Lowness and the Complexity of Sparse and Tally
Descriptions

V. Arvind*
Department of Computer Science and Engineering

Indian Institute of Technology, Delhi
New Delhi 110016, India

J. Kobler and M. Mundhenk
Abteilung fir Theoretische Informatik

Universitat Ulm, Oberer Eselsberg
D-W-7900 Ulm, Germany

Abstract

We investigate the complexity of obtaining sparse descriptions for sets in vari-
ous reduction classes to sparse sets. Let A be a set in a certain reduction class
R,.(SPARSE). Then we are interested in finding upper bounds for the complexity
(relative to A) of sparse sets S such that A € R,(5). By establishing such upper
bounds we are able to derive the lowness of A.

In particular, we show that if a set A is in the class R} ,(RE(SPARSE)) then
Ais in RY (RP(S)) for a sparse set S € NP(A). As a consequence we can lo-
cate R} (RP(SPARSE)) in the KLY level of the extended low hierarchy. Since
R} (RP(SPARSE)) D RI(RE(SPARSE)) this solves the open problem of locating
the closure of sparse sets under bounded truth-table reductions optimally in the
extended low hierarchy. Furthermore, we show that for every A € RY(SPARSE)
there exists a sparse set S € NP(A & SAT)/FOL(A) such that A € RE(S). Based
on this we show that R}_,,(R5(SPARSE)) is in ELS.

Finally, we construct for every set A € RE(TALLY )N R, (TALLY) (or equivalently,
A € IC[log, poly], as shown in [AHH"92]) a tally set 7" € P(A & SAT) such that
A € RE(T)NRY(T). This implies that the class IC[log, poly] of sets with low instance
complexity is contained in EL7.

1 Introduction

Sparse sets play a central role in structural complexity theory. The question of the
existence of sparse hard sets for various complexity classes under different sorts of re-

ducibilities is well studied (see for example [KL80, Mah82, OW91, AHHT92, AKM92]).
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Besides that much work has been done on other issues concerning the complexity of sets
reducible to sparse sets (see for example [Kad87, AH92, SL92, AHH"92]). A central
motivation for most earlier work (and also for this paper) can be seen as seeking answers
to the following two questions.

1. If a set A is reducible to a sparse set, does it follow that A is reducible to some
sparse set that is “simple” relative to A?

2. If a set A is reducible to a sparse set, then how easy is it to access all the relevant
information contained in the set A when it is used as oracle?

Question 1 originates in the study of the notions of equivalence and reducibility to
sparse sets (see for example [TB91, AHOW, GW91]) and addresses the complexity
(relative to A) of sparse descriptions for sets A which are reducible to sparse sets. For
the case of Turing reductions, Gavalda and Watanabe [GW91] established an NPNco-NP
lower bound by constructing a set B € Ry,(SPARSE) (in fact, B is even in RF(SPARSE))
that is not Turing reducible to a sparse set in NP(B) N co-NP(B). For truth-table
reduction classes to sparse sets, the first question is also investigated in [AHH"92] where
various upper bounds for the relative complexity of sparse descriptions are presented.

The second question concerns lowness properties of sets reducible to sparse sets.
Lowness is an important structural tool for systematically classifying sets in different
complexity classes according to the power they provide when used as oracles. Building
on ideas from recursive function theory, Schoning [Sch83] defined the low hierarchy inside
NP. In order to classify sets outside of NP (e.g. sets reducible to sparse sets) Balcazar,
Book, and Schoning [BBS86] defined the extended low hierarchy. The extended low
hierarchy was subsequently refined by Allender and Hemachandra [AH92] and Long
and Sheu [LS91] who showed the optimal location of various reduction and equivalence
classes to sparse and tally sets in the (refined) extended low hierarchy. Very recently,
Sheu and Long [SL92] proved that the extended low hierarchy is an infinite hierarchy.

In order to investigate the first question, we generalize the definition of sparse set
descriptions given in [GWO91]. Let <, be a reducibility. A sparse set S is a sparse
r-description for a set A if A <, S. Similarly, a tally set T is a tally r-description for
Aif A <, T. In particular a sparse set S is called a sparse description for A if A <. S.
We are interested in finding upper bounds for the relative complexity of sparse (tally)
r-descriptions for sets in R,(SPARSE)! (respectively R,.(TALLY)). We refer to a sparse
r-description satisfying the established upper bound as a simple sparse r-description
(with respect to that upper bound), and we refer to the corresponding upper bound
result as a stmplicity result.

In Section 4 we establish simplicity results for various reduction classes to sparse and
tally sets. In Section 5 we apply the simplicity results to derive lowness properties. These
results reveal a close interconnection between the lowness of sets which are reducible
to sparse or tally sets and the complexity of computing small descriptions for these
sets. More precisely, the general pattern to prove the lowness of a set A that reduces
to a sparse set is the following: first we appropriately bound the complexity of a sparse
description for A; based on such a simplicity result, we then apply a deterministic
enumeration technique like that of Mahaney [Mah82] or a census technique similar to
that of Hemachandra [Hem87] and Kadin [Kad87] to replace the sparse oracle S (and

'For a reducibility <, and a class C of sets, R,(C) = {A| A <, B for some B € C}.
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thus A). Intuitively, we use the simplicity result to extract enough information (a
suitable initial segment of S or the census thereof) from the oracle set A in order to
avoid further queries to A. Our approach clarifies that the appropriate simplicity result
is the basic reason for the set to be low. Using this approach we are able to derive
several new and optimal lowness results.

2 Overview of results

The main results in this paper are the following.

We show that for every set A € R} (R(SPARSE)) there exists a sparse set S € NP(A)
such that A € R} (RP(S)). We use this result to locate R}, (RP(SPARSE)) and, as a
consequence, also RY(RP(SPARSE)) in the ELS level of the extended low hierarchy.
This solves an open problem posed in [AH92] regarding the location of R} ,,(SPARSE)
in the extended low hierarchy. Since there exist sparse sets that are not in FL5 [AH92]
the location of R? ,(RP(SPARSE)) in EL is optimal.

Furthermore, we show that for each set A which reduces via a disjunctive reduction
to a sparse set there exists a sparse set S € NP(A®SAT)/FOL(A) such that A € RY(S).
Based on this we show that R}_,,(Rf(SPARSE)) is also contained in ELS. Previously it
was only known that Rf(SPARSE) lies in ELS (derived from the E L% -lowness of P/poly
[BBS86]). (We note that very recently it has been proved that P/poly is contained in
ELY [Kob92] using a different and more involved proof technique.)

Next we show that for every set A in R/ (SPARSE) there exists a sparse set
S € R'(A) such that A € R22™(S), and that for every set A in R} (R " (SPARSE))
there exists a sparse set S € NP(SAT @ A) such that A € R}, (R"(S)). As a
consequence we get that NP(NP N SPARSE) N RS (SPARSE) is low for ©F, and
that for A € R}, (R "™ (SPARSE)) it holds that ©%5(A4) C Of(X5 ¢ A). Since
R}(R:o™(SPARSE)) C R; (R (SPARSE)), we get similar results for the class
Ry (R " (SPARSE)) as corollaries.

Finally we locate the class IC[log, poly] of sets containing only strings of low instance
complexity in the first level ELY of the extended low hierarchy. The simplicity result
behind the lowness of IC[log, poly] (which equals RF(TALLY )N R (TALLY ) [AHH*92])
is that for every set A € RE(TALLY )N RY(TALLY) there is a tally set T in P(SAT @ A)
such that A € R:(T) N RY(T).

3 Preliminaries and notation

Let A be a set. Y4 denotes the characteristic function of A. A=" (AS") denotes the set
of all strings in A of length n (up to length n, respectively). The cardinality of A is
denoted by |A|. A set T is called a tally set if 7' C 0*. The census function of a set A is
census 4(1™) = |AS"|. A set S is called sparse if its census function is bounded above by
a polynomial. We use TALLY and SPARSE to represent the classes of tally and sparse
sets, respectively.

The join of two sets A and B, denoted A @ B, is defined as A & B = {0x | = €
AYUA{lz | x € B}. (-,-) denotes a standard polynomial time invertible pairing function
such that (0°,0°) € 0~ for all 7,7 > 0. Such a pairing function can be extended in a
standard fashion to encode arbitrary finite sets of strings. For a class C of sets we denote
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‘ Name ‘ Notation

many-one <P
one truth-table <!,
bounded truth-table | <7
conjunctive <r
disjunctive <?
bounded Hausdorff <t
Hausdorff <r,
np many-one <7
co-np many-one <gomnp

Table 1: Polynomial-time Reductions

the union of all sets in C by UC. A set S is called P(C)-printable (see [HY84]) if the
function 0" +— (S<") can be computed inside FP(C).

The reducibilities discussed in this paper are the standard polynomial time boun-
ded reducibilities defined by Ladner, Lynch, and Selman [LLS75] and the Hausdorff
reduction introduced by Wagner [Wag87] (see Table 1 for an overview).

Definition 3.1 [Wag87] A is Hausdorff-reducible to B (A<},B), if there exists a

function f computable in polynomial time, such that for all x, f computes a tuple
flz) = (y1,y2, ..., y2k) such that

1. xB(y1) 2 xB(y2) = - = xB(y2x), and
2. xa(z) = Vi [xB(y2i-1) A ~xB(v2:)],
We call f a bounded Hausdorff reduction (A<},,B) if k is a constant.

Notation [AHOW] For any reducibility <% where o« € {p,np,co-np} and r €
{m,c,d,1-tt, b, hd,bhd} and any class C of sets let R*(C) = {A | A <¢ B for some
B e C}.

A class K of sets that includes ) and ¥* and is closed under union and intersection is
said to be a set ring. The following characterization of the boolean closure of set rings
due to Hausdorff plays a key role in some of our results.

Theorem 3.2 [Haul4] Let K be a set ring and let BC(K) be the closure of K under
union, intersection, and complement. Then every A € BC(K) can be represented as

A= Ule(AQi_l — AQZ'); where AJ € IC, 1 S] S 2]{3; and Al 2 A2 2 ce 2 Azk.

The above representation for A is called a Hausdorff representation for A over K. We
state some useful properties relating boolean closures, bounded truth-table closures,
and the bounded Hausdorff closures of language classes.

Lemma 3.3 [KSWS8T] Let K be a class that contains P and is closed under many-one
reductions. Then BC(K) = R} (K).



Lemma 3.4 Let K be a class closed under many-one reductions and under join. Then
A has a Hausdorff representation over K if and only if A 1s bounded Hausdorff reducible
to some set in K.

Proof Let A = Ule(AQi_l — Ay), where 4; € K, 1 < j <2k, and 4 D Ay D
«++ D Agp. Then A is bounded Hausdorff reducible to A’ = A, & --- § Ay, via [ with
flz) = (fi(z),..., far(x)), where f; is a many-one reduction function from A, to A’.

If A is bounded Hausdorff reducible to a set B € K via f then A = Ule(BQi_l — By;)
where B; = {x | f(z) = (v1,...,y2) and y; € B}. Since B;<f B this is a Hausdorff

representation for A over K. ]
The next lemma is obtained by combining Theorem 3.2 and the above two lemmas.

Lemma 3.5 If K s a set ring which contains P and is closed under many-one reduc-

tions then BC(K) = R},,(K) = Rj(K).
Theorem 3.6
1. R}, ,(R°(SPARSE)) = R}(R?(SPARSE))
2. R}, (R (SPARSE)) = R} (R (SPARSE))

Proof In order to prove the two parts it suffices to show that RZ(SPARSE) and
R (SPARSE) are set rings. It is easy to see that RE(TALLY) and R (TALLY)
are set rings. Since SPARSE C RZ(TALLY) [BLS92] it holds that R?(SPARSE) =
RP(TALLY) and RZ™(SPARSE) = R (TALLY) and therefore R?(SPARSE) and
R (SPARSE) are set rings. |

A truth-table reduction is honest if there exists a polynomial p such that for every
query y on input x, || < p(Jy|). As far as reductions to sparse or tally sets are concerned
we can assume that they are honest.

Lemma 3.7 If A reduces to a sparse (tally) set S via a truth-table reduction of a certain
type then A reduces honestly to a sparse (respectively, tally) set S’ wvia @ truth-table
reduction of the same type.

Proof Define S’ = {(0",y) | n > 0,y € S} and in the new reduction to S’ replace each
query y on input by the query (0Fl y). ]

In the case of reductions to sparse sets we can even assume that the query length
depends only on the input length (via some strictly increasing polynomial).

Lemma 3.8 If A reduces to a sparse set S via a truth-table reduction of a certain type
with query generator g then A reduces to a sparse set S’ via a truth-table reduction of
the same type with a query generator g' such that for all x the queries generated by ¢'(x)
have length r(|x|) for a strictly increasing polynomial r.



Proof Replace each query y by y10'7D=I¥ and S by the sparse set {210 | z € S,i > 0}
where ¢ is a polynomial bounding the computation time of the query generator g. =

For a class C of sets and a class F of functions from ¥* to ¥* let C/F [KL80] be the
class of sets A such that there is a set B € C and a function 2 € F such that for all
r e X,

xa(e) = xa(e, A(OH))
Although Karp and Lipton introduced the notion of advice functions in order to cha-
racterize nonuniform complexity classes by imposing a quantitative length restriction
on the functions in F, we will consider here complexity restricted advice function clas-
ses. We refer the reader to [KT90] for a general study of complexity restricted advice
functions.

For a set A the class O(A) [LS91] contains all languages L(M, A) accepted by a
deterministic polymomial time bounded oracle machine M asking on inputs of length n
at most O(log n) queries to A. A deterministic polynomial-time oracle machine M as in
the definition above is called a © machine. The O levels of the (relativized) polynomial
time hierarchy are defined as ©7(A4) = O(X}_,(A)), k > 1 [Wag90, LS91].

Similarly, the class FO(A) contains all functions computable by some deterministic
polymomial time bounded oracle transducer M asking on inputs of length n at most
O(logn) queries to oracle A, and FOL(A) = FO(X,_,(4)),k > 1.

For further definitions used in this paper we refer the reader to standard books on
structural complexity theory (for example, [BDG, Sch86]).

4 Upper bounds for sparse and tally descriptions

In this section we consider the following question: If a set A reduces to a sparse set S
via a reduction of a certain type, does it follow that A reduces via a reduction of the
same type to some sparse set S’ that is “simple” relative to A7

We notice that a simplicity argument was already used in the proof of Mahaney’s
theorem [Mah82] that if NP has sparse hard sets then P = NP. Mahaney first showed
that P = NP under the stronger assumption that NP has a sparse complete set. From
that the theorem is derived by observing that if a set A € NP many-one reduces in
polynomial time to a sparse set then it actually many-one reduces to a sparse set in NP.
This observation can be formalized as a simplicity result for sets in R? (SPARSE).

Theorem 4.1 [LS91] If A € RE (SPARSE) then there exists a sparse set S € RIP(A)
such that A< S.

It is easy to see that the same upper bound holds for RE(SPARSE), i.e., every set
A € RE(SPARSE) has a sparse c-description in R?(A). On the other hand, for a set A in
R}(SPARSE) the only known upper bound for the complexity of sparse b-descriptions
is A5(A) (this can be seen by a minor modification of the proof that every set A in
P /poly has an advice function computable in A5(A) [Sch86]).

Surprisingly, it turns out (see the following theorem) that each set A in the reduc-
tion class R} ,(RE(SPARSE)), which is larger than Rj(SPARSE), has a sparse hd(c)-
description in NP(A). From this it follows (see Section 5) that R (R?(SPARSE)), and
therefore RY(SPARSE) are in ELS.



Theorem 4.2 For every set A € RY (R?(SPARSE)) there is a sparse set S € NP(A)

~

such that A € R} (RE(S)).

Proof Let A be a set in R} (RF(S)) for a sparse set S. Composing the Hausdorfl and
conjunctive reduction functions, we obtain FP functions ¢ and %k such that for all x,

1. foralls, 1 <¢<2k(x)—1, ¢g(i+1,2) C S implies ¢g(¢,2) C S
2. ¥ € A& for some even i, 2 < i < 2k(x), g(t — 1,2) € S and g(i,2) £ S

By Lemma 3.8 we can assume that there exists a strictly increasing polynomial r such
that |y| = r(|z|) for all + and all y € Ufi(lx)g(z,x) In order to prove the theorem we
give an NP(A) algorithm that accepts a sparse set S C S such that A reduces to S via
g and k. In other words, we will show that S fulfils the two conditions above for all
x € ¥*. Intuitively, on input y of length r(n) starting with 7' = ) the algorithm expands
T inside S="(") by guessing strings in $" witnessing that T does not yet fulfil the two
conditions above. Finally y is accepted if y € T. The NP(A) algorithm for S is given
by the following code (p is a polynomial bounding the census of the sparse set 5).

input w
if |y| & {r(n) | n > 0} then reject end
compute n such that |w| = r(n)
T:=1
guess k € {1,...,p(Jw|)} and xq, 22, -, 2, € X"
for j =1 to k do
guess ¢ € {1,...,2k(z;)}
if 1 <2k(x;) A gt +1,2;) CT or
i>1ANgli—1,2;) CT A (iisodd < x; € A)
then 7:=T Ug(¢,z;) end
end for
if w € T then accept else reject end

Clearly, the running time of the algorithm is polynomially bounded. We prove that
the set S accepted by the above algorithm has the required properties by establishing
the following claims.

Claim 1 T s a subset of S during each step of the computation.

Proof of Claim 1: The claim certainly holds when the computation starts. Therefore
it suffices to show that whenever a set ¢(¢,x;) is included in T then it holds that
g(i,2;) C S provided that T'C S. But this immediately follows from the fact that T is

only expanded by ¢(7, x;) if
i <2k(xj) Ngli+1,2,)CT

or
i>1ANgli—1,2;) CT A (iisodd < x; € A)



Claim 2 For every input of length r(n) there is a computation path along which the set
T = S=" is computed, and S= fulfils conditions 1 and 2 for all x of length n.

Proof of Claim 2: Let T'(n) be a set of maximum cardinality that is computed along
some path 7 on some input of length (n). Since T(n) C =" by Claim 1 it follows that
IT(n)| < p(r(n)). We first show that T(n) = 5=, In order to derive a contradiction
assume that there is an input y € S§=r(") that is not contained in T(n). Then clearly
|T(n)| < p(r(n)) holds by Claim 1 since otherwise T(n) = S<"("), Therefore we can
assume w.l.o.g. that the value of k guessed on path 7 is smaller than p(r(n)) since we
can remove all strings z; from the list that don’t expand T along 7.

Consider now some computation path accepting y. Since y & T'(n) the set T' computed
along this path is not contained in T'(n). Let T" be the value of T just before an element
g not in T'(n) is included to T for the first time, and let jo and ¢y be the corresponding
values of j and 7, respectively, i.e., ¢ € g(ig, ;). Then it holds that 7" C T(n). Thus,
adding x;, to the list of strings guessed along path 7 and guessing ¢ in the joth iteration
of the for-loop gives a computation path 7/ that computes the set T(n) U g(io, 2}, ),
contradicting the maximality of |T'(n)|.

Using the maximality of |T(n)| it is easy to see that T(n) = 5= (" fulfils conditions
1 and 2 for all = of length n since otherwise T'(n) could be expanded. O

Because the query sets for inputs of different lengths are disjoint conditions 1 and 2
are fulfilled by S for all inputs z, 1.e., A reduces to S via the given reduction. ]

Since the given hd(c¢)-reduction function is not modified in the proof of Theorem 4.2
we immediately obtain the following corollary.

Corollary 4.3 For every set A € R}, ,(RE(SPARSE)) there is a sparse set S’ € NP(A)
such that A € R, (R2(S)).

Since R}, ,(RE(SPARSE)) = Ry (RE(SPARSE)) by Theorem 3.6 and since every boun-
ded Hausdorff reduction is also a bounded truth-table reduction we additionally have

the following simplicity result for R} (R?(SPARSE)).

Corollary 4.4 For every set A € R}(RP(SPARSE)) there is a sparse set S’ € NP(A)
such that A € RY(RE(S")).

Next we consider sets in R (SPARSE) and show that every set A in Rj(SPARSE)
has a sparse d-description in NP(A @ SAT)/FO5(A). Furthermore we show that there
exists a set in NP(A)/FOL(A) such that every element (0", W) in this set encodes a
finite set W to which A is disjunctively reducible with respect to strings of length n,
le., AZ"<IW via the given disjunctive reduction function (cf. the notion of CIR(A)
[KoSe85]). Our proof technique is a refinement and an extension of the one developed
in [AHH*92] where it is shown that for every set A in R(SPARSE) there is a sparse
set S’ € P(NP(A)) such that A € RL(S").

Theorem 4.5 Let A be a set in RY(SPARSE) witnessed by the sparse set S and the
reduction function f. Then

1. there exists a set C C {(0", W) | AEW wia [ for inputs of length n} and a
polynomial p such that C € NP(A)/FOL(A) and for every n there is at least one
pair of the form (0", W) in C<P(?),



2. there exists a sparse set S € NP(A @ SAT)/FO5(A) such that Ag{;ﬁ via f.

Proof By Lemma 3.8 we can assume that A reduces to a sparse set via a reduction
function f such that for all « and y € f(z), |y| = r(|z|) and |f(z)] < r(|z]), where r
is a strictly increasing polynomial. Then it holds for all x that + € A if and only if
flx ) N S=rlz) £ ), We construct sparse sets S; C A and Sy, € A which define a sparse
set § = Uyes, f(y) — Uyes, f(y) such that for all 2, x € A if and only if f(z) N S £ 0.
Consider the set L defined by

0" (x1, ..o 2), (Y1, yk)) € L &
for all 1,1 <1< j, @€ A= A f(a) 0 (Uriat Fle) — Uiy f(wi) =

and

forall ,1 <1<k, yr€ A" A fly) N (Ufﬂ flag) - U1§i<lf(yi)) # 0

Clearly L isin P(A). Note that for (07, (zy,...,2;), {(y1,...,yx)) in L the set U, f(y;) is
a subset of § and therefore it holds for every I, 1 <1 < k, that f(2;,)NUj<ic; f(x:)NS = 0,
ie., f(x;) generates at least one query in S that is not covered by any of the sets
f(x1), ..., f(zi—1). The advice that we use are the values of the following two functions,

](n):max{] |3k3x17"'7xj7y17"'7yk: <0n7<$17"'7xj>7<y17"'7yk>> EL}
k(n) =max{k | Jz1,..., 20 Y10 Uk 0 (0" (21, 250))s (Y1, -+, yk)) € L}
Claim 3 For all n it holds that j(n) < censuss(lT(”)) and k(n) <r(n)- censuss(lT(”)).

Proof of Claim 3: Let (0", (21,...,%(u), (¥1,---,¥)) € L. As noted above, it holds
for every I, 1 <1 < j(n), that f(z;) N Ujciqr f(2:) NS = 0. Since f(x )ﬂ S £ 0,
1 < < j(n), it follows that

censuss(lT(”)) >

Uf()

1<i<j(n

Zlf )N S| > j(n)

This proves the first part of the claim. The second part follows immediately by the
definition of L since for all z, [f(x)] < r([z]), i.e., [Ur<cicjn) f(zi)| < j(n) - r(n). 0

Since r(n) and censusg(1™) are bounded by some polynomial the functions j(n) and
k(n) are also polynomially bounded, and the following claim can be easily proved.

Claim 4 On input 0", j(n) and k(n) can be computed by an FOL(A) computation.

Every element z = (0", (21,...,2j(n)), (Y1 - - - » Yk(n))) in L contains enough information
to construct a set S, containing at most r(n) - j(n) elements such that A="<!S, via f.

Claim 5 Let (0", (z1,...,%;00)) (Y1+-- > Yk(n))) € L. Then for all x € " 4t holds that
v € A if and only if f(x) 0 (UL fla:) = UL Fwe)) # 0.



Proof of Claim 5: In order to derive a contradiction let x € ¥" and assume that
r € A but f(a) N Z(:Ti) fla;) — Ufﬁ}) f(y;)) = 0. Then it follows that the string
(0" (@1, i(nys )5 (Y15 - -+, Y(ny)) 1s contained in L which contradicts the maximality
of j(n). To show the converse assume that © ¢ A and f(x)N( Z(:T;) f(:z;z)—Ufg) fly)) # 0.
Then (07, (z1,...,%;0)) (Y1+- - Yk(n), ¥)) € L contradicting the maximality of k(n). O

Now consider the sets C' and C’ defined by

(0", W, 5, k) € C" & 30" (z1,....x;), (y1,...,yx)) € L: W = Qf(:z;z) — U fly:)

and
(0", W) e C < (0", W,j(n), kin)) € C’

Clearly, C’ € NP(A), and therefore C € NP(A)/FO4(A). By Claim 5 it holds for every
(0", W) € C that A*<!W via f. Furthermore, by the definitions of L and C' it follows
for all (0", W) € C that W C '™ and |[W/| < r(n) - j(n). This proves the first part of
the theorem.

In order to prove the second part we select for every n the lexicographically smallest
pair (0", W,,) in C and define the desired sparse set S as the union of all the W,,, n > 0.
Consider the NP set D defined by

(0", W,j,k) €D &
there exists a string (07, (x4, ...

forall 1 <1<y, fla))NW #

%), (Y1, ..., yx)) such that

O A Fa) N (Ungiar fl2:) = Uy Fy) =
for all L1<I<k, fly) W =0 A fly) N (U Fl20) = Urciar f(0) #
and (0", U, f(i) — Uy fyo) < (07, )

Claim 6 A string (0", W,j(n),k(n)) € C' is contained in D if and only if there exists
a string (0", W') € C which 1s lexicographically smaller than (0™, W).

and

0
0

Proof of Claim 6: Let (0", W, j(n), k(n)) be a string in C". Then there exists a string
(0" (@1, i) Y1y - > Yk(ny)) € L such that W = Ufg) fla;) — Ufg) f(y:). Thus it
follows by Claim 5 that for all = of length n, * € A if and only if f(z) N W #£ 0, and
the claim follows by the definition of D. a

An immediate consequence of Claim 6 is
Claim 7 For every n there is exactly one element of the form (0", W) in C' — D.

Now we are ready to define the sparse set S = [J, {W | (0", W) € C — D}. For
r(n) = |w| the following algorithm accepts an input (w, j(n), k(n)) if and only if w is in
S.

input (w,j, k)

guess n < |w|

if |w| # r(n) then reject end

guess Ti,...,%;,Y1,...,Yp € 2"

if (07, (z1,...,2;), (Y1, yx)) € L then reject end

W= Uiy f(@) — U, fyi)

if (0", W,j,k) ¢ D and w € W then accept else reject end

10



Since the first if-statement queries oracle L (which is in P(A)), the second if-statement
queries oracle D (which is in NP) and since the advice (namely j(n) and k(n)) can be

computed in FOL(A) it follows that S € NP(A ¢ SAT)/FO5(A). ]

The following theorem shows in general that a simplicity result for a reduction
class RE(SPARSE) can be translated into a simplicity result for the reduction class
Ry, (RP(SPARSE)).

Theorem 4.6 Let C be a relativizable complexity class closed under join such that
C(A® B)=C(A) =C(A) for all sets A C 2 and B € P. If every set L in RP(SPARSE)
has a sparse r-description in C(L) then every set A in R{_,(RE(SPARSE)) has a sparse
1-tt(r)-description in C(A).

Proof Let A bein R} ,,(R?(SPARSE)) witnessed by a generator f and a set B € R(S)

for some sparse set 5. Then it holds for all z,
r € A& [f(x) = (¢,td) and ¢ € B] or [f(x) = (¢,neg) and ¢ ¢ B|

Let X = {z | f(#) = (¢,id) for some ¢} and YV = {z | f(z) = (¢,neg) for some
q}. Then it is clear that {X,Y} is a partition of ¥*. Furthermore, A N X <? S and
ANY < S. Now, using the assumption that every set L in the class RP(SPARSE) has
a sparse r-description in C(L) it follows that there are sparse sets S € C(ANX) and
Sy € C(ANY) such that

AﬁXﬁfSl andAﬁYﬁsz

via reduction functions ¢; and ¢, respectively. Now the proof is completed by combining
the two r-reductions ¢; and g, to a reduction witnessing A € Ry ,,(R2(S; © S2)) and by
observing that S; @ Ss is a sparse set in C(A). [ ]

Corollary 4.7 For every set A in R}, (RY(SPARSE)) there is a sparse set S’ in
NP(A & SAT)/FOL(A) such that A € RY_,,(RL(S")).

Next we consider nondeterministic reduction classes to sparse sets. The notion of
<o reducibility can be seen as a generalization of the deterministic polynomial-time
conjunctive reducibility.

Definition 4.8 A set A is co-np many-one reducible to a set B (denoted A< RB)
if there exists a polynomaial-time nondeterministic Turing transducer M such that for
every v € X, x € A of and only of all outputs of M on input x are in B.

Note that A<9" B if and only if A<"™ B where <" is the more familiar polynomial-
time nondeterministic many-one reducibility [LLS75]. Clearly, for every set B, RE(B) is
contained in R (B), and R (B) is closed downward under <? and </ reduc-

tions.

Theorem 4.9 For every set A € R (SPARSE) there exists a sparse set S’ € RIP(A)
such that A € R27(S").

11



Proof Let S be a sparse set and let M be an NP transducer witnessing A € R:7"P(S).
W.l.o.g. we can assume that there is a polynomial p such that for all output strings y
of M on input x it holds that || < p(]y|). Consider the following subset S’ of S.

S'={y|Jxr € A: M on input x outputs y }

Then A € R (S") via M. Furthermore, the following NP transducer witnesses
S'<rr AL

input y

guess a string x, |z| < p(|y|)

guess a computation path

if M(x) produces the output y on the guessed path

then output =

else output a fixed string not in A end |

The next theorem shows how to construct (relative to A) small descriptions for sets

in the reduction class R} ,(R"?(SPARSE)).

Theorem 4.10 For every set A € R}, (R (SPARSE)) there is a sparse set S’ €
NP(SAT & A) such that A € R} (R27(S")).

Proof The proof is quite similar to that of Theorem 4.2 and therefore we omit most of
the details. Let A be a set in R} ,(R7"(S)) for a sparse set S. Again we can combine
the Hausdorff reduction function and the NP transducer witnessing the co-np many-one
reduction to obtain an FP function k and an NP transducer M such that the following
conditions are fulfilled for all z.

1. for all 1, 1 <@ < 2k(x) — 1, if all outputs of M(¢ 4+ 1,2) are contained in S then
also all outputs of M(z,x) are contained in S

2. ¥ € A & for some even ¢, 2 < ¢ < 2k(x), all outputs of M(¢ — 1, x) are contained
in S but some output of M(7, ) is not contained in S

We can assume that there exists a strictly increasing polynomial r such that |y| = r(n)
for all outputs y of M on any input (¢,2) such that 1 <¢ < 2k(z) and |z| = n.

We give an NP(SAT ¢ A) algorithm that accepts a sparse set S C S such that A
reduces to S via M and k.

input y
if |y| & {r(n) | n > 0} then reject end
compute n such that |y| = r(n)

T:=10
guess k€ {1,....p(|y|)}
guess Ty, o, -, T € X"

for j =1 to k do
guess ¢ € {1,...,2k(z;)}
if ¢ <2k(z;) ANy | M+ 1,2;) outputs y} C T or
i>1AN{y| M@ —1,2;) outputs y} CT A (iisodd < x; € A)
then T:=T U {y | M(¢,x;) outputs y} end
end for
if y € T then accept else reject end

12



The reason why we need the additional SAT oracle is to test for the inclusions {y |
M(i+1,2;) outputs y} CT and {y | M(: — 1,z;) outputs y} C T, and to compute the
set {y | M(i,x;) outputs y}. The proof is completed by the following claims which can
be proved analogously to Claims 1 and 2 of the proof of Theorem 4.2.

Claim 1 T is a subset of S during each step of the computation.

Claim 2 For every input of length r(n) there is a computation path along which the set
T = S=W is computed, and S=" fulfils conditions 1 and 2 for all x of lengthn. m

The following corollary is an immediate consequence of Theorems 4.10 and 3.6.

Corollary 4.11 For every set A € R)(R:™(SPARSE)) there is a sparse set S’ €
NP(SAT @ A) such that A € R(R(S")).

At the end of this section we consider reduction classes to tally sets. The class
RP(TALLY) N RY(TALLY) is of particular interest since it coincides with the class
IC[log,poly] of sets containing only strings of low instance complexity [AHHT92].
IC[log,poly] and the notion of instance complexity were introduced by Ko, Orponen,
Schéning, and Watanabe (see [OKSW]). A set A is in IC[log,poly] if there exist a con-
stant ¢ > 0, a polynomial ¢ and a set II C ¥* of programs such that for every =z € ¥*
the following conditions are fulfilled.

1. there exists a p € II<¢1°8{#) that holds on input x in time #(|z|), and

2. every p € II that halts on input = decides the membership of = in A.
Theorem 4.12 [AHH"92] IC[log, poly] = RE(TALLY) N R(TALLY).

Let II be the set of programs for A € IC[log, poly]. Intuitively, A is in RZ(TALLY )N
RP(TALLY) because II can be encoded into a tally set T (T = {0"™®) | p € I} where
num(p) is the number whose binary representation is given by 1p). Then A conjunc-
tively reduces to T via a reduction function that produces on input z all encodings
of small programs which reject = in polynomial time, and A disjunctively reduces to
T via a reduction function that generates on input x all encodings of small programs
which accept x in polynomial time. Before we state our simplicity result for sets in

IC[log, poly] we give a direct proof for the containment of RE(TALLY )N RY(TALLY ) in

UreraLwy BE(T) N RY(T).

Lemma 4.13 For every set A € RE(TALLY ) N RY(TALLY) there is a tally set T such
that A <PT and A< T.

Proof Let T1,T; be tally sets and let f, ¢ be reduction functions witnessing A € R?(T})
and A € RY(Ty), respectively, i.e. v € A& f(z) CTy & g(x) NTy # 0 for all z. Define
the tally set T as follows

T={0*" |0 ¢ Ty} U{0% |0 € Ty}
Furthermore, consider the following reduction functions f’ and ¢’

Flla) ={0""1 0" € f(x)}, ¢'(x) = {07 [ 0 € g(a)}.

Then A reduces conjunctively to T via f’ and disjunctively to T via ¢'. [ ]
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Theorem 4.14 For every set A € RP(TALLY ) N RY(TALLY) there is a tally set T' €
P(SAT @ A) such that A € RE(T") N RY(T").

Proof By Lemma 4.13 we can assume that for A € RF(TALLY) N RY(TALLY) there

are honest polynomial time reduction functions f and ¢, and a tally set T such that
reEAS fe)NT=0&g(a)NT #10

Let p be a polynomial such that |y| < p(|z|) and |z| < p(]y|) for all queries y in
f(z) Ug(x). Consider the following procedure for T”.

input 0°
W =1
for j :=1to p(p(i)) do
if there exists an z,|z| < p(7) such that 0° € f(x) and 0/ € g(x) then
construct the lexicographically smallest such = by prefix search
W .=WuU{x}
end
if there exists an z, |z| < p(7) such that 0’ € f(z) and 0° € g(z) then
construct the lexicographically smallest such = by prefix search
W .=WuU{x}
end
end
ifforallz € W,z € A& 0" € g(x) then accept else reject end

If we interpret 0' and 0/ as encodings of programs p; and p;, respectively, (i.e., a program
pr accepts an input x if 0% € ¢g(x) and py rejects z if 0¥ € f(x)) then 0° is in T" if there
is no program p; that decides some input z differently, and p; is wrong on . It is easy
to see that the set W can be computed using SAT as oracle and that the acceptance
condition can be evaluated asking oracle A. In order to show that 7' can be replaced by
T’ we prove the following claims.

Claim 1 7 C 7.

Proof of Claim 1: An input 0° is only rejected by the above procedure if either there
is a string * € A such that 0° € f(z) or there is a string x € A such that 0° € g(x). In
both cases it follows that 0° ¢ T. O

Claim 2 For all z, g(2)NT' #0 = f(z)NT = 0.

Proof of Claim 2: Let 0° be in g(z) N 7' and assume that 0/ € f(z). Since 0" is
accepted there exists a string 2’ € A such that 0' € g(2') and 0/ € f(z'). Since 2’ € A,
it follows that f(2’) N T = ), and therefore 0 ¢ T. O

Claim 3 For all z, f(x)NT' # 0= g(z)NT = 0.

Proof of Claim 3: Let 0° be in f(x) N 7" and assume that 0/ € g(z). Since 0" is
accepted there exists a string 2’ ¢ A such that 0' € f(2') and 0’ € g(2'). Since 2’ ¢ A,
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it follows that g(z') NT = 0, and therefore 0/ ¢ T. O Now the proof can be completed
by showing that A <? T" via f and A <) T" via g.

(Claim 1) (Claim 2)
r€A=g(a)NT#0 = gla)nT' #0 = fla)nT=0=z€A

(Claim 1) (Claim 3)
t g A= fa)NT#0 =  flo)ynT' #0 = gla)NnT=0=a¢ A

Essentially by the same proof we obtain the following theorem.

Theorem 4.15 For every set A € RIP(TALLY) N R (TALLY ) there is a tally set
T" € P(SAT & A) such that A € RIP(T")N R™(T).

The class IC[log, poly] is known to be closed downward under polynomial time boun-
ded truth-table reductions [OKSW]. It is interesting to note that IC[log, poly] and
R'P(TALLY ) N R (TALLY ) are also closed downward under polynomial time Haus-

dorff reductions.

Theorem 4.16
1. Rid(IC[logv p01Y]) = IC[lOg, p01Y]
2. R}, (R'(TALLY) N R (TALLY)) = R'?(TALLY ) N R (TALLY)

Proof We prove the first part of the theorem. The second part can be proved similarly.
Let A<} B for a set B € IC[log, poly| via FP functions & and k, i.e., z € A if and only if
thereisani € {1,...,k(«)} such that h(2¢—1,2) € B but h(2¢,2) ¢ B. By Lemma 4.13
there is a tally set T such that B<PT via f and B<)T via g. Consider the tally set
T ={(y,2) | y,2 € T} and the reduction function

k(x)

g'(z) = Uy, 2) |y € g(h(21 =1, 2)),z € f(R(2],2))}

=1

If v € A then thereisan¢ € {1,...,k(x)} such that h(2i—1,2) € B but h(2i,2) ¢ B.
Therefore, g(h(2i — 1,2)) T £ O A f(h(2i,2)) T £ 0, 1.e. ¢'(z)NT" £ 0.

In the case x ¢ Ait holdsfor alls € {1,...,k(x)} that h(2i—1,2) € B < h(2i,2) € B.
Therefore, g(h(2i—1,2))NT # 0 < f(h(2i,2))NT = @, which implies that ¢'(z)NT" = 0.

Hence A disjunctively reduces to 1" via ¢', i.e. A € RE(TALLY). Since R} ,(C)
is closed under complementation for every class C, we get that also A disjunctively
reduces to some tally set, i.e. A € RE(TALLY ). Since by Theorem 4.12 IC[log, poly] =
RP(TALLY) N R?(TALLY) it follows that A € IC[log, poly]. u
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5 Lowness

The low and high hierarchies inside NP were introduced by Schéning [Sch83]. The notion
of lowness has turned out to be an important structural tool for classifying problems
and subclasses of NP not known to be NP-complete or in P. This idea was extended
by Balcdzar, Book, and Schoéning [BBS86] who defined the extended low hierarchy in
order to classify decision problems and classes not contained in NP. Allender and
Hemachandra [AH92] and Long and Sheu [LS91] refined the extended low hierarchy

and proved the optimality of the location of various classes therein.

Definition 5.1 [BBS86, AH92, LS91] The X, A, and O levels of the extended low
hierarchy (denoted ELY, ELY, and ELY, respectively) are defined as below.

1. ELY = {A|S0(4) CS¢_(SAT @ A)}, k> 1
9. EL® = {A | AP(A) C A?_(SAT @A)}, k> 2
9. EL® = {A | O0(A) C O_,(SAT & A)}, k > 2

Various classes of sets reducible to sparse and tally sets have been shown to be in-
cluded in the extended low hierarchy (see for example [BBS86, AH92, LS91]). Using
the simplicity results of the previous section we are able to derive lowness results for
the reduction classes to sparse sets considered here. Some of our extended lowness
proofs contain a census argument similar to that used by Hemachandra [Hem87] and
Kadin [Kad87]. The following useful lemma gives an upper bound for the complexity
of computing the census function of a sparse set.

Lemma 5.2 For every sparse set S, censuss € FO(R™(S)).

Proof The value of censuss(1™) can be computed by a binary search using the oracle
set C := {(0", m) | there are at least m different strings of length at most n in S} which
can easily be seen to be in R(S). ]

The following technical lemma is used in several of our lowness proofs.

Lemma 5.3
1. For every set A and k > 2, ©,(SPARSENNP(A4)) C O5(X,_, D A).

2. Let A be a set and let k > 3. If L is in OL(SPARSE N NP(A & SAT)/FOL(A &
SAT)) witnessed by a OF computation that on input x asks the sparse set only
queries of length p(|x|) for some fized polynomial p then L is in ©4(X)_, @ A).

Proof

1. Let B be a set in ©4(S) for a sparse set S in NP(A), and let M be a © machine
deciding B relative to some oracle C' € 7 (.5) that is computed by a X} _, oracle
machine M’. Let p be a polynomial bounding the length of the queries to S in the
O7(S) computation of B. We outline how B can be computed in ©5(X,_, @ A).
On input z, at first m = census s(170#D) is computed (by a FO5(A) computation,
as described in Lemma 5.2). Then machine M is simulated on input @ where each
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query y to C is replaced by the query (y,m,p(|z])) to the NP(X}_, ®& A) set C’
defined as

C' = {<y7Z7]> | Elyl <-e <y € SsijL(Mlv{ylvvyl})}

2. Let B be a set in O}(S) for a sparse set S in NP(A & SAT)/FO4(A & SAT), and
let M be a © machine deciding B relative to some oracle C € ¥7_(S) that is
computed by a X} _, oracle machine M’. The proof is similar to the one above. The
only difference is that now on input = the advice string for instances of .S of length
p(|z|) and the cardinality of S=2(") has to be precomputed by an FO5(A & SAT)

computation before the simulation of M on input x is started. [ ]

Theorem 5.4 R}, (R?(SPARSE)) C EL?.

Proof Let A be in R} ,(R?(SPARSE)). Using Theorem 4.2 we can assume that A €
RY (RF(S)) for a sparse set S € NP(A). In order to prove the theorem we have to show
that every set B € O5(A) is already contained in ©5(SAT & A). Since A € R} (R2(9)),
it follows that B € ©%(S). Since S is in NP(A) we can apply Lemma 5.3 (part 1 for the
case k = 3) and obtain that B is in O5(SAT @ A). n

This result is optimal since SPARSE ¢ ELY as proved in [AH92]. Ttem 2 of the
following corollary follows from the closure under complementation of the classes in the
extended low hierarchy. Item 3 answers an open question in [AH92] and also extends

the recent result by Long and Sheu [LS91] that R}_,,(SPARSE) C FL?. Item 4 is a

consequence of the closure of the 0 levels of the extended low hierarchy under =4 [LS91].

Corollary 5.5
1. R*(SPARSE) C EL?
2. Rb(co-SPARSE) C EL?
3. RY(SPARSE) C EL?
/. EY(R},(R(SPARSE))) C ELS

The following theorem states the generalized @%-lowness of NP(NP N SPARSE) N
R (SPARSE) and is an improvement of Kadin’s result that every sparse NP set is
low for ©%.

Theorem 5.6 If A € NP(NPNSPARSE) and ALS"PS for a sparse set S then
O5(A) C O, ie. A islow for OF.

Proof Let A € NP(S’) for a sparse set S’ in NP and A<{S for a sparse set
S. By Theorem 4.9 we can assume that S € R'P(A). Since A € NP(S’) and since
NP(S’) is closed under <" -reductions it follows that S € NP(S’). This shows that
A € co-NP(NP(S’) N SPARSE) N NP(S’). Let S” € NP(S’') N SPARSE witness the
above inclusion for A, i.e. A € co-NP(S”) N NP(S’). It is not hard to infer that
NP(A) € NP(S" @ S”). Hence, it follows that ©5(A4) C O5(S’ & S”). Since S @ 5"
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is in NP(S") N SPARSE we can invoke Lemma 5.3 (part 1 for the case k = 2) to get
O5(S"® S”) C ©4(S"). Since S’ € NP N SPARSE, we invoke Lemma 5.3 (part 1, k = 2)
once more to get ©5(S") C 0. Combining the above inclusions yields that ©5(A) C ©7.

|

The following corollary improves the result of Lozano and Toran [LT91] that every
disjunctive self-reducible set that is many-one reducible to some sparse set is low for
©%. Since co-NP/log C R (TALLY) [AKMO92] it subsumes all previously known
O%-lowness results (e.g. for NP N RE (SPARSE) and for NP N co-NP/log, cf. [LS91])
regarding NP sets reducible to sparse or tally sets.

Corollary 5.7
1. If A € NP N RE(SPARSE) then ©45(A) C OF.
2. If A€ NP N R (SPARSE), then O5(A4) C O5.

Although we have simplicity results concerning nondeterministic reduction classes
to sparse sets (e.g. Theorem 4.10) extended lowness is not a meaningful measure of
lowness for such reduction classes since they contain either NP or co-NP. Nevertheless,
the next theorem is a kind of lowness result. We show that the full power of a Of
computation relative to an oracle in R} ,(R " (SPARSE)) is not needed in order to
access the information contained in the oracle.

Theorem 5.8 If A € R} (R;°""?(SPARSE)) then O5(A) C O5(Z5 & A).

Proof By Theorem 4.10 we can assume that A is in R} ,(R"(S)) for a sparse set
S € NP(SAT @ A). Therefore, ©5(A) C 04(S) C OF(NP(SAT @ A) N SPARSE), and
by Lemma 5.3 (part 1 for the case k = 4) we get Of(NP(SAT @ A) N SPARSE) C
O ZL @ (SAT @ A)). Now the theorem follows since O5(X5 & (SAT G A)) C O5(Z5 4 A).

|

Our next lowness result exploits the simplicity of sparse d-descriptions for sets in

R'(SPARSE).

Theorem 5.9

1. RY(SPARSE) C FLY.

2. R, (RN(SPARSE)) C ELS.
Proof

1. Let A be in R} (SPARSE). We have to show that ©%5(A4) C ©45(A @ SAT). Since
A is many-one equivalent to the set {10° |+ > 0Az € A} we can w.l.o.g. assume
that all queries to A in the ©%(A) computation on input x are of length p(|z|)
for some fixed polynomial p. By Theorem 4.5 it follows that there is a sparse set
S € NP(A @ SAT)/FO5(A) such that A is in RY(S) via some function f, where all

queries in f(x) are of length ¢(|z|) for some fixed polynomial ¢q. Then it follows
by Lemma 5.3 (part 2 for the case k = 3) that ©5(A4) C ©5(S) C ©5(A @ SAT).
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2. Analogously to 1. using Corollary 4.7 instead of Theorem 4.5. |

Corollary 5.10
1. RP(co-SPARSE) C EL?
2. EL(RE(SPARSE)) C EL?

Finally we prove the location of IC[log,poly] in the first level of the extended low
hierarchy. Since ELY = ELY = EL% the class IC[log, poly] which equals RE(SPARSE)N
R!(co-SPARSE) is located two levels below RE(SPARSE) in the extended low hierarchy.

Theorem 5.11 If A has a sparse description that ws P(SAT & A) printable then A €
EL®.

Proof Let S be a P(SAT ¢ A) printable description for A, i.e., A € P(S). We have
to show that NP(A) C P(SAT & A). The NP(A) computation can be simulated by the
following P(SAT & A) computation: first compute a large enough initial segment of the
sparse set S and then simulate the NP(A) computation where oracle queries to A are
answered using the initial segment of S. |

Since the class APT (almost polynomial time [MP79]) is easily seen to be contained in
IC[log, poly] the following corollary subsumes all previously known E LT-lowness results

(e.g. for APT [LS91], for E}(TALLY) [BB86] and for R? (TALLY) [AH92|) regarding

sets reducible to sparse or tally sets.
Corollary 5.12

1. IC[log, poly] C ELY

2. EL(IC[log, poly]) C ELY

Proof Let A be a set in IC[log, poly]. By Theorems 4.14 and 4.12 there is a tally
set T € P(SAT @ A) such that A € RE(T) N RY(T). Since T is actually P(SAT @ A)-
printable the E LT lowness of A follows by Theorem 5.11. ]

The following theorem can be proved similarly.
Theorem 5.13 R"’(TALLY )N R (TALLY) C ELT.

We summarize some of our results on simplicity and lowness in the following table.

For A in the reduction class simplicity lowness

R} (RF(SPARSE)) NP(A4) EL?

Ry, (RY(SPARSE)) NP(SAT ¢ A)/FOL(A) | ELY

RP(TALLY) N RY(TALLY) P(SAT ¢ A) ELT

R'P(TALLY ) N R ™ (TALLY) | P(SAT ¢ A) ELY
Reo?(SPARSE) N NPNPNSPARSE | pro 4) O5(A4) C 0}

R} (RS (SPARSE)) NP(SAT & A) OL(A) C OB A)
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