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Abstract

In this paper we study the consequences of the existence of sparse hard sets for
NP and other complexity classes under certain types of deterministic� randomized�
and nondeterministic reductions� We show that if an NP�complete set is bounded
truth�table reducible to some set that conjunctively reduces to a sparse set then P �
NP� This result subsumes and extends previously known results ��� �� �� yielding a
collapse of PH to P under the assumption that NP has sparse hard sets� Relatedly�
we show that if an NP�complete set is bounded truth�table reducible to some set
that randomly reduces �via a co�rp reduction	 to some set that conjunctively reduces
to a sparse set then RP � NP� We also prove similar results under the �apparently	
weaker assumption that some solution of the promise problem �
SAT� SAT	 reduces
via the mentioned reductions to a sparse set� Our proofs are obtained by combining
the left set technique ��� with the Hausdor� representation for sets in the boolean
closure of set rings�

Finally we consider nondeterministic polynomial time many�one reductions to
sparse and co�sparse sets� We prove that if a coNP�complete set reduces via a
nondeterministic polynomial time many�one reduction to a co�sparse set then PH �
�p
�� On the other hand� we show that nondeterministic polynomial time many�one

reductions to sparse sets are as powerful as nondeterministic Turing reductions to
sparse sets�

�Work done while visiting Universit�at Ulm� Supported in part by an Alexander von Humboldt research

fellowship�

�



� Introduction

Sparse sets play a central role in structural complexity theory� An important line of
research that has been very fruitful is the study of sparse hard sets under di�erent kinds
of reductions� This line of research opened with the question whether there can possibly
exist sparse complete sets for NP under polynomial time many�one reductions �it was
conjectured by L� Berman and J� Hartmanis ��� that there are no sparse NP�complete
sets��

The 	rst results were P� Berman
s proof that P � NP if some tally set is NP�complete
��� and Fortune
s proof that if there is a sparse coNP�complete set� then P � NP ����
Mahaney settled the sparseness
 conjecture by proving that if any NP�complete set many�
one reduces to a sparse set then P � NP ���� From an entirely di�erent angle of research�
the possible existence of sparse Turing�hard sets for NP was studied in ���� This question
is equivalent to NP�complete problems having nonuniform polynomial�size circuits� Karp�
Lipton� and Sipser proved that if NP has sparse Turing�hard sets then the polynomial
hierarchy collapses to �p

� ����
Discovering consequences of the existence of sparse complete sets for di�erent kinds

of truth�table reducibilities has remained an active research area� The next important
advance was made recently by Ogiwara and Watanabe ��� when they proved using a new
left�set technique that if NP has sparse hard sets under polynomial time bounded truth�
table reductions then P � NP� More recently� this has been followed up by similar results
for polynomial time conjunctive truth�table reductions ��� ��� and in ��� even for more
�exible truth�table reductions �e�g� bounded conjunctive reductions to the ��truth�table
closure of the conjunctive closure of sparse sets�� These results demonstrate the e�cacy
of the left�set technique introduced in ��� �in fact� the older result of Mahaney has now
a considerably easier proof��

The main results of this paper concern the existence of sparse hard sets for NP and
other complexity classes under certain types of deterministic� randomized� and nonde�
terministic reductions� In Section �� we prove that if NP � Rp

btt�R
p
ctt�SPARSE�� then

P � NP� This result subsumes and extends all previously known results on reductions of
NP sets to sparse sets via various types of polynomial time truth�table reductions that
yield a collapse of the polynomial hierarchy to P�

In Section �� we consider randomized reductions to sparse sets and show that if
NP � Rp

btt�R
co�rp
m �Rp

ctt�SPARSE��� then RP � NP� �D� Ranjan and P� Rohatgi ��� have
independently shown that if NP � Rco�rp

m �SPARSE� then RP � NP��
Relatedly� we show in Section �� that if the promise problem ��SAT�SAT� has a solu�

tion in Rp
btt�R

p
ctt�SPARSE�� then it has a solution in P� We also show that the conclusion

RP � NP can be derived from the assumption that the promise problem ��SAT�SAT�
has a solution in Rp

btt�R
co�rp
m �Rp

ctt�SPARSE����
The technique used in our proofs is novel� It combines the method of left sets with

a classical representation theorem due to Hausdor� for sets in the boolean closure of set
rings� i�e� classes of sets closed under union and intersection� Since the reduction classes to
sparse sets that we consider are set rings and since the bounded truth�table closure of these
classes coincides with the boolean closure� sets in the bounded truth�table closure of these
classes have a Hausdor� representation� The internal structure of left sets combined with
the structure imposed by a Hausdor� representation for it plays a crucial role in designing
e�cient decision procedures for such sets� The Hausdor� representation was 	rst used
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in a complexity theoretic context by Wechsung and Wagner ��� where they relate the
bounded truth�table closure of NP to the boolean hierarchy over NP�

In Section �� we do a trade�o� analysis for our algorithms regarding the density of
the set reduced to and the power of the reduction used�

Pursuing the question of existence of sparse hard sets further �in Section ���� we
consider nondeterministic reductions �as de	ned by Ladner� Lynch� and Selman ���� and
show that if a coNP�complete set can be reduced via a nondeterministic reduction to a co�
sparse set then the polynomial hierarchy collapses to �p

�� A similar result seems unlikely
for sparse sets since �as we show� nondeterministic many�one reductions to sparse sets
surprisingly turn out to be as powerful as nondeterministic Turing reductions to sparse
sets� We also prove that if �p

� is bounded truth�table reducible to a set that can be
reduced via a nondeterministic reduction to a co�sparse set then the polynomial hierarchy
collapses to �p

��

� Preliminaries and notation

A set T is called a tally set if T � ��� The census function of a setA is censusA�n� � jA�nj�
A set S is called sparse if its census function is bounded above by a polynomial� We use
TALLY and SPARSE to represent� respectively� the classes of tally and sparse sets� For
a class K of sets we denote the union of all sets in K by

S
K� Let h�� �i denote a standard

pairing function�
The reductions discussed in this paper are the polynomial�bounded reductions de	ned

by Ladner� Lynch� and Selman ��� and by Adleman and Manders ����

Notation ��� For any reducibility ��
r and any class of sets C� let R�

r �C� � fA j A ��
r B

for some set B � Cg� where � � fp� np� co�np� rp� co�rpg and r � fm� c� d� b� Tg�

De�nition ��� The join of two sets A and B� denoted A�B� is de�ned as

A�B � f�x j x � Ag � f�x j x � Bg

De�nition ��� A class K of sets that includes � and �� and is closed under �nite unions
and �nite intersections is said to be a set ring�

De�nition ��� ��� For a set A in NP let PA � P and q be a polynomial such that
A � fx j ��w � �q�jxj���hx�wi � PA�g� For x � A let wmax�x� � maxfw � �q�jxj� j
hx�wi � PAg� Then Left �A� � fhx�wi j x � A�w � �q�jxj� and w � wmax�x�g is the left
set of A�

Note that the left set depends on the particular witness relation PA�

� Bounded truth�tables on conjunctive reductions

to sparse sets

The main result of this section is that if NP � Rp
b �R

p
ctt�SPARSE�� then P � NP� This

result subsumes and extends all previously known results on reductions of NP sets to
sparse sets via various types of polynomial time truth�table reductions that yield a collapse
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of PH to P� We also discuss similar consequences for the classes PP� C�P� FewP� Few�
and UP�

The following characterization of the boolean closure of set rings due to Hausdor�
plays a key role in many results of this paper�

Theorem ��� ��	 �� Let K be a set ring and let BC�K� be the closure of K under �nite
union� �nite intersection� and complement� Then every A � BC�K� can be represented
as A �

Sk
i���A�i�� 	A�i�� where Aj � K� � � j � �k� and A� 
 A� 
 � � � 
 A�k�

In order to obtain a Hausdor� representation for sets in Rp
b�R

p
ctt�SPARSE�� we need

to show that Rp
ctt�SPARSE� is a set ring�

Lemma ��� Rp
ctt�SPARSE� is a set ring�

Proof Rp
ctt�TALLY� is easily seen to be closed under 	nite unions and intersections� A

recent result of Buhrman� Longpr�e� and Spaan ��� showing that SPARSE � Rp
ctt�TALLY�

implies Rp
ctt�SPARSE� � Rp

ctt�TALLY�� Hence� Rp
ctt�SPARSE� is a set ring�

Fact ��� If a class K of sets contains a set di�erent from � and �� and is closed under
join and polynomial time many�one reductions then Rp

b �K� � BC�K��

Remark All the reduction classes to sparse sets considered in this paper ful	l the con�
ditions to apply Fact ���

Theorem ��
 If A � NP such that Left �A� � Rp
b�R

p
ctt�SPARSE�� then A � P�

Proof Let q be a polynomial and let PA be a polynomial�time computable set such that
A � fx j ��w � �q�jxj���hx�wi � PA�g� Recall that Left �A� � fhx�wi j x � A � w �
�q�jxj� � w � wmaxg� where wmax � maxfw � �q�jxj� j hx�wi � PAg� In the following we
describe an algorithm that on input x � A computes wmax �the lexicographically largest
witness� by a breadth�	rst search on the tree of pre	xes of all potential witnesses� In
order to do this we use the set pre�x �Left �A�� � fhx� yi j ��z��hx� yzi � Left �A��g� Each
pre	x y actually represents the interval of all possible extensions of y to length q�jxj�� It
is not hard to see that pre�x �Left �A�� is many�one equivalent to Left �A� and therefore
pre�x �Left �A�� � Rp

b�R
p
ctt�SPARSE���

Using Lemma �� and the representation theorem of Hausdor� stated as Theorem ���
it is easy to see that there exist a sparse set S and sets Ci � Rp

ctt�S�� � � i � �k� such
that pre�x �Left �A�� �

Sk
i���C�i�� 	C�i� and C� 
 C� 
 ��� 
 C�k�

Let fi� � � i � �k� be the conjunctive reduction functions witnessing Ci � Rp
ctt�S�� i�e�

hx� yi � Ci  fi�hx� yi� � S�
We 	rst outline an intuitive description of the polynomial�time� decision procedure

for A� As stated above� it performs a breadth�	rst search through the tree of witness
pre	xes for an input x� Let x be an element of A� and let N � fy�� � � � � ytg be a lexi�
cographically ordered set of pre	xes �all of the same length� that includes the pre	x of
wmax of that length� We exploit some crucial properties of the Hausdor� representation of
pre�x �Left �A�� for the design of a procedure pruning N to a polynomially size�bounded

�It is implicit in this section that polynomial time and polynomial size always mean polynomial in jxj�
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set that still includes the pre	x of wmax� Let yh be the pre	x of wmax in fy�� � � � � ytg�
Then� letting d � � and l��� � �� it holds that

fhx� yl�d���i� � � � � hx� yhig � C�d��

Let r�d� be the largest index r such that fhx� yl�d���i� � � � � hx� yrig � C�d�� and let l�d� be
the least index l such that � � l � r�d� � � and fhx� yli� � � � � hx� yr�d�ig � C�d� Observe
that since fhx� yl�d���i� � � � � hx� yhig � C�d�� it follows that r�d� � h� Similarly� since
fhx� yh��i� � � � � hx� yr�d�ig � C�d� it holds that l�d� � h� �� We consider the following two
cases separately�

�� hx� yhi �� C�d�

Then l�d� � h� � since yh �� fyl�d�� � � � � yr�d�g� i�e� l�d� � h�

�� hx� yhi � C�d� �This case is only possible if d � k��

In this case� yh � fyl�d�� � � � � yr�d�g� Since fhx� yl�d�i� � � � � hx� yhig � pre�x �Left �A��
but fhx� yl�d�i� � � � � hx� yhig � C�d� it follows that fhx� yl�d�i� � � � � hx� yhig � C�d���
and the above analysis can be repeated�

If we could compute the pre	xes yl�d� and yr�d� de	ned above in polynomial time� we
could use the above properties in order to design a recursive procedure that collects all the
pre	xes yl�d��� found in the recursive calls� This procedure would return a small subset
of N containing yh� Starting with N � f�g� the overall algorithm can use repeatedly such
a pruning step at each level of the tree of possible witness pre	xes by 	rst expanding all
the pre	xes y in N to y� and y� �thus doubling N� and then pruning N back to a small
subset� In that way� the algorithm 	nally computes a small subset of �q�jxj� that contains
wmax in case x � A�

Although we cannot explicitly compute the required pre	xes yl�d� and yr�d�� instead we
can compute� given yl�d���� in polynomial time �polynomially size�bounded� sets Jright�d�
and Jleft�d� of pre	xes such that yr�d� � Jright�d� and yl�d� � Jleft�d�� This su�ces since
for each pre	x candidate y � Jleft�d�� the search for yl�d��� can be done recursively� Since
the depth of the recursion is the constant k� the resulting sets Jleft�d� of candidates for
yl�d� still have polynomially bounded cardinality�

We now describe the algorithm in detail� It calls a recursive pruning procedure PRUNE
which in turn calls two functions SEARCH�RIGHT and SEARCH�LEFT� SEARCH�
RIGHT is used to search for candidates for yr�d� to the right of previously found can�
didates for yl�d��� resulting in a polynomial size�bounded set Jright�d� containing yr�d��
SEARCH�LEFT is used to search to the left of the pre	xes in Jright�d� to form a polyno�
mial size�bounded set Jleft�d� containing yl�d�� Let m be a polynomial bounding the size
of the queries to the sparse set� i�e� jzj � m�n� for all z �

S
ffi�hx� yi� j � � i � �k� jxj �

n� jyj � r�n�g� and let s be a polynomial bounding the census of the sparse set S�

SEARCH�RIGHT�d�N� yl� x�
�� if hx� yli � C�d�� it returns a set J � N � fy�� � � � � ytg that includes the

largest pre	x yr � N such that fhx� yli� � � � � hx� yrig � C�d�� ��
begin
J �� fytg
Q �� �
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i �� l
repeat
i �� i� �
if f�d���hx� yii� ��

Si��
j�l f�d���hx� yji� then

J �� J � fyi��g
Q �� Q � f�d���hx� yii�

end
until �jQj � s�m�jxj��� or �i � t�
return J

end

Claim � Function SEARCH�RIGHT�d�N� yl� x�� when called with parameter yl � yl�d����
returns a set J containing yr�d��

Proof of Claim �� There are two cases� If r�d� � t then yr�d� is clearly in the returned
set J � Otherwise� since fhx� yl�d���i� � � � � hx� yr�d�ig � C�d�� and hx� yr�d���i �� C�d��� all
the queries in the sets f�d���hx� yl�d���i�� � � � � f�d���hx� yr�d�i� are in S but at least one
query q in f�d���hx� yr�d���i� is not in S� Therefore yr�d��� is the smallest pre	x y in N
such that y � yl�d��� and q � fd�hx� yi�� i�e� yr�d� is included in J in some step of the

repeat loop since j
Sr�d�
j�l�d� f�d���hx� yji�j � s�m�jxj��� �

SEARCH�LEFT�d�N� yr� x�
�� returns a set J � N � fy�� � � � � ytg that includes the smallest pre	x

yl � N such that l � r � � and fhx� yli� � � � � hx� yrig � C�d ��
begin
J �� fy�g
i �� r
Q �� �
repeat
if f�d�hx� yii� ��

Sr
j�i�� f�d�hx� yji� then

J �� J � fyi��g
Q �� Q � f�d�hx� yii�

end
i �� i	 �

until �jQj � s�m�jxj��� or �i � ��
return J

end

Claim � Function SEARCH�LEFT�d�N� yr� x�� when called with parameter yr � yr�d��
returns a set J containing yl�d��

Proof of Claim �� Again� there are two cases� If l�d� � � then yl�d� is clearly in the
returned set J � Otherwise� since fhx� yl�d�i� � � � � hx� yr�d�ig � C�d and hx� yl�d���i �� C�d�
all the queries in the sets f�d�hx� yl�d�i�� � � � � f�d�hx� yr�d�i� are in S but at least one query
q in f�d�hx� yl�d���i� is not in S� Therefore yl�d��� is the largest pre	x y in N such that
y � yr�d� and q � f�d�hx� yi�� i�e� yl�d� is included in J in some step of the repeat loop

since j
Sr�d�
j�l�d� f�d�hx� yji�j � s�m�jxj��� �
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PRUNE�N�J �
left� d� x�

�� returns a subset of N � fy�� � � � � ytg that contains the pre	x yh of wmax if
yh � N � hx� yhi � C�d�� and fhx� yli� � � � � hx� yhig � C�d�� for a yl � J �

left

with l � h ��
begin
if d � k � � then return � end
Jright �� �
for each z � J �

left do
Jright �� Jright � SEARCH�RIGHT�d�N� z� x�

end
Jleft �� �
for each z � Jright do
Jleft �� Jleft � SEARCH�LEFT�d�N� z� x�

end
return fyl�� j yl � Jleftg � PRUNE�N�Jleft� d� �� x�

end

Claim � If yh � N � hx� yhi � C�d��� and yl�d��� � J �
left then PRUNE�N�J �

left� d� x� re�
turns a set containing yh�

Proof of Claim �� If yh � N and hx� yhi � C�d�� then hx� yhi is also in the sets
C�d��� � � � � C�� By the above analysis �since always case � happens up to d	 �� it follows
that fhx� yl�d���i� � � � � hx� yhig � C�d��� Since yl�d��� � J �

left� using Claim ��� yr�d� is
included in Jright by the call of SEARCH�RIGHT�d�N� yl�d���� x�� Then� using Claim ���
yl�d� is included in Jleft by the call of SEARCH�LEFT�d�N� yr�d�� x�� Now we can prove by
induction that yh is included in the set returned by PRUNE� If hx� yhi �� C�d �which must
be true in the base case d � k� then yh � yl�d��� and yh is included in the set returned by
PRUNE� If hx� yhi � C�d then hx� yhi is in C�d�� and we can use the induction hypothesis�

�

We complete the algorithm with a description of the main program�

input x
N �� f�g
for i �� � to q�jxj� do
N �� fy� j y � Ng � fy� j y � Ng �� expand the pre	xes to length i ��
N �� PRUNE�N� fy�g� �� x�

end
�� N now includes wmax if x � A ��
if there is a witness for x in N then accept else reject

In order to prove the correctness of the algorithm it su�ces to observe that it follows
from Claim �� that the pre	x yh of wmax is included in the pruned set returned by
PRUNE�N� fy�g� �� x� provided that yh is inN � Also� since the sets returned by SEARCH�
RIGHT and SEARCH�LEFT are bounded in size by s�m�jxj�� � �� it follows inductively
that the set Jleft computed by PRUNE at level d is bounded in size by �s�m�jxj��� ���d�
Therefore� since the depth of recursion of function PRUNE is bounded by a constant� the
	nally returned set being the union of all the Jleft
s is polynomially bounded in size� and
it is easy to see that the algorithm runs in polynomial time�
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We now discuss the application of the above results to the classes UP� FewP� Few�
PP� and C�P�

Theorem ��� If UP is contained in Rp

b�R
p
c �SPARSE�� then UP � P�

Proof We 	rst note that for every set A � UP it holds that Left �A� is in UP� Hence�
if UP � Rp

b�R
p
c �SPARSE�� then Left �A� is in Rp

b�R
p
c�SPARSE��� and by Theorem �� it

follows that A is in P�

Theorem ��� If FewP is contained in Rp
b�R

p
c �SPARSE�� then P � Few�

Proof By a similar proof as above it can be inferred that P � FewP� Since Few � PFewP

��� it follows that P � Few�

Theorem �� If PP is contained in Rp

b�R
p
ctt�SPARSE�� then P � PP�

Proof Consider the PP�complete set fhx�mi j there are at least m satisfying assignments
for xg which has exactly the required properties of left sets� Under the assumption
that this set is in Rp

b �R
p
ctt�SPARSE�� we can use the algorithm described in the proof of

Theorem �� to compute in polynomial time a set of numbers that includes the number
�SAT�x� of satisfying assignments of the formula x� Now we can use the result of Cai
and Hemachandra ��� and Toda �see ���� that P � PP if there is an FP function that
computes on input x a set of numbers that includes �SAT�x��

Theorem ��� If C�P is contained in Rp
b�R

p
ctt�SPARSE�� then P � C�P�

Proof There exist complete sets in C�P that are one word decreasing self�reducible ����
Balc�azar has shown that every one word decreasing self�reducible set in Rp

T �SPARSE� is
in �p

� ���� Therefore it follows from the assumption of the theorem that C�P � �p
��

Furthermore� since coNP � C�P� if C�P � Rp
b�R

p
ctt�SPARSE�� then also NP �

Rp
b�R

p
ctt�SPARSE��� and it follows from Theorem �� that P � �p

��

Theorem �� could also be proved in the same way as Theorem ���

� Bounded truth�tables on randomized reductions

to sparse sets

In this section we consider randomized reductions to sparse sets� Randomized reductions
were introduced by Adleman and Manders ��� and have played an important role in
complexity theory� We show that NP cannot have sparse hard sets under certain ran�
domized reductions unless NP � RP� Namely� we show that if NP reduces via a bounded
truth�table reduction to a set that reduces via a co�rp reduction to a sparse set then
NP � RP�

De�nition 
�� ��� A�rp
mB if there exist a polynomial time function f and a polynomial

q such that
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x � A� Probw��q�jxj� �f�hx�wi� � B� � ���

x �� A� Probw��q�jxj� �f�hx�wi� �� B� � �

Similarly� A�co�rp
m B if there exist a polynomial time function f and a polynomial q such

that

x � A� Probw��q�jxj� �f�hx�wi� � B� � �

x �� A� Probw��q�jxj� �f�hx�wi� �� B� � ���

The string w is chosen uniformly at random from the set �q�jxj��

We 	rst show that if NP � Rco�rp
m �Rp

ctt�SPARSE�� then NP � RP �this result is
independently due to D� Ranjan and P� Rohatgi ����� Then we extend this to the result
that NP � Rp

b�R
co�rp
m �Rp

ctt�SPARSE��� implies NP � RP� We need the following folklore
result on ampli	cation for randomized reductions�

Lemma 
�� If A�co�rp
m B then for every polynomial p there exist a co�rp reduction func�

tion f from A to AND��B� � fhx�� ���� xii j xj � B for each j� � � j � ig and a
polynomial q such that

x � A� Probw��q�jxj� �f�hx�wi� � AND��B�� � �

x �� A� Probw��q�jxj� �f�hx�wi� �� AND��B�� � � 	 ��p�jxj��

Fact 
�� For every set B� AND��B� � Rp
ctt�B��

Fact �� shows that if a set B conjunctively reduces in polynomial time to a sparse
set S then AND��B� also conjunctively reduces to S� The following lemma is an easy
consequence of Lemma �� and Fact ���

Lemma 
�
 If A � Rco�rp
m �Rp

ctt�SPARSE�� then for every polynomial p there exist a sparse
set S� an FP function f � and a polynomial q such that

x � A� Probw��q�jxj� �f�hx�wi� � S� � �

x �� A� Probw��q�jxj� �f�hx�wi� �� S� � ��	 ��p�jxj��

The following result has been independently obtained by D� Ranjan and P� Rohatgi
�����

Theorem 
�� If NP � Rco�rp
m �Rp

ctt�SPARSE�� then NP � RP�

Proof Let A be an NP�complete set such that A � Rco�rp
m �Rp

ctt�SPARSE��� As in the
proof of Theorem �� let r be a polynomial and let PA be a polynomial�time set such that
A � fx j �w � �r�jxj� � hx�wi � PAg and Left �A� � fhx�wi j x � A � w � �r�jxj� � w �
wmaxg� where wmax � maxfw � �r�jxj� j hx�wi � PAg�

We describe a randomized polynomial time algorithm that computes on input x in
A with high probability the lexicographically largest witness wmax by a breadth�	rst
search on the tree of possible witness pre	xes� In order to do this we again use the set
pre�x �Left �A�� � fhx� yi j �z � hx� yzi � Left �A�g which is in Rco�rp

m �Rp
ctt�SPARSE�� since

it is many�one equivalent to Left �A��
Let p be a polynomial such that for all n� ��	 ��p�n��r�n� � ���� By Lemma �� there

exist a sparse set S� an FP function f and a polynomial q such that

 



hx� yi � pre�x �Left �A��� Probw��q�jxj� �f�hx� y� wi� � S� � �

hx� yi �� pre�x �Left �A��� Probw��q�jxj� �f�hx� y� wi� �� S� � � 	 ��p�jxj�

Letm be a polynomial bounding the size of the queries to the sparse set� i�e� jzj � m�n�
for all z �

S
ff�hx� y� wi� j jxj � n� jyj � r�n�� jwj � q�n�g� and let s be a polynomial

bounding the census of the sparse set S�
We 	rst describe the randomized algorithm for testing membership in A and then

prove its correctness�

input x
N �� f�g
for l �� � to r�jxj� do
N �� fy� j y � Ng � fy� j y � Ng! �� expand pre	xes to length l ��
�� let y�� � � � � yt be the pre	xes in N in lexicographical order ��
M �� �
i �� �
repeat
i �� i� �
compute a set Q�yi� � f�hx� yi� wi� of conjunctive queries
where w is chosen uniformly at random from �q�jxj�

if Q�yi� ��
S
��j�iQ�yj� then M ��M � fyig

until �j
S
��j�iQ�yj�j � s�m�jxj��� or �i � t�

N �� fyi�� j yi �Mg � fytg
end
if there is a witness in N then accept else reject

It is clear that the above algorithm runs in polynomial time since the set N contains
at most ��s�m�jxj�� � �� pre	xes at any stage of the loop� In order to prove that it is an
RP algorithm for A we need to show that if x � A then the algorithm accepts x with high
probability� and if x �� A then the algorithm always rejects� The latter is obvious from
the fact that the algorithm accepts only if it 	nds a witness� It remains to show that if
x � A then the algorithm 	nds wmax with probability at least ����

We show that if N � fy�� � � � � ytg contains a pre	x of wmax �call it yh! we assume
that h � t since yt is always included in the pruned set� then with probability at least
� 	 ��p�jxj� the pre	x yh is included in N after the repeat loop� In order to see this we
observe the following�

�� For every w � �q�jxj� and i� � � i � h� it holds that f�hx� yi� wi� � S� This follows
from the fact that hx� yii � pre�x �Left �A�� for � � i � h�

�� Since hx� yh��i �� pre�x �Left �A��� it holds that Probw��q�jxj� �f�hx� yh��� wi� �� S� �
��	 ��p�jxj���

It follows that j
S
��j�hQ�yj�j � s�m�jxj�� and with probability at least � 	 ��p�jxj�

it holds that Q�yh��� ��
S
��j�h Q�yj�� Hence N includes yh with probability at least

�	 ��p�jxj� at the end of the repeat loop�
Since the outer for�loop has r�jxj� iterations� and since at the beginning N � f�g

contains a pre	x of wmax� it follows that with probability at least �� 	 ��p�jxj��r�jxj� the
algorithm 	nds wmax� By choice of p this probability is more than ����

��



We state the next theorem without proof as it can be proved exactly as Theorem ���

Theorem 
�� If NP � Rrp
m �Rp

dtt�co�SPARSE�� then NP � RP�

We now extend the above results to prove that if NP � Rp

b�R
co�rp
m �Rp

ctt�SPARSE���
then NP � RP� We 	rst show that the class Rco�rp

m �Rp
ctt�SPARSE�� is a set ring

so that we can assume the existence of a Hausdor� representation for any set in
Rp
b�R

co�rp
m �Rp

ctt�SPARSE����

Lemma 
� �� Rco�rp
m �Rp

ctt�SPARSE�� � Rco�rp
m �Rp

ctt�TALLY��

�� Rrp
m �Rp

dtt�co�SPARSE�� � Rrp
m �Rp

dtt�TALLY��

Proof Follows from the facts that Rdtt�co�SPARSE� � Rdtt�TALLY� and that
Rp
ctt�SPARSE� � Rp

ctt�TALLY��

Lemma 
�� Rco�rp
m �Rp

ctt�SPARSE�� is a set ring�

Proof Since Rco�rp
m �Rp

ctt�SPARSE�� � Rco�rp
m �Rp

ctt�TALLY��� it is enough to show that
Rco�rp
m �Rp

ctt�TALLY�� is a set ring� Assume that A�co�rp
m A� and B�co�rp

m B�� where A� and
B� are in Rp

ctt�TALLY�� We de	ne two sets C and D which are readily seen to be in
Rp
ctt�TALLY� since A� and B� are tally sets and since Rp

bd�R
p
ctt�TALLY�� � Rp

ctt�TALLY�
and Rp

bc�R
p
ctt�TALLY�� � Rp

ctt�TALLY��

C � fha� bi j a � A� or b � B�g

D � fha� bi j a � A� and b � B�g�

Let f and g be co�rp reduction functions witnessing A�co�rp
m A� and B�co�rp

m B�� re�
spectively� We can assume that there is a uniform polynomial q corresponding to both
reduction functions such that

x � A� Probw��q�jxj� �f�hx�wi� � A�� � �

x �� A� Probw��q�jxj� �f�hx�wi� �� A�� � ���

and

x � B � Probw��q�jxj� �g�hx�wi� � B�� � �

x �� B � Probw��q�jxj� �g�hx�wi� �� B�� � ���

We de	ne a reduction function h combining f and g as follows� For w�� w� � �q�jxj��
h�hx�w�w�i� � hf�hx�w�i�� g�hx�w�i�i� Then we have

x � A �B � Probw���q�jxj� �h�hx�wi� � C� � �

x �� A �B � Probw���q�jxj� �h�hx�wi� �� C� � ������

Note that the probability ������ can be ampli	ed using Lemma �� to ��� as required�
Similarly we have

x � A �B � Probw���q�jxj� �h�hx�wi� � D� � �

��



x �� A �B � Probw���q�jxj� �h�hx�wi� �� D� � �	 �������

Hence A �B and A � B co�rp reduce to sets in Rp
ctt�TALLY�� i�e� Rco�rp

m �Rp
ctt�SPARSE��

is a set ring�

We are now ready to prove the main result of this section�

Theorem 
�� If A is in NP such that Left �A� � Rp
b�R

co�rp
m �Rp

ctt�SPARSE��� then A �
RP�

Proof The proof is quite similar to that of Theorem ��� The essential di�erence is that
the procedures corresponding to SEARCH�LEFT and SEARCH�RIGHT in the proof of
Theorem �� will now be randomized algorithms �similar to the pruning part used in the
algorithm in the proof of Theorem ����

Let q be a polynomial and let PA be a polynomial�time set such that A � fx j �w �
�r�jxj� � hx�wi � PAg and Left �A� � fhx�wi j x � A � w � �r�jxj� � w � wmaxg�
where wmax � maxfw � �r�jxj� j hx�wi � PAg� We describe an RP�algorithm that
on input x � A computes with high probability wmax by a breadth�	rst search� By
the hypothesis of the theorem we can assume that the set pre�x �Left �A�� � fhx� yi j
�z � hx� yzi � Left �A�g is in Rp

b�R
co�rp
m �Rp

ctt�SPARSE���� Since Rco�rp
m �Rp

ctt�SPARSE��
is closed under join and polynomial time many�one reductions� it follows from Fact ��
that BC�Rco�rp

m �Rp
ctt�SPARSE�� � Rp

b�R
co�rp
m �Rp

ctt�SPARSE���� From Lemma �� and
Theorem ��� it follows that there exist a sparse set S and sets Ci � Rco�rp

m �Rp
ctt�S�� such

that pre�x �Left �A�� �
Sk
i���C�i�� 	C�i� and C� 
 C� 
 ��� 
 C�k�

Let p be a polynomial such that for all n� �� 	 ��p�n��r�n���k � ���� Then by
Lemma �� we can assume that there exist co�rp reduction functions fi witnessing
Ci � Rco�rp

m �Rp
ctt�S��� � � i � �k� and a polynomial q such that the following holds

hx� yi � Ci � Probw��q�jxj� �fi�hx� y� wi� � S� � �

hx� yi �� Ci � Probw��q�jxj� �fi�hx� y� wi� �� S� � �� 	 ��p�jxj��

The indices l�d� and r�d�� � � d � k� are de	ned in the same way as in Theorem ���
Let yh be the pre	x of wmax in fy�� � � � � ytg� As in Theorem ��� we cannot compute
the required pre	xes yl�d� and yr�d�� Instead we design a randomized algorithm that�
given yl�d���� computes in polynomial time �polynomially size�bounded� sets Jright�d� and
Jleft�d� of pre	xes such that with high probability yr�d� � Jright�d� and yl�d� � Jleft�d��
We now describe the algorithm in detail� It calls a recursive pruning procedure PRUNE
which in turn calls two functions RANDOM�SEARCH�RIGHT and RANDOM�SEARCH�
LEFT� RANDOM�SEARCH�RIGHT is used to search for candidates for yr�d� to the right
of previously found candidates for yl�d��� resulting in a polynomially bounded set Jright�d�
containing yr�d� with high probability� RANDOM�SEARCH�LEFT is used to search to the
left of the pre	xes in Jright�d� to form a polynomial size�bounded set Jleft�d� containing
yl�d� with high probability�

Letm be a polynomial bounding the size of the queries to the sparse set� i�e� jzj � m�n�
for all z �

S
ffi�hx� y� wi� j � � i � �k� jxj � n� jyj � r�jxj�� jwj � q�jxj�g� and let s be a

polynomial bounding the census of the sparse set S�

��



RANDOM�SEARCH�RIGHT�d�N� yl� x�
�� if hx� yli � C�d�� it returns a set J � N � fy�� � � � � ytg that in�

cludes with high probability the largest pre	x yr � N such that
fhx� yli� � � � � hx� yrig � C�d�� ��

begin
J �� fytg
Q �� �
i �� l
repeat
i �� i� �
compute a set Q�yi� � f�d���hx� yi� wi� of conjunctive queries
where w is chosen uniformly at random from �q�jxj�

if Q�yi� ��
Si��
j�l Q�yj� then

J �� J � fyi��g
Q �� Q �Q�yi�

end
until �jQj � s�m�jxj��� or �i � t�
return J

end

Claim 
 Function RANDOM�SEARCH�RIGHT�d�N� yl� x�� when called with parameter
yl � yl�d���� returns a set J that with probability at least � 	 ��p�jxj� contains yr�d��

Proof of Claim �� We 	rst note that if r�d� � t then yr�d� is always included in J �
Otherwise observe the following�

�� For every w � �q�jxj� and i� l�d	 �� � i � r�d�� it holds that f�d���hx� yi� wi� � S�
This follows from the fact that hx� yii � C�d�� for all i� � � i � r�d��

�� Since hx� yr�d���i �� C�d�� it holds that Probw��q�jxj� �f�d���hx� yr�d���� wi� �� S� �
�	 ��p�jxj��

Therefore� since j
Sr�d�
j�l�d���Q�yj�j � s�m�jxj��� the repeat loop includes yr�d� in J with

probability at least �	 ��p�jxj�� �

RANDOM�SEARCH�LEFT�d�N� yr� x�
�� returns a set J � N � fy�� � � � � ytg that includes with high probability

the smallest pre	x yl � N such that fhx� yli� � � � � hx� yrig � C�d ��
begin
J �� fy�g
i �� r
Q �� �
repeat
compute a set Q�yi� � f�d�hx� yi� wi� of conjunctive queries
where w is chosen uniformly at random from �q�jxj�

if Q�yi� ��
Sr
j�i��Q�yj� then

J �� J � fyi��g
Q �� Q �Q�yi�

end

��



i �� i	 �
until �jQj � s�m�jxj��� or �i � ��
return J

end

Claim � Function RANDOM�SEARCH�LEFT�d�N� yr� x�� when called with parameter
yr � yr�d�� returns a set J containing yl�d� with probability at least � 	 ��p�jxj��

Proof of Claim �� There are two cases again� If l�d� � � then yl�d� is clearly in the
returned set J � Otherwise we have

�� Since fhx� yl�d�i� � � � � hx� yr�d�ig � C�d and hx� yl�d���i �� C�d� it holds for every w �
�q�jxj� and for every i� l�d� � i � r�d�� that f�d�hx� yi� wi� � S�

�� Probw��q�jxj� �f�d�hx� yl�d���� wi� �� S� � ��	 ��p�jxj���

Therefore� since j
Sr�d�
j�l�d�Q�yj�j � s�m�jxj��� yl�d� is included in J with probability at least

�	 ��p�jxj� in some step of the repeat loop� The claim follows� �

PRUNE�N�J �
left� d� x�

�� returns a subset of N � fy�� � � � � ytg that with high probability
contains the pre	x yh of wmax if yh � N � hx� yhi � C�d��� and
fhx� yli� � � � � hx� yhig � C�d�� for a yl � J �

left with l � h ��
begin
if d � k � � then return � end
Jright �� �
for each z � J �

left do
Jright �� Jright � RANDOM�SEARCH�RIGHT�d�N� z� x�

end
Jleft �� �
for each z � Jright do
Jleft �� Jleft � RANDOM�SEARCH�LEFT�d�N� z� x�

end
return fyl�� j yl � Jleftg � PRUNE�N�Jleft� d� �� x�

end

The next claim follows from Claim �� and Claim �� and is similarly proved as
Claim �� in Theorem ���

Claim � If yh � N � hx� yhi � C�d��� and yl�d��� � J �
left then PRUNE�N�J �

left� d� x� re�

turns a set containing yh with probability at least �� 	 ��p�jxj���k�

We complete the algorithm with a description of the main program�

input x
N �� f�g
for i �� � to r�jxj� do
N �� fy� j y � Ng � fy� j y � Ng �� expand the pre	xes to length i ��
N �� PRUNE�N� fy�g� �� x�

end
�� N now includes wmax if x � A with probability at least �"� ��
if there is a witness for x in N then accept else reject end

��



We 	rst note that an input x �� A is rejected with probability � since no witness can
be found� In order to prove the correctness of the algorithm it su�ces to observe that
Claim �� implies that with probability at least �� 	 ��p�jxj���k the pre	x yh of wmax is
included in the pruned set returned by PRUNE�N� fy�g� �� x� provided that yh is in N �
Hence� after exiting the for�loop in the main program� N includes wmax with probability
at least ���	��p�jxj���k�r�jxj� �which is more than ��� by choice of p�� It is easy to see that
the algorithm runs in polynomial time�

The proof of the following theorem is analogous to the proof of Theorem ���

Theorem 
��� If UP is contained in Rp
b�R

co�rp
m �Rp

c �SPARSE��� then UP � RP�

Proof Since for every set A � UP it holds that Left �A� is in UP and since UP �
Rp
b�R

co�rp
m �Rp

c �SPARSE��� it follows that Left �A� is in Rp
b �R

co�rp
m �Rp

c�SPARSE���� and
therefore by Theorem �� A is in RP�

� Promise problems and randomized reductions to

sparse sets

We show in this section that it is enough to assume that some solution of the promise
problem ��SAT�SAT� is reducible to a sparse set via the randomized reduction considered
in Theorem �� to get the conclusion NP � RP� We 	rst give the de	nition of promise
problems and state its relation to randomized reductions�

De�nition ��� ��� A promise problem is a pair of sets 	Q�R
� A set L is called a solution
to the promise problem 	Q�R
 if ��x��x � Q� �x � L x � R���

Let �SAT denote the set of formulas with at most one satisfying assignment� Observe
that a solution of the promise problem ��SAT�SAT� has to agree with SAT in the for�
mulas having a unique satisfying assignment as well as in the unsatis	able formulas� The
well known result of Valiant and Vazirani showing the NP�hardness of USAT under �a
weaker version of� randomized reductions ��� has the following implication for the promise
problem ��SAT�SAT��

Theorem ��� ��� If the promise problem ��SAT�SAT� has a solution in RP then NP �
RP�

We now prove the generalization of Theorem ���

Theorem ��� If the promise problem ��SAT�SAT� has a solution in the reduction class
Rp
b�R

co�rp
m �Rp

c �SPARSE��� then NP � RP�

Proof Let L � Rp
b �R

co�rp
m �Rp

c�SPARSE��� be a solution of the promise problem
��SAT�SAT�� Then� by de	nition� ��x��x � �SAT � �x � L  x � SAT��� The
natural left set associated with SAT is Left �SAT� � fhx�wi j x � SAT� w � �l�x� and
w � wmaxg where wmax is the maximum satisfying assignment for x and l�x� is the num�
ber of variables in x� The set pre�x �Left �SAT�� � fhx� yi j ��z��hx� yzi � Left �SAT��g

��



is easily seen to be accepted by an NP�machine that on input hx� yi guesses a truth as�
signment w � y�l�x��jyj and ver	es that w satis	es x� It is clear that x � �SAT implies
that for all y � ��l�x�� the above mentioned NP�machine has at most one accepting path
on input hx� yi� Let g be a parsimonious many�one reduction from pre�x �Left �SAT�� to
SAT� Then it is clear from the discussion that x � �SAT implies g�hx� yi� � �SAT for all
y � ��l�x�� Let Q � fhx� yi j x � �SATg and let L� � fhx� yi j g�hx� yi� � Lg� Clearly g
many�one reduces L� to L�

Claim  L� is a solution of the promise problem �Q� pre�x �Left �SAT����

Proof of Claim
We have to show that for every pair hx� yi � Q it holds that hx� yi � L�  hx� yi �

pre�x �Left �SAT��� Since L is a solution of ��SAT�SAT� and since hx� yi � Q implies
g�hx� yi� � �SAT� it follows that g�hx� yi� � L if and only if g�hx� yi� � SAT� Since g
many�one reduces both pre�x �Left �SAT�� to SAT and L� to L� it follows that hx� yi �
L�  hx� yi � pre�x �Left �SAT��� �

Since L� �p
m L it follows that L� � Rp

btt�R
co�rp
m �Rp

ctt�SPARSE���� Therefore� since
Rco�rp
m �Rp

ctt�SPARSE�� is a set ring� L� can be written as
Sk
i���C�i�� 	 C�i� for sets C� 


C� 
 ��� 
 C�k in Rco�rp
m �Rp

ctt�SPARSE��� Let fi� � � i � �k� be co�rp reduction functions
witnessing Ci � Rco�rp

m �Rp
ctt�SPARSE��� Consider the algorithm described in the proof of

Theorem �� in which we use the reduction functions fi de	ned above� We claim that on
input x � �SAT�SAT this algorithm computes with high probability the unique satisfying
assignment for x� In order to see this� note that the algorithm on input x � �SAT � SAT
computes query sets f�hx� y� wi� only for triples hx� y� wi for which hx� yi is inQ� According
to Claim �� it holds for all hx� yi � Q that hx� yi � L�  hx� yi � pre�x �Left �SAT��� and
therefore the arguments in the proof of Theorem �� apply� Hence there is an RP solution
for the promise problem ��SAT�SAT� and by Theorem �� it follows that NP � RP�

The following theorem concerning deterministic reductions can be similarly proved�

Theorem ��
 If the promise problem ��SAT�SAT� has a solution in Rp

b �R
p
c�SPARSE��

then it has a solution in P�

We need the following lemma for the next corollary�

Lemma ��� ��� Let L be a solution of ��SAT�SAT� then Few � PL�

Proof Since Few � PFewP ��� it su�ces to show that FewP is contained in PL� Let A be
a set in FewP via some nondeterministic machine M � Let p be the polynomial bounding
the number of accepting paths of M � Consider the following NP set B�

B � fhx� ii jM�x� has at least i accepting paths g

Let accM�x� denote the number of accepting paths of M on input x� Clearly� there is an
NP machine M � accepting B in such a way that M � on input hx� accM�x�i has exactly
one accepting path� Then it holds that f�hx� ji� is in �SAT for all j � accM�x�� where
f is a parsimonious reduction from L�M �� to SAT� Therefore x is in A if and only if
f�hx� ii� � L for some i� � � i � p�jxj��

Corollary ��� If the promise problem ��SAT�SAT� has a solution in Rp
b �R

p
c�SPARSE��

then Few � P�

��



� A trade�o� analysis

It is interesting to note that the proof of Theorem �� is constructive in the following sense�
given a polynomial time truth�table condition generator g witnessing pre�x �Left �A�� in
Rp
b�R

p
ctt�S�� for a sparse set S� the conjunctive query sets fi�hx� yi� can be computed from

the truth�table condition g�hx� yi� by a polynomial time algorithm �as can be derived
from a general result in ��� that applies to various set rings�� Therefore� given an FP
transducer computing g and a polynomial bound on the census of S� we get a polynomial
time decision procedure for A� The question arises how the running time of that algorithm
is in�uenced if the number k of the conjunctive queries produced by g is a function k�n�
depending on the length n of x rather than a constant� and if the census of S is allowed
to be an arbitrary function�

In the next theorem we precisely analyze the running time of the algorithm in terms
of the functions k and censusS� assuming that g directly generates truth�table conditions
suitable for our algorithm�

More precisely� we assume that g is a truth�table reduction of the following type which
we call Hausdor� reduction and which is a variation of the reducibility de	ned by K�W�
Wagner in ����

De�nition ��� Let h�x�� x�� � � � � xk� be the boolean formula �k
i����

i
j��xj�� where � de�

notes the parity operator� We say that a set A is k�n��Hausdor� reducible to B if
A is truth�table reducible to B via the boolean function h�x�� x�� � � � � xk�n��� i�e� there
is a polynomial time computable query generator g such that for all x� x � A 
h�	B�y��� � � � � 	B�yk�jxj��� � � where g�x� � hy�� � � � � yk�jxj�i�

Observe that A � Rp
b�R

p
ctt�SPARSE�� if and only if A is bounded Hausdor� reducible

to some set in Rp
ctt�SPARSE�� We now state the trade�o� result�

Theorem ��� If B is a set of density bounded by an FP function cB and if some NP
complete set is polynomial time reducible to a set in Rp

ctt�B� by a k�n��Hausdor� reduction�
then NP �

S
j�� DTIME�nj � cB�nj�O�k�n

j����

Proof Suppose that a set B as in the statement exists� Then for A � NP the set
pre�x �Left �A�� is reducible via a k�nO�����Hausdor� reduction to a set in Rp

ctt�B�� It is
not hard to see that there is an FP function f such that for all x�y

hx� yi � pre�x �Left �A�� maxfi j � � i � k�jxj�� f�hi� x� yi� � Bg is odd

Observe that the function f can be used instead of the conjunctive reduction functions fi
in the proof of Theorem ��� Therefore with a minor modi	cation we can use the algorithm
described in the proof of Theorem �� to compute wmax on input x � A� It only remains
to accurately analyze the running time of the algorithm taking into account the growth
rate of the function k and of the density of B�

First note that the depth of recursive calls made by procedure PRUNE is k�nO�����
Next we examine the calls to SEARCH�LEFT and SEARCH�RIGHT� The size of the
set returned by each such call is bounded by cB�nO����� Since the pruned subset of
N returned by PRUNE is constructed by taking pre	xes corresponding to all subsets
returned by SEARCH�LEFT in all the recursive calls by PRUNE� the size of this pruned
subset is bounded by cB�nO����O�k�n

O������ The running time of each call is bounded by

��



jN j � nO���� Furthermore� the total number of calls made by PRUNE to both SEARCH�
RIGHT and SEARCH�LEFT �including the recursive calls� is bounded by jN j ��k�nO�����
This implies that the running time of one call to PRUNE is bounded by k�nO���� � nO��� �

cB�nO����O�k�n
O������ The overall running time of the algorithm has only an additional

polynomial factor� This completes the proof�

An interesting point in the above result is that the actual number of queries in the
conjunctive reduction plays no real role in the trade�o�� The next corollary to the above
theorem is similar to a result in ��� concerning f�n��tt hard sets of certain densities for
NP�

Corollary ��� If B is a set of density O�log n� such that an NP complete set is reducible
to a set in Rp

ctt�B� by a O�log n� log log n��Hausdor� reduction then P � NP�

Corollary ��
 If an NP complete set is reducible to a set in Rp
ctt�SPARSE� by a O�log n��

Hausdor� reduction then NP � DTIME��O�log
� n���

We now give a trade�o� analysis for the algorithm in Theorem ���

Theorem ��� If B is a set of density bounded by an FP function cB and if some NP
complete set is polynomial�time reducible to a set in Rco�rp

m �Rp
ctt�B�� by a k�n��Hausdor�

reduction then NP �
S
j�� RTIME�nj � cB�nj�O�k�n

j����

Proof Follows easily �as done in Theorem ��� from a simple analysis of the corre�
sponding algorithm in the proof of Theorem ��� One thing to be noted is that� for
ampli	cation� the polynomial p in the proof of Theorem �� can be again chosen so that
��	 ��p�jxj��r�jxj���k�n� � ���� since k�n� is anyway bounded by some polynomial�

Corollary ��� If B is a set of density O�log n� such that an NP complete set is reducible
to a set in Rco�rp

m �Rp
ctt�B�� by an O�log n� log log n��Hausdor� reduction then NP � RP�

Corollary �� If an NP complete set is reducible to a set in Rco�rp
m �Rp

ctt�SPARSE�� by
an O�log n��Hausdor� reduction then NP � RTIME��O�log

� n���

	 Nondeterministic reductions to sparse sets

In this section we consider classes of sets reducible to sparse and tally sets via polynomial
time nondeterministic reductions� We show that nondeterministic polynomial time many�
one reductions to sparse sets are as powerful as nondeterministic Turing reductions to
sparse sets� On the other hand� nondeterministic polynomial time many�one reductions
to co�sparse sets are much weaker� We substantiate this claim by proving� applying
essentially Kadin
s census technique ���� that if coNP is nondeterministically polynomial
time many�one reducible to a co�sparse set then PH � �p

�� A similar result for sparse sets
is unlikely since it would imply that the Karp"Lipton"Sipser result ��� that NP � P�poly
implies PH � �p

� could be improved �known to be impossible in relativized worlds �����
The following de	nitions of nondeterministic polynomial time reductions are due to

Ladner� Lynch and Selman ����

��



De�nition �� ���

�� A set A is polynomial time nondeterministically many�one reducible to a set B 	de�
noted A �np

m B� if there exists a polynomial time nondeterministic Turing machine
M such that for every x � ��� M�x� outputs a string along each computation path�
and� x � A i� M�x� outputs some string in B�

�� A set A is polynomial time nondeterministically Turing reducible to a set B 	denoted
A �np

T B� if there exists a polynomial time nondeterministic oracle Turing machine
M accepting A with oracle B� i�e� A � L�M�B��

Our 	rst result in this section is the equality Rnp
m �SPARSE� � Rnp

T �SPARSE�� Indeed�
we show that every set in Rnp

T �SPARSE� nondeterministically many�one reduces to very
sparse sets �in the sense that they contain at most one string of each length�� Note that in
��� it is shown� using the inclusion Rp

b �SPARSE� � Rp
dtt�SPARSE�� that Rnp

c �SPARSE� �
Rnp
T �SPARSE� and that Rnp

m �SPARSE� � Rnp
dtt�SPARSE��

Theorem �� Rnp
m �SPARSE� � Rnp

T �SPARSE�

Proof Let A � L�M�S� � Rnp
T �S� for a sparse set S and a nondeterministic Turing

machine M � Let p be a polynomial bounding the running time of M � and let q be a
polynomial bounding the census of S� Clearly� each query generated by M along any
computation path on an input x is in ��p�jxj�� We de	ne a sparse set S� to which A can
be nondeterminstically many�one reduced in polynomial time�

S� � fh�n� y�� y�� � � � � yri j y� � � � � � yr and fy�� � � � � yrg � S�ng

Note that S� has for each length at most one element� Consider the following NP�machine
M ��

input x
guess r � f�� �� �� � � � � q�p�jxj��g
guess strings y� � y� � � � � � yr in ��p�jxj�

guess a path 
 of M on input x with oracle fy�� y�� � � � � yrg
if 
 is accepting then
output h�p�jxj�� y�� y�� � � � � yri

else
output y� �� a 	xed string not in S� ��

end

It is not hard to see that M � witnesses A � Rnp
m �S��� This completes the proof�

Related to the broad question discussed in Sections �� and �� whether NP can
have hard sparse sets with respect to deterministic or randomized polynomial time reduc�
tions �of di�erent kinds� one can ask similar questions with respect to nondeterministic
polynomial time reductions�

�� Can coNP have sparse hard sets under nondeterministic polynomial time many�one
reductions#

� 



�� Can coNP have co�sparse hard sets under nondeterministic polynomial time many�
one reductions#

Such questions have been implicitly considered in the literature with regard to nonuni�
form classes� Balc�azar and Sch$oning ��� show that coNP � NP�log implies PH � �p

��
Similarly it is known that coNP � NP�poly implies PH � �p

	 ����

Theorem �� If coNP � Rnp
m �co�SPARSE� then PH � �p

��

Proof Let A be a complete set for coNP that is many�one reducible via a nondeterministic
polynomial time Turing machine M to the complement S of a sparse set S� We de	ne a
sparse set S� � NP such that A � NPS�

� This proves the theorem since by Kadin
s result
��� it follows that PH � �p

�� S
� contains all strings that are provably not in S�

S� � fy j �x � A � M on input x outputs y g

It is clear that S� � S and it remains to show that A � NPS�

� Consider the following
nondeterminstic oracle machine M ��

On input x� M � simulatesM on x� IfM outputs y at the end of the simulated
computation path then M � queries oracle S� for y and accepts if and only if
y �� S��

If x � A then some output y of M on input x is in S� Since S� � S� it holds that
y �� S � and hence x � L�M �� S��� If x �� A then every output of M on input x is in S� and
therefore x �� L�M �� S��� Therefore L�M �� S�� � A�

From Theorem �� we know that Rnp
m �SPARSE� � NP�poly� hence it appears di�cult

to get a comparable collapse of PH as in Theorem �� under the assumption that coNP �
Rnp
m �SPARSE��
Finally� we have a result similar to Theorem �� for nondeterministic reductions�

Theorem �
 If �p
� � Rp

b �R
np
m �co�SPARSE�� then PH � �p

��
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