2) . Thus, an easy test for the
consistency of {/cf',£ GA, Ni GM} is the following:

1. Construct a sequential updating matrix S = «So by setting

<S(u>,u>/) = 0, if w and ul difFer in more than one component,

5(w,w/) = p(i)Pr{x{ = Lj{f | Xj =u)jl =UjJ GNi) = p(i)« '̂(w/)

c5(w,w) = 1- Y:^UltjP(i)Pr(xi = ua* | xj = Ujl = ujjJ GN{) .

2. Calculate its left invariant vector p = ßo and check whether

p?{u) = p^(u) = «?*(w),i GA, Ni GA/> Gn

for all i G A,JVt- GM,u> G ft.

If this equation is satisfied the confidence numbers «^(w) were already con-
sistent. It may happen that pf-(u) = /jf'(w) For all for all i GA, Ni GM, u> G
H, but //f^(w) 7^ « '̂(w) for some z G A. In this case p defines a Markov
network on G = (AjA/^fi). But it may also happen that nothing fits, in

10



other words, that p is neither a Markov network nor consistent with the gi
ven confidence numbers. In the former case, we declare ourselves satisfied
and stop our test, since we have found a Markov network. In the latter we
will continue our process by defining a new updating matrix 5i making use
of the numbers {^'(cj),^ 6A,wGfl} for its construction. In other words,
we will set

S\(u>,u>f) = 0, if u and w/ difFer in more than one component,

Si(u>,u>t) = p(i)Pr(xi = wt7 | Xj = Ujl = ljjJ G Ni) =
p(i)pf{(uf)

$i(w,w) = 1- HiLiti#p(i)Pr(xi =u>ii | Xj =Ujl = UjJ GNi) .

This new updating matrix <Si will not have p as left invariant vector. We will
call p\ the vector Sfp = pS\ and proceed in an analogous way, by construc-
ting an updating matrix 52 making use of p\ to define its entries. Going on
like this we obtain an algorithm and the important aspect of this algorithm
is that it converges ! We have a sequenee (<S)n€iv of stochastic, irredueible,
primitive and positive matrices, and a sequenee (/zn)n6/v of probability vec-
tors on H such that (<Sn)n6jv is defined as the sequential updating matrix
determined by <S^_1)Un_i and we can prove:

Theorem 3 Let (<Sn)neJV &nd (pn)n£N be the sequenee defined in the prece
ding discussion, where So is the sequential updating matrix determined by a
given set of confidence numbers {«,- *(w),i GA,u> Gft\. Si is the updating
matrix determined by po, the normalized left invariant vector of So, S2 the
matrix determined by p\ = Sfpo and so on.
The sequenee

{Pn)n€N = (po, P\ = S?p0i p2 = SjSfpo, ...,//„ = Sj •••5f/l0, •••) (10)

converges in any norm of IR2 towards a Markov network on (A,M,Cl).

PROOF: We look at the sequenee (^n))n€iv defined by

"O = PO, V\ = S\Po, »2 = 52<Si/Zoj •*'»Vn ~ ^n ''' ^i/^0»

11



Observe that all matrices (<Sn)n€iv are row stochastic. We want to prove that
there exists a ß < 1 such that

maxitk | (vn)i - (^n)fc |< ßmaxitk | (i>n-i)i - (^„-i)jfe | (11)

for n large enough. Since the diagonal elements of each (<Sn)neiv are strictly
positive, the produet Sn •••«Si is a strictly positive, stochastic matrix, the
same being true about <S„+m •••Si, for all m G i7V. The contracting property
of stochastic matrices 2 ([19], Theorem 3.1) implies

maxitk | {vn+m)i - (vn+m)k |< r(Sn+m •••Si)maxitk | (po)i - (ßo)k |, (12)

where the contraction coefficient r(.) is defined as foUows: for any stochastic
matrix S

2n

t(S) = 1- minitj J2min (($),•„ (S)js). (13)

It is possible to prove that r(Sn+m •••<Si), m G 27V, can be estimated in terms
of the original vector po> In fact

r(S„+m •••*)< * , <1. (14)
maxk (2^j=1(Mo)i-0*o)fcl

mink{ßo)k

Thus, (vn))neN converges towards a constant (not necessarily normalized)
vector p (in any of the equivalent norms of IR2 ). A similar argument shows
that also the sequenee

(Po, Sipo)SiS2P0i..., 5i •••Snpo,...)

is convergent. This, in turn, means that the adjoint vectors

(Po 1Po Ä» Po ^lÄi ••• jPo Si -- -5n,...)

also form a convergent sequenee, and this is what we wanted to prove. The
limit distribution p is again strictly positive and its associated matrix (the
limit of the produets So,<Sq5i, ..., «So •••5„,...) is again primitive, stochastic

2This theorem states that, given an arbitrary vector w=(u>,-) and a stochastic n x n
matrix P=(Pij) and z=Pw, wehave maxj(zj)-minj(zj) < r(P)(maxj(wj)-minj(wj))t
where r(P) = 1 - min.j £"=1 min(pitipjg).

12



and irredueible q

The sequenee of produets <So, <SoSi, •••)&*•* <^n> ••• of matrices is a (con
vergent) strongly ergodic inhomogeneous Markov chain satisfying the so cal
led Condition (C) (see [19], Theorem 4.12), which is a requirement on the
"boundedness away from zero" of the nonnegative elements in the matrices
involved. More precisely, Condition (C) requires the existence of a number
7 > 0 such that every nonnegative entry of the matrices in the produets is
bigger than 7.
It is easy to see that we could have used parallel updating matrices as well.
We could have started with a matrix Vo determined by the confidence num
bers given by equation (9) in Section 1.2. Again, by performing an analogous
iteration process, we could obtain a sequenee (Vn)n^N and a sequenee (7rn)
of normalized vectors, such that 7rn = T^n-i^n-i« Since all matrices Vn are
strictly positive by construetion and the same estimate for the ergodic coef
ficient r(Vn) is valid, we would obtain the convergence of (7rn). In fact, we
have

lim 7rn = lim pn. (15)
n—»oo n-»co

One characterization of the limiting distribution p (beside being a Gibbs
distribution) is, that it minimizes the socalled "relative entropy" or "cross
entropy", first proposed by Kullbaek [12]. The principle of minimum relative
entropy is a generalization of the principle of maximum entropy and applies
in cases where a prior probability distribution (or, stated otherwise, a set of
confidence numbers) is known. As is well known, the methods of maximum
entropy and minimum relative entropy are correct methods of inference in
estimating a probability distribution. In our case we are given a set or a
subset of confidence numbers corresponding to a starting distribution. This
starting distribution can be viewed as an estimate of the consistent one, and
applying the Confidence Correcting Algorithm (CCA) corresponds to finding
the consistent probability distribution, which "automatically" minimizes the
relative entropy. Stated otherwise, the CCA is a correct way for finding the
probability distribution, which "is uniquely determined as the one which is
maximally noncommittal with regard to missing Information" as Jaynes [10]
states. A very similar Situation, where an inhomogenous Markov chain of
stochastic matrices minimizes relative entropy is described in [7], Theorem
1.

13



3 Connectivity Matrices and Neural Net

works

A suggestive example of Markov networks is furnished by graphs whose edge
structure is determined by Connectivity matrices. Such graphs can be used to
describe the activity determined by synaptic interconnections in a biological
neural network (see for example [15]).

Definition 3 A matrix J = (Jij) , 1 <i,j < N with real entries is called a
Connectivity matrix if (Ja) = 0 for each 1 < i < N

A Connectivity matrix determines an edge structure on vertices numbered 1
through N if one establishes that an edge connects vertex i with vertex j iff
either Jij ^ 0 or Jji ^ 0.
We consider the function H :Ü —• IR defined by

H{u) = öJw, (16)

where we identify w with the column vector and Q with the row vector.
This function is the energy determined by the potential U = {Ua : A C
{1,...,N}}, where

UA = 0

if A is not a pair of vertices, and

^{t\j}M = "iJijUj + Uj JjW = UJiüJj(Jij + Jji).

Clearly U(itj) = 0 ifF J{j = 0 and Jji = 0.
The theorem of Hammersley and ClifFord implies the following result.

Proposition 1 Let J be a Connectivity matrix on A.
The function p(u>) = ^eH^w\ where H(u) is defined in equation (16), defines
a Gibbs distribution on H and a Markov network on tue graph determined by
J on the set A of vertices.

This proposition is a corollary of the characterization of Markov networks
(see [8], Th. 12-16). D

Indeed, Markov networks can be used to model the activity of neural
networks, where the details of the biological neurons are compressed in

14



the stochastic description of the dynamics taking place in the configuration
space. This approach is, of course, difFerent from the one of the "classical"
modeis (see the Little-Shaw model or the stochastic Version of the Hop-
field model, described in [18]). If tt is given by a Connectivity matrix, i.e.,
7r(u;) = ^eff(w),where H(u>) = cDJu>, then removing a pair of terms Jij and
Jji and replacing them by zero correspond to eliminating the Tj edge from the
graph. If J represents the matrix we obtain through this Substitution, then
TT = ie**7" is consistent with the new graph. Yet, as computations easily
show, the distribution tt = ±eQjw is far more distant from 7t(cj) = je^w),
than the distribution we obtain by performing the CCA starting with tt on
the network determined by J. Thus we feel free to say that the CCA is a glo
bal learning algorithm by which the distribution ir(u>) = ^eH(w) gradually
adapts to the edge structure defined by J. The problem is now to associate
this global learning with local learning rules.

4 Simulation Results And Conclusions

In our Computer simulations we modeled stochastic networks with a maxi
mum number of 8 vertices where we used an IBM-PC with an Intel 486DX

processor.

For a graph with N vertices, every row vector of the 2N x 2N transition ma
trix U contains only N + 1 non-zero elements, namely N strict transitions
and one diagonal element. There are \N(N - 1) elements to be computed
since for each Uu/tW we have Uw,t{J) =p(i){l - -^UUtU),), where wand ut denote
two arbitrary configurations and p(i) is the selection probability of the i'th
vertex. Therefore these transition matrices are sparse and the computation
time grows polynomially in N.
The program we used produced the transition matrix for a given graph ac-
cording to eqs. (2) and (3) in Section 1.2. The inhomogenous Markov chain
described in Theorem 3 started with a randomly chosen probability distri
bution. In every iteration step the program computes the "new" confidence
numbers from the resulting distribution and compares "old" and "new" ones.
If the new confidence numbers are equal to the old ones the program stops
and these last confidence numbers are the local characteristics for the graph.
Our program was not optimized for computational velocity. This has to be

15



done in order to perform simulations for larger graphs.
In the appendix we list some Simulation results for difFerent graphs. An in-
teresting Feature in the context of expert Systems is the possibility of fixing
a subset of confidence numbers (or local characteristics: one may have cer-
tainty about those outcomes) and correcting the remaining ones. This is
shown in Example 2 of the appendix. It is a difficult combinatorial and open
problem to deduee how many confidence numbers can be kept fixed for a
given graph.
In all three examples one can see that the values of the resulting local cha
racteristics and invariant distributions are only slightly modified by the algo
rithm and we conjeeture that the resulting distributions are those which are
dosest to the starting distributions in the simplex of all probability vectors.
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Appendix

Here we list some Simulation results for various graphs starting with random
confidence numbers. The first example is the graph of Figure 1 in Section
1. In the first table for each example we give the confidence numbers and
the "corrected" ones, the local characteristics. The seeond tables shows the
values of the starting distribution (corresponding to the confidence numbers)
and the invariant and consistent distribution for each configuration.
The seeond example shows the simulations for the same graph, but this time
some confidence numbers were kept fixed. These are marked as "fixed" in
Table 3. Note that this time the number of iterations is much larger than in
the example before.
The third and last example is the Simulation of a graph like in Figure 4.

16



Figure 4: The graph of example 3

Note that here only the confidence numbers of vertex B are changed. The
other confidence numbers corresponding to vertices A, C and D were not
kept fixed, yet stay unaltered. In all three examples we started with the
same probability distribution.
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conditional probability confidence numbers local characeristics

Pr(A=l B=0,D=0) = 0.541806 0.613624

Pr(A=l B=0,D=1) = 0.737659 0.622097

Pr(A=l B=1,D=0) = 0.267344 0.19827

Pr(A=l | B=1,D=1) = 0.144778 0.204036

Pr(B=l | A=0,C=0) = 0.851462 0.78467

Pr(B=l | A=0,C=1) = 0.420699 0.48478

Pr(B=l | A=1,C=0) = 0.229497 0.362017

Pr(B=l | A=1,C=1) = 0.197129 0.127793

Pr(C=l B=0,D=0) = 0.797437 0.789136

Pr(C=l B=0,D=1) = 0.608243 0.638913

Pr(C=l B=1,D=0) = 0.441728 0.491434

Pr(C=l B=1,D=1) = 0.374046 0.3136

Pr(D=l | A=0,C=0) = 0.586756 0.558195

Pr(D=l | A=0,C=1) = 0.346096 0.373967

Pr(D=l | A=1,C=0) = 0.513583 0.567026

Pr(D=l | A=1,C=1) = 0.411147 0.382406

Table 1: Confidence numbers and local characteristics of example 1
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configuration starting distribution invariant distribution

0000 0.022249 0.0257088

0001 0.0182591 0.0324815

0010 0.133671 0.0962122

0011 0.0376964 0.0574734

0100 0.0904472 0.0936839

0101 0.141756 0.118364

0110 0.059765 0.0905278

Olli 0.0646852 0.0540777

1000 0.046682 0.0408294

1001 0.0653 0.0534704

1010 0.137691 0.1528

1011 0.0920376 0.0946114

1100 0.0240121 0.0231683

1101 0.0093422 0.0303413

1110 0.0307998 0.0223878

1111 0.0256055 0.0138622

number of iterations: 100

Table 2: Starting and invariant distributions of example 1
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conditional probability confidence numbers local characeristics

Pr(A=l | B=0,D=0) = 0.541806 (fixed) 0.541806

Pr(A=l | B=0,D=1) = 0.737659 0.634584

Pr(A=l B=1,D=0) = 0.267344 0.136895

Pr(A=l | B=1,D=1) = 0.144778 0.188926

Pr(B=l | A=0,C=0) = 0.851462 (fixed) 0.851462

Pr(B=l | A=0,C=1) = 0.420699 0.531278

Pr(B=l A=1,C=0) = 0.229497 0.43467

Pr(B=l | A=1,C=1) = 0.197129 0.131969

Pr(C=l B=0,D=0) = 0.797437 (fixed) 0.797437

Pr(C=l B=0,D=1) = 0.608243 (fixed) 0.608243

Pr(C=l | B=1,D=0) = 0.441728 0.437704

Pr(C=l B=1,D=1) = 0.374046 0.23489

Pr(D=l A=0,C=0) = 0.586756 (fixed) 0.586756

Pr(D=l | A=0,C=1) = 0.346096 0.358968

Pr(D=l A=1,C=0) = 0.513583 0.675877

Pr(D=l A=1,C=1) = 0.411147 0.451273

Table 3: Confidence numbers and local characteristics of example 2
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configuration starting distribution invariant distribution

0000 0.022249 0.0219203

0001 0.0182591 0.0311241

0010 0.133671 0.086294

0011 0.0376964 0.0483234

0100 0.0904472 0.125653

0101 0.141756 0.178412

0110 0.059765 0.0978109

Olli 0.0646852 0.0547726

1000 0.046682 0.0259203

1001 0.0653 0.0540503

1010 0.137691 0.102041

1011 0.0920376 0.0839186

1100 0.0240121 0.0199296

1101 0.0093422 0.0415581

1110 0.0307998 0.0155136

1111 0.0256055 0.0127584

number of iterations: 1238

Table 4: Starting and invariant distributions of example 2
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conditional probability confidence numbers local characeristics

Pr(A=l | B=0) = 0.617267 0.617267 (unchanged)
Pr(A=l B=l) = 0.201068 0.201068 (unchanged)
Pr(B=l A=0,C=0,D=0) = 0.802575 0.776095

Pr(B=l A=0,C=0,D=1) = 0.885891 0.790562

Pr(B=l A=0,C=1,D=0) = 0.308965 0.410608

Pr(B=l | A=0,C=1,D=1) = 0.631805 0.592301

Pr(B=l | A=1,C=0,D=0) = 0.339662 0.351023

Pr(B=l | A=1,C=0,D=1) = 0.12516 0.370685

Pr(B=l A=1,C=1,D=0) = 0.182798 0.0980531

Pr(B=l A=1,C=1,D=1) = 0.217654 0.184808

pr(C=l B=0,D=0) = 0.797437 0.797437 (unchanged)
Pr(C=l | B=0,D=1) = 0.608243 0.608243 (unchanged)
Pr(C=l B=1,D=0) = 0.441728 0.441728 (unchanged)
Pr(C=l B=1,D=1) = 0.374046 0.374046 (unchanged)
Pr(D=l B=0,C=0) = 0.547964 0.547964 (unchanged)
Pr(D=l | B=0,C=1) = 0.323448 0.323448 (unchanged)
Pr(D=l B=1,C=0) = 0.568985 0.568985 (unchanged)
Pr(D=l B=1,C=1) = 0.499242 0.499242 (unchanged)

Table 5: Confidence numbers and local characteristics of example 3
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configuration starting distribution invariant distribution

0000 0.022249 0.0263822

0001 0.0182591 0.0319808

0010 0.133671 0.103859

0011 0.0376964 0.0496535

0100 0.0904472 0.0914452

0101 0.141756 0.120717

0110 0.059765 0.0723551

Olli 0.0646852 0.0721361

1000 0.046682 0.0425489

1001 0.0653 0.051783

1010 0.137691 0.167503

1011 0.0920376 0.0800805

1100 0.0240121 0.0230142

1101 0.0093422 0.0303811

1110 0.0307998 0.0182097

1111 0.0256055 0.0181546

number of iterations: 51

Table 6: Starting and invariant distributions of example 3
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