
Universität Ulm

Fakultät für Informatik

The Translation Power of Top-Down
Tree-To-Graph Transducers

Joost Engelfriet

Leiden University
Heiko Vogler

Universität Ulm

Nr. 92-14

Ulmer Informatik-Berichte

Dezember 1992

The Translation Power of

Top-Down Tree-To-Graph Transducers

Joost Engelfriet l
Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands
e-mail: engelfriet@rulcri.leidenuniv.nl

Heiko Vogler

Department of Theoretical Computer Science, University of Ulm
Oberer Eselsberg, 7900 Ulm, Germany

vogler@informatik.uni-ulm. de

Abstract: We introduce a new syntax-directed translation device called top-down tree-
to-graph transducer. Such transducers are very similar to the usual top-down tree trans
ducers except that the right-hand sides of their rules are hypergraphs rather than trees.
Since we are aiming at a device which also allows to translate trees into objects ditTerent
from graphs, we focus our attention on so-called tree-generating top-down tree-to-graph
transducers. Then the result of every computation is a hypergraph which represents a
tree, and in its turn the tree can be interpreted in any algebra of appropriate signature.
Although for both devices, top-down tree transducers and tree-generating top-down tree-
to-graph transducers, the translation of a subtree of an input tree does not depend on
its context, the latter transducers have much more transformational power than the for
mer. In this paper we prove that tree-generating top-down tree-to-graph transducers are
equivalent to macro tree transducers, which are transducers for which the translation of a
subtree may depend on its context.

^upported by COMPUGRAPH ("Computing by Graph Transformation"), ESPRIT Basic Re
search Working Group Number 3299

1 Introduction

The concept of syntax-directed translation as introduced in [Iro61], has become a well-
known and elegant method to associate meaning to tree-structured objects (cf. [Eng81]
for a general discussion). The main idea of this concept is to define the translation (or
semantics or meaning) of a tree in terms of translations of its subtrees. Nowadays, there
exist several formalizations of this concept which, from the schematic point of view, have
dirTerent translation power, e.g., generalized syntax-directed translation schemes [AU71,
AU73], top-down tree transducers [Tha70, Rou70, Bak78, Eng75, GS84], attributed tree
transducers [Fül81b, Fül81a] which are based on attribute grammars [Knu68], macro tree
transducers [CF82, Eng80, EV85], and high-level tree transducers [EV88]. Actually, viewed
as schemes,every devicein this list is strictly more powerful than its predecessor except for
the first two devices which are equivalent. The macro tree transducer closely corresponds
to the model of syntax-directed translation in [Iro61].

In this paper, we introduce a new, quite simple, formal model of syntax-directed trans
lation: the top-down tree-to-graph transducer (for short: td-tg transducer). Its definition
has the same simplicity as the definitions of top-down tree transducers or attribute gram
mars with synthesized attributes only: the translation of a subtree of the input tree does
not depend on its context.

Intuitively, td-tg transducers can be viewed as context-free hypergraph grammars of
which the derivations are controlled by an input tree; the result of the derivation is the
Output (hyper)graph. This is entirely analogous to the fact that top-down tree transducers
can be viewed as ordinary context-free grammars with tree-controlled derivations (see
[Eng86a]). Context-free hypergraph grammars (for short: cfhg grammars) are introduced
in [BC87, HK87b] and are studied in [Hab89, Cou87b, Cou87a, Cou88] [Cou90, ER90,
HK87a, Lau88a] [Lau88b, MR87, EH91, EH92]. A cfhg grammar generates a set of edge
labeled, directed hypergraphs. These are graphs in which an edge may be incident with
any number of nodes rather than two as for usual graphs. Every edge is labeled by a
symbol of some ranked aiphabet where the rank of the label is equal to the number of
incident nodes. Figure 1 shows a hypergraph where edges and nodes are represented by
boxes and circles, respectively. The line connecting an edgeand a node is called a tentacle.
To implement a direction of tentacles and a functionality of edges, we associate with an
edge e the sequence vx.. .VkVk+i of incident nodes. The nodes v\,.. .,Vk are called the
arguments of e and the node Vk+\ is called the result of e; the tentacle which connects
Vi, i G {1,...,&}, with e (or Vk+\ with e), is called outgoing from V{ (or incoming to
UA:+i, respectively). Some nodes of the hypergraph may be distinguished; they are called
externa! nodes and their order is indicated by natural numbers.

The derivation mechanism of cfhg grammars is an easy edge replacement: for two
hypergraphs fi and & over some ranked aiphabet, fi can be rewritten to £2 by replacing
some X-labeled edge e of fi (where X is a nonterminal) by the right-hand side h of some
rule X —• /i, and by pairwise identifying the nodes that were incident with e in fi with the
external nodes of h (cf. Figure 2); the number of external nodes of h equals the rank of X.
Now td-tg transducers can be understood as cfhg grammars of which the derivations are
controlled by an input tree, in the sense that the nonterminals of the grammar correspond

Q 1,3

Figure 1: A hypergraph.

^Ä^\
X

Figure 2: Application of the rule X —> h, where X has rank 4.

to pairs (state, input subtree) of the transducer. In the formal model of td-tg transducers
we use input trees over some ranked aiphabet. This can be understood as considering a
one-sorted abstract syntax; the many-sorted case can be easily superposed on our model.

Formally, a td-tg transducer M consists of three ranked alphabets Q, E, and A of
states, input symbols, and output Symbols, respectively, an initial state <7,n of rank 1, and
a finite set R of rules of the form:

(*) {q,o(xi,...,xk)) ^ h

where q is a state, er £ £ with rank k > 0, x\,...,Xk are subtree variables, and h is a
hypergraph in which the edges are labeled either by output symbols or by pairs {q',Xj)
where q' is a state and Xj € {x\,.. .,£*}. The number of external nodes of h is equal to
the rank of q. Moreover, we require that for every pair q and a, there is exactly one rule
with left-hand side (q, cr(xi,..., x/t)) in M. A rule like (*) expresses that the g-translation
of an input (sub)tree a(si,..., Sk) is the graph h in which every edge with label (q'', Xj) is

replaced by the g'-translation of the tree Sj. Thus, similar to top-down tree transducers,
the g-translation of o(s\,.. . ,sjt) does not depend on its context.

The set R of rules induces a derivation relation ^m where the application of a rule
(*) to a (q,o(s\,...,,Sfc))-labeled edge e of a sentential form £ consists of three steps: e is
replaced by h, e-incident nodes in f are identified with correspondingexternal nodes of h as
in the derivation mechanism ofcfhg grammars, and every Xj isreplaced bySj. Theinduced
derivation relation =>m is confluent and noetherian (cf., respectively, [Hue80, Der87] for
these notions). Thus, for every tree s over E, M computes exactly one hypergraph g over
Output symbolsonly, such that sing((qin, s)) =>*M g, where sing((qin, s)) is the hypergraph
which consists of one (g,n,s)-labeled edge and one node v; v is incident with e and it is an
external node. The hypergraph g is called the translation of the tree s. We associate with
M the mapping r(M), called tree-to-(hyper)graph translation of M, which maps an input
tree to its translation. We note that, since sing((qin, s)) has one external node and since
=>M preserves the number of external nodes of sentential forms, the translation of s also
has one external node (this restriction is not essential, but it is assumed here because we
will investigate tree-generating td-tg transducers only; the external node represents the
root of the tree).

The main advantage ofhaving output graphs rather than trees, is the fact that graphs
can represent trees with shared common subtrees. In fact, in this paper we focus our
attention on so-called tree-generating td-tg transducers M. For such transducers, every
computation results in a hypergraph which is acyclic and in which every node has exactly
one incoming tentacle. Such a hypergraph (called "jungle") represents a tree (cf. [Cou88,
HK87a, Hab89, HKP91]) and, in its turn, this tree can be interpreted into a semantic
domain ofappropriate signature. Intuitively, a tree isobtained from a jungle g byunfolding
g, starting from the (unique) external node. Let g = r(M)(s) be the translation of some
input tree s and let tree(g) denote the tree which is obtained by unfolding g. Then we can
associate with M a tree-to-tree translation, denoted by rt(M) and defined by rt(M)(s) =
tree(g). Let tgtT denote the class of tree-to-tree translations computed by tree-generating
td-tg transducers (where tgtT Stands for "tree-to-graph-to-tree Translations").

Weremark that recently another formalization of the conceptof syntax-directed trans
lation was introduced [EH92] which is also based oncfhg grammars: the cfhg-based syntax-
directed translation schemes (for short: cts). There the starting point is a usual context-
free grammar G. For the description of the translation, to every production of G, a pro-
duction of some appropriate tree-generating cfhg-grammar is associated. In [EH92] it is
proved that cts havethe samepower as attribute grammars with respect to string-to-value
translations.

In this paper we investigate the translation power of tree-generating td-tg transducers
and, in particular, compare it to the power of another formalization of the concept of
syntax-directed translation: the macro tree transducer. These are particular term rewrit-
ing Systems in which the left-hand side and the right-hand side of every rule are trees over
states, output symbols, and rewrite variables. Intuitively, macro tree transducers are top-
down tree transducers in which the translation of a subtree of an input tree depends on
its context. Let MT denote the class of tree-to-tree translations computed by macro tree
transducers. We prove that tree-generating td-tg transducers have the same translation

power as macro tree transducers, i.e., tgtT = MT. (Thus, they are more powerful than
cts.)

Before exposing the structure of this paper, we briefly discuss the two directions of
the proofof our main theorem. The construction involved in the inclusion MT C tgtT
can be considered as the formalization of a graph-reduction for macro tree transducers.
This is achieved by sharing common subtrees which occur at different places in the right-
hand side of a rule of the macro tree transducer. The resulting graphs are particular
hypergraphs called parjungles. Thus, the macro tree transducer is turned into a td-tg
transducer in which the right-hand side of each rule is a parjungle. The sharing does
not change the computed tree-to-tree translation, because we consider in this paper only
macro tree transducers such that for every input tree 5 and state q, there is a unique
g-translation of s. Hence, every occurrence of one subtree is eventually rewritten to the
same tree over output symbols.

The main idea of the more involved proofof tgtT C MT is the following: first, translate
a tree-generating td-tg transducer M into a td-tg transducer M' which computes the same
tree-to-tree translation as M and in which the right-hand sides of all rules are parjungles,
and second, construct an equivalent macro tree transducer M" by unfolding the right-hand
sides of rules of M'. It turns out that, for the most natural construction of M' from M, M'
has to be equipped with the possibility ofinspecting the subtrees S\,..., s* when applyinga
rule (q, a(x\,..., Xk)) —• h to an edge with label (q, <r(si,..., -s/.)). This capability is called
regulär look-ahead, because it suffices in fact to allow M' to test whether s\,..., sk belong
to certain regulär tree languages. This then leads to a macro tree transducer M" which
also uses regulär look-ahead. For top-down tree transducers and macro tree transducers
this feature of regulär look-ahead is well-known to be useful [Eng77, EV85, FV89a, FV89b].
In fact, in [EV85] it is shown that regulär look-ahead does not increase the translation
power of macro tree transducers. Thus, M" can be turned into an equivalent macro tree
transducer without regulär look-ahead.

This paper is organized in six sections. In Section 2 basic notations are collected,
and trees and hypergraphs are defined (and, in particular, the representation of trees by
(par)jungles). In Section3 td-tg transducers and td-tg transducers with regulär look-ahead
are defined formally. We prove that, by adding regulär look-ahead, td-tg transducers can
be assumed to have properties which are useful in the proof of the inclusion tgtT C MT.
In Section 4 macro tree transducers without and with regulär look-ahead are recalled. In
Section 5 the graph reduction of macro tree transducers is formalized by relating them to
particular td-tg transducers; this proves the inclusion MT C tgtT. In Section 6 we prove
the inclusion tgtT C MT.

2 Preliminaries

2.1 Notations

The empty set is denoted by 0. For an arbitrary set A, the powerset of A is denoted by
V(A). For n > 0, [n] = {l,...,n}; in particular, [0] = 0. IN denotes the set {0,1,2,...}
ofnatural numbers and IN+ = IN - {0} denotes the set of positive integers.

A word is a finite sequence. The empty word is denoted by A. For a set A, A* and A+
denote the sets of words over A and of words over A with at least length 1, respectively.
Fora word w = axa2 ...ak€A+ with ot- GA for i G[k], at- is denoted by w(i). The length
of a word w is denoted by lg(w).

The infinite set Y = {2/1,2/2, -•-} is called the set of parameters and the infinite set
X = {xi,x2,...} is called the set of subtree variables. For m > 0, Ym = {3/1,..., t/m} and
Am = \X\, ..., xm).

Let v be a word and let ux,..., un and v1,..., vn be twolists of words for some n > 0,
such that no word occurs twice in the first list. If the words ui,...,un occur in v without
any overlapping, then v[ui/vx,...,un/vn] is the word obtained from v by replacing every
occurrence of u{ by V{ for every i G [n].

2.2 Ranked alphabets and trees

A ranked set is a tuple (T,rankr) where T is a (possibly infinite) set and rankp :T -» IN
is a mapping; for every fc > 0, r(fc> = {7 Gi>anÄ:r(7) = &}• If T is known from the
context, then it is dropped from rankp. We also write y(k) to denote the fact that 7 has
rank k. If A is a set, then (T,A) denotes the ranked set {(7,a)|7 GT and a GA} with
rcmfyr)i4)((7,a)) = ranA:r(7)- A ranked aiphabet T is a finite ranked set.

Let r bea ranked aiphabet. Then dec(T) denotes the ranked aiphabet (T-T^^rank')
with rank'd) = rankr(j) - 1for every 7 GT- r<°); tnc(r) denotes the ranked aiphabet
(T,rank') with rank'(y) = rankr(~f)+ 1.

Let T be a ranked set and let Abea set. The set of (finite, labeled, and ordered) trees
over T indexed by A, denoted by T{T)(A), is the smallest set T such that (1) ACT and
(ii) if7 GTW with k > 0 and tu...,tk GT, then 7(^1,...,**) GT. In case fc = 0, we
identify 7O with 7. In particular, T(r)(0) is denoted by T{T). Thus, viewing the symbols
of A as symbols of rank 0, T{T)(A) = T(TuA). Aset LC T(T) is called a tree language.

Let < G T(T). The set of subtrees of t, denoted by sub(t), is defined inductively as
follows: for t = j(tu...,tk) with 7 Gr<*>, ib > 0, and tu. ,.,tfc GT(T), sub(t) = {<}U
U{5w6(tt)|i G [*;]}. The /ieiy/i< of t, denoted by height(t), is defined by: height(t) =
1+ max{height(U)\i G[fc]} if t $ T(c) and height(t) = 1 if *Gr(°).

Ayiniie siate (deterministic bottom-up) tree automaton (without final states) is a tuple
B = (P, E, £)where F and E are finite setsofstates and rankedinput symbols, respectively,
and 6 = {^J^gs is the family of transition functions where 6a : Pk —> P forevery<r GE^).

The transition function extends to a function 6 : T(E) —• P by the following recursive
definition [TW68, GS84]: for a G E(°), S(a) = 6Q, and for a G E<*> with k > 1 and
*i,...,tkeT(E), 6(o(tl,...,tk)) = 6a(6(h),...,?(**))•

2.3 Hypergraphs

Let T be a ranked set. A (directed, edge-labeled) hypergraph over T is a tuple g =
(K, E,lab,nod,ext) where V" is a finite set of nodes (or vertices), H? is a finite set of %-
peredges (or just edges), /a6 : E —• T is the ecfye labeling function, nod : E -*• V* is the
incidence function such that, for every e G E, lg(nod(e)) = rankr(lab(e)), and ext G F*
is a word of external nodes. The nodes of V which do not occur in ext, are called internal
nodes.

For a given hypergraph g, its components are denoted by Vg, Eg, labg, nodg, and extg,
respectively. Let e G Eg and nodg{e) = vi...Vfc with vi,...,Vfc G V5. The rcmA; o/e,
denoted by rankg{e), is Ar; if Ar > 1, then u, with i G [Ar] is called i-incident with e or
e- incident.

If lg(extg) = Ar, then # is called a k-hypergraph and is said to be of rank Ar, also denoted
by rank(g). For every ranked set T, the set of (Ar-)hypergraphs over T is denoted by
HGR(T) (k-HGR(T), respectively). Two hypergraphs g, h over Tare disjointii VgC\Vh = 0
and EgC\Eh = 0.

Example 2.1 Consider the ranked aiphabet T = {6^\a^2\fy^1\a^}. Figure 3 shows
a 3-hypergraph g over T, where Vg = {vi,v2,v3}, Eg = {ei,e2,e3,e4}, labg{e\) = a,
labg(e2) = £, labg(e3) = <r, and /aö5(e4) = 7, nod5(ei) = A, nodg(e2) = v2v\V\, nodg(e3) =
v2v3, and norf5(e4) = v2, extg = v2viv2. Note that this is the same hypergraph as in
Figure 1.

Nodes and edges are indicated by fat circles and boxes, respectively (which are some-
times labeled by the denotation of the corresponding nodes and edges). An edge e with
lg(nodg(e)) = 2 is also drawn as a directed line (as in usual graphs), e.g., lg{nodg(e3)) = 2.
An external node v is indicated by labeis t'i,..., ir, if v = extg{i\) —... = extg(ir), e.g., v2
is labeled by 1 and 3, because v2 = extg(l) = extg(3). For every edge e, its label is shown
inside the box which represents e. Connections between a box and a fat circle are called
tentacles. A tentacle between edge e and node v is labeled by a small natural number i if
v is i-incident with e; e.g., v2 is 1-incident with e2. ü

Actually, we view a hypergraph h as an abstract graph which Stands for the equiv-
alence class of all concrete graphs that are isomorphic to h. However, in order to avoid
technicalities, we deal with concrete graphs in all our definitions and constructions, taking
isomorphic copies whenever necessary.

For hypergraphs with one edge only, we introduce the following notation. Let 7 GT(m)
with m > 0. The singular hypergraph labeled byj, denoted by singi^f), is the m-hypergraph
([m],{e},lab, nod,ext) with lab(e) = 7 and nod(e) = ext = 12... m (note that ext is a
word of length m).

e> [T] v2 /l,3

Figure 3: The hypergraph g over T.

Figure 4: The 3-hypergraph sing(S).

Example 2.2 Let 6 GT be a symbol of rank 3. The 3-hypergraph sing(6) is shown in
Figure 4. D

The identification of nodes in a hypergraph is formalized as follows. Let g be a hyper
graph and let R C Vg x Vg be a binary relation over the set of nodes of g. Let =r denote
the smallest equivalence relation over Vg which contains Rand let (f>: Vg -»• Vg/ =r denote
the canonical mapping to the set Vg/ =R of equivalence classes. Then g/R denotes the
hypergraph (V, Eg, labg, nod', ext') where V = V/ =R, for every e GEg and i G[ranAr(e)],
nod'(e)(i) = <£(nod5(e)(z)), and for every i G[rank(g)], ext'(i) = <f>(extg(i)).

Let g and /i be hypergraphs. We say that h is a subgraphoig if V^ C K5, ^ C £;5, and
labh and nod/t are the restrictions of labg and nod5, respectively, to 25*. Note that ear^
need not be equal to extg. We say that a subgraph /i of p is a /u// subgraph of <7 if every
internal node v of /i is also an internal node of #, and, for every edge e e Eg, if internal
node v is incident with e, then e G Eh-

2.4 Tree Representing Hypergraphs

There are particular hypergraphs that can be considered as a Space efficient representation
of trees. The tree can be recovered from such a hypergraph g by unfolding g, starting
at a particular external node that represents the root of the tree. The determinacy and
termination of this unfolding is guaranteed by certain requirements. Here we distinguish
between two types of such particular hypergraphs, viz; jungles (that represent trees) and
parjungles (that represent trees with parameters).

To represent trees overa ranked aiphabet T, we consider hypergraphs over the ranked
aiphabet inc(T). In fact, for 7 G T^, a tree t = 7(^1,. ..,tk) will be represented by an
edge e with lab(e) = 7 together with representations of t\,...,tk; if nod(e) = v\. ..vkv,
then v represents the root of t, and vt- represents the root of U, i G[k]. This leads to the
following formal definitions.

Fora word w = a\... ak GA+, the set ar(w)or arguments of w is the set {ai,..., ajt_i},
and the result of w, denoted by res(w), is ak. For a hypergraph g and an edge e of g
with nodg{e) = v\ ...vk, the set arg(e) of arguments of e is the set {v\,. ..,ujt-i}, and
the result of e, denoted by resg(e), is vk. In other words, arg(e) = ar(nodg(e)) and
resg(e) = res(nodg(e)). For a node v of 5, the cardinality of res~l(v) is called the in-
degree ofv. For a node v with in-degree 1, the unique edge in resj1^) will also bedenoted
by reSg~l(v). For instance, in the hypergraph g shown in Figure 3, ar5(e2) = {vi,v2} and
res5(e2) = v\. Moreover, every node of g has in-degree 1.

A path of g from node vq to node vk is an dement voe\V\ .. .ekvk of Vg(EgVg)*, with
V{ G Vg and ej G Eg, such that, for every j G [Ar], Vj-\ G arg(ej) and res5(ej) = Uj.
Then g is acyclic if no path of «7 contains a node twice, more precisely, for every path
v0e\Vi ...ekvk of g and for every i,j G {0,..., Ar}, if i ^ j, then v, ^ u,. Clearly, the
hypergraph shown in Figure 3 is cyclic, because it contains the path v\e2v\.

A jungle is an acyclic hypergraph of rank 1, of which every node has in-degree 1.

Example 2.3 Consider the ranked aiphabet T = {6^,(7^,^}. Figure 5 shows a
jungle.

Jungles represent trees. But we also need hypergraphs which represent trees with
parameters, called parjungles (standing for "jungles with parameters"). Recall that Y =
{3/1» 2/2» •-•} is the set of parameters, and for m > 0, Ym = {y\,..., ym}-

For m > 0, a parjungle with m parameters is an acyclic hypergraph g of rank m + 1,
such that

(1) extg(l),. ..,extg(rn) are all distinct,

(2) extg{1),..., extg(m) have in-degree 0, and

(3) every node v £ {extg(l),...,extg(m)} has in-degree 1.

Note that extg(m +1) has in-degree 0 if it is in {extg(l),..., extg(m)}, but has in-degree
1 if it is not in {extg(l),...,extg(m)}. Note also that a jungle is the same as a parjungle
with 0 parameters.

Figure 5: A jungle.

Let g be a parjungle with m parameters over T. The tree represented by g, denoted by
tree(g), is the tree r(extg(m+ 1)) where the mapping r : Vg -»• T{dec(T))(Ym) is defined
recursively by

(i) if v is an external node extg(i) for some i €.[m], then r(v) = y,-, and

(ii) otherwise t(v) = 7(r(t;1),.. .,r(vp)) where 7 = /a&^re-s"1^)) and v\ .. .vpv =
rcoc^res-V)).

Note that, if g is a jungle, then tree(g) GT(dec(r)).

The function r is also refered to as the unfolding function of g. Note that r prunes off
the parts of g that are not connected with the external node m + 1.

Example 2.4 Consider the ranked aiphabet T= {j/*4),^3),^2)^1)}. Figures 6 (a), (b),
and (c) show parjungles g\, g2, and g3 with 2 parameters, respectively. Obviously, the
parjungles are only different with respect to the third external node. Let us compute, for
9\t 92, and g3, the represented tree.

tree(9l) = rgi(Vl) = S(Tgi(v2),rgi(v4))

= HviTgiivz^^iTgiMiTgM^g^ve))

Similarly, t92(v2) and rg3(v3) are computed:

tree{g2) = t92(v2) = (j(y\) and

tree(g3) = rg3(v3) = yx.

Note finally that for the jungle g of Figure 5, tree(g) = S(6(^,o(y)),a(>y)).

10

9i

>Vi

3

vi

52

/ v\ ^vJ v\v2

^3

v

^3\

2

(a)

7

2

V3

(b)

Figure 6: Parjungles 51, g2, and 53.

11

V3 4 U5 * V6

1,3 2

(c)

3 Top-Down Tree-To-Graph Transducers

In this section we formally define the top-down tree-to-graph transducer and its tree-
generating version. Moreover, we enrich this formalism by adding the possibility of check-
ing the input tree by means of regulär look-ahead. We prove a useful normal form for
top-down tree-to-graph transducers, provided they are equipped with regulär look-ahead.

Recall that X = {x\, x2,...} is the set ofsubtree variables, and that Xk = {xx,..., xk}
for k > 0.

Definition 3.1 A top-down tree-to-graph transducer (for short: td-tg transducer) is a
tuple M = (Q,Z,A,qin,R) where

• Q is a ranked aiphabet of states

• E and A are ranked alphabets of input and output symbols, respectively

• Qin G Q is the initial state of rank 1

• R is a finite set of rules; for every q G Q(m) with m > 0 and a G E<*) with k > 0
there is exactly one rule of the form

(*) (9,<r(zi,---, **))-• h

where h Gm-HGR((Q,Xk) UA). D

The rule wofM ofthe form {q, o(xu..., xk)) -+h\s called the (q, <r)-rule ofM and h
is also denoted by rhs(ir) orrhs(q, a). Intuitively, the rule (q, a(xx,..., xk)) -• hexpresses
that the ^-translation of an input tree a(si,...,sk) is the graph h in which every edge
with label (q',Xj) is replaced by the ^-translation ofSj (cf. Lemma 3.13).

An output labeled (state labeled) edge of rhs(n) is an edge that is labeled by some
output symbol (pair (q', Xj) where q' is a state and Xj is a subtree variable, respectively).

Example 3.2 (cf. [Lau88a, EH92]). Consider the td-tg transducer M= (Q,Z,A,qin,R)
with Q= {<£W4>}, S={7^U(0)}, and A= {<$(3),<r(2)}. The set R={ttj, 7^*3, tt4}
of rules is shown in Figure 7.

For every input tree, the td-tg transducer M Outputs two concentric circles which
are connected by radial lines (cf. Figure 8). Actually, M translates 7n(a) into such a
hypergraph with 2n connecting lines. D

The restriction in Definition 3.1 that there is exactly one (g,cr)-rule for every qand a,
means that we consider "total deterministic" td-tg transducers. Without this restriction
the nondeterministic td-tg transducer is obtained, which is not studied in this paper.

From the point of view of controlled grammars, td-tg transducers are context-free hy
pergraph grammars (cfhg grammars) ofwhich the derivations are controlled byinput trees.

12

*l = (fcn,7(*l))

CT (7

—» • »

W2 = (g,n,a)

7r3 = (?,7(*l))

^

** = (9. <*)

(?, ari)

(9,*i)

3,4

1,2

3

er er

» •—*-

—<•—

f

k

6 —\

>

1
—«—

» »—»-

3

Figure 7: Rules of M.

13

(«1*1)

0"

{l,X\)

Figure 8: Translation of 7(7(0:)) by M.

In this sense, (nondeterministic) td-tg transducers generalize £TOZ/-systems (investigated,
e.g., in [GR75, Asv77, Lan83, ERS80, Eng76, Eng86a, Eng86b]) where a context-free gram
mar is controlled by strings of tables and tables are finite collections of productions. Thus,
the generalization is twofold: we consider cfhg grammars and control trees rather than
context-free grammars and control strings. The reader isrefered to [Eng76, ERS80] for the
fact that the paraUelism inherent in ETOL Systems can be replaced by using a sequence
of tables as distributed control (cf. [Eng86a] for a discussion of the concept of grammar
with control or equivalently: with storage). By generalizing in just one direction, two
other formalisms are obtained. Context-free grammars with control trees are essentially
top-down tree transducers (see [Eng86a, ERS80]). Cfhg grammars with control strings are
the appropriate generalization of ETOL Systems to graph grammars: they are cfhg gram
mars with parallel rewriting as introduced in [Kre92]. Generalizing the result of [Eng76],
it is not difficult to prove that such parallel cfhg grammars generate the class of ranges
of (nondeterministic) td-tg transducers that have a monadic input aiphabet E (i.e., every
symbol in E has rank 1 or 0).

The definition of derivation relation is prepared by the general notion of hypergraph
Substitution [BC87, HKS7a, HK87b] see Fig.2. Roughly speaking, in a hypergraph g,
an edge e of rank m is replaced by a hypergraph h with m external nodes by pairwise
identifying the nodes that are incident with e, with corresponding external nodes. (Put
your fingertips together and think about it.)

Definition 3.3 For a ranked aiphabet T, letg Gn-HGR(T) with n > 0. Let e GEg with
rank m > 0 and let h Gm-HGR(T) such that g and h are disjoint.

14

The Substitution of h for e in g, denoted by g[e/h], is the n-hypergraph f/R over T
defined as follows:

. Vj = Vh U vg

• Ef = (Eg-{e})öEh

• labj is labh Ulabg restricted to Ej

• nodj is nodh Unodg restricted to Ej

• extj = extg, and

• R = {(u,v) eVjX Vj\u = nodg(e)(i) and v = exth{i) for some i G[m]}. ü

For a hypergraph g, a set E' C Eg of edges, and a family {Me)}e€#' °f hyper
graphs, with rank(h(e)) = rank(e) for every e G E', we define #[e//i(e); e G £'] to be
£f[ei//i(ei)]... [er/h(er)] where E' - {e\,..., er}. It is an easy Observation that the result
of this simultaneous Substitution does not depend on the order of the single substitutions.
For a set r' C T of symbols, and a family {h(j)}yer' of hypergraphs, with rank(h(~f)) =
rank(f) for every 7 G T', we define g{y/h(j)',y G T'] to be g[e/h{labg(e))\e G £'] where
E' = {e G £,|/a6„(e) G r'}.

Definition 3.4 Let M = (Q, E, A,qr,n, Ä) be a td-tg transducer.

The derivation relation =>m of M is a binary relation on HGR((Q,T(H)) U A) such
that, foreveryd,(2e HGR((Q,T(Z))üA), fr =>M 6 ifT there is a rule (q, o(xx,..., xk)) -»
h in Ä, there is an edge e6ß(„ and there are Si,..., s^ GT(E), such that

(a) lab^(e) = (q,a(sx,... ,sk)), and

(b) f2 is isomorphic to £\[e/h'] where h' is obtained from h by replacing every edge
label (q',Xj) by the label (q',Sj) (and then, if necessary, taking an isomorphic copy
disjoint with fr). D

We note that, if fr is an n-hypergraph and fr =*• fr, then fr is an n-hypergraph too.
Sometimes it is useful to add particular information to the denotation of the derivation
step: If rule ir = {q,o(x\,..., xk)) —• h of M has been applied to edge e of fr resulting in
the hypergraph fr, then this step is also denoted by

fr =>M,e,7r fr-

Just as for right-hand sides of rules, we define an output labeled (state labeled) edge
of a hypergraph g G HGR((Q,T{T,))l) A) to be an edge of g that is labeled by an element
of A (of (Q,T(E)), respectively).

Example 3.5 Consider the td-tg transducer M of Example 3.2. Figure 9 shows a deriva
tion of M starting with sing((qin,~f(a))). D

15

(linM<*))

*M

•M

'M

Figure 9: A derivation of M starting at sin</((</)n,7(a))).

16

Before we define the tree-to-graph translation computed by a td-tg transducer, we first
prove that the derivation relations of these devices are locally confluent (cf. [Hue80] for
this notion) and noetherian, i.e., for every td-tg transducer M, there does not exist an
infinite sequence fr =>M fr =>M fr =^M •.. for hypergraphs fr, fr, fr,... (cf. [Der87] for a
survey about termination of rewriting). Thus, =>m is confluent.

Lemma 3.6 For every td-tg transducer M, =>m is locally confluent.

Proof: Given a td-tg transducer M, it is an easy Observation that, if f =>m fr and
£ =>M fr for hypergraphs fr fr, fr with fr 7^ fr, then there is a hypergraph f such that
& =^M £' for i G {0,1}: Since fr and fr are obtained by applying two rules 7To and n\
of M to two distinct edges eo and e\ of fr respectively, and these derivation steps do not
interfere, f can be obtained from fr by applying rule tt^^ to ei_t. In fact, €o[ei/rhs(wi)]
= ^[eo/7,/i5(7ro)][e1/r/i5(7r1)] = f[ei/Ww(7ri)][e0/r/w(7r0)] = fr[e0Ms(7r0)] = £ (cf. the
Observation following Definition 3.3). Thus =>m is locally confluent. ü

Now we prove the property that derivation relations of td-tg transducers are noethe
rian. This property is based on the Observation that in every derivation step an occur-
rence of an input subtree is replaced by finitely many (possibly zero) input subtrees with
a smaller height; this induces a well founded ordering on multisets. Then it is easy to see
that =>m is also well founded, i.e., noetherian. For the formal proof we need the technical
notions of partially ordered set, finite multiset, and multiset ordering.

A partially ordered set (S, >) consists of a set S and a transitive and irreflexive binary
relation > on S. Let >hm be the usual partial order on natural numbers. A partially
ordered set is well founded if there are no infinite descending sequences si > 52 > ... of
elements s\, s2,... of S. Clearly, (IN,>m) is well founded.

Intuitively, a multiset is a set in which elements may occur several times. Formally,
for a set S, a multiset over S, is a mapping M : S —• IN. A multiset M over S is finite if
the set {s G S\M(s) ^ 0} is finite. The set of finite multisets over S is denoted by M(S).
Let Mi,M2 G M{S), then Mx + M2 is the multiset M such that M(s) = Mi(s) + M2(s)
for every s G 5. If, for every s G S, M\(s) > M2(s), then M2 is a subset of M\, denoted
by M2C Mi, and M\ - M2 is the multiset M, such that M(s) = M\(s) - M2(s) for every
s G 5. The empty multiset over S, denoted by 0, satisfies 0(s) = 0 for every s G S.

If (5, >) is a partially ordered set, then M(S) can be partially ordered. Intuitively,
a multiset M' is smaller than the multiset M, if M' is obtained from M by replacing at
least one element of M by any finite number of elements each of which is smaller than one
of the elements that have been removed. Formally, the multiset ordering > induced by
(S,>) on M{S) [DM79] is defined as follows: for M,M' G M{S), M > M' iff there are
multisets X, Y G M(S) such that i/XCM,M' = (M-I)uF, and for every y G Y
there is an x G X with x > y.

It is easy to prove that (M(S),^>) is a partially ordered set iff (S, >) is. Moreover,
well-foundedness is preserved by constructing the multiset ordering.

Observation 3.7 ([DM79]). The multiset ordering (M(S),>) is well founded if and
only if (S, >) is well founded. O

17

Now we are prepared to prove that the derivation relations of td-tg transducers are
noetherian. Let >jn be the multiset ordering induced by (IN, >jm) on A1(IN).

Lemma 3.8 For every td-tg transducer M, =>m is noetherian.

Proof: Let M = (Q,Y,,A,qin,R) be a td-tg transducer. For sentential forms oc-
curring in derivations of M, we define the following finite multisets over IN. For f G
HGR((Q,T(E)) U A), let multi-height(£) be the finite multiset over IN such that, for
every k G IN, multi-height(£)(k) is the number of edges e of fr such that lab^(e) = (q,s) G
(Q,T(E))and height(s) = k.

Let fr =»A/,e,7r fr for some edge e G E^. Hence, if e is labeled by {q,a(si,.. .,sk)) for
some state q and some o(si,. ..,sk) GT{E), then e is replaced by rhs(ir) in which labeis
of the form {q',Xj) are replaced by (q',Sj). Hence, multi-height(£i) >in multi-height(£2).

Now assume that there is an infinite derivation fr =>m fr =^M Then there is an
infinite sequence of multisets such that multi-height(£i) >>in multi-height(£2) ^>jn
But this contradicts the well-foundedness of ^>in which is induced by the well-foundedness
of >in on IN (by Observation 3.7). This proves that =>m is noetherian. D

By Lemma 2.4 of [Hue80], it follows from Lemmas 3.6 and 3.8 that, for every td-tg
transducer M = (Q, E, A,<frn, R), the relation =>m is confluent. Since, in total, ^-m is
confluent and noetherian, every sentential form £ has a unique normal form, i.e., there is
a unique hypergraph g with output labeled edges only such that f =>*M g. In particular,
this holds for f = sing((q, s)) for some state q and input tree s.

Definition 3.9 Let M = (Q, E, A,qin, R) be a td-tg transducer, q GQ, and s GT(E).

The q-translation of s, denoted by M(q,s), is the unique hypergraph g G HGR(A),
such that sing((q,s)) ^-*M g. D

Note that, if q has rank m, then sing((q, s)) is an m-hypergraph. Since the derivation
relation preserves the rank of hypergraphs, also M(q, s) has rank m.

Definition 3.10 Let M = (Q,E,A,qin,R) be a td-tg transducer.

M is tree-generating if, for every s GT(E), the 1-hypergraph M(qin,s) is a jungle. •

Definition 3.11 Let M = (<2,E, A,gtn, R) be a td-tg transducer.

(a) The tree-to-graph translation computed by M is the mapping t(M) : T(H) —*•
HGR(A), such that t{M){s) = M(qin,s) for every s GT(E). G

(b) If M is tree-generating, then the tree-(to-graph)-to-tree translation computed by M
is the mapping rt(M) : T(E) -> T{dec(A)), such that rt(M)(s) = tree(M(qin,s))
for every s G T(E). ü

18

Example 3.12 Consider the td-tg transducer M= (Q,E,A,qin,R)vtithQ = {g£\g(2)},
E = {j^\a(°)}, and A = {6W,~fM}. The rules tti,^,^,^ of M are shown in Figure
10.

For the input tree 7n(a), M computes the jungle mon(n) = ({0,. ..,2n},{et|0 < i <
2n}, lab, nod,ext) with lab(e0) = 7 and nod(e0) = 0, and for every 1 < i < 2n, lab{e{) = S
and nod(e{) = (i - l)(i - l)i, eart = 2n (cf. Figure 11). That means, r(M)(fn(a)) =
mon(n). Clearly, the unfolding of mon(n) yields a füll binary tree 6in(n) over dec(A) of
height 2n + 1. Hence tree(mon(n)) = bin(n), and so Tt(M)(jn(a)) = bin(n). O

Two td-tg transducers M\ and M2 are equivalent if they compute the same tree-
to-graph translation, i.e., r{M\) = r(M2). The class of all tree-to-graph translations
computed by td-tg transducers is denoted by tgT. For tree-generating td-tg transducers,
the class of computed tree-to-tree translations is denoted by tgtT. It is straightforward to
prove that the translation of an input tree by a td-tg transducer M can be characterized
inductively as follows (the proof needs the associativity of hypergraph Substitution, see
[Cou87a]).

Lemma 3.13 Let M = (Q, E, A,gin, R) be a td-tg transducer. For every qGQ, er GE(fc>
with Ar > 0, and 5!,..., s^ GT(£),

M(q, <r(su ..., sk)) = rhs(q, a)[(q\ Xj)/M(q', Sj); {q', Xj) G (Q,Xk)].

G

In the remainder of this section we prove a normal form result for td-tg transducers
M (with regulär look-ahead). This normal form is motivated by our wish that M has
the "subgraph property", i.e., that, in the equation of Lemma 3.13, every M(q',Sj) is
(isomorphic to) a subgraph of M(q,cr(s\,.. .,sk)). This may not be true if rhs(q,a)
contains a "loop", i.e., an edge e with label (q1,Xj) such that nod^^^e) contains a
repetition of nodes (because then some external nodes of M(q',Sj) are possibly identified
in M{q,cr{s\,.. .,sk))). For this reason we will require M to be "loop-free".

Definition 3.14 Let M = (Q, E, A,<jt-n, R) be a td-tg transducer. An edge e of a hyper
graph h is loop-free if for every i,j G [ranAr(e)], i ^ j implies nodh.(e)(i) ^ nodh(e)(j). A
hypergraph h in HGR({Q,T{Y,)) UA) or in HGR{(Q,X) U A) is loop-free if all the state
labeled edges of h are loop-free. M is loop-free if rhs(ir) is loop-free for every w G R- G

But even for a loop-free td-tg transducer it may not be true that every M(q',Sj) is
(isomorphic to) a subgraph of M(q, cr(s\,... ,sk)). This may go wrong if the sequence
of external nodes of M{q',Sj) contains a repetition of nodes (because then some of the
nodes of rhs{q,cr) that are incident with a (g^ar^-labeled edge are possibly identified in
M{q,a{s\,. ..,sk)), possibly leading to a loop in another state labeled edge). For this
reason we will require each right-hand side h of a rule of M to be "identification-free",
which means that ext^ is a sequence of distinet nodes.

19

7rl = fen,7(^l)>

7T2 = (g,„, a)

7l*3 = (g,7(^i))

tt4 = ($,<*)

u

Figure 10: Rules of M.

20

(?,si)
"TT—

\2
(q^i)

(gl gl)

1

e2n

e2n_i

T
ei s

Y
e0 7

~\

2n

J

Figure 11: The jungle mon(n).

Definition 3.15 Let M = (Q,T,,A,qin,R) be a td-tg transducer. A hypergraph h is
identification-free if, for every i,j G [rank(h)], i ^ j implies exth(i) ^ exth(j). M is
identification-free if rhs(ir) is identification-free for every 7r G Ä. G

For instance, the hypergraph (/ shown in Figure3 is not loop-free, because nodg(e2)(2) =
nodg(e2)(3) = v\, and not identification-free, because extg(l) = extg(3) = v2.

Now we show that td-tg transducers which are loop-free and identification-free, have
the "subgraph property". For the notion of füll subgraph, see Section 2.3.

Lemma 3.16 Let M - (Q, E, A,^m, R) be a loop-free and identification-free td-tg trans
ducer. Then:

(1) for every q G Q and s GT(E), M(q,s) is identification-free, and

(2) for every q G Q, o G E^ with Ar > 0, and sx,. ..,sk G T(E), if (q\xj) occurs in
rhs(q,er), then M(q',Sj) is a füll subgraph of M((?,<r(si,... ,5^)).

Proof: Statement (1) can be shown by induetion on the strueture of s, using Lemma
3.13. It is easy to see in general that if g and h are identification-free, then so is g[e/h].
Statement (2) then follows from Lemma 3.13 and the general fact that if g is loop-free,
e is a state labeled edge of g, and h is identification-free, then h is a subgraph of g[e/h]
and g[e/h] is loop-free. Note that, in general, if h is a subgraph of g[e/h], then it is a füll
subgraph of g[e/h). G

21

It is not clear to us whether every td-tg transducer can be transformed into an equiv
alent identification-free td-tg transducer, because the Information about identification
depends on the input tree. However, if we enrich td-tg transducers with some capa-
bility of inspecting its current input tree before applying a rule, then we can transform
M into an equivalent, identification-free td-tg transducer. The capability which is suf-
ficient to reach this normal form of td-tg transducers, is called regulär look-ahead (cf.
[Eng77, FV89a, FV89b] for top-down tree transducers with regulär look-ahead, and cf.
[EV85] for macro tree transducers with regulär look-ahead).

Definition 3.17 A top-down tree-to-graph transducer with regulär look-ahead (for short:
td-tg* transducer) is a tuple M = (Q,P,Z,A,qin,R,6) where

• (P, E, S) is a finite state tree automaton, called the look-ahead automaton of M, and

• (Q, E, A,qin, R) is a td-tg transducer in which the rules now have the form

((q,<r(ar!,..., xk)),pu...,pk) -> h

with q,er, and h as in Definition 3.1, and p\,...,pk G P. Moreover, for every
qGQ(mK er GE<A), px,.. .,pk GP there is exactly one rule in R with left-hand side
({q,<r(xi,...,xk)),pu...,pk). a

The definition of the derivation relation of a td-tgß transducer is exactly the same as
the definition of the derivation relation of a usual td-tg transducer (cf. Definition 3.4)
with the following restriction: the rule which is applied, has to reflect in its look-ahead
states the properties of the subtrees s\,. ,.,sk of the current input tree s.

Definition 3.18 Let M = (Q,P,X,A,qin,R,6) be a td-tgß transducer.

The derivation relation =>M of M is a binary relation on HGR((Q,T'(E)) U A)
such that, for every fr,fr G HGR((Q,T(Z}) U A), fr =>M fr iff there is a rule
{{q,cr(xi,.. .,xk)),pi,...,pk) —• h m R, there is an edge e G 2%,, and there are
^i, •.., 5jt G T(Y,), such that

(a) lab^(e) = {q,er(su... ,sk)) and, for every i G[k], £(s,) = p{, and

(b) as in Definition 3.4. a

Since Lemma's 3.6 and 3.8 also hold for td-tgß transducers M, we can define M(q,s)
as for td-tg transducers in Definition 3.9, and also take over Definitions 3.10 and 3.11.
The analogue of Lemma 3.13 is as follows, where we use rhs(q, a,pi,...,pk) to denote the
right-hand side of the unique rule with the left-hand side ((q,er(xi,.. .,xk)),pi,.. .,pk).

Lemma 3.19 Let M = (Q,P,i:,A,qin,R,6) be a td-tgÄ transducer. For every q G Q,
cre EW with Ar > 0, and su.. .,sk GT(E),

M(q,cr($u...,sk)) =

rhs(q,o,6(sl),...,6{sk))[(q',xj)/M(q',sj):(q',xj) G (Q,Xk)].
O

22

Definitions 3.14 and 3.15 and Lemma 3.16 are also valid for td-tgfi transducers.

An identification of external nodes ext(i) and ext(j) can be represented by a pair
{ij) GIN x IN. For a hypergraph g of rank m, define id(g) = {(i,j) G[m] x [m]\extg(i) =
extgU)}: the identification information ofg. The next elementary lemma relates identifi
cation and Substitution.

Lemma 3.20 Let h,h\,...,hr be hypergraphs, and let ex,..., er be distinct edges of h.
Then

(1) idihlei/hi]. ..[erIhr]) = id(h/S), and

(2) Md/*i] ••.[er/M = {h/S^/h,}. ..[er/hr],

where S = {(u,v)\u = nodh(e{)(c) and v = nodh(ei){d) for some 1 < i < r and some
c,d£ id(hi)}. G

We now show, for every td-tg transducer, that there is a finite state tree automaton
which computes, for every input tree s and every state q, the identification information of
M(q,s). Let ID = "P(IN x IN) be the set of all identification sets. For a ranked set Q, let
[Q —> ID] denote the (finite) set of mappings <f> from Q to ID, such that, for every q GQ
with rank m, (f>(q) C [m] x [m].

Lemma 3.21 Let M = (Q, E, A,qin, R) be a td-tg transducer. There is a finite state tree
automaton BM = (P, E,<5), such that P = [Q -»• /£>] and, for every 5 GT(E) and 9 G Q,
6(s)(q) = id(M(q,s)).

Proof: The transition function 6 is defined as follows. Let er G E^ for some Ar >
0, <t>\,...,<f)k G [Q -»• /£>], and let q G Q. Then let rhs{q,cr)/{4>i,.. .,(f>k) denote the
hypergraph /i/S where h = rhs(q,o) and 5 = {(u,v) € Vh x Vh\ there is an edge e G Eh
with labh{e) = (q',Xj) and there is a (c, rf) G </>j(tf')> sucn tnat w = norf/l(e)(c) and v =
nodh(e)(d)}. We define ^(0!,..., <f>k)(q) = id(rhs{q, cr)/(<j)X,..., <f>k)).

The Statement of the lemma follows by induction on the structure of s by using the in-
ductive characterization of the translation ofa td-tg transducer (Lemma 3.13) and the fact
that id(rhs(q,a)/(6(Sl),...,6(sk))) = ^(rM^^K?',^)/^^,^); (^ar,) G (Q,Xk)]),
i.e., with respect to identification of external nodes,

rhs(q,a)/(ö(sl),..., 6{sk))

and

rhsiq^lMxMMMsfrtftXj) G (Q,Xk)]

are indistinguishable. This fact follows directly from Lemma 3.20(1), with h = rhs(q,a)
and h{ = M(q',Sj). O

Example 3.22 Consider the td-tg transducer M = (Q, E, A,gtn, R) where Q =
{Vin >P^i<?^}> and E and A are defined as in Example 3.12. Figure 12 shows some

23

7r2 = (p,7(*i))

^l = fen,7(ari))

(g,si)
1

1,3 A

tt3 = (q,a) -> 1,2 •

Figure 12: Some rules of M.

N

fen,77<*)

ZT

u

Figure 13: A derivation of M starting with sing((qin, 7(7(0?)))).

24

(?.Z1> 1,2,3

LLJ

(a) (b)

Figure 14: Right-hand sides with identified external nodes.

of the rules of M; the others are not important here. Figure 13 shows a derivation of M
starting with sing({qin,~f(i(a)))).

Now let us indicate how Bm computes on 7(7(0:)).

6(a)(q) = 6Q()(q) =

= id(rhs(q,a)/())={(l,2),(2,l),(l,l),(2,2)} = [2]x[2].

*(7(a))(p) = S^S(a)){p) =

= id(rhs(p,1)/C6(c*))) = [3]x[3].

The graph rhs(p,y)/(6(a)) is shown in Figure 14(a).

(7(7()))(*„) = S^~6(7(a)))(qin) =
= id(rhs(qin,1)/C6h(a)))) = [l]x[l].

The graph rhs(qin,j)/(6(j(a))) is shown in Figure 14(b). G

To prove that every td-tg transducer can be transformed into an equivalent
identification-free td-tgß transducer weuse the same technique as it was used in the proof
of Lemma 3.2 of [EH91] for cfhg grammars. However, here we do not guess identification
information, attach it to the nonterminals of the grammar, and later on verify (or falsify)
that it is correct, but rather we use look-ahead to determine the correct identification
information directly.

Lemma 3.23 For every td-tg transducer there is an equivalent identification-free td-tgH
transducer.

Proof: Let M = (Q, E, A, qin, R) be a td-tg transducer. First, we construct a so-called
dynamically identification-free td-tgß transducer M' which is equivalent to M, and second,
from M' we construct an identification-free td-tgß transducer M" with t(M) = r(M").
Note that, for every er G E, rhs{q{n,a) is trivially identification-free, because it is a
hypergraph with one external node.

25

A td-tgß transducer M' is dynamically identification-free if the following holds: for all
hypergraphs h and h' such that sing({qin, s)) ^*M, h =>M',e,ir h' for some s GT(E), and
for every i,j G[rank(rhs(w))], if extrhs^)(i) = extrhs{7r)(j), then nodh(e)(i) = nodh(e)(j).
In other words, the application of n does not identify distinct nodes of h.

Construct the td-tgfi transducer M' = (Q,P,£, A,qin, R',6) where (P,£,6) is the
finite state tree automaton Bm from Lemma 3.21, and R' is defined as follows. Let
{q,er(x\,...,xk)) —• h be a rule in R. Then for every 0i,...,0* G [Q -* //?], the rule
((g,<T(arx,.. .,xk)),(f>i,. ..,<f>k) —• h' is in R' where h' = /i/5 and 5 is defined as in the
proofof Lemma 3.21, i.e., 5 = {(u,v)| there is an edge e GEh with labh(e) = {q',Xj) and
there is a (c,d) G^(fl7), such that u = nocf&(e)(c) and v = no^e)^)}.

It is straightforward to showby induction on the structure of s that M'(q,s) = M(q,s)
for every q GQ, using Lemma 3.13, Lemma 3.19, and Lemma 3.20(2). It remains to prove
that M' is dynamically identification-free. First, it can easily be shown by induction on the
length of the derivation sing((qin,s)) =>*M, h that, for every edge e of h with label (q,s'),
if (hj) € id(M(q,s')), then nodh(e)(i) = nodh(e)(j). In fact, this follows directly from
the construction of M'. Now consider h =>M',e,ir W, and let edge e have the label (q,s').
If extrhs^(i) = extrhs^(j), then, by Lemma 3.19, (i,j) G id(M\q,s')) = id(M(q,s'))]
hence, by the previous fact, nodk(e)(i) = nodh(e)(j).

For the construction of M" we define for every hypergraph g the hypergraph split(g)
which is an arbitrary, but fixed identification-free hypergraph of the same rank as g,
such that split(g)/S = g where S = {(extsplit(g)(i),extsplit{g)(j))\(i,j) G id(g)}. Intu
itively, such a split(g) is obtained by Splitting identified external nodes of g. Now con
struct the identification-free td-tgß transducer M" = (Q,P,Z,A,qin,R",6), such that, if
((q,<r(xi,...,xk)), <f>\,..., 4>k) ->• /lisin R', then {(q,o(xi,.. .,xk)),(f>i,.. .,<j>k) -+ split(h)
is in R". The correctness of M" is obvious from the fact that M' is dynamically
identification-free. G

Example 3.24 Consider the td-tg transducer M of Example 3.22. Clearly, M is
not identification-free, because rhs(ir2) and rhs(ir3) are hypergraphs which are not
identification-free. Figure 15 and Figure 16 show the dynamically identification-free td-tgfi
transducer M' (with <j>^a)(p) = [3] x [3] and <f>Q(q) = [2] x [2]) and the identification-free
td-tgß transducer M" (with (j>^a) and <f>a as in Figure 15), respectively, as constructed in
Lemma 3.23. Figure 17 shows a derivation of M" starting with sing{{qin, 7(7(0)))). G

Every identification-free td-tgÄ transducer M = (Q,E, A,gtn, R) can be transformed
into an equivalent identification-free and loop-free td-tgß transducer. This Statement also
holds if the regulär look-ahead is dropped from M and M'. Consider a hypergraph h
which has been derived from sing((qin, s)) for some input tree s, and consideran edge e of
h which is labeled by {q,s') for some state q and subtree s' of s. Moreover, assume that e
has a "loop", i.e., there are i,j G [rank(e)] with i ^ j such that norf/l(e)(t) = nodh(e)(j).
A general Observation about the derivation relation of a td-tg transducer is the fact that
nodes never split. Now consider any hypergraph g G HGR(A) which has been derived
from sing((q,s')). It follows from the general Observation that external nodes i and j are
identified, i.e., extg(i) and extg(j) are identified in h[e/g]. Thus, we could just as well join

26

«P.7(*l)),^a)

«9,«»

((?m,7(zi)M7(a))

r
\

(9>si) <

l)

1,2

1,2,3

Figure 15: Dynamically identification-free td-tgfi transducer M'.

(<Pi7(«l)>,^a)

«9.«»

({?m,7(*i))A(°))

(<l,xi)

1 2

1 2 3
♦ • •

Figure 16: Identification-free td-tgR transducer M".

27

1 •

(?m,77a)
=>M"

1

=$>M" 'M"

Figure 17: A derivation of M".

28

the tentacles i and j of the edge e into one tentacle (cf. Theorem 1.4.6 of [Hab89] and
Proposition 2.4 of [EH92]).

Lemma 3.25 For every identification-free td-tg transducer M, there is an equivalent
identification-free and loop-free td-tg transducer M'. The same Statement holds if M and
M' are td-tgÄ transducers.

Proof: Let M = (Q,E, A,<7,n, R) be an identification-free td-tg transducer. We con
struct an identification-free and loop-free td-tg transducer M' = (Q',Y,,A,q'in,R') with
t(M') = t{M).

Every new state in Q' contains a partition of the set of the original tentacles with the
intention that tentacles in one set lead to the same node. The elements of the partition
are called loop sets.

Q' = {{q,n,Lu...,Ln)\q €Q,n> 0,{Lx,..., Ln} is a partition of [rankQ(q)]} with
rankQ>{(q,n,L\,..., Ln)) = n. The initial state q'in of M' is (<?;„, 1,{1}).

For A = {q, n,L\,..., Ln) GQ', we denote q as LAB(A), n as NUM(A), and for every
a G [n], La as L(A,a).

For the construction of R' consider the rule (q,cr(x\,...,xk)) —> h in R and let A GQ'
with LAB(A) = q.

First, from h and A, we derive for every state labeled edge of h its new label which
contains the list of appropriate loop sets. For this purpose consider the hypergraph H =
h/PA where PA = {{exth{i),exth\j))\ there is an a G [NUM(A)] such that {i,j} C
L(A,a)}. Let e be a State labeled edge of H, with labn(e) = {q',Xj) G {Q,X) and
re = rank(q'). Let Le be the partition of [re] corresponding to the equivalence relation
=A,e on [re] defined by c =^ie d iff nodn(e){c) = nodn(e)(d). Let ?ie be the number of
sets in Le and let (Lei, Le2,..., Z/en<.) be an enumeration of elements of Le (in any order).
Then the new label of edge e (under the assumptions recorded in A) is new(A,e) =
\\Q ine, Le\, Le2, . . ., Len<.),Xj).

Then R' contains the rule (A,o(x\,.. .,xk)) -*• H' where H' = (V, E,nod,lab,ext)
with V = Vh, E = Eh, and for every e G Vu the following holds:

• if labfi(e) G A, then nod(e) = nodn(e) and lab(e) = labu(e) = lab^e),

• \flabu{e) G (Q, X), then for every a G[ne], nod(e)(a) = nodu(e){c) for somec G Z/ea
and lab(e) = 7ietü(.A,e), and

• for every a G [iV£/M(,4)], ea;i(a) = extu(c) for some c G L(A,a).

Note that, in both cases, there is no need to specify c further, because nod}j(e)(c) =
nodn(e){d) if {c, d) C Lea, and extu(c) = extu(d) if {c,d} C L(A,a).

Every right-hand side of a rule {A,a{x\,... ,xk)) -> Z7' of M' is identification-free,
because the right-hand side of the corresponding rule {LAB(A),a(xi,.. .,xk)) —• hof M is
identification-free and external nodes ex</t(c) and exth(d) that are identified in Z7 = h/Pa
due to the fact that {c,d} C L{A,a) for some a, are turned into one external node in

29

(?m>7(Zl)> (/>><*)

A

Figure 18: Some rules of M.

H', viz., extH,(a). Thus, since for every a,b with a ^ b, L(A,a) n L(A,b) = 0, M' is
identification-free.

Also, M' is loop-free, because, for every rule {A,a(xx,...,xk)) -* H' in R', the fol
lowing holds for every state labeled edge e of the right-hand side of the corresponding
rule (LAB(A),cr(xi,.. .,xk)) -*• h of R: the elements of the partition Le are pairwise
disjoint and all tentacles that are in the same element Lea of Le (i.e., that are in the same
equivalence class with respect to =A,e and thus form loops) are turned into one tentacle a
ofein H'.

Since M is identification-free, the following equivalence can easily be shown by induc
tion on the length of the derivations. For every s GT(E) and g G HGR((Q,T(E)) U
A), sing((qin,s)) =>*M g iff there exists a G G HGR((Q'',T'(£)) U A) such that
sin9(Winis)) =>*M' G and 9 is (isomorphic to) (VG, EG,nod,lab,extG) with, for every
output labeled edge e, lab(e) - labG(e) and nod(e) = nodG(e), and for every state labeled
edge e, if labG(e) = (A,s) then /a6(e) = (Z,4£(A),s) and, for every i G[ranArg(L/lB(A))],
nod(e)(i) = nodG(e)(a) for the a such that i GL(A,a).

In particular, if p GHGR(A), then $ and G are equal. Thus, t(M) = r(M').

Clearly, the addition of regulär look-ahead does not interfere with the construction. G

Example 3.26 Consider the identification-free td-tg transducer M = (Q,T,,A,qin,R)
where Q= {q\ln\p^}, E= {7(1),a(°)}, A= {6<3>,7(1)}, and some of the rules are given
in Figure 18. Obviously, M is not loop-free, because rhs(qin,j) contains a loop. Figure
19 shows a derivation of M starting with sing((qin,i(cx))).

The identification-free, loop-free td-tg transducer M' which is constructed from M as
defined in Lemma 3.25, is shown in Figure 20. Recall from Definition 3.14 that loop-
freeness only refers to state labeled edges. Figure 21 shows a derivation of M' starting
with sing(((qin, 1, {l}),7(a))). a

Finally, we combine the previous lemmas.

30

L
ten, 7«) <P,a>

7
7

Figure 19: A derivation of M starting with sing((qin,-y(a))).

<ten,l,{l}>,7(*i)>

(<P,2,{l,2},{3}),a)

1,
2

«p, 2, {1,2}, {3}),^)
1

<

<•

•

i
6

Y

Figure 20: Identification-free, loop-free td-tg transducer A/'.

31

((<7.n,l,{l}),7") =» I (<P,2,{l,2},{3}),a)

Figure 21: A derivation of M' starting with sing(((qin, 1, {l}),7(a))).

Theorem 3.27 For every td-tg transducer M there is an equivalent td-tg11 transducer M'
which is identification-free and loop-free. O

M'
Note that M' satisfies Lemma 3.16. Note also that if M is tree-generating, then so is

32

4 Macro Tree Transducers

In this section webriefly recall the concept of macro tree transducer [CF82, Eng80, EV85].
These are devices for syntax-directed translation in which the translation of an input tree
may depend on its context.

Recall that Y = {yi,y2,...} is the set of parameters, and that Ym = {yi,..., ym} for
m > 0; X = {x\,x2,...} is the set of subtree variables, and Xm = {ari,. ..,arm}.

Definition 4.1 A macro tree transducer (for short: mt transducer) is a tuple M =
(Q,E, A,qin, R) where Q is the ranked aiphabet of states, E and A are the ranked al-
phabets of input and output symbols, respectively, g,-n GQ^ is the initial state, and R is
the finite set of rules; for every q G Q*m) with m > 0 and o G E^) with k > 0, there is
exactly one rule in R of the form

(*) {q^{xi,...,xk))(yu...,ym) -»• (

where CGT(r UA){Ym) with T = (Q, Xk). a

We note that in [EV85] such transducers are called total deterministic macro tree
transducers. A rule w of the form (*) is called the (q,cr)-rule of M\ its right-hand side is
denoted by rhs(x) or rhs(q,o). A top-down tree transducer is a macro tree transducer in
which every state has rank 0.

Definition 4.2 Let M = (Q,E, A,qin,R) be an mt transducer.

The derivation relation of M, denoted by =>m> is the binary relation on T(Tö A) with
T = (Q,T(E>) such that, for every ft,& € T(T U A), fi =>m 6 iff

1. there is a £ G T{T U A)({z}) in which z occurs exactly once

2. there are aG E<fc), q GQ(m), «i,.. .,sk GT(E), and tu... ,tm GT(ruA) suchthat

• 6 = ^/(g^(*i,...,5Jb))(<ii--.^m)] and

• fc = fl*/C] with C' = rM?,ff)[!ti/*i;i € [k]][yi/ti;i G[m]]. D

Example 4.3 Consider the mt transducer M = (Q,Y,,A,qin,R) with Q = {q\n\q^},
E = {-yll),cxM}, and A = {<5(2),7(°)}. R contains the following rules.

(<7m, 7(*i)> — (9^i>«9»«i>(7))

(?tn,ö) -> 7

(9»7(*i))(yi) -" <9^i)«9>*i)(yi))

(?,a)(yi) -* %i,yi)

33

A derivation of M starting with (ft„,7(a)) is as follows:

(?»n,7(ö)>

=*<9> cx)({q, a)(7))

=^<5((9,Q)(7),(9,a)(7))

=^^(<5(7,7),<!)(7,7)).

M translates 7na into the füll binary tree bin(n) of height 2n + 1 (cf. Example 3.12).

a

For every mt transducer M = (Q, Z,A,qin, R) and sentential form f GT(r UA) with
T = (Q,T(E)), there is a unique tree t over A such that f =>£, <(by Corollary 3.13 and
the remarks at the beginning of Section 4.1 of [EV85]). In particular, for q G Q(m) with
m > 0 and s GT(E), wedenote by M(q,s) the q-translation of s which is the unique tree
t GT(A)(rm) such that (q,s)(yu ...,ym) =>*M t, where the definition of =>M is extended
in the obvious way to a binary relation on T(T UA)(Y) with T= (<2,T{£)).

Definition 4.4 Let M = (Q,E,A,qin,R) be an mt transducer.

The tree-to-tree translation computed by M, denoted by r(M), is the mapping of type
T(E) -> T(A), such that r(M)(s) = M(9tn, s) for every 5GT(£). a

The class of tree-to-tree translations computed by mt transducers is denoted by MT.
Next we recall the inductive characterization ofthe translation M(q,s). For this purpose
we first formalize the concept of second-order term Substitution [Cou83] which is just a
reformulation of the notion of tree homomorphism [GS84].

Definition 4.5 Let E and A be two ranked alphabets. For a set S'CE and a family
W<0}<re£' of trees with t(er) GT{A)(Yrank(a)), we define the tree sla/t{cr)\ er GE'J induc-
tively on the structure ofs GT(£) as follows (abbreviating slcr/t(o); er G£'] by s\..\)\ if
s - cr(si,. ..,sk) for some er G£W with Ar > 0, then

1. if a i E', then «[...J = <r(Sl [...],.. .,**[...]), and

2. if er GE', then s|[...] = t(<r)fo/«,|...]|; i G[Ar]]. G

Lemma 4.6 (cf. Definition 3.18 of [EV85]). Let M = (Q,Z,A,qin,R) be an mt trans
ducer. For every qeQ,er G£<fc> with Ar > 0, and su .. .,sk GT(£),

M(<?, a(5l,..., sk)) = r/^g, a)[(g',Xj)/M(q', 5j); (<?', *,-) G(Q, Xk)l

34

Note that the inductive characterization of M(q, s) looks exactly the same as the one
for td-tg transducers (cf. Lemma 3.13) except that [...] is used rather than [...].

In the Simulation of a tree-generating td-tg transducer by an mt transducer we shall
use a particular property of mt transducers: they are closed under regulär look-ahead.

Definition 4.7 A macro tree transducer with regulär look-ahead (for short: mtÄ trans
ducer) is a tuple M = (Q, />, E,A,qin, Ä, 6) where

• (P, S, 6) is a finite State tree automaton, called the look-ahead automaton of M, and

• (Q, E, A, qin, R) is an mt transducer where the rules now have the form

(**) ((<!><7{x\,'-',xk)}(yu...,yTn),pl,...ypk) -+ (

with q,cr,£ as in Definition 4.1, and Pi,...,pjt € P. Moreover, for every q € Q^m\
a 6 E^, pi,...,pk € P there is exactly one rule in R with left-hand side
((?, cr(x!,..., xk))(yu..., ym),pi,...,pjt). O

The unique rule with left-hand side ((q,a(xu...,xk))(yi,.. .,ym),Pi, ••-,Pä) is called
the (</,a,pi,.. .,pk)-ru\e of M and its right-hand side is denoted by rhs(q,a,pi,. . .,pjt)-

The derivation relation of M is defined as in Definition 4.2, with rhs(q,a) replaced by
rhs(q,ai6{si)1...iS{sk)).

For every mtfl transducer M = (Q, P,E,A,gm, R,6) and sentential form f € T(ruA)
with T = (Q,T(E)), there is a unique tree t over A such that £ =^ t (cf. Remark 4.19
of [EV85]). Thus, for every q 6 Q^ with m > 0 and 5 6 T(E), there is a unique tree
t £ T(A)(Ym) such that (g, s)(y\,..., j/m) =^ i; again we denote this tree by M(q, s).

The tree-to-tree translation r(M) computed by M is defined as in Definition 4.4. The
class of translations computed by mtÄ transducers is denoted by MTR. Also for mtR
transducers we can provide an inductive characterization of the translations computed by
them (cf. Remark 4.19 of [EV85]).

Lemma 4.8 Let M = (Q, P, E, A,gtn, R,6) be an mtR transducer. For every q € Q,
a e E(fc) with k > 0, and 5!,..., sk € T(E),

M(q, a(Sl, ...,**)) = rhs{q, a,6(sx),..., 6(sk))l{q', Xj)jM{q\Sj); {q\ Xj) € (Q, Xk)l

a

In Section 6 we will use the fact that mt transducers are closed under regulär look-
ahead.

Lemma 4.9 (Theorem 4.21 of [EV85]). MT = MTR.

35

5 Graph-Reduction for Macro Tree Transducers

The aim of this section is the proof of the inclusion MT C tgtT, i.e., for every mt trans
ducer there is a tree-generating M' such that t(M) = rt(M'). We approach this aim by
first defining a relationship between mt transducers and td-tg transducers in which the
right-hand sides of rules are parjungles. Recall the definition of a parjungle h and the tree
tree(h) it represents from Section 2.4.

Definition 5.1 Let M = (Q, E, A,g,n, R) be a td-tg transducer such that the right-hand
side of every rule is a parjungle. Let M' = (dec(Q), E, dec(A), </tn, R') be an mt transducer.

M and M' are related if R' = {(9,o"(xi,...,xjb))(yi,...,ym) —• tree(h)
\(q,a(xi,.. .,xk)) —• /i is in R}. D

Obviously, the td-tg transducer of Example 3.12 and the mt transducer of Example
4.3 are related.

Definition 5.2 Let M = (Q, P, E, A, #„, ß, 6)be a td-tgfi transducer such that the right-
hand side of every rule is a parjungle. Let M' = (dec(Q),P,Y,,dec(A),qin,R'y6) be an
mtfi transducer.

M and M' are related if R' = {(fa,<r(a:i,.. .,xk))(yu. ..,</m),pi,.. .,pfc) -> tree(h)
\((q,<r(xu...yxk)),pu...,pk) ^ /i is in Ä}. D

To show that related transducers compute the same tree-to-tree translation, we need
the basic fact that the mapping tree distributes over Substitution.

Lemma 5.3 Let g be a hypergraphover T, and let, for every7 G T, h(~f) be a hypergraph
of the same rank as 7. If g and every h(*/) are parjungles, then ^[7/^(7); 7 6 T] is a
parjungle, and

tree{g[y/h{jy,7 € T]) = tree($)|[7/tree(fc(7));7 G TJ.

Proof: We first show that k = g[ilh{i)\ 7 G T] is a parjungle. In fact, this is obvious in
the case that every h(i) is identification-free. To reduce the general case to this particular
case, we introduce an extra symbol e of rank 2. If ^(7) is not identification-free, i.e.,
exth{i)(n + 1) = ez*/i(->)(0 for some i G[n], where n + 1 = ranA:(7), then we transform
/i(7) into an identification-free parjungle h'(~/) by adding a new node v and a new edge
e with /aö(e) = £ and nod(e) = v\V2 with v\ = exth^(i) and v2 = v, and redefine
ex*/i'(-K)(rc + 1) = v. If h(j) is identification-free, then we define ^'(7) = ^(7). As claimed
above, k' = glf/h'^); 7 GT] is a parjungle. Clearly, k is obtained from k' by contracting
all e-labeled edges, i.e., k = k'[e/c] where c is the hypergraph with Vc = {v}, £c = 0, and
extc = vv. Since we may contract these edges one by one, it now suffices to observe that
the contraction of one £-labeled edge transforms a parjungle into a parjungle.

Next we show that tree(g[-y/h(-y); 7 G T]) = tree(g)ly/tree(h(y)); 7 G T]. Although
this is intuitively clear, we provide a detailed proof. Let r be the unfolding function of

36

* = 9[llh(l)',l G T], and rg the one of g. For a node u of g or /i(t), we denote by [v]
the corresponding node in k. Let m + 1 = rank(g) = rank(k). Since extern + 1) =
[ez*5(ra + 1)], it suffices to show that, for every v GVg,

t{[v]) = r5(V)[7/iree(/i(7));7 e T].

We prove this by induction "on u", i.e., on the maximal length of a path leading to v
(which is possible because g is acyclic).

Case (1): v = extg(i) for some i G [m]. Then rg(v) = y,-, and t([v]) = T"([ez*5(«)]) =
r(extk(i)) = y{.

Case (2): v has in-degree 1. Let e = reSg~l(v), and let labg(e) = 70 and nodg(e) =
vi ... uut;. Then

r>)[7/<ree(/i(7));7€r]

= (lo(Tg(vi),..., r5(uu)))|[7/<ree(/i(7)); 7 G T] by definition of r5

= tree(h('yo))[yi/Tg(vi)^f/tree(h('y)yt 7 G T]; i G[«]] by Definition 4.5

= tree(h('j0))[yi/T([vi]);i G [u]] by the induction hypothesis for V{.

Thus, it remains to show that

t([v]) = tree(h(io))[yi/T([vi])]ie [u]].

Let /i = /i(7o), and let r^ denote the unfolding function of h. Note that rank(h) —u + 1.
Since [eari/^u + 1)] = [u], it suffices to show that, for every w 6 V^,

r(H) = r/l(tü)[yt/r([x;t]);i G [«]].

We prove this again by induction "on tu" (because h is acyclic).

Case (1): w = exi^(i) for somei G[tt]. Note that [w] = [u,]. Hence r/l(w)[j/j/r([u,]); i G
Ml = w[y.-MM);t e [«]] = r([Vt]) = r(H).

Case (2): w has in-degree 1. Let / = res^l(w), and let lab^f) = ß and nodh(f) =
wi .. .wsw. Then lab^f) = ß and nodk(f) = [ti>i]...[w«][w]. Hence

r(H) = 0(r([u>i]), •••, r([wj)) by definition of r

= ß(Th(u>\)[yi/T([vi]);i€ [«]],...,rÄ(w5)[ytyr([t;t-]);i€ [«]])

by induction hypothesis for iü,-

= ß(Th(wi),...,Th(ws))[yi/r([vi])\i e [u]]

= Th(w)[yi/T{[vi]); i G [u]] by definition of rh.

This proves the lemma. •

Lemma 5.4 Let M and M' be given either as in Definition 5.1 or as in Definition 5.2. If
M and M' are related, then M is tree-generating and rt(M) —t(M').

Proof: The proof of the Statement for M and M' as in Definition 5.1 can be transcribed
easily to a proof of the Statement for M and M' as in Definition 5.2. Thus, let M and M'
be given as in Definition 5.1.

37

The statement of the lemma follows immediately from the next Statement which im-
plies, in particular, that M(qin,s) is a jungle.

For every q G Q and s G T(£), M(q,s) is a parjungle and tree(M(q,s)) =
M'(q,s).

On its turn, this statement follovvs immediately (by induction on the structure of s) from
the inductive characterization lemmas of td-tg transducers and mt transducers (Lemmas
3.13 and 4.6; if M and M' are given as in Definition 5.2, then apply Lemmas 3.19 and
4.8) and Lemma 5.3 (with g = rhs(q,o), h((q',Xj)) = M(q',Sj), and h(j) = sing(-y) for
7€A). D

It now suffices to construct, for every tree t over an aiphabet T, a parjungle which
can be unfolded into t. We construct the parjungle that realizes the maximal sharing of
difFerent occurrences of equal subtrees of t.

Lemma 5.5 Let T be a ranked aiphabet and let m > 0. For every t GT{T)(Ym), there
is a parjungle graph(t) of rank m + 1 over inc(r) such that tree(graph(t)) = t.

Proof: Construct the hypergraph graph(t) = (V, E,lab, nod, ext)over inc{T) as follows.

• V = {vs\s Gsub(t)} U{vyr\yr GYm and yr does not occur in t}

• E = {es|s Gsub(t) and s £Ym}

for every ea GE with s = 7(51,..., sk) for 7 Gr<*) with k > 0, and 5!,..., sk GT(r),

• /a6(es) = 7

• nod(es) = vSl ...vSkvs

• ea;< = vyi ...vymvt.

Clearly, graph(t) is a parjungle with mparameters. Note that for 5 £ Ym, res_1(u5) =
{es}. It is easy toshow by induction on the structure of$ that t(vs) = s (for every subtree
s of <), where r is the unfolding function ofgraph(t). Hence tree(graph(t)) = r(^) = t.
D

Example 5.6 Let T = {«St3),^2)^1),^0)} be a ranked aiphabet. Figure 22(a) shows a
tree t GT(T)(Y3) (in which y3 does not occur), and Figure 22(b) shows the corresponding
parjungle graph(t) of rank 4. D

By transforming the right-hand side ofevery ruleofan mt transducer into a parjungle
as described in the previous lemma, the main result of this section follows directly from
Lemma 5.4.

38

<r 7 <r

/\ i /\
Q V2 a yi a

er Vi

/\
oc y2

(a)

/ 7 a

(b)

Figure 22: Tree t and corresponding parjungle graph(t).

Lemma 5.7 MT C tgtT.

Proof: Let M = (Q, E, A, <7,n, Ä) be an mt transducer and let graph(M) = (inc(Q), E,
mc(A),<7,n, ß') be the td-tg transducer such that, if (</,0,(a,i>...,xjfe))(yi,...,ym) —»• C
is in ß, then (^,cr(a;i,.. .,Xk)) —* graph(Q is in Ä'. Since, by Lemma 5.5, graph(M)
and M are related, it follows from Lemma 5.4 that graph(M) is tree-generating and
rt(graph(M)) = r(M). ü

39

6 Tree-Generating Top-Down Tree-To-Graph
Transducers

Here we prove the more difficult inclusion tgtT C MT, i.e., the fact that for every tree-
generating td-tg transducer M there is an mt transducer K such that rt(M) = t(K). As
mentioned in the introduction, the proof splits into three steps. First, a td-tgÄ transducer
M' is constructed which computes the same tree-to-tree translation as M and in which
the right-hand sides of all rules are parjungles. Second, since the right-hand sides are
parjungles, the unfolding function can be applied to them, thereby relating M' with an
mtß transducer M" (cf. Definition 5.2); thus, by Lemma 5.4, rt(M') = t(M"). Third,
by Lemma 4.9, there is an mt transducer K such that r(M") = r(K). Thus, the only
missing step is the first one.

Consider a tree-generating td-tg transducer M, i.e., M(qin,s) is a jungle for every
input tree s. If every right-hand side of a rule of M is a parjungle, then M(q,s') is
a parjungle for every state q and every input tree s', cf. the proof of Lemma 5.4. If,
however, nothing is known about the rules ofM, then M(q, $') need not be a parjungle.
Nevertheless, in general, M(q,$') has to have special properties that we now define (for
loop-free and identification-free transducers only). The right-hand sides of the rules ofM
do not necessarily have these properties.

Definition 6.1 A hypergraph is a semi-jungle if it is acyclic, identification-free, every
internal node has in-degree 1, and every externa! node has in-degree < 1. D

!)•
Figure 23 shows a semi-jungle which is not a parjungle (because ext(l) has in-degree

Figure 23: A semi-jungle.

Note that every parjungle is a semi-jungle, and hence every jungle is a semi-jungle.

Lemma 6.2 Let M = (Q, P,E,A,qin,R,6) be a tree-generating, loop-free, and
identification-free td-tgß transducer. Then, for every q G Q, a G E<*> with k > 0,

40

and 5i,...,5jt G T(E), if M(q,a(s\,.. .,sk)) is a semi-jungle and {q',Xj) occurs in
rhs(q,o-,?(si),...,6(sk)), then M(q',Sj) is a semi-jungle.

Proof: Immediate from Lemma 3.16 and the obvious fact that a füll subgraph of a
semi-jungle is a semi-jungle. D

Since M(qin,s) is a jungle, this lemma implies that if sing({q{n,s)) =>*M h and h
contains an edge with label {q,s'), then M(q,s') is a semi-jungle and a füll subgraph
of M(qin,s). The unfolding function of the jungle M(<7,n,s) will "visit" the semi-jungle
M{q,s') several times, in general. Such a "visit" Starts at an external node of M(q,s')
of in-degree 1 and follows paths through M(q,s') (in the opposite direction) that halt at
edges of rank 1or at other external nodes ofM(q, s'). We will construct a "tree-equivalent"
td-tgfl transducer M' of which all right-hand sides of rules are parjungles, in such a way
that if ext(i) is an external node of M(q,s') of in-degree 1, then M' has a State (o, i, r)
of rank r + 1 such that tree(M'((q,i,r),s')) is the tree determined by the "visit" of the
unfolding function of M(qin,s) to M(q,s'), starting at ext(i), as described above; the
rank r + 1 equals the number of visited external nodes. The information which external
nodes of M(q,s') have in-degree 1, and from which external nodes paths lead to other
external nodes of in-degree 1, has to be computed by M', using regulär look-ahead. This
"visit" information is conveniently formalized in terms of particular hypergraphs which
will be called i/o-graphs (these are similar to the i/o-graphs of attribute grammars, cf.
[Knu68, KW76]).

Definition 6.3 Let in > 0. An i/o-graph of rank m is a hypergraph (V, E,lab,nod,ext)
over {di,...,dm} where dr is a symbol of rank r, V = [m], E C {e,|i G [m]} with
res(ei) = i for every et G E, and ext = l...m. d

The set of i/o-graphs is denoted by IO-G. Note that the symbols dr and e, are fixed,
i.e., we use them for every i/o-graph.

Next we define the i/o-graph io(h) of a hypergraph h where h is labeled over some
arbitrary ranked aiphabet T. Intuitively, io(h) shows which external nodes of h have
in-degree ^ 0, and it shows whether paths lead to these from other external nodes.

Definition 6.4 Let m > 0, and let h be an identification-free hypergraph of rank m over
the ranked aiphabet T.

The i/o-graph of h, denoted by io(h), is the i/o-graph (V, E,lab,nod,ext) of rank m
determined as follows. For i G [m], et G E if and only if exth{i) has in-degree ^ 0 in h.
For every e, G E, define ar{e{) = {j G [m]|i ^ j and there is path in h from ext^U) to
ex^(i)}. Let ar(e{) = {fa,.. .,jT} with ji < J2 < ••• < ir with r > 0. Then /a6(c,) = dr+i
and nod(et-) = ju'2 . • -jri> °

Example 6.5 Consider the hypergraph h of rank 4 shown in Figure 24(a). The i/o-graph
io(h) of h is shown in Figure 24(b). d

41

6

6

7

«

e4e2

|3>

dz
f |1
di

14
d4 (

lj^^\ e3 \J/3)2

(b)

Figure 24: (a) Hypergraph h and (b) i/o-graph io{h).

For every ranked aiphabet Q, we denote by [Q -»• /O-G] the set of all rank preserving
mappings from Q to IO-G. Now consider an arbitrary loop-free and identification-freetd-
tgß transducer M. We will construct a finite State tree automaton Bm which computes,
for every State q and input tree s, the i/o-graph io(M(q,s)).

Lemma 6.6 Let M = (Q, F,E, A,gtn, Ä,tf) be a loop-free and identification-free td-tgß
transducer. There is a finite State tree automaton BM = (P\ E,<5') such that P' = P x
[Q -». /O-G] and for every g GQ and s GT(E), ?'(s) = (6(s),<f>) with <£(9) = io{M{q,s))
for every q € Q.

Proof- The family {^}aeE °f transition functions of Bm is defined as follows. Let
a GE<*> with fc > 0, let pi,...,/>* GP, and let <j>u.. .,<f>k 6[Q-* IO-G]. Define

*i((Pi,0i),--.,(Pib,0Jfe)) = (^(pi,...,Pife),0)

with <f>(q) = io(rhs(q,a,pu...,pk)[{q',xj)/<f>j(qfy,(q',xj) G(Q,**)]) for every qGQ.

The proof that #m satisfies the requirements is by induction on s, using the inductive
characterization lemma of td-tgÄ transducers (Lemma 3.19) and the foUowing obvious
property of the io-function:

For every loop-free and identification-free hypergraph g over T, V C T, and
family {h(y)}^er, of identification-free hypergraphs,

io(gh/h(7);ie T']) = io(^[7/io(/i(7));7 GT']).

Note that this property can be used, with h((q',Xj}) = M(q',Sj), because it follows
from Lemma 3.16 that M(q',Sj) is identification-free. D

The information present in the i/o-graph allows us to give a precise definition of the
unfolding of a semi-jungle h, corresponding to a "visit" to h of the unfolding function of
a jungle of which h is a subgraph, as discussed above.

42

Definition 6.7 Let h be a semi-jungle over T. Let exth(i) be an external node of h
with in-degree 1, i.e., with et- GEio{h), and let nodlo(/l)(et) = ji... jri. Then the i-th tree
represented by h, denoted by tree(i,/*), is the tree r^ex^i)), where the partial function
r, : Vh —• T(dec(T))(Yr) is defined recursively by

(i) if v is an external node exth(js) for some s G[r], then rt(v) = ys, and

(ii) ifeither v = exth(i) or u is an internal node ofh, then rt(v) = 7(r,(vi),..., 7-t(up))
where 7 = labh{res^l(v)) and Vi...vpv = nodh{res^l(v)).

T{ is called the i-th unfolding function of h. O

Note that this definition really defines tree(i,h), because h is acyclic, every internal
node of h has in-degree 1, and there is no path from any exth(j) to exth(i) with j £
O'i»-••»>}• Note also that the i-th unfolding function r, stops at the external nodes
exth(js), s £[r], even if they have in-degree 1 (this is a decision of technical nature).

Now we are ready to prove the first step in the inclusion tgtT C MT: the construc-
tion of M'. We can now be more precise about the way M' will be constructed: if
ext(i) is an external node ofM{q,s') of in-degree 1and norf,0(M(?,s'))(e«') = Ji ••-jri, then
tree(M'((q, i, r), s')) = tree{i, M(q,s')).

Lemma 6.8 For every tree-generating td-tg transducer M there is a td-tgß transducer
M' such that the right-hand side of every rule of M' is a parjungle and rt(M') = rt(M).

Proof: Let M be a tree-generating td-tg transducer. By Theorem 3.27 there is a
loop-free and jdentification-free td-tgfl transducer M = (Q, P,E,A,gtn, R,6) which is
equivalent to M. Thus, in particular, M is also tree-generating and it satisfies Lemma
6.2. Construct the td-tgß transducer M' = (Q', P\ E,A,^n, R',6') as follows.

First, let Q' = {(o,i,r)\q GQ and i,r+ 1 G[t*ö^q(9)]} with rankQ,((q,i,r)) = r + 1,
and let g{n = (o,n,l,0). Second, the look-ahead automaton (P', E,<5') of M' is 5jv/, as
defined in Lemma 6.6.

It remains to define R'. Let ({<7,o-(xi,.. .,z*))>Pii- • -iPk) -*• h be in Ä. Let
0i»---,<^fc G [Q —»• /O-G]. For every State labeled edge e of h, with labh(e) = (q',Xj),
let /i(e) be the hypergraph obtained from the i/o-graph <f>j{q') by changing the label du+\
of every edge em into ((</,m, «),£,), where w = ranfc(em) - 1. Let 5f = /i[e//i(e);e is a
State labeled edge of h]. Thus, intuitively, g is the right-hand side h in which the "visit"
information given by <£j,.. .,<f>k has been integrated.

Assume now that 0 is a semi-jungle. Let extg(i) have in-degree 1, and let nodto(5)(e,)
= 3\ • • -jri- Then R' contains the rule

{{(q, i,r),o(xu ..., xfc)), (pi, </>i),..., (p/t, <^jt)) -»• fif'

where g' is the parjungle obtained from g by

• dropping all nodes (and incident edges) from which there is no path leading to
exf5(i),

43

• dropping all nodes (and incident edges) from which there is a nonempty path to
some extg(js), s G [r], and

• defining extg, = ext^). ..extg(jr)extg(i).

These are the rules of R' that are of importance. All remaining ((q, i,r),o-,(pi,</>i),
•••»(Pk, <f>k))-T\i\es can be defined in an arbitrary fashion (with anyparjungle of the correct
rank as right-hand side). This ends the construction of M1.

To prove the correctness of AT, we will show the foUowing statement.

For every q €Q,s GT(E), and i G[rank(q)],

if M(q,s) is a semi-jungle, extM^q^(i) has in-degree 1, and rank(e{) = r + 1
in io(M(o, 5)),

then tree(M'({q,i,r),s)) = tree(iyM(q,s)).

Note that since all right-hand sides of M' are parjungles, M'((q,i,r),s) is also a
parjungle (cf. the proof of Lemma 5.4). Note also that taking q = qin in the above
statement, we get i = 1, r = 0, and tree{M'{q'in,s)) = tree(l,M{qin,s)). Since obviously
tree(l,M(qin,s)) = tree(M(qin,s)), this implies that Tt(M') = Tt(M) = rt(M).

Thus it remains to show the above statement. This is done by induction on the
structure of s. Let s = a(su ..., sk) with k > 0. Then, by Lemma 3.19,

tree(i, M(q,s)) =

(1) tree{i,h[{q',xj)IM{q',sjy{q\xj) G(Q,Xk)])t
where^/i is the right-hand side of the rule ((qJ<r(xu...1xis)),pi1...,Pk) -> h of Ä, with
Pj = Hsj) for j G[k]. Define <f>u...,<ßk G[Q -»• /O-G] to contain the i/o-graphs of M for
S!,...,sfc, i.e., <j>j(q') = io(M(q',Sj)). Consider the hypergraph g = h[e/h(e);e is a State
labeled edge ofh], as described in the definition of R'. To prove that g is a semi-jungle,
we use the foUowing easy general fact (of which the last part was already shown in the
proof of Lemma 6.6).

Let h and / be hypergraphs, and e a loop-free edge of h. If / and h[e/f] are
semi-jungles, then h[e/io(f)] is a semi-jungle and io(h[e/io(f)}) = io(h[e/f]).

This fact should be applied to all edges c of hwith label (q',Xj), with / = M(q',Sj). Then
h[e/f] is a semi-jungle because M(q, $) is one by assumption, and / is a semi-jungle by
Lemma 6.2. Since io(f) = io(M(q\s/)) = <j>j(<f), h[e/io(f)] is the hypergraph g (apart
from the labeis of the edges).

This shows that g is a semi-jungle and that io{g) = io(M(q,s)). In particular, extg(i)
has in-degree 1. Consequently, R' contains the rule ({{q,i,r),a(xi,. ..,x/t)), (pi,^i),...,
{Pk,4>k)) -*• g'-, where g' is obtained from g as described in the construction of R'. By
Lemma 3.19,

<ree(M/((9,i,r),5)) =

(2) treeig'Kiq^m^yx^/M'dq^m^ysjyaq^m^uyxj) G(Q',Xk)]).

44

Since g' and all M'((q',m,u),Sj) are parjungles, Lemma 5.3 shows that (2) =

tree(g')l((q', m,«),*;)/tree(Af'(tf, m, te), s,)); <(<?', m,«), x,) G(Q',X*)J),
which by induction hypothesis is equal to

(3) ^ee(^I<(^m,n),xi)/<ree(m,M(g',5j));((?',m,W),xi) G(Q', JT*)].
It now remains to show that (1) = (3). Since it should beobvious that tree(g') = tree(i,g),
we have to show that

(*) tree(i, h[(q', x^/M(<?', Sj); <?', *,-) G(Q,Xk)]) =

tree(i,g)l{(<ft m,«), Xj)/tree(m, M(q', Sj))\ ((?',m, ti),x^) G(<2', **)!•

To abstract from this particular case, we will show the foUowing claim, in general.

CLAIM. Let h be a loop-free hypergraph over T, and let, for every 7 G T, ^(7)
be a hypergraph of the same rank as 7. Let V = {(7,m,u)|7 G T, m,w+ 1 G
[rankr(-y)]} with rankr,((j,m,u)) = u + 1. Let k = h[y/h('y);'y € T] and 0 =
/i[7/io(/i(7))[em/si7i0((7,m,um));em G£«,(fc(7))];7 £ T], where um = rank(em) - 1. Fi-
nally, let i0 G[ran&(/i)j.

If fc and all ^(7) are semi-jungles, and extk(i0) has in-degree 1, then
tree(i0,h[j/h{j);i G T]) = tree(io,g)l(i,m,u)/tree(m,h(i))\(i,m,u) G r'J.

Proof of the CLAIM: Note that, as observed before, io(g) = io(k), by the proof of
Lemma 6.6. Hence extg(i0) has in-degree 1 too, and nod(e{0) = j\.. .jrio in both io(g)
and io(k).

The proof of the claim is very similar to the proof of Lemma 5.3 (and the claim in fact
generalizes that lemma).

Let r be the i-th unfolding function of /:, and rg the one of g. For a node v of
h or /i(7) we denote by [v] the corresponding node in k. Note that Vg = Vh- Since
tree(i0,k) = T([exth.(i0)]) and tree(io,g) = rg(exth(io)), it suffices to show that

r(M) = T"5(u)K7,^1w)/tree(m,/i(7));(7,m,u) G T'J

for all nodes v of /i such that there is a path in g from -u to ext^io), and there is no
nonempty path in g from v to exth(ji), i G [r].

Case (1): u = ext^ji) for some i G [r]. Then r5(u) = r5(ex<5(jj)) = t/,-, and r([v]) =
r(extk(ji)) = y{.

Case (2): v has in-degree 1 in g. Then there is an edge e of /i with labh(e) = 70,
nod^e) = v\ .. .vn, and u = um for some m G[n], such that ext^^m) has in-degree 1
in /i(7o), and nodto(/l(70))(em) = m! . ..mum. Then

^(f)I...]

= (7o,m, w)(r5(umi),..., r5(vmu))[...]

= *ree(m, M7o))[y»/7>(vm,)[...]; i G[«]]

= tree(m,/t(7o))[yi/r([t;m.]);i G[u]].

45

Thus, it remains to show that

t([v]) = «ree(m,/i(7o))[yt/r([t;mi]);i G[«]].

Let h' = /i(7o) and let rh, be the m-th unfolding function oih'. Since [ex^ra)] = [u],
it suffices to show that

t([w]) = Th,(w)[yi/T([vmi])\ie [u]]

for all nodes wofh' such that there is a pathfrom wto ex^/(m), and there isnononempty
path from w to some ex^/(mt), i G[u].

Case (1): w = exth,(mi) for some i G [«]. Note that [w] = [vmi]. Hence
T-fc'(w)[y,-/r([t;roJ);i G[u]] = y,-[y,-/r([t;roi.]);i G[u]) = r([%,.]) = r([w]).

Case (2): w has in-degree 1 in h'. This case is entirely the same as the corresponding
case in the proofof Lemma 5.3, with h' instead of h, and vmi instead of vt.

This ends the proof of the claim.

Just as in the proof of Lemma 5.4, this Claim can now be used with h((q',Xj)) =
M(q\sj) and ^(7) = sing(-y) for 7 G T.

This shows (*) and ends the proof. a

Example 6.9 Consider the tree-generating, identification-free, loop-free td-tg transducer
M which is defined as indicated in Figure 25. Figure 26 shows the rules of the td-tg
transducer M' which is constructed as in the previous lemma. Note that the right-hand
sides of rules of M' are parjungles. D

Recalling the remarks from the beginning of this section, this completes the proof of
the second inclusion.

Lemma 6.10 tgtT C MT.

Proof: Let M be a tree-generating td-tg transducer. By Lemma 6.8 there is a td-
tgß transducer Mf such that the right-hand side of every rule of M' is a parjungle and
rt(M) = Tt(M'). Construct an mtH transducer M" such that M' and M" are related.
Note that such an M" exists, because the mapping tree is defined on parjungles. By
Lemma 5.4, rt(M') = r(M"). Finally, by Lemma 4.9, there is an mt transducer M'" with
t{M") = r(M'"). D

And in total we obtain the main result ofthis paper: tree-generating td-tg transducers
have the same power with respect to tree-to-tree translations as mt transducers.

Theorem 6.11 tgtT = MT.

Proof: Lemmas 5.7 and 6.10. n

46

ten,7(*l)>

(r,7(x!))

(?><*)

(?»<*}

7
2 15

(r,zi)

r.

.1

♦ 2
3

*A

Figure 25: Rules of M.

47

((te»il|0),7(*i)),#7(«))

^r,2,Z),1(x1)),4>a)

«(r,5,2),7(*i)),&.)

(<(«,l,l),a))

<rT
^ ^

\
r3

((r.2,3),*!) ((r.5,2),*!)
1

<

»Nj

?^
2

7 7 ((r,4,0),«i)

i (<(p,2,2),«»

/\

I

'1«(r,4,0),7(*i)),<M

Figure 26: Rules of M'.

48

References

[Asv77] P.R.J. Asveld. Controlled iteration grammars and füll hyper AFL's. Inf. Control,
34:248-269, 1977.

[AU71] A.V. Aho and J.D. Ullman. Translations on a context free grammar. Inform,
and Control, 19:439-475, 1971.

[AU73] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling,
Vol. I and Vol. IL Prentice-Hall, 1973.

[Bak78] B. S. Baker. Generalized syntax directed translation, tree transducers, and
linear space. SIAM J. Comput, 7:376-391, 1978.

[BC87] M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Math.
Systems Theory, 20:83-127, 1987.

[CF82] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive
program schemes. Theoret. CompuL Sei., 17:163-191 and 235-257, 1982.

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sei.,
25:95-169, 1983.

[Cou87a] B. Courcelle. An axiomatic definition of context-free rewriting and its applica-
tion to NLC graph grammars. Theoret. Comput. Sei., 55:141-181, 1987.

[Cou87b] B. Courcelle. On context-free sets of graphs and their monadic second-order
theory. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph
grammars and their application to Computer science, LNCS 291, pages 133-146.
Springer-Verlag, 1987.

[Cou88] B. Courcelle. On the use of context-free graph grammars for analysing recursive
definitions. In K. Fuchi and L. Kott, editors, Programming of Future Generation
Computers II, pages 83-122. Elsevier/North-Holland, Amsterdam, 1988.

[Cou90] B. Courcelle. Graph rewriting: an algebraic and logic approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science Vol B, pages 193-
242. Elsevier Publishing Company, 1990.

[Der87] N. Dershowitz. Termination of rewriting. J. Symb. Computation, 3:69-116,
1987.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Comm. Assoc. Comput. Mach., 22:465-476, 1979.

[EH91] J. Engelfriet and L. Heyker. The string-generating power of context-free hyper
graph grammars. J. Comput. System Sei., 43:328-360, 1991.

[EH92] J. Engelfriet and L. Heyker. Context-free hypergraph grammars have the same
term-generating power as attribute grammars. Acta Informatica, 29:161-210,
1992.

49

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations - a comparison.
Math. Systems Theory, 9:198-231, 1975.

[Eng76] J. Engelfriet. Surface tree languages and parallel derivation trees. Theoret.
Comput. Sei., 2:9-27, 1976.

[Eng77] J. Engelfriet. Top-down treetransducers with regulär look-ahead. Math. Systems
Theory, 10:289-303, lb77.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R.V. Book, editor, Formal language theory; perspectives and
open problems. New York, Academic Press, 1980.

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical Report
Memorandum 363, Technische Hogeschool Twente, 1981.

[Eng86a] J. Engelfriet. Context-free grammars with storage. Technical Report 86-11,
University of Leiden, 1986.

[Eng86b] J. Engelfriet. The ETOL-hierarchy is inside the Ol-hierarchy. In G. Rozenberg
and A. Salomaa, editors, The Book of L, pages 101-109. Springer-Verlag, 1986.

[ER90] J. Engelfriet and G. Rozenberg. A comparison of boundary graph grammars
and context-free hypergraph grammars. Inform, and Computation, 84:163-206,
1990.

[ERS80] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L Systems, and
two-way machines. J. Comput. System Sei., 20:150-202, 1980.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sei.,
31:71-146, 1985.

[EV88] J. Engelfriet and H. Vogler. High level tree transducers and iterated pushdown
tree transducers. Acta Informatica, 26:131-192, 1988.

[Fül81a] Z. Fülöp. Attributumos fatranszformatorok. PhD thesis, Szeged, Hungary, 1981.

[Fül81b] Z. Fülöp. On attributed tree transducers. Acta Cybemetica, 5:261-279, 1981.

[FV89a] Z. Fülöp and S. Vagvölgyi. Top-down tree transducers with deterministic top-
down look-ahead. Inf. Proc. Letters, 33:3-5, 1989.

[FV89b] Z. Fülöp and S. Vagvölgyi. Variants of top-down tree transducers with look-
ahead. Math. Systems Theory, 21:125-145, 1989.

[GR75] S. Ginsburg and G. Rozenberg. TOL schemes and control sets. Inf. Control,
27:109-125, 1975.

[GS84] F. Gecseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest, 1984.

[Hab89] A. Habel. Hyperedge replacement: grammars and languages. PhD thesis, Uni
versity of Bremen, 1989.

50

[HK87a] A. Habel and H.-J. Kreowski. May we introduce to you: hyperedge replacement.
In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Graph grammars
and their application to Computer science, LNCS 291, pages 15-26. Springer-
Verlag, 1987.

[HK87b] A. Habel and H.-J. Kreowski. Some structural aspects ofhypergraph languages
generated by hyperedge replacement. In F.J. Brandenburg, G. Vidal-Naquet,
and M. Wirsing, editors, STACS 87 in LNCS 247, pages 207-219. Springer-
Verlag, 1987.

[HKP91] A. Habel, H.-J. Kreowski, and D. Plump. Jungle evaluation. Fundamenta
Informaticae, 15:37-60, 1991.

[Hue80] G. Huet. Confluent reductions: abstract properties and applications to term
rewriting Systems. J. Assoc. Comput. Mach., 27:797-821, 1980.

[Iro61] E.T. Irons. A syntax directed Compiler for ALGOL 60. Comm. Assoc. Comput.
Mach., 4:51-55, 1961.

[Knu68] D.E. Knuth. Semanticsofcontext-free languages. Math. Systems Theory, 2:127-
145, 1968.

[Kre92] H.-J. Kreowski. Parallel hyperedge replacement. In G. Rozenberg and A. Sa-
lomaa, editors, Lindenmayer Systems; Impacts on Theoretical Computer Sci
ence, Computer Graphics, and Developmental Biology, pages 271-282. Springer-
Verlag, 1992.

[KW76] K. Kennedy and S. K. Warren. Automatic generation of efficient evaluators for
attribute grammars. In Conf. Rec. of 3rd Symp. on Principles of Programming
Languages, pages 32-49, 1976.

[Lan83] K. Lange. Context-free controlled ETOL Systems. In J. Diaz, editor, Proc. of
the Wth ICALP in LNCS 154, pages 723-733. Springer-Verlag, 1983.

[Lau88a] C. Lautemann. Decomposition trees: structured graph representation and ef
ficient algorithms. In M. Dauchet and M. Nivat, editors, Proceedings of the
CAAP 88 in LNCS 299, pages 28-39. Springer-Verlag, 1988.

[Lau88b] C. Lautemann. Efficient algorithms on context-free graph languages. In T. Lep-
isto and A. Salomaa, editors, Proceedings of the 15th ICALP in LNCS 317,
pages 362-378, 1988.

[MR87] U. Montanari and F. Rossi. An efficient algorithm for the Solution of hierarchical
networks of constraints. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld,
editors, Graph grammars and their application to Computer science, LNCS 291,
pages 440-457. Springer-Verlag, 1987.

[Rou70] W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4:257-
287, 1970.

51

[Tha70] J.W. Thatcher. Generalized2 sequential machine maps. J. Comput Syst Sei.,
4:339-367, 1970.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with ap
plication to a decision problem of second-order logic. Math. Systems Theory,
2:57-81, 1968.

52

Liste der bisher erschienenen Ulmer Informatik-Berichte:
List of technical reports currently available from the University of Ulm:

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe:
Instance Complexity.

91-02 K. Gladitz, H. Fassbender, H. Vogler:
Compiler-Based Implementation ofSyntax-Directed Functional Programming.

91-03 Alfons Geser:

Relative Termination.

91-04 Johannes Köbler, Uwe Schön.ng, Jacobo Toran:
Graph Isomorphism is low for PP.

91-05 Johannes Köbler, Thomas Thierauf:
Complexity Restricted Advice Functions.

91-06 Uwe Schöning:

Recent Highlights in Structural Complexity Theory.
91-07 Frederic Green, Johannes Köbler, Jacobo Toran:

The Power of the Middle Bit.

91-08 V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano,
M. Mundhenk, M. Ogiwara, U. Schöning, R. Silvestri, T. Thierauf:
Reductions to Sets of Low Information Content.

92-01 Vikraman Arvind, Johannes Köbler, Martin Mundhenk:
Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets.

92-02 Thomas Noll, Heiko Vogler:
Top-down Parsing with Simultaneous Evaluation of Noncircular Attribute Grammars

92-03 Program and Abstracts:

17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen
am 26. Mai 1992 in Ulm

92-04 V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05 Johannes Köbler

Locating P/poly Optimally in the Extended Low Hierarchy
92-06 Armin Kühnemann, Heiko Vogler

Synthesized and inherited functions - a new cornputational model
for syntax-directed semantics

92-07 Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven
Leftmost Outermost Narrowing.

92-08 Uwe Schöning

On Random Reductions from Sparse Sets to Tally Sets
92-09 Hermann von Hasseln, Laura Martignon

Consistency in Stochastic Networks

92-10 Michael Schmitt

A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent
Any Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser

On a monotonic semantic path ordering
92-14 Joost Engelfriet, Heiko Vogler

The Translation Power of Top-Down Tree-To-Graph Transducers

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber: Fakultät für Informatik

Universität Ulm, Oberer Eselsberg, W-7900 Ulm

