Universitat Ulm
Fakultat fiir Informatik

The Translation Power of Top-Down
Tree-To-Graph Transducers

JOOST ENGELFRIET
Leirden University
HEIKO VOGLER
Unwversitdat Ulm

Nr. 92-14
Ulmer Informatik-Berichte

Dezember 1992




The Translation Power of
Top-Down Tree-To-Graph Transducers

JooST ENGELFRIET !
Department of Computer Science, Leiden University
P.O.Boz 9512, 2300 RA Leiden, The Netherlands
e-mail: engelfriet@rulcri.leidenuniv.nl

HEIKO VOGLER
Department of Theoretical Computer Science, University of Ulm
Oberer Eselsberg, 7900 Ulm, Germany
vogler @informatik.uni-ulm.de

Abstract: We introduce a new syntax-directed translation device called top-down tree-
to-graph transducer. Such transducers are very similar to the usual top-down tree trans-
ducers except that the right-hand sides of their rules are hypergraphs rather than trees.
Since we are aiming at a device which also allows to translate trees into objects different
from graphs, we focus our attention on so-called tree-generating top-down tree-to-graph
transducers. Then the result of every computation is a hypergraph which represents a
tree, and in its turn the tree can be interpreted in any algebra of appropriate signature.
Although for both devices, top-down tree transducers and tree-generating top-down tree-
to-graph transducers, the translation of a subtree of an input tree does not depend on
its context, the latter transducers have much more transformational power than the for-
mer. In this paper we prove that tree-generating top-down tree-to-graph transducers are

equivalent to macro tree transducers, which are transducers for which the translation of a
subtree may depend on its context.

1Supported by COMPUGRAPH (” Computing by Graph Transformation”), ESPRIT Basic Re-
search Working Group Number 3299



1 Introduction

The concept of syntax-directed translation as introduced in [Iro61], has become a well-
known and elegant method to associate meaning to tree-structured objects (cf. [Eng81]
for a general discussion). The main idea of this concept is to define the translation (or
semantics or meaning) of a tree in terms of translations of its subtrees. Nowadays, there
exist several formalizations of this concept which, from the schematic point of view, have
different translation power, e.g., generalized syntaz-directed translation schemes [AUT1,
AUT73], top-down tree transducers [Tha70, Rou70, Bak78, Eng75, GS84], attributed tree
transducers [Fiil81b, Fiil81a] which are based on attribute grammars [Knu68], macro tree
transducers [CF82, Eng80, EV85), and high-level tree transducers [EV88]. Actually, viewed
as schemes, every device in this list is strictly more powerful than its predecessor except for
the first two devices which are equivalent. The macro tree transducer closely corresponds
to the model of syntax-directed translation in [Iro61].

In this paper, we introduce a new, quite simple, formal model of syntax-directed trans-
lation: the top-down tree-to-graph transducer (for short: td-tg transducer). Its definition
has the same simplicity as the definitions of top-down tree transducers or attribute gram-
mars with synthesized attributes only: the translation of a subtree of the input tree does
not depend on its context.

Intuitively, td-tg transducers can be viewed as context-free hypergraph grammars of
which the derivations are controlled by an input tree; the result of the derivation is the
output (hyper)graph. This is entirely analogous to the fact that top-down tree transducers
can be viewed as ordinary context-free grammars with tree-controlled derivations (see
[Eng86a]). Context-free hypergraph grammars (for short: cfhg grammars) are introduced
in [BC87, HK87b] and are studied in [Hab89, Cou87b, Cou87a, Cou88] [Cou90, ER90,
HK87a, Lau88a] [Lau88b, MR87, EH91, EH92]. A cfhg grammar generates a set of edge
labeled, directed hypergraphs. These are graphs in which an edge may be incident with
any number of nodes rather than two as for usual graphs. Every edge is labeled by a
symbol of some ranked alphabet where the rank of the label is equal to the number of
incident nodes. Figure 1 shows a hypergraph where edges and nodes are represented by
boxes and circles, respectively. The line connecting an edge and a node is called a tentacle.
To implement a direction of tentacles and a functionality of edges, we associate with an
edge e the sequence vy ...vxvk4; of incident nodes. The nodes vy,...,v; are called the
arguments of e and the node vy, is called the result of e; the tentacle which connects
v, ¢ € {1,...,k}, with e (or vg41 with e), is called outgoing from v; (or incoming to
Vk+1, Tespectively). Some nodes of the hypergraph may be distinguished; they are called
external nodes and their order is indicated by natural numbers.

The derivation mechanism of cfhg grammars is an easy edge replacement: for two
hypergraphs £; and £; over some ranked alphabet, & can be rewritten to &2 by replacing
some X-labeled edge e of £ (where X is a nonterminal) by the right-hand side k of some
rule X — h, and by pairwise identifying the nodes that were incident with e in &1 with the
external nodes of h (cf. Figure 2); the number of external nodes of k equals the rank of X.
Now td-tg transducers can be understood as cfhg grammars of which the derivations are
controlled by an input tree, in the sense that the nonterminals of the grammar correspond
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Figure 1: A hypergraph.
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Figure 2: Application of the rule X — h, where X has rank 4.

to pairs (state, input subtree) of the transducer. In the formal model of td-tg transducers
we use input trees over some ranked alphabet. This can be understood as considering a
one-sorted abstract syntax; the many-sorted case can be easily superposed on our model.

Formally, a (d-tg transducer M consists of three ranked alphabets @, ¥, and A of
states, input symbols, and output symbols, respectively, an initial state g;;, of rank 1, and
a finite set R of rules of the form:

(*) (q’a(xl,”'azk)) —h

where ¢ is a state, 0 € ¥ with rank £ > 0, z,,...,z, are subtree variables, and A is a
hypergraph in which the edges are labeled either by output symbols or by pairs (¢’,z;)
where ¢’ is a state and z; € {z,,...,2¢}. The number of external nodes of k is equal to
the rank of ¢g. Moreover, we require that for every pair ¢ and o, there is exactly one rule
with left-hand side (g, 0(zy,...,zk)) in M. A rule like (%) expresses that the g-translation
of an input (sub)tree o(s1,..., sk) is the graph h in which every edge with label (¢, z;) is



replaced by the ¢'-translation of the tree s;. Thus, similar to top-down tree transducers,
the g-translation of o(sy,...,st) does not depend on its context.

The set R of rules induces a derivation relation =>5; where the application of a rule
(*) to a (q,0(s1,...,sk))-labeled edge e of a sentential form & consists of three steps: e is
replaced by h, e-incident nodes in £ are identified with corresponding external nodes of h as
in the derivation mechanism of cfhg grammars, and every z; is replaced by s;. The induced
derivation relation = ps is confluent and noetherian (cf., respectively, [Hue80, Der87] for
these notions). Thus, for every tree s over £, M computes exactly one hypergraph g over
output symbols only, such that sing((gin, s)) =}, g, where sing({gin, s)) is the hypergraph
which consists of one (gin, s)-labeled edge and one node v; v is incident with e and it is an
external node. The hypergraph g is called the translation of the tree s. We associate with
M the mapping 7(M), called tree-to-(hyper)graph translation of M, which maps an input
tree to its translation. We note that, since sing({(gin,s)) has one external node and since
=M preserves the number of external nodes of sentential forms, the translation of s also
has one external node (this restriction is not essential, but it is assumed here because we
will investigate tree-generating td-tg transducers only; the external node represents the
root of the tree).

The main advantage of having output graphs rather than trees, is the fact that graphs
can represent trees with shared common subtrees. In fact, in this paper we focus our
attention on so-called tree-generating td-tg transducers M. For such transducers, every
computation results in a hypergraph which is acyclic and in which every node has exactly
one incoming tentacle. Such a hypergraph (called ”jungle”) represents a tree (cf. [Cou88,
HK87a, Hab89, HKP91]) and, in its turn, this tree can be interpreted into a semantic
domain of appropriate signature. Intuitively, a tree is obtained from a jungle g by unfolding
g, starting from the (unique) external node. Let g = (M )(s) be the translation of some
input tree s and let tree(g) denote the tree which is obtained by unfolding g. Then we can
associate with M a tree-to-tree translation, denoted by (M) and defined by r,(M)(s) =
tree(g). Let tgtT denote the class of tree-to-tree translations computed by tree-generating
td-tg transducers (where tgtT stands for "tree-to-graph-to-tree Translations”).

We remark that recently another formalization of the concept of syntax-directed trans-
lation was introduced [EH92] which is also based on cfhg grammars: the cfhg-based syntaz-
directed translation schemes (for short: cts). There the starting point is a usual context-
free grammar G. For the description of the translation, to every production of G, a pro-
duction of some appropriate tree-generating cfhg-grammar is associated. In [EH92] it is

proved that cts have the same power as attribute grammars with respect to string-to-value
translations.

In this paper we investigate the translation power of tree-generating td-tg transducers
and, in particular, compare it to the power of another formalization of the concept of
syntax-directed translation: the macro tree transducer. These are particular term rewrit-
ing systems in which the left-hand side and the right-hand side of every rule are trees over
states, output symbols, and rewrite variables. Intuitively, macro tree transducers are top-
down tree transducers in which the translation of a subtree of an input tree depends on
its context. Let MT denote the class of tree-to-tree translations computed by macro tree
transducers. We prove that tree-generating td-tg transducers have the same translation



power as macro tree transducers, i.e., tgtT = MT. (Thus, they are more powerful than
cts.)

Before exposing the structure of this paper, we briefly discuss the two directions of
the proof of our main theorem. The construction involved in the inclusion MT C tgtT
can be considered as the formalization of a graph-reduction for macro tree transducers.
This is achieved by sharing common subtrees which occur at different places in the right-
hand side of a rule of the macro tree transducer. The resulting graphs are particular
hypergraphs called parjungles. Thus, the macro tree transducer is turned into a td-tg
transducer in which the right-hand side of each rule is a parjungle. The sharing does
not change the computed tree-to-tree translation, because we consider in this paper only
macro tree transducers such that for every input tree s and state ¢, there is a unique
g-translation of s. Hence, every occurrence of one subtree is eventually rewritten to the
same tree over output symbols.

The main idea of the more involved proof of tgtT C MT is the following: first, translate
a tree-generating td-tg transducer M into a td-tg transducer M’ which computes the same
tree-to-tree translation as M and in which the right-hand sides of all rules are parjungles,
and second, construct an equivalent macro tree transducer M” by unfolding the right-hand
sides of rules of M’. It turns out that, for the most natural construction of M’ from M, M’
has to be equipped with the possibility of inspecting the subtrees s,,. .., sy when applying a
rule (g,0(zy,...,2x)) — h to an edge with label (g, a(s1,...,sk)). This capability is called
regular look-ahead, because it suffices in fact to allow M’ to test whether sy, ..., st belong
to certain regular tree languages. This then leads to a macro tree transducer M which
also uses regular look-ahead. For top-down tree transducers and macro tree transducers
this feature of regular look-ahead is well-known to be useful [Eng77, EV85, FV89a, FV89b].
In fact, in [EV85] it is shown that regular look-ahead does not increase the translation
power of macro tree transducers. Thus, M” can be turned into an equivalent macro tree
transducer without regular look-ahead.

This paper is organized in six sections. In Section 2 basic notations are collected,
and trees and hypergraphs are defined (and, in particular, the representation of trees by
(par)jungles). In Section 3 td-tg transducers and td-tg transducers with regular look-ahead
are defined formally. We prove that, by adding regular look-ahead, td-tg transducers can
be assumed to have properties which are useful in the proof of the inclusion tgtT C MT.
In Section 4 macro tree transducers without and with regular look-ahead are recalled. In
Section 5 the graph reduction of macro tree transducers is formalized by relating them to
particular td-tg transducers; this proves the inclusion MT C tgtT. In Section 6 we prove
the inclusion tgtT C MT.



2 Preliminaries

2.1 Notations

The empty set is denoted by @. For an arbitrary set A, the powerset of A is denoted by
P(A). For n > 0, [n] = {1,...,n}; in particular, [0] = @. IN denotes the set {0,1,2,...}
of natural numbers and IN; = IN — {0} denotes the set of positive integers.

A word is a finite sequence. The empty word is denoted by A. For a set A, A* and A+
denote the sets of words over A and of words over A with at least length 1, respectively.
For a word w = a;a3...a; € A% with a; € A for i € [k], a; is denoted by w(%). The length
of a word w is denoted by lg(w).

The infinite set Y = {y1,2,...} is called the set of parameters and the infinite set
X = {z1,z3,...} is called the set of subtree variables. For m > 0, Y,, = {v1,.--,¥m} and
Xm = {a:l,...,zm}.

Let v be a word and let u;,...,u, and v1,...,v, be two lists of words for some n > 0,
such that no word occurs twice in the first list. If the words w4, ..., u, occur in v without
any overlapping, then v[u;/vy,. .., un/v,] is the word obtained from v by replacing every
occurrence of u; by v; for every i € [n].

2.2 Ranked alphabets and trees

A ranked set is a tuple (T, rankr) where T' is a (possibly infinite) set and rankr : T — IN
is a mapping; for every k > 0, I'*) = {y € I|rankr(y) = k}. If T is known from the
context, then it is dropped from rankr. We also write 7(¥) to denote the fact that v has
rank k. If A is a set, then (T, A) denotes the ranked set {(7,a)|y € T and a € A} with
rank(r 4y({v,a)) = rankr(v). A ranked alphabet T is a finite ranked set.

Let ' be a ranked alphabet. Then dec(T') denotes the ranked alphabet (I'—I'©), rank’)
with rank’(y) = rankr(v) — 1 for every y € T — I'(®); in¢(T') denotes the ranked alphabet
(T, rank') with rank’(y) = rankr(y) + 1.

Let I' be a ranked set and let A be a set. The set of (finite, labeled, and ordered) trees
over I' indezed by A, denoted by T(T')(A), is the smallest set T such that (i) A C T and
(i) if v € T*) with & > 0 and t1,-..,tx € T, then y(t;,...,t) € T. In case k = 0, we
identify y() with . In particular, T(T')(0) is denoted by T(T'). Thus, viewing the symbols
of A as symbols of rank 0, T(T')(A) = T(T U A). A set L C T(T) is called a tree language.

Let t € T(T'). The set of subtrees of t, denoted by sub(t), is defined inductively as
follows: for ¢t = y(t,...,t) with y € T*¥) k > 0, and t,...,8 € T(T), sub(t) = {t}u
U{sub(t;)|i € [k]}. The height of t, denoted by height(t), is defined by: height(t) =
1 4+ maz{height(t;)|: € [k]} if ¢ ¢ T©) and height(t) = 1if t € T'(0).

A finite state (deterministic bottom-up) tree automaton (without final states) is a tuple
B = (P, %, ) where P and X are finite sets of states and ranked input symbols, respectively,
and § = {6, },¢x is the family of transition functions where 6, : P¥ — P for every o € ().



The transition function extends to a function §: T(Z) — P by the following recursive
definition [TW68, GS84]: for & € T(?), é(a) = 6,4, and for ¢ € E(*) with & > 1 and
tyetk € T(E), 8(a(ty ...y tk)) = 8,(6(81),- .., 6(tk)).

2.3 Hypergraphs

Let T' be a ranked set. A (directed, edge-labeled) hypergraph over T is a tuple g =
(V, E,lab,nod, ezt) where V is a finite set of nodes (or vertices), E is a finite set of hy-
peredges (or just edges), lab: E — T is the edge labeling function, nod : E — V* is the
incidence function such that, for every e € E, lg(nod(e)) = rankr(lab(e)), and ezt € V*
is a word of ezternal nodes. The nodes of V which do not occur in ext, are called internal
nodes.

For a given hypergraph g, its components are denoted by Vg, Ey, laby, nody, and eztg,
respectively. Let e € E; and nodg(e) = vy...vx with vy,...,v¢ € V,. The rank of e,
denoted by rankg(e), is k; if & > 1, then v; with ¢ € [k] is called i-incident with e or
e-incident.

If lg(exty) = k, then g is called a k-hypergraph and is said to be of rank k, also denoted
by rank(g). For every ranked set T', the set of (k-)hypergraphs over T is denoted by
HGR(T) (k-HGR(T), respectively). Two hypergraphs g, h over T are disjointif V,nVj = 0
and E, N E, = 0.

Example 2.1 Consider the ranked alphabet I' = {6(3),0(2) y(1) a(0)}. Figure 3 shows
a 3-hypergraph g over T', where V;, = {v1,v3,v3}, E; = {e1,e2,e3,e4}, laby(e1) = a,
laby(e2) = 6, laby(e3) = o, and laby(eq) = 7, nody(e1) = A, nodg(e2) = vav1v1, nody(es) =
v2v3, and nodg(eq) = vy, ext; = vy v2. Note that this is the same hypergraph as in
Figure 1.

Nodes and edges are indicated by fat circles and boxes, respectively (which are some-
times labeled by the denotation of the corresponding nodes and edges). An edge e with
lg(nody(e)) = 2 is also drawn as a directed line (as in usual graphs), e.g., lg(nod,(e3)) = 2.
An external node v is indicated by labels 7y,...,%,, if v = exty(i1) = ... = exty(ir), e.g., v2
is labeled by 1 and 3, because v, = exty(1) = exty(3). For every edge e, its label is shown
inside the box which represents e. Connections between a box and a fat circle are called
tentacles. A tentacle between edge e and node v is labeled by a small natural number ¢ if
v is t-incident with e; e.g., v2 is 1-incident with e,. o

Actually, we view a hypergraph h as an abstract graph which stands for the equiv-
alence class of all concrete graphs that are isomorphic to h. However, in order to avoid
technicalities, we deal with concrete graphs in all our definitions and constructions, taking
isomorphic copies whenever necessary.

For hypergraphs with one edge only, we introduce the following notation. Let v € r(m)
with m > 0. The singular hypergraph labeled by vy, denoted by sing(~), is the m-hypergraph
([m), {e}, lab,nod, ext) with lab(e) = v and nod(e) = ezt = 12...m (note that ezt is a
word of length m).
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Figure 4: The 3-hypergraph sing($).

Example 2.2 Let § € T be a symbol of rank 3. The 3-hypergraph sing(6) is shown in
Figure 4. a

The identification of nodes in a hypergraph is formalized as follows. Let g be a hyper-
graph and let R C V, x V, be a binary relation over the set of nodes of g. Let =g denote
the smallest equivalence relation over V, which contains R and let ¢ : V, — V,/ =g denote
the canonical mapping to the set V,/ =g of equivalence classes. Then g/R denotes the
hypergraph (V’, E,, laby, nod’, ext’) where V! = V/ =g, for every e € E, and i € [rank(e)],
nod'(e)(t) = ¢(nod,(e)()), and for every i € [rank(g)], ext' (i) = ¢(exty(7)).

Let g and h be hypergraphs. We say that h is a subgraphof g if V}, C V,, E; C E,, and
laby, and nod, are the restrictions of lab, and nodgy, respectively, to Ey. Note that ezt
need not be equal to ext,. We say that a subgraph A of g is a full subgraph of g if every
internal node v of A is also an internal node of g, and, for every edge e € E,, if internal
node v is incident with e, then e € E},.



2.4 'Tree Representing Hypergraphs

There are particular hypergraphs that can be considered as a space efficient representation
of trees. The tree can be recovered from such a hypergraph g by unfolding g, starting
at a particular external node that represents the root of the tree. The determinacy and
termination of this unfolding is guaranteed by certain requirements. Here we distinguish
between two types of such particular hypergraphs, viz. jungles (that represent trees) and
parjungles (that represent trees with parameters).

To represent trees over a ranked alphabet T', we consider hypergraphs over the ranked
alphabet inc(T). In fact, for v € TF), a tree t = y(ty,...,%) will be represented by an
edge e with lab(e) = v together with representations of ty,...,1; if nod(e) = vy ... w0,
then v represents the root of ¢, and v; represents the root of ¢;, 7 € [k]. This leads to the
following formal definitions.

Foraword w = ay...a; € A*, the set ar(w) or argumentsof wis the set {a,,...,ak-1},
and the result of w, denoted by res(w), is ax. For a hypergraph g and an edge e of g
with nodg(e) = vy...vx, the set ary(e) of arguments of e is the set {v;,...,vk-1}, and
the result of e, denoted by resy(e), is vi. In other words, ary(e) = ar(nody(e)) and
resg(e) = res(nody(e)). For a node v of g, the cardinality of res;!(v) is called the in-
degree of v. For a node v with in-degree 1, the unique edge in res;!(wv) will also be denoted
by res;!(v). For instance, in the hypergraph g shown in Figure 3, ar,(ez) = {v1, 2} and
resg(e2) = v1. Moreover, every node of g has in-degree 1.

A path of g from node vy to node vy is an element voe vy .. .exvx of Vy(E,V,)*, with
v; € Vy and e; € Eg, such that, for every j € [k], vj-1 € ary(e;) and resy(ej) = v;.
Then g is acyclic if no path of g contains a node twice, more precisely, for every path
voe1vy . ..exvk of g and for every i,5 € {0,...,k}, if i # j, then v; # vj. Clearly, the
hypergraph shown in Figure 3 is cyclic, because it contains the path vyeqv;.

A jungle is an acyclic hypergraph of rank 1, of which every node has in-degree 1.

Example 2.3 Consider the ranked alphabet ' = {6(3,0(2),v()}. Figure 5 shows a
jungle.

Jungles represent trees. But we also need hypergraphs which represent trees with
parameters, called parjungles (standing for ”jungles with parameters”). Recall that Y =
{¥1,92,...} is the set of parameters, and for m > 0, Y, = {#h,.--,¥m}-

For m > 0, a parjungle with m parameters is an acyclic hypergraph g of rank m + 1,
such that

(1) exty(1),...,exty(m) are all distinct,
(2) exty(1),...,exty(m) have in-degree 0, and
(3) every node v ¢ {exty(1),...,exty,(m)} has in-degree 1.

Note that exty,(m + 1) has in-degree 0 if it is in {exty(1),...,ext,(m)}, but has in-degree
Lif it is not in {exty(1),...,exty(m)}. Note also that a jungle is the same as a parjungle
with 0 parameters.



Figure 5: A jungle.

Let g be a parjungle with m parameters over I'. The tree represented by g, denoted by
tree(g), is the tree 7(exty(m + 1)) where the mapping 7 : V, — T(dec(I')}(Y:) is defined
recursively by

(i) if v is an external node ezt (i) for some i € [m], then 7(v) = ¥;, and
(ii) otherwise T(v) = y(r(v1),...,7(vp)) where v = laby(res;!(v)) and vy...vpv =
nod,(res;1(v)).
Note that, if g is a jungle, then tree(g) € T(dec(T')).

The function 7 is also refered to as the unfolding function of g. Note that 7 prunes off
the parts of g that are not connected with the external node m + 1.

Example 2.4 Consider the ranked alphabet I' = {v(4),§(3), 5(2), (1)}, Figures 6 (a), (b),
and (c) show parjungles g;, g2, and g3 with 2 parameters, respectively. Obviously, the
parjungles are only different with respect to the third external node. Let us compute, for
g1, g2, and g3, the represented tree.

tree(g1) = 74, (v1) = 6(7y, (v2), 74, (v4))

= 8(a(rg,(v3)), ¥(7g,(v3), 74, (v5), 75, (v6))

= §(a(1), ¥(31,92,7))

Similarly, 7g,(v2) and 7,4,(v3) are computed:

tree(gz) = Tg,(v2) = o(y1) and

tree(gs) = 735(va) = 1.

Note finally that for the jungle g of Figure 5, tree(g) = 6(6(v,0(7)),o(7)).

10
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3 Top-Down Tree-To-Graph Transducers

In this section we formally define the top-down tree-to-graph transducer and its tree-
generating version. Moreover, we enrich this formalism by adding the possibility of check-
ing the input tree by means of regular look-ahead. We prove a useful normal form for
top-down tree-to-graph transducers, provided they are equipped with regular look-ahead.

Recall that X = {z},z,,...} is the set of subtree variables, and that X} = {z1,...,zx}
for k > 0.

Definition 3.1 A top-down tree-to-graph transducer (for short: td-tg transducer) is a
tuple M = (Q, I, A, gin, R) where

e () is a ranked alphabet of states

e ¥ and A are ranked alphabets of input and output symbols, respectively

Gin € @ is the initial state of rank 1

R is a finite set of rules; for every ¢ € Q™) with m > 0 and ¢ € £(*) with k£ > 0
there is exactly one rule of the form

(*) (g,0(z1,...,2)) = b
where h € m-HGR((Q, Xi) U A). o

The rule m of M of the form (g, o(z1,...,74)) — h is called the (g,0)-ruleof M and h
is also denoted by rhs(7) or rhs(g, o). Intuitively, the rule (g, o(z1, ..., zr)) — h expresses
that the g-translation of an input tree o(s1,...,5k) is the graph h in which every edge
with label (¢’,z;) is replaced by the ¢’-translation of s; (cf. Lemma 3.13).

An output labeled (state labeled) edge of Ths(w) is an edge that is labeled by some
output symbol (pair (¢’,z;) where ¢’ is a state and z; is a subtree variable, respectively).

Example 3.2 (cf. [Lau88a, EH92]). Consider the td-tg transducer M = (Q,%,A,gin, R)
with Q = {q,(,ll),q(“)}, % = {y(V,a®}, and A = {6®,5(2)}. The set B = {m1, 72, 73,74}
of rules is shown in Figure 7.

For every input tree, the td-tg transducer M outputs two concentric circles which
are connected by radial lines (cf. Figure 8). Actually, M translates y"(a) into such a
hypergraph with 2" connecting lines. ]

The restriction in Definition 3.1 that there is exactly one (g,0)-rule for every ¢ and o,
means that we consider "total deterministic” td-tg transducers. Without this restriction
the nondeterministic td-tg transducer is obtained, which is not studied in this paper.

From the point of view of controlled grammars, td-tg transducers are context-free hy-
pergraph grammars (cfhg grammars) of which the derivations are controlled by input trees.
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Figure 8: Translation of y(y(a)) by M.

In this sense, (nondeterministic) td-tg transducers generalize ET0L-systems (investigated,
e.g.,in [GR75, Asv77, Lan83, ERS80, Eng76, Eng86a, Eng86b]) where a context-free gram-
mar is controlled by strings of tables and tables are finite collections of productions. Thus,
the generalization is twofold: we consider cfhg grammars and control trees rather than
context-free grammars and control strings. The reader is refered to [Eng76, ERS80] for the
fact that the parallelism inherent in ETO0L systems can be replaced by using a sequence
of tables as distributed control (cf. [Eng86a] for a discussion of the concept of grammar
with control or equivalently: with storage). By generalizing in just one direction, two
other formalisms are obtained. Context-free grammars with control trees are essentially
top-down tree transducers (see [Eng86a, ERS80]). Cfhg grammars with control strings are
the appropriate generalization of ET0L systems to graph grammars: they are cfhg gram-
mars with parallel rewriting as introduced in [Kre92). Generalizing the result of [Eng76],
it is not difficult to prove that such parallel cfhg grammars generate the class of ranges

of (nondeterministic) td-tg transducers that have a monadic input alphabet T (i.e., every
symbol in ¥ has rank 1 or 0).

The definition of derivation relation is prepared by the general notion of hypergraph
substitution [BC87, HKS7a, HK87b] see Fig.2. Roughly speaking, in a hypergraph g,
an edge e of rank m is replaced by a hypergraph A with m external nodes by pairwise
identifying the nodes that are incident with e, with corresponding external nodes. (Put
your fingertips together and think about it.)

Definition 3.3 For a ranked alphabet T', let g € n-HGR(T) with n > 0. Let e € E, with
rank m > 0 and let A € m-HGR(T') such that g and A are disjoint.

14



The substitution of h for e in g, denoted by g[e/h], is the n-hypergraph f/R over T
defined as follows:

. V]=VhUVg
Ef = (E, - {e}) U Es

laby is laby U laby restricted to Ey

nody is nody U nod, restricted to Ej
e exty = exty, and

o R ={(u,v) € V§ x Vy|u = nody(e)(i) and v = exty(i) for some i € [m]}. a

For a hypergraph g, a set E/ C E, of edges, and a family {h(e)}ecrs of hyper-
graphs, with rank(h(e)) = rank(e) for every e € E’, we define gle/h(e);e € E'] to be
glei/h(e1)]...[e;/h(e;)] where E' = {e,,...,e,}. It is an easy observation that the result
of this simultaneous substitution does not depend on the order of the single substitutions.
For a set I'' C T of symbols, and a family {h(y)},er of hypergraphs, with rank(h(y)) =
rank(y) for every v € I", we define g[y/h(7);y € '] to be g[e/h(laby(e));e € E’] where
E' = {e € E4|laby(e) € T'}.

Definition 3.4 Let M = (Q, X, A, gin, R) be a td-tg transducer.

The derivation relation = of M is a binary relation on HGR({Q,T(Z)) U A) such
that, for every £;,6, € HGR((Q,T(E))UA), & = um & iff thereis arule (g, 0(2y,...,2k)) —
hin R, there is an edge e € E,, and there are sy,...,s; € T(Z), such that

(a) labg,(e) = (g,0(s1,--.,5k)), and

(b) & is isomorphic to &;[e/h'] where A’ is obtained from A by replacing every edge
label {¢’,z;) by the label (¢’,s;) (and then, if necessary, taking an isomorphic copy
disjoint with &;). a

We note that, if £ is an n-hypergraph and & = £, then &; is an n-hypergraph too.
Sometimes it is useful to add particular information to the denotation of the derivation
step: If rule # = (q,0(z1,...,2x)) — h of M has been applied to edge e of £ resulting in
the hypergraph &;, then this step is also denoted by

El = M,e,n 62-
Just as for right-hand sides of rules, we define an output labeled (state labeled) edge

of a hypergraph g € HGR({Q,T(X))UA) to be an edge of g that is labeled by an element
of A (of (Q,T(X)), respectively).

Example 3.5 Consider the td-tg transducer M of Example 3.2. Figure 9 shows a deriva-
tion of M starting with sing((gin,v(a))). O
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Before we define the tree-to-graph translation computed by a td-tg transducer, we first
prove that the derivation relations of these devices are locally confluent (cf. [Hue80] for
this notion) and noetherian, i.e., for every td-tg transducer M, there does not exist an
infinite sequence & = &2 =>um & = ... for hypergraphs £, &2, €3, . .. (cf. [Der87] for a
survey about termination of rewriting). Thus, =y is confluent.

Lemma 3.6 For every td-tg transducer M, = s is locally confluent.

Proof: Given a td-tg transducer M, it is an easy observation that, if & = & and
& =>m & for hypergraphs &,&, & with & # £, then there is a hypergraph £ such that
& =>m & for i € {0,1}: Since & and £, are obtained by applying two rules mp and m
of M to two distinct edges ep and e; of £, respectively, and these derivation steps do not
interfere, £’ can be obtained from &; by applying rule m;_; to e;_;. In fact, &le1/rhs(m)]
= £leo/rhs(mo)][e1/Ths(m1)] = Eler/rhs(m1)][eo/Ths(mo)] = &i[eo/rhs(mo)] = € (cf. the
observation following Definition 3.3). Thus =y is locally confluent. a

Now we prove the property that derivation relations of td-tg transducers are noethe-
rian. This property is based on the observation that in every derivation step an occur-
rence of an input subtree is replaced by finitely many (possibly zero) input subtrees with
a smaller height; this induces a well founded ordering on multisets. Then it is easy to see
that =7 is also well founded, i.e., noetherian. For the formal proof we need the technical
notions of partially ordered set, finite multiset, and multiset ordering.

A partially ordered set (S, >) consists of a set S and a transitive and irreflexive binary
relation > on S. Let > be the usual partial order on natural numbers. A partially
ordered set is well founded if there are no infinite descending sequences s; > s3 > ... of
elements sy, s,...of §. Clearly, (IN, >n) is well founded.

Intuitively, a multiset is a set in which elements may occur several times. Formally,
for a set S, a multiset over S, is a mapping M : § — IN. A multiset M over § is finite if
the set {s € S|M(s) # 0} is finite. The set of finite multisets over S is denoted by M(S).
Let My, My € M(S), then M, + M, is the multiset M such that M(s) = My(s) + Ma(s)
for every s € §. If, for every s € S, My(s) > M,(s), then M, is a subset of My, denoted
by My C M;, and M, — M, is the multiset M, such that M(s) = My(s) — M2(s) for every
s € §. The empty multiset over S, denoted by 9, satisfies O(s) = 0 for every s € §.

If (5,>) is a partially ordered set, then M(S) can be partially ordered. Intuitively,
a multiset M’ is smaller than the multiset M, if M’ is obtained from M by replacing at
least one element of M by any finite number of elements each of which is smaller than one
of the elements that have been removed. Formally, the multiset ordering > induced by
(5,>) on M(S) [DMT79] is defined as follows: for M, M’ € M(S), M > M’ iff there are
multisets X,Y € M(S)suchthat ) # X C M, M'=(M - X)UY, and foreveryy € Y
there is an z € X with z > y.

It is easy to prove that (M(S),>>) is a partially ordered set iff (5, >) is. Moreover,
well-foundedness is preserved by constructing the multiset ordering.

Observation 3.7 ([DM79]). The multiset ordering (M(S),>>) is well founded if and
only if (5, >) is well founded. a
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Now we are prepared to prove that the derivation relations of td-tg transducers are
noetherian. Let > be the multiset ordering induced by (IN, >w) on M(IN).

Lemma 3.8 For every td-tg transducer M, = s is noetherian.

Proof: Let M = (Q,X, A, ¢in, R) be a td-tg transducer. For sentential forms oc-
curring in derivations of M, we define the following finite multisets over IN. For £ €
HGR({(Q,T(XZ)) U A), let multi-height(€) be the finite multiset over IN such that, for
every k € IN, multi-height(£)(k) is the number of edges e of £, such that lab¢(e) = (g, s) €
(Q,T(X)) and height(s) = k.

Let & = pM,e,x €2 for some edge e € E¢,. Hence, if e is labeled by (g,0(s1,...,sk)) for
some state ¢ and some o(s1,...,5;) € T(E), then e is replaced by rhs(x) in which labels
of the form (¢', ;) are replaced by (¢, s;). Hence, multi-height(£;) >N multi-height(&2).

Now assume that there is an infinite derivation & =>pr €2 = a7 .... Then there is an
infinite sequence of multisets such that multi-height(&;) >N multi-height(£2) >N .. .
But this contradicts the well-foundedness of 3> which is induced by the well-foundedness
of > on IN (by Observation 3.7). This proves that =) is noetherian. o

By Lemma 2.4 of [Hue80], it follows from Lemmas 3.6 and 3.8 that, for every td-tg
transducer M = (Q, X, A, gin, R), the relation =>ps is confluent. Since, in total, = is
confluent and noetherian, every sentential form ¢ has a unique normal form, i.e., there is
a unique hypergraph g with output labeled edges only such that £ =}, ¢. In particular,
this holds for £ = sing((q, s}) for some state g and input tree s.

Definition 3.9 Let M = (Q, X, A, gin, R) be a td-tg transducer, ¢ € @, and s € T(Z).

The g-translation of s, denoted by M(g,s), is the unique hypergraph ¢ € HGR(A),
such that sing({q,s)) =3, 9. O

Note that, if ¢ has rank m, then sing({(g, s)) is an m-hypergraph. Since the derivation
relation preserves the rank of hypergraphs, also M(q, s) has rank m.

Definition 3.10 Let M = (Q, X, A, gin, R) be a td-tg transducer.
M is tree-generating if, for every s € T(X), the 1-hypergraph M(gin,s) is a jungle. O

Definition 3.11 Let M = (Q, X, A, gin, R) be a td-tg transducer.

(a) The tree-to-graph translation computed by M is the mapping (M) : T(Z) —
HGR(A), such that 7(M)(s) = M(gin, s) for every s € T(Z). a

(b) If M is tree-generating, then the tree-(to-graph)-to-tree translation computed by M

is the mapping 7¢(M) : T(X) — T(dec(A)), such that 7,(M)(s) = tree(M(gin,s))
for every s € T(X). o
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Example 3.12 Consider the td-tg transducer M = (Q, X, A, ¢in, R) with Q = {q'(,lt), g},
T = {y(1,a®}, and A = {61, 4D}, The rules my, w2, 73,74 of M are shown in Figure
10.

For the input tree 7*(a), M computes the jungle mon(n) = ({0,...,2"},{e0 < i <
2"}, lab, nod, ext) with lab(ep) = 7 and nod(ey) = 0, and for every 1 < i < 2", lab(e;) = 6
and nod(e;) = (¢ — 1)(z — 1)z, ext = 2" (cf. Figure 11). That means, 7(M)(7™(a)) =
mon(n). Clearly, the unfolding of mon(n) yields a full binary tree bin(n) over dec(A) of
height 2" + 1. Hence tree(mon(n)) = bin(n), and so 7:(M)(y™(a)) = bin(n). a

Two td-tg transducers M; and M, are equivalent if they compute the same tree-
to-graph translation, i.e., 7(M;) = 7(M;). The class of all tree-to-graph translations
computed by td-tg transducers is denoted by tgT'. For tree-generating td-tg transducers,
the class of computed tree-to-tree translations is denoted by tgtT. It is straightforward to
prove that the translation of an input tree by a td-tg transducer M can be characterized

inductively as follows (the proof needs the associativity of hypergraph substitution, see
[Cou87a)).

Lemma 3.13 Let M = (Q, T, A, gin, R) be a td-tg transducer. For every g € Q, ¢ € (¥
with £ > 0, and s4,...,s; € T(Z),

M(q,0(s1,- .., k) = ths(q, 0)[(¢, z;)/ M(q', ;)i {q, 2;) € (Q, X)]-

O

In the remainder of this section we prove a normal form result for td-tg transducers
M (with regular look-ahead). This normal form is motivated by our wish that M has
the "subgraph property”, i.e., that, in the equation of Lemma 3.13, every M(q’,s;) is
(isomorphic to) a subgraph of M(gq,o(s1,...,s¢)). This may not be true if rhs(q, o)
contains a "loop”, i.e., an edge e with label (¢’,z;) such that nod,,(0)(e) contains a
repetition of nodes (because then some external nodes of M(¢’,s;) are possibly identified
in M(q,0(s1,...,5¢))). For this reason we will require M to be "loop-free”.

Definition 3.14 Let M = (Q, X, A, gin, R) be a td-tg transducer. An edge e of a hyper-
graph h is loop-free if for every i, j € [rank(e)], ¢ # j implies nodx(e)(Z) # nodn(e)(j)- A
hypergraph h in HGR((Q,T(X))U A) or in HGR({Q, X)U A) is loop-free if all the state
labeled edges of h are loop-free. M is loop-free if rhs(r) is loop-free for every m € R. O

But even for a loop-free td-tg transducer it may not be true that every M(q,s;) is
(isomorphic to) a subgraph of M(q,o(si,...,sk)). This may go wrong if the sequence
of external nodes of M(q’,s;) contains a repetition of nodes (because then some of the
nodes of rhs(q,o) that are incident with a (¢, z;)-labeled edge are possibly identified in
M(q,0(s1,...,5%)), possibly leading to a loop in another state labeled edge). For this
reason we will require each right-hand side h of a rule of M to be "identification-free”,
which means that ext; is a sequence of distinct nodes.
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Definition 3.15 Let M = (Q,X, A, gin, R) be a td-tg transducer. A hypergraph A is
identification-free if, for every ¢,7 € [rank(h)], ¢ # j implies exty(i) # extn(j). M is
identification-free if rhs(w) is identification-free for every 7 € R. m]

Forinstance, the hypergraph g shown in Figure 3 is not loop-free, because nod,(e2)(2) =
nody(e2)(3) = v1, and not identification-free, because ezty(1) = exty(3) = va.

Now we show that td-tg transducers which are loop-free and identification-free, have
the "subgraph property”. For the notion of full subgraph, see Section 2.3.

Lemma 3.16 Let M = (Q, X, A, gin, R) be a loop-free and identification-free td-tg trans-
ducer. Then:

(1) for every g € Q and s € T(X), M(q,s) is identification-free, and

(2) for every ¢ € Q, 0 € £*) with k£ > 0, and $1,...,5¢ € T{(Z), if (¢, ;) occurs in
ths(q, o), then M(¢',s;) is a full subgraph of M(q,o(s1,...,5k)).

Proof: Statement (1) can be shown by induction on the structure of s, using Lemma
3.13. It is easy to see in general that if g and h are identification-free, then so is g[e/h].
Statement (2) then follows from Lemma 3.13 and the general fact that if g is loop-free,
e is a state labeled edge of g, and h is identification-free, then h is a subgraph of g[e/h]
and g[e/h] is lcop-free. Note that, in general, if h is a subgraph of g[e/h}, then it is a full
subgraph of g[e/h]. o
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It is not clear to us whether every td-tg transducer can be transformed into an equiv-
alent identification-free td-tg transducer, because the information about identification
depends on the input tree. However, if we enrich td-tg transducers with some capa-
bility of inspecting its current input tree before applying a rule, then we can transform
M into an equivalent, identification-free td-tg transducer. The capability which is suf-
ficient to reach this normal form of td-tg transducers, is called regular look-ahead (cf.
[Eng77, FV89a, FV89b] for top-down tree transducers with regular look-ahead, and cf.
[EV85] for macro tree transducers with regular look-ahead).

Definition 3.17 A top-down tree-to-graph transducer with regular look-ahead (for short:
td-tg® transducer) is a tuple M = (@, P,X,A,gin, R, §) where

e (P,X,6)is a finite state tree automaton, called the look-ahead automaton of M, and
¢ (Q,%,A,gin, R) is a td-tg transducer in which the rules now have the form

((qv 0'(221, .. -,fck)),Pl, .. wpk) —h

with ¢,0, and h as in Definition 3.1, and p;,...,pr € P. Moreover, for every
g€ Q™ g X p,... p € P there is exactly one rule in R with left-hand side
((q7a(z17°°°1xk)),pl"'-7pk)° a

The definition of the derivation relation of a td-tgR transducer is exactly the same as
the definition of the derivation relation of a usual td-tg transducer (cf. Definition 3.4)
with the following restriction: the rule which is applied, has to reflect in its look-ahead
states the properties of the subtrees sq,...,s; of the current input tree s.

Definition 3.18 Let M = (Q, P,Z, A, gin, R, 6) be a td-tgF transducer.

The derivation relation =pr of M is a binary relation on HGR((Q,T(X)) U A)
such that, for every £,6, € HGR((Q,T(Z)) U A), & = & iff there is a rule
({g,o(21,...,2)),P1,--.,Pk) — h in R, there is an edge e € E¢,, and there are
$1,---,8k € T(Z), such that

(a) labg,(€) = (¢,0(s1,...,5)) and, for every i € [k], §(s:) = pi, and
(b) as in Definition 3.4. o

Since Lemma’s 3.6 and 3.8 also hold for td-tgR transducers M, we can define M(q, s)

as for td-tg transducers in Definition 3.9, and also take over Definitions 3.10 and 3.11.

The analogue of Lemma 3.13 is as follows, where we use rhs(g,a,pi,...,px) to denote the
right-hand side of the unique rule with the left-hand side ({(g, 0(z1,...,Zk)), P1, .. ., Pk).

Lemma 3.19 Let M = (Q, P, X, A, gin, R, 6) be a td-tgR transducer. For every ¢ € Q,
o € %) with k > 0, and s1,...,s; € T(Z),

M(qya(sl,. ..,Sk)) =
rhs(q, 0,5(31 ) RN 5(81;))[(0'1 z;)/M(q',5;);(q' ;) € (Q, Xk)].
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Definitions 3.14 and 3.15 and Lemma 3.16 are also valid for td-tg® transducers.

An identification of external nodes ezt(i) and ezt(j) can be represented by a pair
(4,7) € N x IN. For a hypergraph g of rank m, define id(g) = {(, 7) € [m] x [m]|ezt (i) =
exty(j)}: the identification information of g. The next elementary lemma relates identifi-
cation and substitution.

Lemma 3.20 Let h,hy,...,h, be hypergraphs, and let ey, ..., e, be distinct edges of h.
Then

(1) id(h[er/h1]. . .[er/hs]) = id(h/S), and
(2) hler/hi]. . .[er/hs] = (B S)ler/ha]. . [er/he),

where § = {(u,v)lu = nody(e;)(c) and v = nodi(e;)(d) for some 1 < i < 7 and some
c,d € id(h;)}. o

We now show, for every td-tg transducer, that there is a finite state tree automaton
which computes, for every input tree s and every state ¢, the identification information of
M(q,s). Let ID = P(IN x IN) be the set of all identification sets. For a ranked set Q, let
[@ — ID] denote the (finite) set of mappings ¢ from Q to ID, such that, for every q € Q
with rank m, ¢(q) C [m] x [m].

Lemma 3.21 Let M = (Q, %, A, gin, R) be a td-tg transducer. There is a finite state tree
automaton By = (P, X, 6), such that P = [Q — ID] and, for every s € T(Z) and q € Q,

~

6(s)(q) = id(M(q, s)).

Proof: The transition function § is defined as follows. Let o € T(¥) for some k >
0, ¢1,...,0x € [Q — ID], and let ¢ € Q. Then let rhs(q,0)/(é1,...,¢x) denote the
hypergraph h/S where h = rhs(q,0) and S = {(u,v) € V}, x V3| there is an edge e € E},
with labn(e) = (¢',z;) and there is a (¢,d) € ¢;(¢'), such that u = nodj(e)(c) and v =
nodp(e)(d)}. We define 6,(¢1,...,¢x)(q) = id(rhs(q,a)/(1,- - ., Pk))-

The statement of the lemma follows by induction on the structure of s by using the in-
ductive characterization of the translation of a td-tg transducer (Lemma 3.13) and the fact

that id(rhs(q,0)/(8(s1), ..., 6(st))) = id(rhs(g, o)[(q's23)/ M (g, 55); (¢, z5) € (Q, X)),
i.e., with respect to identification of external nodes,

rhs(g,0)/(8(s1), - - .,8(sk))

and
Ths(‘]s 0')[(q,’ zj)/M(q,a Sj); (qlv wj) € (Q7 Xk)]

are indistinguishable. This fact follows directly from Lemma 3.20(1), with h = Ths(q,0)
and h; = M(q/,s;). o

Example 3.22 Consider the td-tg transducer M = (Q,%,A,¢in, R) where Q =
{q,(,ll),p(a),q(z)}, and ¥ and A are defined as in Example 3.12. Figure 12 shows some
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Figure 13: A derivation of M starting with sing({gi,v(7())))-
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Figure 14: Right-hand sides with identified external nodes.

of the rules of M; the others are not important here. Figure 13 shows a derivation of M
starting with sing((gin, 7(7(2))))-

Now let us indicate how By computes on v(y(a)).

§(a)(g) = ba()(q) =

= 1d(rhs(g,)/()) = {(1,2),(2,1),(1,1),(2,2)} = [2] x [2].

5(7(e))(p) = 8,(8(a))(p) =

= id(rhs(p,7)/(é(@))) = (3] x (3].

The graph rhs(p,v)/(6(a)) is shown in Figure 14(a).

5(v(7(@)))(gin) = &x(8(7(2)))(gin) =

= id(rhs(gim,7)/(6(7(a)))) = [1] x [1].

The graph rhs(gin,7)/(8(7(@))) is shown in Figure 14(b). o

To prove that every td-tg transducer can be transformed into an equivalent
identification-free td-tgR transducer we use the same technique as it was used in the proof
of Lemma 3.2 of [EH91] for cfhg grammars. However, here we do not guess identification
information, attach it to the nonterminals of the grammar, and later on verify (or falsify)

that it is correct, but rather we use look-ahead to determine the correct identification
information directly.

Lemma 3.23 For every td-tg transducer there is an equivalent identification-free td-tgR
transducer. ’

Proof: Let M = (Q, L, A, gin, R) be a td-tg transducer. First, we construct a so-called
dynamically identification-free td-tgF transducer M’ which is equivalent to M, and second,
from M’ we construct an identification-free td-tgR transducer M” with 7(M) = 7(M").

Note that, for every o € ¥, rhs(gin,0) is trivially identification-free, because it is a
hypergraph with one external node.
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A td-tgR transducer M’ is dynamically identification-free if the following holds: for all
hypergraphs h and h' such that sing({gin,s)) =4y b =>pr e h' for some s € T(Z), and
for every ¢, j € [rank(rhs(m))], if ezt py(x)(3) = €zt ps(x)(5), then nods(e)(z) = nodn(e)(5)
In other words, the application of 7 does not identify distinct nodes of A.

Construct the td-tgR transducer M’ = (Q, P,%, A, i, R',6) where (P, %,6) is the
finite state tree automaton Bjs from Lemma 3.21, and R’ is defined as follows. Let
(g,0(z1,...,2%)) — h be a rule in R. Then for every ¢1,...,¢x € [Q — ID], the rule
({g,0(z1,...,2k)), b1,..., k) = h' is in R’ where ' = h/S and S is defined as in the
proof of Lemma 3.21, i.e., § = {(u,v)| there is an edge e € E), with labs(e) = (¢’,z;) and
there is a (¢, d) € ¢;(¢’), such that u = nodj(e)(c) and v = nodx(e)(d)}.

It is straightforward to show by induction on the structure of s that M'(q,s) = M(q,s)
for every g € Q, using Lemma 3.13, Lemma 3.19, and Lemma 3.20(2). It remains to prove
that M’ is dynamically identification-free. First, it can easily be shown by induction on the
length of the derivation sing({(gin,s)) =3, h that, for every edge e of h with label (g, s'),
if (4,7) € 1d(M(q,s')), then nodp(e)(i) = nody(e)(j). In fact, this follows directly from
the construction of M’. Now consider h =>pp . . ', and let edge e have the label (g, s').
If extrhs(ﬂ’)(i) = extrhs(ﬂ)(j)a then, by Lemma 3.19, (,j) € id(M'(q,s")) = id(M(q,5'));
hence, by the previous fact, nody(e)(z) = nodp(e)(5).

For the construction of M” we define for every hypergraph g the hypergraph split(g)
which is an arbitrary, but fixed identification-free hypergraph of the same rank as g,
such that split(g)/S = g where § = {(ext,piir(g)(2), €Xtspiit(g)(7))1(3,5) € id(g)}. Intu-
itively, such a split(g) is obtained by splitting identified external nodes of g. Now con-
struct the identification-free td-tg® transducer M” = (Q, P, X, A, gin, R", 6), such that, if
({g,0(z1,-..,2k)), b1, ..., Pk) = hisin R', then ((g,0(z1,...,2¢)), b1, - . ., Pk) — split(h)
is in R”. The correctness of M” is obvious from the fact that M’ is dynamically
identification-free. =

Example 3.24 Consider the td-tg transducer M of Example 3.22. Clearly, M is
not identification-free, because rhs(m;) and rhs(w3) are hypergraphs which are not
identification-free. Figure 15 and Figure 16 show the dynamically identification-free td-tgR
transducer M’ (with ¢,(4)(p) = (3] X [3] and ¢a(q) = [2] X [2]) and the identification-free
td-tgR transducer M” (with ¢,(4) and @, as in Figure 15), respectively, as constructed in
Lemma 3.23. Figure 17 shows a derivation of M” starting with sing({(gin,7(7(@)))). O

Every identification-free td-tg? transducer M = (@, X, A, gin, R) can be transformed
into an equivalent identification-free and loop-free td-tgR transducer. This statement also
holds if the regular look-ahead is dropped from M and M’. Consider a hypergraph h
which has been derived from sing((gin, s)) for some input tree s, and consider an edge e of
h which is labeled by (g, ') for some state ¢ and subtree s’ of s. Moreover, assume that e
has a "loop”, i.e., there are i, j € [rank(e)] with i # j such that nods(e)(¢) = nody(e)(j)-
A general observation about the derivation relation of a td-tg transducer is the fact that
nodes never split. Now consider any hypergraph ¢ € HGR(A) which has been derived
from sing((q, s’)). It follows from the general observation that external nodes i and j are
identified, i.e., ext,(7) and ezt (j) are identified in h[e/g]. Thus, we could just as well join
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Figure 15: Dynamically identification-free td-tgR transducer M'.
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Figure 16: Identification-free td-tgR® transducer M".
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Figure 17: A derivation of M".
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the tentacles 7 and j of the edge e into one tentacle (cf. Theorem 1.4.6 of [Hab89] and
Proposition 2.4 of [EH92]).

Lemma 3.25 For every identification-free td-tg transducer M, there is an equivalent
identification-free and loop-free td-tg transducer M’. The same statement holds if M and
M’ are td-tgF transducers.

Proof: Let M = (Q, X, A, gin, R) be an identification-free td-tg transducer. We con-
struct an identification-free and loop-free td-tg transducer M’ = (Q', X, A, ¢,, R') with
T(M') = 7(M).

Every new state in Q’ contains a partition of the set of the original tentacles with the
intention that tentacles in one set lead to the same node. The elements of the partition
are called loop sets.

Q' = {{g,n, L1,...,Ly)|q € Q,n > 0,{Ly,..., L.} is a partition of [rankg(q)]} with
rankg({g,n, L1,...,Ly)) = n. The initial state ¢}, of M’ is {gin, 1, {1}).

For A = {(q,n,Ly,...,L,) € Q', we denote g as LAB(A), n as NUM(A), and for every
a € [n}, L, as L(A,a).

For the construction of R’ consider the rule (g,0(z1,...,2¢)) — hin R and let A € Q'
with LAB(A) = q.

First, from h and A, we derive for every state labeled edge of h its new label which
contains the list of appropriate loop sets. For this purpose consider the hypergraph H =
h/Ps where P4 = {(extn(i),extn(j))| there is an a € [NUM(A)] such that {i,5} C
L(A,a)}. Let e be a state labeled edge of H, with laby(e) = (¢',z;) € (@, X) and
re = rank(q’). Let L. be the partition of [r¢] corresponding to the equivalence relation
=4, on [r.] defined by ¢ =4, d iff nody(e)(c) = nody(e)(d). Let n. be the number of
sets in L, and let (Ley, Leg, ..., Len,) be an enumeration of elements of L. (in any order).
Then the new label of edge e (under the assumptions recorded in A) is new(A,e) =

((ql?ne7 Le]a Le2s ce ey Lene), z]>'
Then R’ contains the rule (A,0(zy,...,z¢)) — H' where H' = (V, E,nod, lab,ext)

with V = Vy, E = Ey, and for every e € Vy the following holds:
e if laby(e) € A, then nod(e) = nody(e) and lab(e) = laby(e) = laby(e),

o iflaby(e) € (Q, X), then for every a € [n.], nod(e)(a) = nody(e)(c) for some ¢ € Lea
and lab(e) = new(A,e), and

o for every a € [NUM(A)], ext(a) = exty(c) for some ¢ € L(A,a).

Note that, in both cases, there is no need to specify ¢ further, because nody(e)(c) =
nody(e)(d) if {c,d} C Leq, and exty(c) = exty(d) if {c,d} C L(A,a).

Every right-hand side of a rule {A,0(z,...,2x)} — H' of M’ is identification-free,
because the right-hand side of the corresponding rule {LAB(A),0(z1,...,2x)) = hof M is
identification-free and external nodes ert,(c) and ext;(d) that are identified in H = h/ Py
due to the fact that {c,d} C L(A,a) for some a, are turned into one external node in
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Figure 18: Some rules of M.

H', viz., exty/(a). Thus, since for every a,b with a # b, L(A,a)N L(A,b) = 0, M’ is
identification-free.

Also, M’ is loop-free, because, for every rule (A, o(z;,.. .yZx)) — H' in R, the fol-
lowing holds for every state labeled edge e of the right-hand side of the corresponding
rule (LAB(A),o(z1,...,2x)) — h of R: the elements of the partition L. are pairwise
disjoint and all tentacles that are in the same element L., of L. (i.e., that are in the same

equivalence class with respect to =4, and thus form loops) are turned into one tentacle a
of ein H'.

Since M is identification-free, the following equivalence can easily be shown by induc-
tion on the length of the derivations. For every s € T(Z) and ¢ € HGR((Q,T(Z)) U
A), sing({gin,s)) =3 g iff there exists a G € HGR((Q',T(Z)) U A) such that
sing((gln,s)) =% G and g is (isomorphic to) (Vg, Eg, nod, lab,exty) with, for every
output labeled edge e, lab(e) = labg(e) and nod(e) = nodg(e), and for every state labeled
edge e, if labg(e) = (A, s) then lab(e) = (LAB(A), s) and, for every i € [rankg(LAB(A))],
nod(e)(i) = nodg(e)(a) for the a such that i € L(A4,a).

In particular, if g € HGR(A), then g and G are equal. Thus, 7(M) = r(M").

Clearly, the addition of regular look-ahead does not interfere with the construction. O

Example 3.26 Consider the identification-free td-tg transducer M = (@Q,%Z,A,qin, R)

where Q = {¢}),p®}, T = {71, a9}, A = {603),4(1}, and some of the rules are given
in Figure 18. Obviously, M is not loop-free, because rhs(gin,7) contains a loop. Figure
19 shows a derivation of M starting with sing({(gin, 7(a))).

The identification-free, loop-free td-tg transducer M’ which is constructed from M as
defined in Lemma 3.25, is shown in Figure 20. Recall from Definition 3.14 that loop-
freeness only refers to state labeled edges. Figure 21 shows a derivation of M’ starting
with sing(((gin, 1, {1}),7(a))). o

Finally, we combine the previous lemmas.
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Figure 19: A derivation of M starting with sing((gin, v())).
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Figure 20: Identification-free, loop-free td-tg transducer M’.
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Figure 21: A derivation of M’ starting with sing({{gin, 1, {1}),7())).

Theorem 3.27 For every td-tg transducer M there is an equivalent td-tg® transducer M’
which is identification-free and loop-free.

(]

Note that M’ satisfies Lemma 3.16. Note also that if M is tree-generating, then so is

M.
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4 Macro Tree Transducers

In this section we briefly recall the concept of macro tree transducer [CF82, Eng80, EV85].
These are devices for syntax-directed translation in which the translation of an input tree
may depend on its context.

Recall that Y = {y,y2,...} is the set of parameters, and that Y, = {y1,...,ym} for
m 2> 0; X = {z;,z2,...} is the set of subtree variables, and X,, = {z1,...,Zm}-

Definition 4.1 A macro tree transducer (for short: mt transducer) is a tuple M =
(Q,Z,A, gin, R) where Q is the ranked alphabet of states, ¥ and A are the ranked al-
phabets of input and output symbols, respectively, i, € Q(® is the initial state, and R is
the finite set of rules; for every ¢ € Q(™) with m > 0 and ¢ € Z(*) with k > 0, there is
exactly one rule in R of the form

(*) <q10(zl""vzk))(yh"‘aym) - (
where ( € T(T' U A)(Y;,) with T' = (Q, Xi). o

We note that in [EV85] such transducers are called total deterministic macro tree
transducers. A rule 7 of the form (%) is called the (g, 0)-rule of M; its right-hand side is
denoted by rhs(w) or rhs(g,0). A top-down tree transducer is a macro tree transducer in
which every state has rank 0.

Definition 4.2 Let M = (Q, X, A, gin, R) be an mt transducer.
The derivation relation of M, denoted by = p, is the binary relation on T{TUA) with

[ = (Q,T(X)) such that, for every £;,&2 € T(T' U A), & =um & iff
1. thereis a £ € T(I'U A)({z}) in which z occurs exactly once
2. thereare o € £(F), g€ Q™) sy,...,5¢ € T(Z), and t1,...,t,n € T(CUA) such that

o 61 = 6[2/(‘110-(31’ . '°,3k))(tla . -,tm)] and
o & = £[z/¢') with (' = rhs(q,0)[z;/s;; 7 € [k])[wi/ti; 1 € [m]]. o

Example 4.3 Consider the mt transducer M = (Q, X, A, gin, R) with Q = {q,(g),q(l)},
¥ = {71, a9}, and A = {§(2),4(9}. R contains the following rules.

(gin,7(z1)) —  (g:z1)((g,21)(7))
(Gin,@) — 7
(Gr@E@)N ) — (g z1)({g, z1 (1))
(g a)(n) — (y1,m)
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A derivation of M starting with {(gin, 7(a)) is as follows:

(gin, 7(a))

= (g, 2)({g, 2)(7))

= §({g, a)(7) (g, a)(7))

= 6(8(7,7): (g, @)(7))

= 6(6(7,7),8(7,7))

M translates y"a into the full binary tree bin(n) of height 2" + 1 (cf. Example 3.12).
a

For every mt transducer M = (Q, Z, A, gin, R) and sentential form £ € T(I' U A) with
I' = (Q,T(X)), there is a unique tree t over A such that £ =%, t (by Corollary 3.13 and
the remarks at the beginning of Section 4.1 of [EV85]). In particular, for ¢ € Q(™) with
m 2> 0 and s € T(Z), we denote by M(q, s) the g-translation of s which is the unique tree
t € T(A)(Ym) such that (g,s)(y1,...,¥m) =3} t, where the definition of =>p is extended
in the obvious way to a binary relation on T(I' U A)(Y) with T = (Q, T(Z)).

Definition 4.4 Let M = (Q, X, A, gin, R) be an mt transducer.

The tree-to-tree translation computed by M, denoted by 7(M), is the mapping of type
T(X) — T(A), such that 7(M)(s) = M(gin, s) for every s € T(E). a

The class of tree-to-tree translations computed by mt transducers is denoted by MT.
Next we recall the inductive characterization of the translation M (g,s). For this purpose
we first formalize the concept of second-order term substitution [Cou83] which is just a
reformulation of the notion of tree homomorphism [GS84].

Definition 4.5 Let £ and A be two ranked alphabets. For a set &' C ¥ and a family
{#(0)}ocsx: of trees with ¢(0) € T(A)(Vank(s)), We define the tree s[o/t(c); o € ] induc-
tively on the structure of s € T(Z) as follows (abbreviating s[a/t(c); 0 € £'] by s[...]): if
s = 0(s1,...,sk) for some o € L) with k > 0, then

1. if o ¢ ¥/, then s[...] = o(s1[...],-- -, sk[...]), and

2. ifo € ¥, then s[...] = t(o){yi/si[...]; 3 € []]. a

Lemma 4.6 (cf. Definition 3.18 of [EV85]). Let M = (Q,X, A, gin, R) be an mt trans-
ducer. For every q € Q, o € £(F) with k > 0, and sy,...,5; € T(%),

M(q,0(s1,...,sk)) = rhs(q,0)[{q, wj}/M(q', 8i); (d', ;) € (Q, Xi)].
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Note that the inductive characterization of M (¢, s) looks exactly the same as the one
for td-tg transducers (cf. Lemma 3.13) except that [...] is used rather than [...].

In the simulation of a tree-generating td-tg transducer by an mt transducer we shall
use a particular property of mt transducers: they are closed under regular look-ahead.

Definition 4.7 A macro tree transducer with regular look-ahead (for short: mt® trans-
ducer) is a tuple M = (Q, P, X, A, gin, R,6) where

o (P,X,6)is a finite state tree automaton, called the look-ahead automaton of M, and

* (Q,%,A, gin, R) is an mt transducer where the rules now have the form

(**) ((qaa(ml’ .. ‘1$k))(yh .. -vy‘m)vplv .. 'apk) -

with ¢,0,¢ as in Definition 4.1, and py,...,pr € P. Moreover, for every ¢ € Q(™),
o € Sk, P1,-..,Pk € P there is exactly one rule in R with left-hand side
((Q’a(xl7“°7xk))(y1"")ym)7p17"'7pk)' D

The unique rule with left-hand side ((g,0(z1,..-,2k))(¥15-- -, ¥m), P1, - - -, P&) is called
the (¢,0,p1,...,pk)-rule of M and its right-hand side is denoted by rhs(q,a,p1,... yDE)-

The derivation relation of M is defined as in Definition 4.2, with rhs(q, o) replaced by

-~ ~

ths(q,0,6(s1),...,6(sk)).

For every mt® transducer M = (Q, P,Z, A, ¢ir, R, §) and sentential form £ € T(TUA)
with I' = (Q,T(Z)), there is a unique tree t over A such that £ =%, ¢t (cf. Remark 4.19
of [EV85]). Thus, for every ¢ € Q™) with m > 0 and s € T(Z), there is a unique tree
t € T(A)(Ym) such that (g,s)(y1,...,ym) =3 {; again we denote this tree by M(q, s).

The tree-to-tree translation 7(M) computed by M is defined as in Definition 4.4. The
class of translations computed by mt® transducers is denoted by MTR. Also for mtF
transducers we can provide an inductive characterization of the translations computed by

them (cf. Remark 4.19 of [EV85]).

- Lemma 4.8 Let M = (Q, P,%,A,qin, R,6) be an mtR transducer. For every ¢ € Q,
o € L) with k > 0, and sq,...,sx € T(%),

M(g,0(s1,...,5k)) = Ths(q,0,8(s1), ..., 6(sk))[{d', 2;)/ M(q', 5;); {¢', ;) € (Q, Xi)]-

a

In Section 6 we will use the fact that mt transducers are closed under regular look-
ahead.

Lemma 4.9 (Theorem 4.21 of [EV85]). MT = MTR.
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5 Graph-Reduction for Macro Tree Transducers

The aim of this section is the proof of the inclusion MT C tgtT, i.e., for every mt trans-
ducer there is a tree-generating M’ such that (M) = 7,(M’). We approach this aim by
first defining a relationship between mt transducers and td-tg transducers in which the
right-hand sides of rules are parjungles. Recall the definition of a parjungle k and the tree
tree(h) it represents from Section 2.4.

Definition 5.1 Let M = (Q, XL, A, gin, R) be a td-tg transducer such that the right-hand
side of every rule is a parjungle. Let M’ = (dec(Q), L, dec(A), gin, R') be an mt transducer.

M and M' are related if R = {{q,0(z1,...,26)}¥1,---,Um) — tree(h)
l(qaa(zl»'--vxk)) — hisin R} m|

Obviously, the td-tg transducer of Example 3.12 and the mt transducer of Example
4.3 are related.

Definition 5.2 Let M = (Q, P, X, A, gin, R, §) be a td-tg? transducer such that the right-
hand side of every rule is a parjungle. Let M’ = (dec(Q), P,Z,dec(A), gin, R',6) be an
mt® transducer.

M and M’ are related if R' = {((g,0(z1,...,2k))(¥1,--++Ym)s P15---,Pk) — tree(h)
l((q’a(xlv"wzk))vplv-'apk)_)h’is in R} o

To show that related transducers compute the same tree-to-tree translation, we need
the basic fact that the mapping tree distributes over substitution.

Lemma 5.3 Let g be a hypergraph over I, and let, for every 4 € T, h(7) be a hypergraph
of the same rank as 7. If g and every h(y) are parjungles, then g[y/h(y);y € T] is a
parjungle, and

tree(gly/h(7);v € T']) = tree(g)[y/tree(h(7));y € T].

Proof: We first show that k£ = g[y/h(7);y € I'] is a parjungle. In fact, this is obvious in
the case that every h(7) is identification-free. To reduce the general case to this particular
case, we introduce an extra symbol ¢ of rank 2. If h(y) is not identification-free, i.e.,
extp(y)(n + 1) = extp(,)(3) for some i € [n], where n + 1 = rank(y), then we transform
h(7) into an identification-free parjungle k’'(y) by adding a new node v and a new edge
e with lab(e) = ¢ and nod(e) = v1vy with v; = exty(,)(i) and v; = v, and redefine
extp(y)(n + 1) = v. If h(7) is identification-free, then we define k() = h(7). As claimed
above, k' = g[y/h'(y);y € I'l is a parjungle. Clearly, & is obtained from k’ by contracting
all e-labeled edges, i.e., k = k’[¢/c] where c is the hypergraph with V, = {v}, E. = 0, and
ezt. = vv. Since we may contract these edges one by one, it now suffices to observe that
the contraction of one e-labeled edge transforms a parjungle into a parjungle.

Next we show that tree(g[y/h(7);v € T]) = tree(g)[y/tree(h(y)); v € T]. Although
this is intuitively clear, we provide a detailed proof. Let 7 be the unfolding function of
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k = g[v/h(v);7 € T}, and 7, the one of g. For a node v of g or h(7), we denote by [v]
the corresponding node in k. Let m + 1 = rank(g) = rank(k). Since exty(m + 1) =
[ezty(m + 1)), it suffices to show that, for every v € V,

7([v]) = 7o (v)[v/tree(h(y)); ¥ € T]-
We prove this by induction ”on v”, i.e., on the maximal length of a path leading to v
(which is possible because g is acyclic).
Case (1): v = exty(i) for some i € [m]. Then 7,(v) = yi, and 7([v]) = 7([exty(3)]) =
T(ezti(7)) = yi.
Case (2): v has in-degree 1. Let e = res;!(v), and let laby(e) = 70 and nody(e) =
v1...0,v. Then

To(v)[y/tree(h(y));y € T]

= (Yo(Tg(v1), - - -, To(v)))[y/tree(h()); vy € T] by definition of 7,
= tree(h(yo))[yi/7o(vi)[v/tree(h(v));v € T];i € [u]] by Definition 4.5
= tree(h(vo))[y:/T([vi]); 1 € [u]] by the induction hypothesis for v;.

Thus, it remains to show that

7([v]) = tree(h(70))[wi/T([i]); ¢ € [u]]-

Let h = h(v0), and let 7, denote the unfolding function of h. Note that rank(h) = u + 1.
Since [eztn(u + 1)] = [v], it suffices to show that, for every w € Vj,

7([w]) = 7a(w)[yi/7([vi]); ¢ € [u]].
We prove this again by induction "on w” (because A is acyclic).
Case (1): w = exty(¢) for some ¢ € [u]. Note that [w] = [v;]. Hence 7(w)[yi/T([v:]); 1 €
[ull = wily/m([vi)); i € [wl] = 7([w]) = 7([w]).
Case (2): w has in-degree 1. Let f = res;!(w), and let laby(f) = B and nodp(f) =
wy ... wsw. Then labe(f) = B and nodg(f) = [wq]...[ws][w]. Hence

T([w]) = B(r([w1]), - - ., T([ws])) by definition of 7
= B(ra(wi)lwi/m([vil)s i € [ul), ..., Ta(ws)[yi/7([vi]); 4 € [u]])

by induction hypothesis for w;
= B(ra(wi), - - -, Tal(ws))[wi/ T([v:]); § € [u]]
= h(w)[yi/T([v]); i € [u]) by definition of 7.

This proves the lemma. a

Lemma 5.4 Let M and M’ be given either as in Definition 5.1 or as in Definition 5.2. If
M and M’ are related, then M is tree-generating and 7(M) = T(M’).

Proof: The proof of the statement for M and M’ as in Definition 5.1 can be transcribed
easily to a proof of the statement for M and M’ as in Definition 5.2. Thus, let M and M’
be given as in Definition 5.1.
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The statement of the lemma follows immediately from the next statement which im-
plies, in particular, that M(g;,, s) is a jungle.

For every ¢ € Q and s € T(X), M(q,s) is a parjungle and tree(M(q,s)) =
M'(q,s).

On its turn, this statement follows immediately (by induction on the structure of s) from
the inductive characterization lemmas of td-tg transducers and mt transducers (Lemmas
3.13 and 4.6; if M and M’ are given as in Definition 5.2, then apply Lemmas 3.19 and
4.8) and Lemma 5.3 (with g = rhs(q,0), h({¢',z;)) = M(q',s;), and h(y) = sing(v) for
7 € A). a

It now suffices to construct, for every tree ¢ over an alphabet T, a parjungle which
can be unfolded into t. We construct the parjungle that realizes the maximal sharing of
different occurrences of equal subtrees of ¢.

Lemma 5.5 Let T be a ranked alphabet and let m > 0. For every t € T(T')(Y;,), there
is a parjungle graph(t) of rank m + 1 over inc(T') such that tree(graph(t)) = t.

Proof: Construct the hypergraph graph(t) = (V, E, lab, nod, ext) over inc(T') as follows.

o V = {v,]s € sub(t)} U {vy,|y- € Y;n and y, does not occur in t}
o E = {es|s € sub(t) and s ¢ Yy, }

for every e, € E with s = y(s1,...,st) for v € T'®) with k£ > 0, and sy,...,s, € T(T),

o lab(e;) =7
¢ nod(es) = v;, ... 5,05
o erl = vy, ...y, V.

Clearly, graph(t) is a parjungle with m parameters. Note that for s ¢ Yy, res~1(v,) =
{es}. Itis easy to show by induction on the structure of s that 7(v,) = s (for every subtree

s of t), where 7 is the unfolding function of graph(t). Hence tree(graph(t)) = 7(v;) = t.
a

Example 5.6 Let I' = {§(3),0(2), 4(1) o(9)} be a ranked alphabet. Figure 22(a) shows a
tree t € T(T')(Y3) (in which y3 does not occur), and Figure 22(b) shows the corresponding
parjungle graph(t) of rank 4. o

By transforming the right-hand side of every rule of an mt transducer into a parjungle
as described in the previous lemma, the main result of this section follows directly from
Lemma 5.4.
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Figure 22: Tree t and corresponding parjungle graph(t).

Lemma 5.7 MT C tgtT.

Proof: Let M = (Q,Z, A, gin, R) be an mt transducer and let graph(M) = (ine(Q), Z,
inc(A), gin, R') be the td-tg transducer such that, if (g,0(z1,...,2x)) (Y151 Ym) — €
is in R, then (q,0(zy,...,zk)) — graph({) is in R'. Since, by Lemma 5.5, graph(M)
and M are related, it follows from Lemma 5.4 that graph(M) is tree-generating and
Ti(graph(M)) = 7(M). o
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6 Tree-Generating Top-Down Tree-To-Graph
Transducers

Here we prove the more difficult inclusion tgtT C MT, i.e., the fact that for every tree-
generating td-tg transducer M there is an mt transducer K such that (M) = 7(K). As
mentioned in the introduction, the proof splits into three steps. First, a td-tg® transducer
M’ is constructed which computes the same tree-to-tree translation as M and in which
the right-hand sides of all rules are parjungles. Second, since the right-hand sides are
parjungles, the unfolding function can be applied to them, thereby relating M’ with an
mtR transducer M” (cf. Definition 5.2); thus, by Lemma 5.4, 7(M') = 7(M"). Third,
by Lemma 4.9, there is an mt transducer K such that 7(M") = 7(K). Thus, the only
missing step is the first one.

Consider a tree-generating td-tg transducer M, i.e., M(qin,s) is a jungle for every
input tree s. If every right-hand side of a rule of M is a parjungle, then M(q,s’) is
a parjungle for every state ¢ and every input tree s’, cf. the proof of Lemma 5.4. If,
however, nothing is known about the rules of M, then M(q, s’) need not be a parjungle.
Nevertheless, in general, M(q,s’) has to have special properties that we now define (for
loop-free and identification-free transducers only). The right-hand sides of the rules of M
do not necessarily have these properties.

Definition 6.1 A hypergraph is a semi-jungle if it is acyclic, identification-free, every
internal node has in-degree 1, and every external node has in-degree < 1. o

Figure 23 shows a semi-jungle which is not a parjungle (because ezt(1) has in-degree

1).
ls
)
1 _2TN3
o4 Y
2
Figure 23: A semi-jungle.
Note that every parjungle is a semi-jungle, and hence every jungle is a semi-jungle.
Lemma 6.2 Let M = (Q,P,%,A,qn, R, 6) be a tree-generating, loop-free, and

identification-free td-tgR transducer. Then, for every ¢ € Q, 0 € T() with £ > 0,
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and sy,...,sc € T(E), if M(q,0(s1,...,5)) is a semi-jungle and (¢’,z;) occurs in

~

rhs(q,0,8(s1),...,8(sk)), then M(q',s;) is a semi-jungle.

Proof: Immediate from Lemma 3.16 and the obvious fact that a full subgraph of a
semi-jungle is a semi-jungle. o

Since M(gin,s) is a jungle, this lemma implies that if sing({gin,s)) =3, h and h
contains an edge with label (g,s’), then M(q,s') is a semi-jungle and a full subgraph
of M(gin,s). The unfolding function of the jungle M(g;n,s) will "visit” the semi-jungle
M(q,s') several times, in general. Such a "visit” starts at an external node of M(q,s')
of in-degree 1 and follows paths through M(q,s’) (in the opposite direction) that halt at
edges of rank 1 or at other external nodes of M(q, s’). We will construct a ”tree-equivalent”
td-tg? transducer M’ of which all right-hand sides of rules are parjungles, in such a way
that if ext(?) is an external node of M(q,s’) of in-degree 1, then M’ has a state (g,%,7)
of rank 7 + 1 such that tree(M’((g,1,7),5’)) is the tree determined by the "visit” of the
unfolding function of M(gin,s) to M(q,s'), starting at ezt(:), as described above; the
rank 7 4+ 1 equals the number of visited external nodes. The information which external
nodes of M(gq,s’) have in-degree 1, and from which external nodes paths lead to other
external nodes of in-degree 1, has to be computed by M’, using regular look-ahead. This
"visit” information is conveniently formalized in terms of particular hypergraphs which

will be called ¢/o-graphs (these are similar to the ¢/o-graphs of attribute grammars, cf.
(Knu68, KW76]).

Definition 6.3 Let m > 0. An i/o-graph of rank m is a hypergraph (V, E,lab,nod, ext)
over {dy,...,dy} where d, is a symbol of rank r, V = [m], E C {e;|i € [m]} with
res(e;) = i for every e; € E, and ext = 1...m. =

The set of i/o-graphs is denoted by IO-G. Note that the symbols d, and e; are fixed,
i.e., we use them for every i/o-graph.

Next we define the i/o-graph io(h) of a hypergraph h where h is labeled over some
arbitrary ranked alphabet I'. Intuitively, io(h) shows which external nodes of h have
in-degree # 0, and it shows whether paths lead to these from other external nodes.

Definition 6.4 Let m > 0, and let A be an identification-free hypergraph of rank m over
the ranked alphabet T.

The ¢/o-graph of h, denoted by io(h), is the i/o-graph (V, E,lab, nod, ext) of rank m
determined as follows. For i € [m], e; € E if and only if exts(i) has in-degree # 0 in A.
For every e; € E, define ar(e;) = {j € [m]|t # 7 and there is path in h from eztx(j) to
extp(i)}. Let ar(e;) = {j1,...,Jr} With j; < j2 < ...< j, with > 0. Then lab(e;) = d; 41
and nod(e;) = j1j2...Jrt. o

Example 6.5 Consider the hypergraph h of rank 4 shown in Figure 24(a). The ¢/o-graph
to(h) of h is shown in Figure 24(b). o
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Figure 24: (a) Hypergraph h and (b) :/o-graph io(k).

For every ranked alphabet @, we denote by [Q — I0-G] the set of all rank preserving
mappings from @ to JO-G. Now consider an arbitrary loop-free and identification-free td-
tgR transducer M. We will construct a finite state tree automaton Bjs which computes,
for every state ¢ and input tree s, the i/o-graph io(M(q, s)).

Lemma 6.6 Let M = (Q, P,Z, A, gin, R, ) be a loop-free and identification-free td-tgR
transducer. There is a finite state tree automaton By = (P, Z,§') such that P’ = P x
[Q — I0-G] and for every q € Q and s € T(E), &(s) = (8(s), ¢) with ¢(q) = io(M(q, s))
for every ¢ € Q.

Proof: The family {4, },¢x of transition functions of Bps is defined as follows. Let
o € £ with k > 0, let py,...,px € P, and let 1., Pk € [@ — I0-G]. Define

6;((1’17 ¢l)$ RS (pk7 ¢k)) = (60(1’1’ v ’pk)a ¢)
with ¢(q) = io(rhs(q,a,p1,- .., pk)(¢, 2;)/ $i(¢'); (¢’ z5) € (Q, X«)]) for every g € Q.

The proof that By satisfies the requirements is by induction on s, using the inductive
characterization lemma of td-tg® transducers (Lemma 3.19) and the following obvious
property of the io-function:

For every loop-free and identification-free hypergraph g over T, IY C T, and
family {h(7)},er of identification-free hypergraphs,

i0(g[y/h(7);7 € T']) = io(gly/io(h(7)); 7 € T']).

Note that this property can be used, with h({¢’,z;)) = M(q’,s;), because it follows
from Lemma 3.16 that M(q’, s;) is identification-free. a

The information present in the i/o-graph allows us to give a precise definition of the
unfolding of a semi-jungle h, corresponding to a ”visit” to h of the unfolding function of
a jungle of which & is a subgraph, as discussed above.
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Definition 6.7 Let h be a semi-jungle over . Let ezt;(¢) be an external node of h
with in-degree 1, i.e., with e; € E;o(ny, and let nod;o(n)(€:) = j1...Jri. Then the i-th tree
represented by h, denoted by tree(s, h), is the tree r;(exts(i)), where the partial function
7i : Vo — T'(dec(T'))(Y;) is defined recursively by

(i) if v is an external node exty(j) for some s € [r], then 7;(v) = y;, and

(ii) if either v = exty (i) or v is an internal node of h, then 7;(v) = v(7i(v1),.- - Ti(vp))
where v = laby(res; (v)) and vy ... vp0 = nody(resy ! (v)).

7; is called the i-th unfolding function of h. .

Note that this definition really defines tree(i, k), because h is acyclic, every internal
node of h has in-degree 1, and there is no path from any ext;(j) to ext(i) with j ¢
{71,--.,4r}. Note also that the i-th unfolding function 7; stops at the external nodes
extr(Js), s € [r], even if they have in-degree 1 (this is a decision of technical nature).

Now we are ready to prove the first step in the inclusion tgtT C MT: the construc-
tion of M’. We can now be more precise about the way M’ will be constructed: if
ext(i) is an external node of M(q,s') of in-degree 1 and nod;o(M(q,s))(€:) = J1 .- .Jrt, then
tree(M'((q,%,7),5')) = tree(i, M(q,s')).

Lemma 6.8 For every tree-generating td-tg transducer M there is a td-tgR transducer
M’ such that the right-hand side of every rule of M’ is a parjungle and 7,(M') = 7:(M).

Proof: Let M be a tree-generating td-tg transducer. By Theorem 3.27 there is a
loop-free and identification-free td-tgF transducer M = (Q, P, %, A, gin, R,§) which is
equivalent to M. Thus, in particular, M is also tree-generating and it satisfies Lemma
6.2. Construct the td-tg® transducer M’ = (Q’, P, L,A,q¢,, R &) as follows.

First, let Q' = {(q,%,7)|g € Q and i,7 + 1 € [rankg(q)]} with rankg:((q,%,7)) =7+ 1,
and let ¢!, = (gin,1,0). Second, the look-ahead automaton (P’,X,§') of M’ is By, as
defined in Lemma 6.6.

It remains to define R'. Let ({q,0(21,...,2k)),P1,---,Pk) — h be in R. Let
1,..,8 € [@ — 10-G]. For every state labeled edge e of h, with laby(e) = (¢, z;),
let h(e) be the hypergraph obtained from the i/o-graph ¢;(g’') by changing the label dy41
of every edge e, into {(¢',m,u),z;), where v = rank(e,) — 1. Let g = h[e/h(e);e is a
state labeled edge of k). Thus, intuitively, g is the right-hand side A in which the "visit”
information given by ¢y,...,¢; has been integrated.

Assume now that g is a semi-jungle. Let ezt (i) have in-degree 1, and let nod;,,)(e;)
= j1...Jri. Then R’ contains the rule

(((q,i,r),o(zl,. . -’zk))v(pla ¢1)’ . 'w(pky¢k)) - gl

where ¢’ is the parjungle obtained from g by

¢ dropping all nodes (and incident edges) from which there is no path leading to
exty(i),
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e dropping all nodes (and incident edges) from which there is a nonempty path to
some exty(js), s € [r], and

o defining exty = exty(7;)...ext,(j,)ext,y(i).

These are the rules of R’ that are of importance. All remaining ((g,1,7),0,(p1,%1),
-3 (Pk> ¢x))-rules can be defined in an arbitrary fashion (with any parjungle of the correct
rank as right-hand side). This ends the construction of M’.

To prove the correctness of M’, we will show the following statement.

For every ¢ € Q, s € T(X), and i € [rank(q)],

if M(q,s) is a semi-jungle, extpg(q,5)(¢) has in-degree 1, and rank(e;) = v + 1
in io(M(q,s)),

then tree(M'((g,1,7),s)) = tree(i, M(q, s)).

Note that since all right-hand sides of M’ are parjungles, M’((g,i,7),s) is also a
parjungle (cf. the proof of Lemma 5.4). Note also that taking ¢ = gi, in the above
statement, we get : = 1, 7 = 0, and tree(M’'(g},,s)) = tree(1, M(gin, s)). Since obviously
tree(1, M(gin, s)) = tree(M(gin, s)), this implies that 7,(M') = 7,(M) = 7(M).

Thus it remains to show the above statement. This is done by induction on the
structure of s. Let s = o(sy,...,st) with k > 0. Then, by Lemma 3.19,

tree(i, M(q, s)) =

(1) tree(, h{(¢', 25) [ M(q', 5;)i (¢, z5) € (Q, Xk)]),
where h is the right-hand side of the rule ({g, o(z,. - +Zk)), P1y-- -, Pk) — h of R, with
p; = é(s;) for j € [k]. Define ¢y, ...,¢x € [Q — I0-G] to contain the i/o-graphs of M for
S15- - 418k, i.e., ¢;(¢’) = i0o(M(q',s;)). Consider the hypergraph g = hle/h(e); e is a state
labeled edge of h|, as described in the definition of R'. To prove that g is a semi-jungle,

we use the following easy general fact (of which the last part was already shown in the
proof of Lemma 6.6).

Let h and f be hypergraphs, and e a loop-free edge of h. If f and h[e/f] are
semi-jungles, then hle/io( f)] is a semi-jungle and io(h[e/io( f)]) = io(h[e/ f]).

This fact should be applied to all edges e of h with label (¢’, z;), with f = M(q’,s;). Then
hle/ f] is a semi-jungle because M(q,s) is one by assumption, and f is a semi-jungle by
Lemma 6.2. Since io(f) = io(M(¢,s;)) = ¢;(¢'), hle/io(f)] is the hypergraph g (apart
from the labels of the edges).

This shows that g is a semi-jungle and that i0(g) = i0(M(q, s)). In particular, exty(?)
has in-degree 1. Consequently, R’ contains the rule (((g,2,7),0(z1,. .., 2k)), (P1,1),-- -,
(ks Pk)) — g', where ¢’ is obtained from g as described in the construction of R'. By
Lemma 3.19,

tree(M'((‘Ia X 7‘)1 S)) =
(2) tree(g’[((q’, m,u), zj)/M/((q" m,u), s_,'); ((¢',m,u), $j) € (Q’, Xk)]).
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Since ¢’ and all M'((¢’,m,u),s;) are parjungles, Lemma 5.3 shows that (2) =
tree(g')[((¢', m, u), z,)/tree( M'((¢',m, u), 5;)); ((¢', m, u), z;) € (Q', Xi)]),

which by induction hypothesis is equal to

(3) tree(g)[{(¢'s m, u), z;)/tree(m, M(q',5;))i (¢, m, u), z5) € (@, X)]-

It now remains to show that (1) = (3). Since it should be obvious that tree(g’) = tree(s, g),
we have to show that

(*) tree(i, h[(q', z;)/ M(q', 5;); (¢, 2;5) € (Q, X)) =
tree(i, g)[((q', m, u), z;)/tree(m, M(¢, 5;)); ((¢',m, u), z;) € (@', Xi)].
To abstract from this particular case, we will show the following claim, in general.

CLAIM. Let h be a loop-free hypergraph over I', and let, for every v € T, h(y)
be a hypergraph of the same rank as 4. Let [V = {(,myuw)ly € Tymu+1 €
[rankr(v)]} with rankr((y,m,u)) = v+ 1. Let k = h[y/h(y);y € T] and g =
h{v/io(h(7))[em/sing((7,m, Um)); em € Eionvpyli 7 € T], where u,, = rank(e,)— 1. Fi-
nally, let g € [rank(h)).

If & and all h(y) are semi-jungles, and extc(ip) has in-degree 1, then
tree(io, hlv/h(7);7 € T]) = tree(io, 9)I(v,m, u)/tree(m, h(7)); (v, m, u) € I'].

Proof of the CLAIM: Note that, as observed before, io(g) = to(k), by the proof of
Lemma 6.6. Hence exty(io) has in-degree 1 too, and nod(e;,) = ji...Jjrio in both io(g)
and zo(k).

The proof of the claim is very similar to the proof of Lemma 5.3 (and the claim in fact
generalizes that lemma).

Let 7 be the i-th unfolding function of k, and 7, the one of g. For a node v of
h or h(y) we denote by [v] the corresponding node in k. Note that V; = Vj. Since
tree(io, k) = T([extn(io)]) and tree(ig, g) = Ty(extr(io)), it suffices to show that

7([v]) = 75(v)[(7, m, u)/tree(m, h(y)); (v, m, u) € ']
for all nodes v of h such that there is a path in g from v to ezts(ig), and there is no
nonempty path in g from v to extn(j;), ¢ € [r].

Case (1): v = exty(j;) for some i € [r]. Then 7,(v) = T4(exty(4i)) = vi, and 7([v]) =
T(ezte(4i)) = i

Case (2): v has in-degree 1 in g. Then there is an edge e of h with labx(e) = 7o,
nody(e) = v;...v,, and v = v, for some m € [n}, such that ezth(,m)(m) has in-degree 1
in h(70), and nod;,(h(ro))(em) = my ... mym. Then

Tg(v)[.. ]

= (70, M, u)(7g(Vmy )5 - -5 Tg(Vm DI - ]
= tree(m, h(70))[yi/7g(vm)[. - J;3 € [u]]
= tree(m, l(y0))[yi/T([vm.]); ¢ € [u]].
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Thus, it remains to show that
7([v]) = tree(m, h(70))[yi/T([vm,]); ¢ € [u]]-

Let A" = k(7o) and let 7/ be the m-th unfolding function of A’. Since [exty(m)] = [v],
it suffices to show that

T([w]) = The(w){yi/ ([vm,]); ¢ € [u]]

for all nodes w of A’ such that there is a path from w to eztp(m), and there is no nonempty
path from w to some exty(m;), i € [u].

Case (1): w = extp(m;) for some i € [u]. Note that [w] = [vn,]. Hence
Th(W)yi/7([vm,])i 3 € [ul] = wilws/7([vm,])s ¢ € [u]] = T([om,]) = T([w]).

Case (2): w has in-degree 1 in h'. This case is entirely the same as the corresponding
case in the proof of Lemma 5.3, with h/ instead of h, and v,,, instead of v;.

This ends the proof of the claim.

Just as in the proof of Lemma 5.4, this Claim can now be used with h({¢,z;)) =
M(q',s;) and h(y) = sing(y) for v € T.

This shows (*) and ends the proof. a

Example 6.9 Consider the tree-generating, identification-free, loop-free td-tg transducer
M which is defined as indicated in Figure 25. Figure 26 shows the rules of the td-tg
transducer M’ which is constructed as in the previous lemma. Note that the right-hand
sides of rules of M’ are parjungles. _ o

Recalling the remarks from the beginning of this section, this completes the proof of
the second inclusion.

Lemma 6.10 tgtT C MT.

Proof: Let M be a tree-generating td-tg transducer. By Lemma 6.8 there is a td-
tgR transducer M’ such that the right-hand side of every rule of M’ is a parjungle and
(M) = 7(M’). Construct an mt® transducer M” such that M’ and M” are related.
Note that such an M" exists, because the mapping tree is defined on parjungles. By

Lemma 5.4, 7,(M’) = 7(M"). Finally, by Lemma 4.9, there is an mt transducer M" with
r(M") = r(M™). O

And in total we obtain the main result of this paper: tree-generating td-tg transducers
have the same power with respect to tree-to-tree translations as mt transducers.

Theorem 6.11 tgtT = MT.
Proof: Lemmas 5.7 and 6.10. o
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