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Abstract

In this paper we study the consequences of the existence of sparse hard sets for
NP and other complexity classes under certain types of deterministic, randomized,
and nondeterministic reductions. We show that if an NP-complete set is bounded
truth-table reducible to some set that conjunctively reduces to a sparse set then P =
NP. This result subsumes and extends previously known results [?, ?, 7] yielding a
collapse of PH to P under the assumption that NP has sparse hard sets. Relatedly,
we show that if an NP-complete set is bounded truth-table reducible to some set
that randomly reduces (via a co-rp reduction) to some set that conjunctively reduces
to a sparse set then RP = NP. We also prove similar results under the (apparently)
weaker assumption that some solution of the promise problem (1SAT, SAT) reduces
via the mentioned reductions to a sparse set. Qur proofs are obtained by combining
the left set technique [?] with the Hausdorff representation for sets in the boolean
closure of set rings.

Finally we consider nondeterministic polynomial time many-one reductions to
sparse and co-sparse sets. We prove that if a coNP-complete set reduces via a
nondeterministic polynomial time many-one reduction to a co-sparse set then PH =
©%. On the other hand, we show that nondeterministic polynomial time many-one
reductions to sparse sets are as powerful as nondeterministic Turing reductions to
sparse sets.

*Work done while visiting Universitat Ulm. Supported in part by an Alexander von Humboldt research
fellowship.



1 Introduction

Sparse sets play a central role in structural complexity theory. An important line of
research that has been very fruitful is the study of sparse hard sets under different kinds
of reductions. This line of research opened with the question whether there can possibly
exist sparse complete sets for NP under polynomial time many-one reductions (it was
conjectured by L. Berman and J. Hartmanis [?] that there are no sparse NP-complete
sets).

The first results were P. Berman’s proof that P = NP if some tally set is NP-complete
[?] and Fortune’s proof that if there is a sparse coNP-complete set, then P = NP [?].
Mahaney settled the ‘sparseness’ conjecture by proving that if any NP-complete set many-
one reduces to a sparse set then P = NP [?]. From an entirely different angle of research,
the possible existence of sparse Turing-hard sets for NP was studied in [?]. This question
is equivalent to NP-complete problems having nonuniform polynomial-size circuits. Karp,
Lipton, and Sipser proved that if NP has sparse Turing-hard sets then the polynomial
hierarchy collapses to X5 [?].

Discovering consequences of the existence of sparse complete sets for different kinds
of truth-table reducibilities has remained an active research area. The next important
advance was made recently by Ogiwara and Watanabe [?] when they proved using a new
left-set technique that if NP has sparse hard sets under polynomial time bounded truth-
table reductions then P = NP. More recently, this has been followed up by similar results
for polynomial time conjunctive truth-table reductions [?, ?], and in [?] even for more
flexible truth-table reductions (e.g. bounded conjunctive reductions to the 1-truth-table
closure of the conjunctive closure of sparse sets). These results demonstrate the efficacy
of the left-set technique introduced in [?] (in fact, the older result of Mahaney has now
a considerably easier proof).

The main results of this paper concern the existence of sparse hard sets for NP and
other complexity classes under certain types of deterministic, randomized, and nonde-
terministic reductions. In Section ?? we prove that if NP C R}, (R%,(SPARSE)) then
P = NP. This result subsumes and extends all previously known results on reductions of
NP sets to sparse sets via various types of polynomial time truth-table reductions that
yield a collapse of the polynomial hierarchy to P.

In Section ?? we consider randomized reductions to sparse sets and show that if
NP C R, (R:P(RE,(SPARSE))) then RP = NP. (D. Ranjan and P. Rohatgi [?] have
independently shown that if NP C R"?(SPARSE) then RP = NP.)

Relatedly, we show in Section ?? that if the promise problem (1SAT, SAT) has a solu-
tion in R}, (RE(SPARSE)) then it has a solution in P. We also show that the conclusion
RP = NP can be derived from the assumption that the promise problem (1SAT,SAT)
has a solution in R}, (R (R:,,(SPARSE))).

The technique used in our proofs is novel. It combines the method of left sets with
a classical representation theorem due to Hausdorff for sets in the boolean closure of set
rings, i.e. classes of sets closed under union and intersection. Since the reduction classes to
sparse sets that we consider are set rings and since the bounded truth-table closure of these
classes coincides with the boolean closure, sets in the bounded truth-table closure of these
classes have a Hausdorff representation. The internal structure of left sets combined with
the structure imposed by a Hausdorff representation for it plays a crucial role in designing
efficient decision procedures for such sets. The Hausdorff representation was first used



in a complexity theoretic context by Wechsung and Wagner [?] where they relate the
bounded truth-table closure of NP to the boolean hierarchy over NP.

In Section 7?7 we do a trade-off analysis for our algorithms regarding the density of
the set reduced to and the power of the reduction used.

Pursuing the question of existence of sparse hard sets further (in Section ?7?), we
consider nondeterministic reductions (as defined by Ladner, Lynch, and Selman [?]) and
show that if a coNP-complete set can be reduced via a nondeterministic reduction to a co-
sparse set then the polynomial hierarchy collapses to ©@5. A similar result seems unlikely
for sparse sets since (as we show) nondeterministic many-one reductions to sparse sets
surprisingly turn out to be as powerful as nondeterministic Turing reductions to sparse
sets. We also prove that if X% is bounded truth-table reducible to a set that can be
reduced via a nondeterministic reduction to a co-sparse set then the polynomial hierarchy
collapses to Ab.

2 Preliminaries and notation

A set T'is called a tally set if T C 0*. The census function of a set A is censusa(n) = |AS"].
A set S is called sparse if its census function is bounded above by a polynomial. We use
TALLY and SPARSE to represent, respectively, the classes of tally and sparse sets. For
a class K of sets we denote the union of all sets in K by UK. Let (-,-) denote a standard
pairing function.

The reductions discussed in this paper are the polynomial-bounded reductions defined
by Ladner, Lynch, and Selman [?] and by Adleman and Manders [?].

Notation [?] For any reducibility <% and any class of sets C, let R*(C) ={A| A< B
for some set B € C}, where o € {p, np, co-np,rp,co-rp} and r € {m,c,d, b, T}.

Definition 2.1 The join of two sets A and B, denoted A& B, is defined as
AP B={0z |z € A} U{la |z € B}

Definition 2.2 A class K of sets that includes § and ¥* and is closed under finite unions
and finite intersections is said to be a set ring.

Definition 2.3 [?] For a set A in NP let Py € P and q be a polynomial such that
A= A{z | Guw € 2N [(z,w) € Pyl}. Forx € A let wpep(z) = max{w € 207D |
(x,w) € Py}. Then Left(A) = {{z,w) | € A,w € B9 and w < wppae(2)} is the left
set of A.

Note that the left set depends on the particular witness relation Pj.

3 Bounded truth-tables on conjunctive reductions
to sparse sets
The main result of this section is that if NP C Ry (RY,(SPARSE)) then P = NP. This

result subsumes and extends all previously known results on reductions of NP sets to
sparse sets via various types of polynomial time truth-table reductions that yield a collapse
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of PH to P. We also discuss similar consequences for the classes PP, C_P, FewP, Few,
and UP.

The following characterization of the boolean closure of set rings due to Hausdorff
plays a key role in many results of this paper.

Theorem 3.1 [?, ?] Let K be a set ring and let BC(K) be the closure of K under finite
union, finite intersection, and complement. Then every A € BC(K) can be represented

as A = Ule(AQi_l — Ay), where A; € K, 1 < j <2k, and Ay D A2 D -+ D Ay

In order to obtain a Hausdorff representation for sets in R} (RL,(SPARSE)) we need
to show that R, (SPARSE) is a set ring.

Lemma 3.2 R?,(SPARSE) is a set ring.

Proof RY,(TALLY) is easily seen to be closed under finite unions and intersections. A
recent result of Buhrman, Longpré, and Spaan [?] showing that SPARSE C RL,(TALLY)
implies R%,(SPARSE) = RE,(TALLY). Hence, RL,(SPARSE) is a set ring. ]

Fact 3.3 If a class K of sets contains a set different from O and ¥* and is closed under
join and polynomial time many-one reductions then Rp(K) = BC(K).

Remark All the reduction classes to sparse sets considered in this paper fulfil the con-
ditions to apply Fact 77.

Theorem 3.4 If A € NP such that Left (A) € R} (RY,,(SPARSE)) then A € P.

Proof Let ¢ be a polynomial and let P4 be a polynomial-time computable set such that
A= {z | Gw € XU=N)[(2,w) € P4]}. Recall that Left(A) = {{z,w) |z € A A w €
Yal#) A w < wpes }, Where W, = max{w € R#D | (x,w) € P4}. In the following we
describe an algorithm that on input @ € A computes w,,, (the lexicographically largest
witness) by a breadth-first search on the tree of prefixes of all potential witnesses. In
order to do this we use the set prefic (Left(A)) = {(x,y) | (F2)[{x,yz) € Left(A)]}. Each
prefix y actually represents the interval of all possible extensions of y to length ¢(|x|). It
is not hard to see that prefiz (Left(A)) is many-one equivalent to Left (A) and therefore
prefiz(Left(A)) € Ry (RY,(SPARSE)).

Using Lemma ?7 and the representation theorem of Hausdorff stated as Theorem 77,
it is easy to see that there exist a sparse set S and sets C; € RE,(S), 1 <1 < 2k, such
that prefiz(Left(A)) = U, (Caimy — Cy) and Oy D Cy D ... D Coy.

Let f;, 1 < i < 2k, be the conjunctive reduction functions witnessing C; € R, (5), i.e.
(z,y) € Cis & fi({z,y)) € S.

We first outline an intuitive description of the polynomial-time! decision procedure
for A. As stated above, it performs a breadth-first search through the tree of witness
prefixes for an input z. Let = be an element of A, and let N = {y1,...,y:} be a lexi-
cographically ordered set of prefixes (all of the same length) that includes the prefix of
Wpqr Of that length. We exploit some crucial properties of the Hausdorff representation of
prefie(Left (A)) for the design of a procedure pruning N to a polynomially size-bounded

Tt is implicit in this section that polynomial time and polynomial size always mean polynomial in |z].
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set that still includes the prefix of w,q,. Let y, be the prefix of w4, in {y1,...,y:}.
Then, letting d = 1 and [(0) = 1, it holds that

{<$, yl(d—1)>7 ) <$, yh>} - CZd—l

Let r(d) be the largest index r such that {{z,y;4-1)),..., (2, y,;)} € Cza—1 and let I(d) be
the least index [ such that 1 <1 < r(d) + 1 and {{z,4),...,{%,yra))} € Caq. Observe
that since {(z,¥ia-1))s--->(x,yn)} € Caq—1 it follows that r(d) > h. Similarly, since
Uz yngr) - (2, yp@)) } € Caa, it holds that I(d) < h+ 1. We consider the following two
cases separately.

L. <$7?Jh> € CQd‘
Then I(d) = h + 1 since yi & {Yiay, - - - Yr(ay}» i-e. 1(d) > h.

2. (x,yn) € Caq. (This case is only possible if d < k.)

In this case, y, € {yl(d)v-"vyr(d)}' Since {<x7yl(d)>7--'7<x7yh>} C prefiz(Left(A))
but {<$, yl(d)>7 SRR <$, yh>} C CQd? it follows that {<$, yl(d)>7 R <$, yh>} C CQd-I-lv
and the above analysis can be repeated.

If we could compute the prefixes y;4) and y,(q) defined above in polynomial time, we
could use the above properties in order to design a recursive procedure that collects all the
prefixes yj(4)—1 found in the recursive calls. This procedure would return a small subset
of N containing y,. Starting with N = {¢}, the overall algorithm can use repeatedly such
a pruning step at each level of the tree of possible witness prefixes by first expanding all
the prefixes y in N to y0 and y1 (thus doubling N) and then pruning N back to a small
subset. In that way, the algorithm finally computes a small subset of ¥40#D that contains
Woae 1N case x € A.

Although we cannot explicitly compute the required prefixes y;4) and y, (4, instead we
can compute, given y;4_1), in polynomial time (polynomially size-bounded) sets Jig5¢(d)
and Jicsi(d) of prefixes such that y,(q) € Jrigni(d) and yyay € Jiepi(d). This suffices since
for each prefix candidate y € Ji.4+(d), the search for Yi(d+1) can be done recursively. Since
the depth of the recursion is the constant k, the resulting sets Ji.s+(d) of candidates for
Yi(ay still have polynomially bounded cardinality.

We now describe the algorithm in detail. It calls a recursive pruning procedure PRUNE
which in turn calls two functions SEARCH-RIGHT and SEARCH-LEFT. SEARCH-
RIGHT is used to search for candidates for y,(s) to the right of previously found can-
didates for y;4—1) resulting in a polynomial size-bounded set Jright(d) containing Yr(d)-
SEARCH-LEFT is used to search to the left of the prefixes in J,;yn:(d) to form a polyno-
mial size-bounded set Ji.f(d) containing y;4). Let m be a polynomial bounding the size
of the queries to the sparse set, i.e. |z| < m(n) for all z € U{fi({x,y)) | 1 <@ <2k, |z| =
n,ly| < r(n)}, and let s be a polynomial bounding the census of the sparse set S.

SEARCH-RIGHT(d, N, i, )

(% if (x,y1) € Caq—q it returns a set J C N = {y1,...,y:} that includes the
largest prefix y, € N such that {(z,vy),..., (@, y,)} C Cra—1 ™)

begin
J = {y}
Q:=1



=1

repeat
=141 '
lf f2d—1(<x7yi>) g U;;} f2d—1(<x7yj>) then
J:=JU {yi_l}
Q:=QU f2d—1(<51?7yi>)
end
until (|Q| > s(m([z]))) or (i = 1)
return J
end

Claim 1 Function SEARCH-RIGHT(d, N, y;, x), when called with parameter y; = -1,

returns a set J containing y,(q)-

Proof of Claim ?? There are two cases. If r(d) =t then y,(q) is clearly in the returned
set J. Otherwise, since {(x,yia-1)),-- (2, ¥r(@))} S Cad—1 and (2, yr(g)41) ¢ Cad—1, all
the queries in the sets foq_1((x, Yi(a-1 >) ...,fzd 1({, 0 )>) are in S but at least one
query ¢ in foq_1({%,Y,(4)41)) is not in S Therefore y,(4)41 is the smallest prefix y in N
such that y > yyq- 1) and q € fa((x,y)), i.e. Yy is included in J in some step of the

repeat loop since |U fzd 1((z,y;))] < s(m(]z])). O

SEARCH-LEFT(d, N, y,, )
(* returns a set J € N = {y1,...,y:} that includes the smallest prefix
yi € N such that [ <r 41 and {{x,y),..., {2, y.)} T C ™)

begin
Ji= Ay}
Q‘ =0
repeat
if fou((z,y:)) € Ujzitt J24({x,y;)) then
J = J Uy}
Q = Q U f2d(<$7yi>)
end
1:—=1—1
until (|Q| > s(m(|z|))) or (i = 0)
return J
end

Claim 2 Function SEARCH-LEFT(d, N,y,,x), when called with parameter y, = y, (),

relurns a set J containing yi(q).

Proof of Claim ??  Again, there are two cases. If [(d) = 1 then y (g is clearly in the
returned set J. Otherwise, since {(z,yia)),---, (2, ¥r@))} € C2q and (2, yyay-1) ¢ Caa,
all the queries in the sets foq((z, yia))), - - - ,fzd(<$, Yr(d )>) are in S but at least one query
g in foq({x,yyq)-1)) is not in S. Therefore y;4)_q is the largest prefix y in N such that
Y < Yr(d ) and q € faa((x,y)), i.e. yyaq) is included in J in some step of the repeat loop

since | U7 faal (@, )] < s(m(]])). O



PRUNE(N, J. ;. d, 2)
(* returns a subset of N = {y1,...,y:} that contains the prefix yj, of w4z if
Yn € N7 <x7yh> € Caq-1 and {<x7yl>7 SR} <x7yh>} C (4 for a (TS ‘]l/eft

with 1 < & %)

begin
if d =k + 1 then return () end
Tright := 1

for each » € Jj ;, do
Jm’ght = Jm’ght U SEARCH—RIGHT(d, N, Z, l‘)
end
Jrepr =10
for each z € J, ;4 do
Jleft = Jleft U SEARCH—LEFT(d, N, Z, l‘)
end
return {y;_1 |y € Jiese} UPRUNE(N, Jiepr,d + 1, 2)
end

Claim 3 Ify, € N, (x,yn) € Coacr, and yya—1y € Ji4; then PRUNE(N, J] 4, d, x) re-

turns a set conlaining yy.

Proof of Claim ?? If y, € N and (x,yn) € Csq—1 then (x,y,) is also in the sets
Csd—2,...,C1. By the above analysis (since always case 2 happens up to d — 1) it follows
that {(z,%14-1))---» (¥, yn)} S Caa—1. Since yyy—1) € Ji g, using Claim 77, y,(q) is
included in Jyip¢ by the call of SEARCH-RIGHT(d, N, yy(4-1), x). Then, using Claim ??,
Yi(a) is included in Ji gy by the call of SEARCH-LEFT(d, N, ¥y, (), ). Now we can prove by
induction that yy is included in the set returned by PRUNE. If (x, y5,) ¢ C24 (which must
be true in the base case d = k) then yj, = yy4)—1 and y; is included in the set returned by

PRUNE. If (x,y) € Caq then (x,y) is in Caqq1 and we can use the induction hypothesis.
O

We complete the algorithm with a description of the main program.

input x

N :={¢}

for : :=1 to ¢(|z|) do
N:={y0|ye N}U{yl |y € N} (* expand the prefixes to length i *)
N := PRUNE(N, {1 },1,2)

end

(* N now includes wy,,,; if € A *)

if there is a witness for x in N then accept else reject

In order to prove the correctness of the algorithm it suffices to observe that it follows
from Claim ??7 that the prefix y, of w,,,, 1s included in the pruned set returned by
PRUNE(N, {y1}, 1, ) provided that yp, is in N. Also, since the sets returned by SEARCH-
RIGHT and SEARCH-LEFT are bounded in size by s(m(|x|)) + 2, it follows inductively
that the set Ji.;; computed by PRUNE at level d is bounded in size by (s(m(|x])) + 2)**.
Therefore, since the depth of recursion of function PRUNE is bounded by a constant, the
finally returned set being the union of all the Ji.s¢’s is polynomially bounded in size, and
it is easy to see that the algorithm runs in polynomial time. [ ]
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We now discuss the application of the above results to the classes UP, FewP, Few,

PP, and C_P.
Theorem 3.5 If UP is contained in R)(RZ(SPARSE)) then UP = P.

Proof We first note that for every set A € UP it holds that Left(A) is in UP. Hence,
it UP C Ry(R?(SPARSE)) then Left(A) is in Ry (R2(SPARSE)), and by Theorem ?? it
follows that A is in P. |

Theorem 3.6 If FewP is contained in R (RP(SPARSE)) then P = Few.

Proof By a similar proof as above it can be inferred that P = FewP. Since Few C PP

[?] it follows that P = Few. u

Theorem 3.7 If PP is contained in R} (R%;(SPARSE)) then P = PP,

Proof Consider the PP-complete set {{a, m) | there are at least m satisfying assignments
for 2} which has exactly the required properties of left sets. Under the assumption
that this set is in R} (RL,(SPARSE)) we can use the algorithm described in the proof of
Theorem ?? to compute in polynomial time a set of numbers that includes the number
#SAT(z) of satisfying assignments of the formula . Now we can use the result of Cai

and Hemachandra [?] and Toda (see [?]) that P = PP if there is an FP function that
computes on input « a set of numbers that includes #SAT(z). ]

Theorem 3.8 If C_P is contained in R (R%,(SPARSE)) then P = C_P.

Proof There exist complete sets in C_P that are one word decreasing self-reducible [?].
Balcézar has shown that every one word decreasing self-reducible set in R-(SPARSE) is
in X5 [?]. Therefore it follows from the assumption of the theorem that C_P C ¥i.
Furthermore, since coNP C C_P, if C_.P C RJ(RY,(SPARSE)) then also NP C
Ry (RL,(SPARSE)), and it follows from Theorem ?? that P = ¥5. [ |

Theorem ?? could also be proved in the same way as Theorem ?7.

4 Bounded truth-tables on randomized reductions
to sparse sets

In this section we consider randomized reductions to sparse sets. Randomized reductions
were introduced by Adleman and Manders [?] and have played an important role in
complexity theory. We show that NP cannot have sparse hard sets under certain ran-
domized reductions unless NP = RP. Namely, we show that if NP reduces via a bounded
truth-table reduction to a set that reduces via a co-rp reduction to a sparse set then

NP = RP.

Definition 4.1 [?] A<IPB if there exist a polynomial time function f and a polynomial
q such that



re A= Probwezq(w [f((:z;,w>) € B] > 3/4
r ¢ A= Prob,cyan[f({z,w)) &€ B] =1

Similarly, AP B if there exist a polynomial time function f and a polynomial ¢ such
that

r € A= Prob,cyan [f({z,w)) € B] =1
r & A= Prob,coun [f((z,w)) & B] > 3/4

The string w is chosen uniformly at random from the set XD,

We first show that if NP C R"(RY,(SPARSE)) then NP = RP (this result is
independently due to D. Ranjan and P. Rohatgi [?]). Then we extend this to the result
that NP C Ry (R:""(RE,(SPARSE))) implies NP = RP. We need the following folklore

result on amplification for randomized reductions.

Lemma 4.2 [f A<(7PEB then for every polynomial p there exist a co-rp reduction func-
tion f from A to AND,(B) = {(x1,...,2;) | ¥; € B for each j, 1 < j < i} and a
polynomial q such that

€ A= Prob,cyun [f({z,w)) € AND,(B)] =1
r & A= Prob,cruen[f((z,w)) € AND,(B)] > 1 — o=r(lz])
Fact 4.3 For every set B, AND,(B) € RY,(B).

Fact 77 shows that if a set B conjunctively reduces in polynomial time to a sparse
set S then AND,(B) also conjunctively reduces to S. The following lemma is an easy
consequence of Lemma 7?7 and Fact ?7.

Lemma 4.4 [fA € R7?(RE,(SPARSE)) then for every polynomial p there exist a sparse
set S, an FP function f, and a polynomial ¢ such that

r € A= Prob,cyan [f({z,w)) CS]=1
v & A = ProbycsanlF((e, w)) € 8] 2 (1 - 27206D)

The following result has been independently obtained by D. Ranjan and P. Rohatgi
[?])-
Theorem 4.5 [f NP C R7"P(RY,,(SPARSE)) then NP = RP.
Proof Let A be an NP-complete set such that A € R (REL,(SPARSE)). As in the

proof of Theorem 7?7 let r be a polynomial and let P4 be a polynomial-time set such that
A={z|Fwe WD (2 w) € Py} and Left(A) = {{z,w) [t € A A we XD A w <
Wyaz }, Where w,,, = max{w € N7 | (x,w) € Pa}.

We describe a randomized polynomial time algorithm that computes on input z in
A with high probability the lexicographically largest witness w,,,, by a breadth-first
search on the tree of possible witness prefixes. In order to do this we again use the set
prefie(Left(A)) = {(x,y) | 3z : (x,yz) € Left(A)} which is in RS (R, (SPARSE)) since
it is many-one equivalent to Left (A).

Let p be a polynomial such that for all n, (1 —272()"(") > 3/4. By Lemma ?? there
exist a sparse set S, an FP function f and a polynomial ¢ such that
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(x,y) € prefir(Left(A)) = Prob,,cxain[f((z,y,w)) C 5] =1
(z,y) & prefiz(Left(A)) = Prob,,cxqpen [f((z,y,w)) € S] > 1 — 27#(D

Let m be a polynomial bounding the size of the queries to the sparse set, i.e. |z| < m(n)
for all z € U{f({(z,y,w)) | |z] = n,|y| < r(n),|w| = g(n)}, and let s be a polynomial
bounding the census of the sparse set S.

We first describe the randomized algorithm for testing membership in A and then
prove its correctness.

input x
N :={¢}
for [ :=1 to r(|z|) do
N:={y0|ye N}U{yl |y € N}; (* expand prefixes to length [ *)
(* let y1,...,y: be the prefixes in N in lexicographical order *)
M:=0
1:=1
repeat
=14+ 1
compute a set Q(y;) = f({x,y;,w)) of conjunctive queries
where w is chosen uniformly at random from Y2(*D
if Q(y:) € Ui<jci Q(y;) then M := M U {y;}
until (| Uy O)| > s(m(ll))) or (6 = 1
N = {yi-1 | yi € M} U {y:}
end
if there is a witness in N then accept else reject

It is clear that the above algorithm runs in polynomial time since the set N contains
at most 2(s(m(|x|)) + 2) prefixes at any stage of the loop. In order to prove that it is an
RP algorithm for A we need to show that if @ € A then the algorithm accepts @ with high
probability, and if © ¢ A then the algorithm always rejects. The latter is obvious from
the fact that the algorithm accepts only if it finds a witness. It remains to show that if
z € A then the algorithm finds w,,,, with probability at least 3/4.

We show that if N = {y1,...,4:} contains a prefix of wy., (call it y;; we assume
that h < t since y; is always included in the pruned set) then with probability at least
1 — 27202D the prefix y; is included in N after the repeat loop. In order to see this we
observe the following.

1. For every w € X070 and i, 1 <4 < h, it holds that f({z,y;,w)) C S. This follows
from the fact that (x,y;) € prefix(Left(A)) for 1 <@ < h.

2. Since (x,yp41) & prefix(Left(A)), it holds that Prob,,csaen [f({z,ypt1,w)) € S| >
(1-— 2—p(|1’|))_

It follows that [Ui<;j<p Q(y;)| < s(m(|z])) and with probability at least 1 — 2—r(l=))
it holds that Q(yny1) € Uicj<n @(y;). Hence N includes yj, with probability at least
1 —272U#D) at the end of the repeat loop.

Since the outer for-loop has r(|z|) iterations, and since at the beginning N = {e}
contains a prefix of w,,q,, it follows that with probability at least (1 — 27Dy () the
algorithm finds w,,,,. By choice of p this probability is more than 3/4. ]
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We state the next theorem without proof as it can be proved exactly as Theorem ?7?.
Theorem 4.6 [f NP C RI?(RY,,(co-SPARSE)) then NP = RP.

We now extend the above results to prove that if NP C R} (R (RL,(SPARSE)))
then NP = RP. We first show that the class R?7?(RL,(SPARSE)) is a set ring

so that we can assume the existence of a Hausdorff representation for any set in

RY(ReP( RY,(SPARSE))).
Lemma 4.7 1. R 7?(R",(SPARSE)) = R<"?(R’,,( TALLY))
2. R'?(R",,(co-SPARSE)) = R(Rh,,(TALLY))

Proof Follows from the facts that Rgu(co-SPARSE) = R (TALLY) and that
R, (SPARSE) = R%,,(TALLY). ]

Lemma 4.8 R7?(R.,(SPARSE)) is a set ring.

Proof Since RZ™P(R:,(SPARSE)) = R (R, (TALLY)), it is enough to show that
ReP(RE,(TALLY)) is a set ring. Assume that A<2"PA; and B<("P By, where Ay and
By are in RE,(TALLY). We define two sets C' and D which are readily seen to be in
RY,(TALLY) since Ay and By are tally sets and since R} ,( R, (TALLY)) = RE,(TALLY)
and R(R",(TALLY)) = R, (TALLY).

C={{(a,b) |la€ Ajorbe B}
D ={(a,b) | a € Ay and b € By }.

Let f and g be co-rp reduction functions witnessing A<S"P Ay and B<{T"P By, re-
spectively. We can assume that there is a uniform polynomial ¢ corresponding to both
reduction functions such that

r € A= Prob,esuisn [f((x,w)) € Al =1

v ¢ A= Prob,esapn [f((z,w)) & A1] = 3/4
and

x € B = Prob,cvaen[g({z,w)) € Bi] =1

v & B = Prob,csan[g((z,w)) € Bi] > 3/4

We define a reduction function h combining f and ¢ as follows. For wy,w, € RlD

h({x, wiws)) = (f({x,w1)), g({x,ws2))). Then we have
r € AU B = Prob, cypaen [R((z,w0)) € C] =1
& AU B = Prob, cxoqan [2({z,w)) & C] > (3/4)?

Note that the probability (3/4)* can be amplified using Lemma ?? to 3/4 as required.
Similarly we have

r € AN B = Prob, cypaen [A({(z,w)) € D] =1
11



t & AN B = Prob,cyeqen [h({z,w)) € D] > 1 — (1/4).
Hence AN B and AU B co-rp reduce to sets in Ry, (TALLY), i.e. RE™P(RE,,(SPARSE))

is a set ring. ]

We are now ready to prove the main result of this section.

Theorem 4.9 If A is in NP such that Left(A) € Ry(R:"P(RL:(SPARSE))) then A €
RP.

Proof The proof is quite similar to that of Theorem ??. The essential difference is that
the procedures corresponding to SEARCH-LEFT and SEARCH-RIGHT in the proof of
Theorem ?? will now be randomized algorithms (similar to the pruning part used in the
algorithm in the proof of Theorem ?7).

Let ¢ be a polynomial and let P4 be a polynomial-time set such that A = {z | Jw €
(el (x,w) € Pa} and Left(A) = {(z,w) |2 € A AN w € YD A w < wige )
where W, = max{w € L | (x,w) € Ps}. We describe an RP-algorithm that
on input * € A computes with high probability w,,,, by a breadth-first search. By
the hypothesis of the theorem we can assume that the set prefiz(Left(A)) = {(x,y) |
Jz ¢ (x,yz) € Left(A)} is in Ry (R (RE,(SPARSE))). Since Ry7"P(RE(SPARSE))
is closed under join and polynomial time many-one reductions, it follows from Fact ?7?
that BC(RZ™P(RE,(SPARSE)) = Ry (R (RL,(SPARSE))). From Lemma ?? and
Theorem ?7, it follows that there exist a sparse set S and sets C; € RS "P(RY,,(S5)) such
that prefiz(Left(A)) = Ule(CQi_l — Cy)and Cp 2 Cy O ... D Cyy.

Let p be a polynomial such that for all n, (1 — 27P() ()2 > 3/4  Then by
Lemma ?? we can assume that there exist co-rp reduction functions f; witnessing
Ci € RE™P(RE,(S)), 1 <i <2k, and a polynomial ¢ such that the following holds

(z,y) € C; = Prob,,cyuan [fi( (z,y,w)) C 5] =1
(z,y) & Ci = Prob,cyaien [fi((z,y, w)) € S]> (1 — 27#(=D)

The indices [(d) and r(d), 1 < d < k, are defined in the same way as in Theorem ?7.
Let y, be the prefix of wy, in {y1,...,4:}. As in Theorem ??, we cannot compute
the required prefixes y;q) and y,(q). Instead we design a randomized algorithm that,
given y;(4-1), computes in polynomial time (polynomially size-bounded) sets .J,;g:(d) and
Jiesi(d) of prefixes such that with high probability vy, € Jrigne(d) and yiay € Jiege(d).
We now describe the algorithm in detail. It calls a recursive pruning procedure PRUNE
which in turn calls two functions RANDOM-SEARCH-RIGHT and RANDOM-SEARCH-
LEFT. RANDOM-SEARCH-RIGHT is used to search for candidates for y,(4) to the right
of previously found candidates for y;4_1) resulting in a polynomially bounded set .J,.;p:(d)
containing y,(qy with high probability. RANDOM-SEARCH-LEFT is used to search to the
left of the prefixes in J,;yn:(d) to form a polynomial size-bounded set Ji.s:(d) containing
Y1y With high probability.

Let m be a polynomial bounding the size of the queries to the sparse set, i.e. |z| < m(n)
for all z € U{fi((z,y,w)) | 1 <1 <2k, |z| =n,|y| < r(lz]),|w| = ¢(|z])}, and let s be a
polynomial bounding the census of the sparse set 5.

12



RANDOM-SEARCH-RIGHT(d, N, yi, )

(*if (x,y) € Cyyq it returns a set J € N = {y1,...,y:} that in-
cludes with high probability the largest prefix y, € N such that
{<=’1/'7 yl>7 ceey <=’1/'7 yr>} C Cyq-1 *)

begin
J = {y}

Q=10
1 =1
repeat
=14+ 1
compute a set Q(y;) = faa—1({x, y;, w)) of conjunctive queries
where w is chosen uniformly at random from Y2(I#D
if () Z Uiz} Q(;) then
J:=JU{y1}
Q:=QUQ(y)
end
until (|Q] > s(n(fe]))) or (i = 1
return J
end

Claim 4 Function RANDOM-SEARCH-RIGHT(d, N, y;, x), when called with parameter
Yi = Yid—1), returns a set J that with probability at least 1 — 22D contains Yr(d)-

Proof of Claim 77  We first note that if r(d) = ¢ then y,(4) is always included in J.
Otherwise observe the following.

1. For every w € Y9020 and ¢, I(d — 1) < i < r(d), it holds that fog_i((x, s, w)) C 5.
This follows from the fact that (x,y;) € Coy_q for all ¢, 1 <o < r(d).

2. Since <:(Li,|g);¢(d)+1> ¢ Caq—q it holds that Prob,csuien [f2d—1((x, Yr(@)41,w0)) € S] >
1 — 27PUD,

Therefore, since |U;(:dl)(d_1) Q(y;)| < s(m(|z])), the repeat loop includes y,(4 in J with
probability at least 1 — 2=, O

RANDOM-SEARCH-LEFT(d, N, y,, )
(* returns a set J € N = {yy,...,y:} that includes with high probability
the smallest prefix y; € N such that {{z,y;),...,{(x,y,)} C Caq ™)
begin
J = {y}
ii=r
Q=1
repeat
compute a set Q(y;) = faa({(x,y;,w)) of conjunctive queries
where w is chosen uniformly at random from Y2(*D

if Q(yi) € Uy, Q(y;) then

Ji=J U {yip}
Q= QUQ(y)
end

13



1:—=1—1
antil (1Q] > s(m(la])) or (i = 1)
return J
end

Claim 5 Function RANDOM-SEARCH-LEFT(d, N,y,,x), when called with parameter
Yr = Yr(d), Telurns a set J containing yyq) with probability at least 1 — 2-r(lel),

Proof of Claim ?? There are two cases again. If /(d) = 1 then y;(4) is clearly in the
returned set J. Otherwise we have

1. Since {{(z,y1@))s - (%, yr@))} € Caqg and (2, yi(a)-1) ¢ Caq, it holds for every w €
Y=l and for every i, I(d) <1 < r(d), that fzd(<:1; yi,w)) C 8.

2. Prob,,esatien [f2a((x, yr()—1, w)) € S] > (1 — 27¢(=D),
Therefore, since |Uj:l(d) (?Jj)| < s(m([z])), Yi(q) is included in J with probability at least

1 —277U=D) in some step of the repeat loop. The claim follows. a

PRUNE(N, J. ;. d, 2)
(* returns a subset of N = {yi,...,y:} that with high probability

contains the prefix y, of wpae if yn € N, (v,yn) € Cag—1, and
{<x7yl>7 SR <x7yh>} C Uy foray € ‘]l/eft with [ < h *)

begin
if d = k + 1 then return () end
Jright = @

for each » € Jj ;, do
Jright := Jrignt U RANDOM-SEARCH-RIGHT(d, N, z, x)
end
Jrepr =10
for each z € J, ;4 do
Jiest = Ji.ss URANDOM-SEARCH-LEFT(d, N, 2, z)
end
return {y;_1 |y € Jiese} UPRUNE(N, Jiepr,d + 1, 2)
end

The next claim follows from Claim ?? and Claim ?? and is similarly proved as
Claim ?? in Theorem ?7.

Claim 6 Ify, € N, (x,yn) € Coa—r, and yya—1y € Ji4; then PRUNE(N, J] 4, d, x) re-
turns a set conlaining yy, with probability at least (1 — 277(=D)2k,

We complete the algorithm with a description of the main program.

input x

N :={¢}

for ¢ :=1 to r(|z|) do
N:={y0|ye N}U{yl |y € N} (* expand the prefixes to length i *)
N := PRUNE(N, {1 },1,2)

end

(* N now includes wy,,, if # € A with probability at least 3/4 *)

if there is a witness for x in N then accept else reject end

14



We first note that an input = € A is rejected with probability 1 since no witness can
be found. In order to prove the correctness of the algorithm it suffices to observe that
Claim ?? implies that with probability at least (1 — 27228 the prefix y, of wyay is
included in the pruned set returned by PRUNE(N, {y1},1, 2) provided that y, is in N.
Hence, after exiting the for-loop in the main program, N includes w,,,, with probability
at least ((1—272U2D)2ky () (which is more than 3/4 by choice of p). It is easy to see that
the algorithm runs in polynomial time. [ ]

The proof of the following theorem is analogous to the proof of Theorem ?7.
Theorem 4.10 If UP is contained in Ry (R:"P(RP(SPARSE))) then UP C RP.

Proof Since for every set A € UP it holds that Left(A) is in UP and since UP C
Ry (R (RP(SPARSE))) it follows that Left(A) is in R (R (RP(SPARSE))), and
therefore by Theorem ?? A is in RP. ]

5 Promise problems and randomized reductions to
sparse sets

We show in this section that it is enough to assume that some solution of the promise
problem (1SAT, SAT) is reducible to a sparse set via the randomized reduction considered
in Theorem 7?7 to get the conclusion NP = RP. We first give the definition of promise
problems and state its relation to randomized reductions.

Definition 5.1 [?] A promise problem is a pair of sets (Q,R). A set L is called a solution
to the promise problem (Q,R) if (Vx)[x € Q = (¢ € L & x € R)].

Let 1SAT denote the set of formulas with at most one satisfying assignment. Observe
that a solution of the promise problem (I1SAT,SAT) has to agree with SAT in the for-
mulas having a unique satisfying assignment as well as in the unsatisfiable formulas. The
well known result of Valiant and Vazirani showing the NP-hardness of USAT under (a
weaker version of ) randomized reductions [?] has the following implication for the promise

problem (1SAT,SAT).

Theorem 5.2 [?] If the promise problem (1SAT,SAT) has a solution in RP then NP =
RP.

We now prove the generalization of Theorem ?77.

Theorem 5.3 [f the promise problem (1SAT,SAT) has a solution in the reduction class
Ry (R"?(RE(SPARSE))) then NP = RP.

Proof Let L € RI(R™(RE(SPARSE))) be a solution of the promise problem
(ISAT,SAT). Then, by definition, (Va)[z € 1SAT = (¢ € L & a € SAT)]. The
natural left set associated with SAT is Left (SAT) = {(z,w) | x € SAT, w € ¥®) and

W < Wyay ) Where w,q, is the maximum satisfying assignment for @ and /() is the num-

ber of variables in . The set prefiz (Left (SAT)) = {(z,y) | (I2)[{x,yz) € Left(SAT)]}
15



is easily seen to be accepted by an NP-machine that on input (x,y) guesses a truth as-
signment w > y0"®) =¥ and verfies that w satisfies z. It is clear that = € 1SAT implies
that for all y € ¥<'®)_ the above mentioned NP-machine has at most one accepting path
on input (x,y). Let g be a parsimonious many-one reduction from prefiz (Left(SAT)) to
SAT. Then it is clear from the discussion that @ € 1SAT implies g((x,y)) € 1SAT for all
y € Y@ Let Q = {(x,y) | « € 1SAT} and let L' = {(z,y) | g((x,y)) € L}. Clearly ¢

many-one reduces L' to L.
Claim 7 L' is a solution of the promise problem (Q, prefix (Left (SAT))).

Proof of Claim

We have to show that for every pair (x,y) € @ it holds that (v,y) € L' & (x,y) €
prefie(Left (SAT)). Since L is a solution of (1SAT,SAT) and since (x,y) € @ implies
g({x,y)) € 1SAT, it follows that ¢((x,y)) € L if and only if g((z,y)) € SAT. Since ¢
many-one reduces both prefiz(Left(SAT)) to SAT and L' to L, it follows that (x,y) €
L' & (x,y) € prefix(Left (SAT)). O

Since L' <P [ it follows that L' € Ry, (R (RE,(SPARSE))). Therefore, since
ReoP(RE,(SPARSE)) is a set ring, L' can be written as Ule(CQi_l — (Cy;) for sets C7 D
Cy D ... 2 Cyy in REP(RY,(SPARSE)). Let fi, 1 <@ <2k, be co-rp reduction functions
witnessing C; € RP(RE,(SPARSE)). Consider the algorithm described in the proof of
Theorem ?? in which we use the reduction functions f; defined above. We claim that on
input x € ISATNSAT this algorithm computes with high probability the unique satisfying
assignment for x. In order to see this, note that the algorithm on input € 1SAT N SAT
computes query sets f({x,y,w)) only for triples (x, y, w) for which (z,y) isin ). According
to Claim ?7 it holds for all (x,y) € Q that (z,y) € L' & (a,y) € prefiz(Left (SAT)), and
therefore the arguments in the proof of Theorem ?? apply. Hence there is an RP solution

for the promise problem (1SAT,SAT) and by Theorem ?? it follows that NP = RP. m

The following theorem concerning deterministic reductions can be similarly proved.

Theorem 5.4 If the promise problem (1SAT,SAT) has a solution in R, (RF(SPARSE))

then it has a solution in P.

We need the following lemma for the next corollary.
Lemma 5.5 [?] Let L be a solution of (1SAT,SAT) then Few C P~.

Proof Since Few C P™ [?] it suffices to show that FewP is contained in P*. Let A be
a set in FewP via some nondeterministic machine M. Let p be the polynomial bounding
the number of accepting paths of M. Consider the following NP set B.

B ={(x,?) | M(x) has at least ¢ accepting paths }

Let acep(x) denote the number of accepting paths of M on input x. Clearly, there is an
NP machine M’ accepting B in such a way that M’ on input (x,acep(x)) has exactly
one accepting path. Then it holds that f({(x,s)) is in 1SAT for all j > acep(x), where
f is a parsimonious reduction from L(M’) to SAT. Therefore x is in A if and only if
f({z,2)) € L for some i, 1 < < p(|z]). [ |

Corollary 5.6 If the promise problem (1SAT,SAT) has a solution in R (RE(SPARSE))
then Few = P.
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6 A trade-off analysis

It is interesting to note that the proof of Theorem 7?7 is constructive in the following sense:
given a polynomial time truth-table condition generator ¢ witnessing prefiz (Left(A)) in
Ry (R2,(S)) for a sparse set S, the conjunctive query sets f;({(z,y)) can be computed from
the truth-table condition ¢((x,y)) by a polynomial time algorithm (as can be derived
from a general result in [?] that applies to various set rings). Therefore, given an FP
transducer computing g and a polynomial bound on the census of 5, we get a polynomial
time decision procedure for A. The question arises how the running time of that algorithm
is influenced if the number & of the conjunctive queries produced by ¢ is a function k(n)
depending on the length n of x rather than a constant, and if the census of S is allowed
to be an arbitrary function.

In the next theorem we precisely analyze the running time of the algorithm in terms
of the functions k and censusg, assuming that ¢g directly generates truth-table conditions
suitable for our algorithm.

More precisely, we assume that ¢ is a truth-table reduction of the following type which
we call Hausdorff reduction and which is a variation of the reducibility defined by K.W.
Wagner in [?].

Definition 6.1 Let h(xy,xq,...,2%) be the boolean formula @f:1(/\§:1$j); where @ de-
notes the parity operator. We say that a set A is k(n)-Hausdorff reducible to B if
A is truth-table reducible to B wia the boolean function h(xy,xs,...,%km)), i.c. there
is a polynomial time computable query generator g such that for all x, * € A &

h(xB(Y1), -+ s XBWYr(2p))) = 1 where g(x) = (y1, -+, Yr(2))) -

Observe that A € Ry (RL;(SPARSE)) if and only if A is bounded Hausdorff reducible
to some set in RY,(SPARSE). We now state the trade-off result.

Theorem 6.2 [f B is a set of density bounded by an FP function cg and if some NP
complete set is polynomial time reducible to a set in RY,(B) by a k(n)-Hausdor[f reduction,
then NP C Uj»o DTIME(n? - eg(n? )5 )),

Proof Suppose that a set B as in the statement exists. Then for A € NP the set
prefir (Left (A)) is reducible via a k(n®®)-Hausdorff reduction to a set in RZ,(B). It is
not hard to see that there is an FP function f such that for all z,y

(x,y) € prefiz (Left(A)) & max{i | 1 <i < k(|z|), f({1,x,y)) C B} is odd

Observe that the function f can be used instead of the conjunctive reduction functions f;
in the proof of Theorem ??7. Therefore with a minor modification we can use the algorithm
described in the proof of Theorem ?? to compute w,,,,; on input x € A. It only remains
to accurately analyze the running time of the algorithm taking into account the growth
rate of the function k& and of the density of B.

First note that the depth of recursive calls made by procedure PRUNE is k(n%M").
Next we examine the calls to SEARCH-LEFT and SEARCH-RIGHT. The size of the
set returned by each such call is bounded by cg(n®™M)). Since the pruned subset of
N returned by PRUNE is constructed by taking prefixes corresponding to all subsets
returned by SEARCH-LEFT in all the recursive calls by PRUNE, the size of this pruned
subset is bounded by cB(nO(l))O(k(”O(l))). The running time of each call is bounded by
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IN| - n°M. Furthermore, the total number of calls made by PRUNE to both SEARCH-
RIGHT and SEARCH-LEFT (including the recursive calls) is bounded by |N|-2k(n°M).
This implies that the running time of one call to PRUNE is bounded by k(n®M) .00 .

cB(nO(l))O(k(”O(l))). The overall running time of the algorithm has only an additional
polynomial factor. This completes the proof. [ ]

An interesting point in the above result is that the actual number of queries in the
conjunctive reduction plays no real role in the trade-off. The next corollary to the above
theorem is similar to a result in [?] concerning f(n)-t¢ hard sets of certain densities for

NP.

Corollary 6.3 If B is a set of density O(logn) such that an NP complete set is reducible
to a set in RL,(B) by a O(logn/loglogn)-Hausdorff reduction then P = NP.

Corollary 6.4 [fan NP complete set is reducible to a set in R, (SPARSE) by a O(log n)-
Hausdorff reduction then NP C DTH\/[E(ZO(IOg2 "),

We now give a trade-off analysis for the algorithm in Theorem ?7.

Theorem 6.5 [f B is a set of density bounded by an FP function cg and if some NP
complete set is polynomial-time reducible to a set in RECP(RL,(B)) by a k(n)-Hausdor(f
reduction then NP C {J;5q RTIME(n’ - cB(nj)O(k(”J))).

Proof Follows easily (as done in Theorem ?7) from a simple analysis of the corre-
sponding algorithm in the proof of Theorem 7?. One thing to be noted is that, for
amplification, the polynomial p in the proof of Theorem ?? can be again chosen so that
(1 — 27pUeDyrlel-2k(7) > 3 /4 since k(n) is anyway bounded by some polynomial. [ |

Corollary 6.6 If B is a set of density O(logn) such that an NP complete set is reducible
to a set in RE°7P(RY,(B)) by an O(log n/loglogn)-Hausdor(f reduction then NP = RP.

Corollary 6.7 If an NP complete set is reducible to a set in R (R, (SPARSE)) by
an O(log n)-Hausdorff reduction then NP C RTIME(200°8" 7)),

7 Nondeterministic reductions to sparse sets

In this section we consider classes of sets reducible to sparse and tally sets via polynomial
time nondeterministic reductions. We show that nondeterministic polynomial time many-
one reductions to sparse sets are as powerful as nondeterministic Turing reductions to
sparse sets. On the other hand, nondeterministic polynomial time many-one reductions
to co-sparse sets are much weaker. We substantiate this claim by proving, applying
essentially Kadin’s census technique [?], that if coNP is nondeterministically polynomial
time many-one reducible to a co-sparse set then PH = ©F. A similar result for sparse sets
is unlikely since it would imply that the Karp/Lipton/Sipser result [?] that NP C P/poly
implies PH = X% could be improved (known to be impossible in relativized worlds [?]).

The following definitions of nondeterministic polynomial time reductions are due to
Ladner, Lynch and Selman [?].
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Definition 7.1 [?]

1. A set A is polynomial time nondeterministically many-one reducible to a set B (de-
noted A <I'" B) if there exists a polynomial time nondeterministic Turing machine
M such that for every x € ¥*, M(x) outputs a string along each computation path,
and, ¥ € A iff M(x) outputs some string in B.

2. A set A is polynomial time nondeterministically Turing reducible to a set B (denoted
A <% B) if there exists a polynomial time nondeterministic oracle Turing machine

M accepting A with oracle B, i.e. A= L(M,B).

Our first result in this section is the equality R?(SPARSE) = R}’ (SPARSE). Indeed,
we show that every set in R7”(SPARSE) nondeterministically many-one reduces to very
sparse sets (in the sense that they contain at most one string of each length). Note that in
[?] it is shown, using the inclusion R} (SPARSE) C R, (SPARSE), that R??(SPARSE) =
R7P(SPARSE) and that R'?(SPARSE) = R/, (SPARSE).

Theorem 7.2 R’(SPARSE) = R7’(SPARSE)

Proof Let A = L(M,S) € RY(S) for a sparse set S and a nondeterministic Turing
machine M. Let p be a polynomial bounding the running time of M, and let ¢ be a
polynomial bounding the census of 5. Clearly, each query generated by M along any
computation path on an input z is in ¥<P(#D We define a sparse set S’ to which A can
be nondeterminstically many-one reduced in polynomial time.

S/: {<0n7y17y27"'7y7°> | yl < e <yT and {y177yr}:5'§n}

Note that S” has for each length at most one element. Consider the following NP-machine

M.

input x
guess 1 € {0,1,2,.... q(p(|])))
guess strings y; < ya < --- <y, in R=P(2)
guess a path p of M on input x with oracle {y1,y2, -, 9.}
if p is accepting then
OUtPUt <0p(|x|)7 Y1,Y2, 7y7°>
else
output yo (* a fixed string not in S *)
end

It is not hard to see that M’ witnesses A € R!?(.S’). This completes the proof. [ |

Related to the broad question discussed in Sections ?? and ?? whether NP can
have hard sparse sets with respect to deterministic or randomized polynomial time reduc-
tions (of different kinds) one can ask similar questions with respect to nondeterministic
polynomial time reductions.

1. Can coNP have sparse hard sets under nondeterministic polynomial time many-one
reductions?
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2. Can coNP have co-sparse hard sets under nondeterministic polynomial time many-
one reductions?

Such questions have been implicitly considered in the literature with regard to nonuni-
form classes. Balcdzar and Schoning [?] show that coNP C NP/log implies PH = 0%.
Similarly it is known that coNP C NP /poly implies PH = X% [?].

Theorem 7.3 If coNP C R'?(co-SPARSE) then PH = 05.

Proof Let A be a complete set for coNP that is many-one reducible via a nondeterministic
polynomial time Turing machine M to the complement S of a sparse set S. We define a
sparse set S’ € NP such that A € NPS'. This proves the theorem since by Kadin’s result
[?] it follows that PH = ©%. S’ contains all strings that are provably not in S.

S'={y|Jxr € A: M on input x outputs y }

It is clear that S’ C S and it remains to show that A € NP, Consider the following
nondeterminstic oracle machine M’.

On input @, M’ simulates M on x. If M outputs y at the end of the simulated
computation path then M’ queries oracle S for y and accepts if and only if

y &5

If 2 € A then some output y of M on input z is in S. Since S’ C S, it holds that
y ¢ 5" and hence x € L(M',5"). If v ¢ A then every output of M on input « is in S’ and
therefore © ¢ L(M’',S"). Therefore L(M’', S") = A. ]

From Theorem ?? we know that R!?(SPARSE) = NP /poly, hence it appears difficult
to get a comparable collapse of PH as in Theorem ??7 under the assumption that coNP C
RIP(SPARSE).

Finally, we have a result similar to Theorem ?? for nondeterministic reductions.

Theorem 7.4 If ¥} C Ry (R!?(co-SPARSE)) then PH = Af.
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