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Abstract

The maximum absolute value of integral weights sufficient to represent
any linearly separable Boolean function is investigated. It is shown that
upper bounds exhibited by Muroga (1971) for rational weights satisfying
the normalized System of inequalities also hold for integral weights. There-
with, the previous best known upper bound for integers is improved by
approximately a factor of 1/2.

1 Introduction

A linearly separable Boolean function / : {0, l}n -> {0,1} is represented by a
real vector (iüi,..., iun, t) of weights such that for all x € {0, l}n

wixi + •••+ wnxn > t iff f(xi ...xn) = l. (1)

/ is also called threshold function and t the threshold. It is a well-known fact
that the possibly infinite information contained in the real components of the
weight vector can be made finite without restricting the class of representable
functions by requiring all weights to be integers (see e.g. [7, 11,16] for proofs).
In the past, there has been considerable interest to bound the maximum abso
lute integral value sufficient for a weight from abovefor various reasons. Predo-
minant was the search for a polynomial upper bound on the length of a weight
in binary representation leading to O(ralogn) as the best known asymptotic
bound up to now [6, 17, 16]. The proofof [6] can also be found in [15] in a more
elaborated version concluding with ((n + 3) log(n + 1) + 1). The tightest result
has been given by Muroga in [13]. He investigated weight vectors satisfying the
so-called normalized System of inequalities

W\Xi + • • • + wnxn > t if f(x) = 1
WiX\ + • • • + WnXn < t - 1 if f(x) = 0 (2)

obtaining the following results (see [13, Section 9.3.2]):
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• Every linearly separable Boolean function / : {0, l}n ->• {0,1} can be
represented by integral weights satisfying

Kl < 2~n(n + l)^1)/2, \t\ < 2-nn(n + l)^1)/2. (3)

• If rational numbers are permitted then there exist weights satisfying (2)
and

H <2"n(n +l)^1)/2, \t\ <2"n~1(n +l)<n+3>/2 +\. (4)

• Furthermore, if we denote the truth value 0 by -1 then for a linearly
separable function g : {—1, l}n —• {—1,1} rational weights can be found
such that (2) and

\w{\ < 2-n(n + l)^1)/2, |*| < 2~n(n + l)(n+x)/2 (5)

hold simultaneously.

In this paper weshow that inequalities (4) and (5) can be met even if we require
all weights (including the threshold) to be integers. With that we obtain an
improvement of (3) by approximately a factor of \.

In the next section we demonstrate some old and new properties of integral
separating weight vectors. These will be used in the proof of the main theorem
in Section 3. In the last section we make some remarks on the methods and

speculations on further improvements.

2 Properties of integral separating weight vectors

The existence ofan integral vector (w\y..., wni t) satisfying the System of linear
inequalities (2) is sufficient and necessary for a Boolean function / : {0, l}n —•
{0,1} to be linearly separable. The same holds if we replace 0 by —1 and
consider Boolean functions g : {-l,l}n -+ {-1,1}. Given an integral sepa
rating vector for g we obtain a — not necessarily integral — vector for the
corresponding / by the following method.

Lemma 1 Let g : {-l,l}n -+ {-1,1} be linearly separable, represented by
(wu..., tün, t), and let f : {0, l}n -• {0,1} be defined by

2/(zi,...,zn)-l = 0(2zi-l,...,2xn-l) for all x € {0, l}n.

Then f is represented by (iüi,•••>%i \(t + £ tu,-)).

Proof. The proof is due to Muroga [13, Theorem 1.3.1]. In the inequality
System (2) corresponding to g

Witt + •••+ tü»yn > * if*(y)=l /tlc/_i iw
v>Mi + ' ••+ wnyn < t-1 iig(y) = -l ^^ L'l} >



we add £tüt- on both sides of each inequation and divide by 2. Then we obtain
the equivalent System

t*i-|(yi + l) +"- + tö»-i(¥n + l) > i(' +I>0 tfp(»)=i
toi-l(w + 1) + ," + lo»-l(^ + 1) ^ K* + Sw.--i) ifp(y) = -i.

From that it can be derived that

WU1 +-+V« > |(*+£u>.) if/(«) =l (jpg/on»)
toia?i + •••+ wnxn < \{t + 2 w«) tf /(*) = 0

in other words, (1) holds for (ti>i,..., wnt \(t -f£ ^t))- M

As can be seen, we could easily obtain an integral vector for / from an
integral vector for g by multiplying by 2 the representation for / constructed
in the proof. However, as we will show in the next lemma, either adding 1 to or
subtracting from the threshold of g is always possible, thereby making t + £ w%
even.

Lemma 2 Let g : {-1,1}n —*• {-1,1} be linearly separable by the vector
(u;il...,tiin,0€Zn+1.

1. There exists t'EZ such that each of the following holds:

(a) \t' -t\<\
(b) t' + £ tö,* is even.
(c) (it>i,..., wn, t') represents g.

2. There exists t' € Z such that for all y € {-1, l}n

wi2/i + •••+ wnyn > tf+1 if g(y) = 1
v>iyi + •••+ wnyn < t'-l if g(y) = -l. (6)

Proof. Both assertions are proved if we show that w • y has the same parity
for all y. This can be seen from

wiyi + •• •+ Wi(-yi) + •••wnyn = w-y- 2w,-.

Therefore, either an increase or a decrease of t of at most 1 still yields a repre
sentation for g. H

The reader should note that the t' of the two assertions need not to be identical.

By ||(iüi,. . .jWnj^Hoo we denote the maximum of |tüi|,..., |iyn|, |t|. With
the previous lemma we immediately have the following.

Lemma 3 Let g : {-l,l}n —*• {—1,1} be linearly separable by the vector
jioi,...,«)«,!) € Zn+1 and let 7 = ||(wi,...,wn»*)lloo' U we replace -1 by
0 then the corresponding f : {0, l}n —• {0,1} is representable by a vector
(w'ly..., w'ny t') e Zn+1 such that

, /. . /. n +1 1Kl < 7, |*'| < "i--7+2-



Proof. By Lemma 1, / can be represented by (u»i,.. .,tun,|(* + 12 w*))- K
t + £ Wi is not divisible by 2 we can increase or decrease t by 1 by virtue of
Lemma 2. Therefore the absolute value of the new threshold tf is bounded by

|*'| <5(11.7 +7+1) =^-7+5.

3 The upper bound

Before we State the theorem, we report a property of finite Systems of linear
inequalities in real linear Spaces demonstrated by K. Fan [2] and employed in
our proof, the so-called principle of bounding Solutions.

Theorem 1 (Theorem 2 in [2]) Let X be a real linear space of arbitrary
dimension, finite or infinite, let Fi,...,fp be linear functionals on X, and
a\,..., ap real numbers, and let r be the maximum number of linearly indepen-
dent linearfunctionals among F\t..., Fp. If the System

Fi(x) < q, (1 < i < p) (7)

has a Solution then there exist r linearly independent functionals FVl,..., FVr
among F\,..., Fp such that every Solution of the System

FUk(x) = aUk (l<*<r) (8)

is also a Solution o/(7).

For the proof we refer the reader to reference [2].

Theorem 2 Every linearly separable function g : {—1, l}n —* {—1,1} is repre-
sentable by a vector (tüi,..., wnit) of integers satisfying

||(W1 «In,«)!!«, < 2->+l)(n+1)/2.

Proof. Let g : {—l,l}n —*• {-1,1} be linearly separable. According to
assertion 2 of Lemma 2 the system

-wiyi wnyn + t < -1 if g(y) = l ( , ,„, ()
v>iyi + --- + wnyn-t < -1 if g(y)=-l KV ^X i,i|J W

has a Solution in (tüi,.. .,iün,t). For the sake of simplicity, we denote the
threshold by wn+i and let yn+i = -1 for the rest of the proof. Then (9)
appears as

-wm ...-wn+1yn+1 < -1 if ,(,) =! ( 6{_11}.) (10)
wiyi + •••+ w„+i»n+i < -1 if g(y)=-l v l ' '



having a Solution in (iui,.. . ,wn+i). Let r denote the rank of the coefficient
matrix on the left hand side of (10). By virtue of Theorem 1 there exist r
elements y^,...fy^ G {-l,l}n such that every Solution of the System of
equalities

-Wiy[k) tön+lvÖ! = -1 if 9(y(k)) = l
+ ... + Wn+1Ä = -1 if g(yW) = -l(k)wiy{ + •• • + Wn+iy^

{l<k<r) (11)

is also a Solution of (10). Further, the rank of the coefficient matrix on the left
hand side of (11) is equal to r, i.e. it contains an (r Xr)-submatrix consisting
of columns, say Ai,..., Ar, such that the system of equalities

-wXly[V WXryW = -1 if g(yW) =l (1 <fc <r) (12)
«^vi? +•• •+W^y[kr] = -i if g(y{k)) =-i

has a unique Solution (wx1,.. .,w\r). We can extend this Solution of (12) to a
Solution of (11) (and thereby of(10)) byletting the components i £ {Ai,..., Ar}
be equal to 0. Because of the matrix on the left hand side of (12) being regulär,
we obtain the Solution by Cramer's Rule

™i=~K' *€{Ai,...,Ar}
where A is the determinant of the coefficient matrix on the left hand side of
(12) and At is the determinant obtained by replacing the i-th column by the
right hand side of (12). We then have

—(Ai,...,An+i) with At = 0if ig {Ai,...,Ar}

as Solution of (11) and thereby of (10) and, therefore,

(Ai,...,A„+i)

as integral representation for g. Each A; / 0 is the determinant of an (r x r)-
matrix consisting solely of -1 and 1. Now we show how to get the factor 2r_1
from each of them. We multiply each row having -1 in the last component
by -1 and obtain matrices with the last column consisting solely of 1. After
adding this column to eachof the remaining r —1 columns, columns 1,..., r - 1
contain only 0 and 2 and we can factor 2r_1 outside of each determinant. If we
reverse the previous multiplications we have

At- = 2r_1 •W{ for i € {Ai,..., Ar}

where W{ is the determinant of an (r x r)-matrix with entries -1,0,1. With the
vector

(wu ..., wn+i) with W{ = 0 if i £ {Ai,..., Ar}

we obtain again an integral representation for g. Hadamard's Determinant
Theorem implies |A,| < W2, therefore

\Wi\ < 2~T+1rr/2 (l<»<n + l).



Taking into account that r, the rank of the coeffident matrix on the left hand
side of (10),is not greater than n + lwe have the Statement of the theorem. H

Having shown that (5) holds for integral wdght vectors we can now easily
derive that (4) is also satisfied by integers.

Corollary 1 Every linearly separable function f : {0, l}n —• {0,1} is represen-
table by a vector (u>i,..., ion,t) of integers satisfying

M < 2"n(n+l)(n+1)/2, |*| <2-n-1(n+l)<n+3)/2 +i

Proof. The Statement follows from Theorem 2 and Lemma 3. I

Corollary 2 Every linearly separable function f : {0, l}n —• {0,1} is represen-
table by weights requiring not more than

'log(2-'-l(»+l)<''+3>/2+!)] +l
bits.

Proof. An integral number z can be represented by flog(|z| + 1)] + 1 bits. •

4 Remarks

In the three coarse steps

1. reducing a system of inequalities to a system of equalities by Fan's Theo
rem

2. solving this system by Cramer's Rule

3. bounding the Solution by Hadamard's Theorem

the proof of Theorem 2 follows the original proof given by Muroga et al. in
[14, Theorem 16] for linearly separable Boolean functions / : {0, l}n —• {0,1}.
However, in their proof the authors did not take into account the rank of the
coeffident matrix which has to be regulär for the application of Cramer's Rule.
This was amended later in the proof by Muroga [13, Theorem 9.3.2.1] where the
premisses require all weights to be greater than 0. This second proof, however,
makes no longer use of Fan's Theorem but employs the existence of extreme
points in convex sets.1

Polyhedral Theory is also suitable to make the essential inference in the
proof. There, minimal faces and vertices of polyhedra are obtained by equating
inequalities (see e.g. [19]). In Linear Programming these are dosely rdated to

1This property can easily be derived by Fan's Theorem if the convex set is given by a
system of linear inequalities.



the so-called basicfeasible Solutions (see e.g. [5, 8]). We chose to employ Fan's
Theorem because of its generality and because it is purely algebraic and does
not presuppose any further background.

The improvement we achieved with our proof is essentially based on ob-
servations on weight vectors for functions over {—1, l}n that were expressed in
Lemma 2. Furthermore, we feil back upon a property of determinants exhibited
by Williamson [20]: Every determinant of an (n x n)-matrix consisting soldy
of —1 and 1 is divisible by 2n_1. A proof of this fact can also be found in
[1, p. 332]. Concerning Cramer's Rule we refer the reader to [9]. Hadamard's
Determinant Theorem can be found in almost every book on matrix theory, [3]
gives a quite elementary proof.

The question of the least upper bound is still open. It is well known by a
counting argument [16] that Ü(n) is a lower bound for the binary length of a
wdght. Also, functions have been constructed by Goto [4] and Muroga [12]
that require at least a value of a •2n, 0 < a < 1, for the largest weight of every
integral representation (see also [10, p. 406] for a simpler example).

How could one try to improve our result? Of course, the number of equations
resulting from Fan's Theorem cannot be decreased below n + 1. Furthermore,
Hadamard's inequality cannot be improved because it is optimal for infinitely
many n. Therefore, there does not seem to be a way to get a better upper
bound by improving our proof steps. However, it turns out that matrices that
satisfy equality in Hadamard's inequality yidd wdghts of quite low absolute
value. Therefore, we conjecture that better results can only be achieved by a
rather different proof method.

Finally, if we consider functions that are incompletely specified then our
proof is also applicable and gives the same result. Only if we severely restrict the
size of the domain we get smaller bounds. We pursue this issue in a subsequent
paper [18].
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