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Abstract

We investigate the complexity of obtaining sparse descriptions for sets in vari�
ous reduction classes to sparse sets� Let A be a set in a certain reduction class
Rr�SPARSE�� Then we are interested in �nding upper bounds for the complexity
�relative to A� of sparse sets S such that A � Rr�S�� By establishing such upper
bounds we are able to derive the lowness of A�
In particular� we show that if a set A is in the class Rp

hd�R
p
c�SPARSE�� then

A is in Rp

hd
�Rp

c�S�� for a sparse set S � NP�A�� As a consequence we can lo�
cate Rp

hd�R
p
c�SPARSE�� in the EL�� level of the extended low hierarchy� Since

Rp
hd�R

p
c�SPARSE�� � Rp

b�R
p
c�SPARSE�� this solves the open problem of locating

the closure of sparse sets under bounded truth�table reductions optimally in the
extended low hierarchy� Furthermore� we show that for every A � Rp

d�SPARSE�
there exists a sparse set S � NP�A � SAT��F�p

��A� such that A � Rp
d�S�� Based

on this we show that Rp
��tt�R

p
d�SPARSE�� is in EL

�
� �

Finally� we construct for every set A � Rp
c�TALLY��R

p
d�TALLY� �or equivalently�

A � IC	log� poly
� as shown in 	AHH���
� a tally set T � P�A � SAT� such that
A � Rp

c�T ��R
p

d�T �� This implies that the class IC	log� poly
 of sets with low instance
complexity is contained in EL�� �

� Introduction

Sparse sets play a central role in structural complexity theory� The question of the
existence of sparse hard sets for various complexity classes under di�erent sorts of re�
ducibilities is well studied �see for example �KL��	 Mah�
	 OW��	 AHH��
	 AKM�
��
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Besides that much work has been done on other issues concerning the complexity of sets
reducible to sparse sets �see for example �Kad��	 AH�
	 SL�
	 AHH��
�� A central
motivation for most earlier work �and also for this paper� can be seen as seeking answers
to the following two questions�

�� If a set A is reducible to a sparse set	 does it follow that A is reducible to some
sparse set that is �simple� relative to A�


� If a set A is reducible to a sparse set	 then how easy is it to access all the relevant
information contained in the set A when it is used as oracle�

Question � originates in the study of the notions of equivalence and reducibility to
sparse sets �see for example �TB��	 AHOW	 GW��� and addresses the complexity
�relative to A� of sparse descriptions for sets A which are reducible to sparse sets� For
the case of Turing reductions	 Gavald�a andWatanabe �GW�� established an NP�co�NP
lower bound by constructing a set B � Rp

T �SPARSE� �in fact	 B is even in R
p
c�SPARSE��

that is not Turing reducible to a sparse set in NP�B� � co�NP�B�� For truth�table
reduction classes to sparse sets	 the �rst question is also investigated in �AHH��
 where
various upper bounds for the relative complexity of sparse descriptions are presented�
The second question concerns lowness properties of sets reducible to sparse sets�

Lowness is an important structural tool for systematically classifying sets in di�erent
complexity classes according to the power they provide when used as oracles� Building
on ideas from recursive function theory	 Sch�oning �Sch�� de�ned the low hierarchy inside
NP� In order to classify sets outside of NP �e�g� sets reducible to sparse sets� Balc�azar	
Book	 and Sch�oning �BBS�� de�ned the extended low hierarchy� The extended low
hierarchy was subsequently re�ned by Allender and Hemachandra �AH�
 and Long
and Sheu �LS�� who showed the optimal location of various reduction and equivalence
classes to sparse and tally sets in the �re�ned� extended low hierarchy� Very recently	
Sheu and Long �SL�
 proved that the extended low hierarchy is an in�nite hierarchy�
In order to investigate the �rst question	 we generalize the de�nition of sparse set

descriptions given in �GW��� Let �r be a reducibility� A sparse set S is a sparse
r�description for a set A if A �r S� Similarly	 a tally set T is a tally r�description for
A if A �r T � In particular a sparse set S is called a sparse description for A if A �p

T S�
We are interested in �nding upper bounds for the relative complexity of sparse �tally�
r�descriptions for sets in Rr�SPARSE�� �respectively Rr�TALLY��� We refer to a sparse
r�description satisfying the established upper bound as a simple sparse r�description
�with respect to that upper bound�	 and we refer to the corresponding upper bound
result as a simplicity result�
In Section � we establish simplicity results for various reduction classes to sparse and

tally sets� In Section � we apply the simplicity results to derive lowness properties� These
results reveal a close interconnection between the lowness of sets which are reducible
to sparse or tally sets and the complexity of computing small descriptions for these
sets� More precisely	 the general pattern to prove the lowness of a set A that reduces
to a sparse set is the following� �rst we appropriately bound the complexity of a sparse
description for A� based on such a simplicity result	 we then apply a deterministic
enumeration technique like that of Mahaney �Mah�
 or a census technique similar to
that of Hemachandra �Hem�� and Kadin �Kad�� to replace the sparse oracle S �and

�For a reducibility �r and a class C of sets� Rr�C� � fA j A �r B for some B � Cg�






thus A�� Intuitively	 we use the simplicity result to extract enough information �a
suitable initial segment of S or the census thereof� from the oracle set A in order to
avoid further queries to A� Our approach clari�es that the appropriate simplicity result
is the basic reason for the set to be low� Using this approach we are able to derive
several new and optimal lowness results�

� Overview of results

The main results in this paper are the following�
We show that for every setA � Rp

hd�R
p
c�SPARSE�� there exists a sparse set S � NP�A�

such that A � Rp
hd�R

p
c �S��� We use this result to locate R

p
hd�R

p
c�SPARSE�� and	 as a

consequence	 also Rp
b�R

p
c�SPARSE�� in the EL

�
� level of the extended low hierarchy�

This solves an open problem posed in �AH�
 regarding the location of Rp
��tt�SPARSE�

in the extended low hierarchy� Since there exist sparse sets that are not in EL�
� �AH�


the location of Rp
hd�R

p
c �SPARSE�� in EL

�
� is optimal�

Furthermore	 we show that for each set A which reduces via a disjunctive reduction
to a sparse set there exists a sparse set S � NP�A�SAT��F�p

��A� such that A � Rp
d�S��

Based on this we show that Rp
��tt�R

p
d�SPARSE�� is also contained in EL

�
� � Previously it

was only known that Rp

d�SPARSE� lies in EL
�
� �derived from the EL

�
� �lowness of P�poly

�BBS���� �We note that very recently it has been proved that P�poly is contained in
EL�

� �K�ob�
 using a di�erent and more involved proof technique��
Next we show that for every set A in Rco�np

m �SPARSE� there exists a sparse set
S � Rnp

m �A� such that A � Rco�np
m �S�	 and that for every set A in Rp

hd�R
co�np
m �SPARSE��

there exists a sparse set S � NP�SAT � A� such that A � Rp

hd�R
co�np
m �S��� As a

consequence we get that NP�NP � SPARSE� � Rco�np
m �SPARSE� is low for �p

�	 and
that for A � Rp

hd�R
co�np
m �SPARSE�� it holds that �p

��A� � �p
���

p
� � A�� Since

Rp
b�R

co�np
m �SPARSE�� � Rp

hd�R
co�np
m �SPARSE��	 we get similar results for the class

Rp
b�R

co�np
m �SPARSE�� as corollaries�

Finally we locate the class IC�log�poly of sets containing only strings of low instance
complexity in the �rst level EL�

� of the extended low hierarchy� The simplicity result
behind the lowness of IC�log�poly �which equals Rp

c�TALLY��R
p
d�TALLY� �AHH

��
�
is that for every set A � Rp

c�TALLY��R
p
d�TALLY� there is a tally set T in P�SAT�A�

such that A � Rp
c�T � � Rp

d�T ��

� Preliminaries and notation

Let A be a set� �A denotes the characteristic function of A� A�n �A�n� denotes the set
of all strings in A of length n �up to length n	 respectively�� The cardinality of A is
denoted by jAj� A set T is called a tally set if T � ��� The census function of a set A is
censusA��n� � jA�nj� A set S is called sparse if its census function is bounded above by
a polynomial� We use TALLY and SPARSE to represent the classes of tally and sparse
sets	 respectively�
The join of two sets A and B	 denoted A � B	 is de�ned as A � B � f�x j x �

Ag � f�x j x � Bg� h�� �i denotes a standard polynomial time invertible pairing function
such that h�i� �ji � �� for all i� j � �� Such a pairing function can be extended in a
standard fashion to encode arbitrary �nite sets of strings� For a class C of sets we denote

�



Name Notation

many�one �p
m

one truth�table �p
��tt

bounded truth�table �p
b

conjunctive �p
c

disjunctive �p

d

bounded Hausdor� �p
bhd

Hausdor� �p
hd

np many�one �np
m

co�np many�one �co�np
m

Table �� Polynomial�time Reductions

the union of all sets in C by
S
C� A set S is called P�C��printable �see �HY��� if the

function �n 	
 hS�ni can be computed inside FP�C��
The reducibilities discussed in this paper are the standard polynomial time boun�

ded reducibilities de�ned by Ladner	 Lynch	 and Selman �LLS�� and the Hausdor�
reduction introduced by Wagner �Wag�� �see Table � for an overview��

De�nition ��� �Wag��	 A is Hausdor��reducible to B �A�p
hdB�� if there exists a

function f computable in polynomial time� such that for all x� f computes a tuple
f�x� � hy�� y�� � � � � y�ki such that

�� �B�y�� � �B�y�� � � � � � �B�y�k�� and

	� �A�x� �
Wk
i����B�y�i��� � ��B�y�i��

We call f a bounded Hausdor� reduction �A�p
bhdB� if k is a constant�

Notation �AHOW	 For any reducibility ��
r where � � fp� np� co�npg and r �

fm� c� d� ��tt� b� hd� bhdg and any class C of sets let R�
r �C� � fA j A ��

r B for some
B � Cg�

A class K of sets that includes  and �� and is closed under union and intersection is
said to be a set ring� The following characterization of the boolean closure of set rings
due to Hausdor� plays a key role in some of our results�

Theorem ��
 �Hau��	 Let K be a set ring and let BC�K� be the closure of K under
union� intersection� and complement� Then every A � BC�K� can be represented as
A �

Sk
i���A�i�� �A�i�� where Aj � K� � � j � 
k� and A� � A� � � � � � A�k�

The above representation for A is called a Hausdor� representation for A over K� We
state some useful properties relating boolean closures	 bounded truth�table closures	
and the bounded Hausdor� closures of language classes�

Lemma ��� �KSW��	 Let K be a class that contains P and is closed under many�one
reductions� Then BC�K� � Rp

b�K��

�



Lemma ��� Let K be a class closed under many�one reductions and under join� Then
A has a Hausdor� representation over K if and only if A is bounded Hausdor� reducible
to some set in K�

Proof Let A �
Sk
i���A�i�� � A�i�	 where Aj � K	 � � j � 
k	 and A� � A� �

� � � � A�k� Then A is bounded Hausdor� reducible to A� � A� � � � � � A�k via f with
f�x� � hf��x�� � � � � f�k�x�i	 where fi is a many�one reduction function from Ai to A��
If A is bounded Hausdor� reducible to a set B � K via f then A �

Sk
i���B�i���B�i�

where Bj � fx j f�x� � hy�� � � � � y�ki and yj � Bg� Since Bj�p
mB this is a Hausdor�

representation for A over K�

The next lemma is obtained by combining Theorem ��
 and the above two lemmas�

Lemma ��� If K is a set ring which contains P and is closed under many�one reduc�
tions then BC�K� � Rp

bhd�K� � Rp
b�K��

Theorem ��

�� Rp
bhd�R

p
c�SPARSE�� � Rp

b�R
p
c�SPARSE��

	� Rp
bhd�R

co�np
m �SPARSE�� � Rp

b�R
co�np
m �SPARSE��

Proof In order to prove the two parts it su ces to show that Rp
c�SPARSE� and

Rco�np
m �SPARSE� are set rings� It is easy to see that Rp

c�TALLY� and Rco�np
m �TALLY�

are set rings� Since SPARSE � Rp
c�TALLY� �BLS�
 it holds that R

p
c�SPARSE� �

Rp
c�TALLY� and Rco�np

m �SPARSE� � Rco�np
m �TALLY� and therefore Rp

c�SPARSE� and
Rco�np
m �SPARSE� are set rings�

A truth�table reduction is honest if there exists a polynomial p such that for every
query y on input x	 jxj � p�jyj�� As far as reductions to sparse or tally sets are concerned
we can assume that they are honest�

Lemma ��� If A reduces to a sparse �tally� set S via a truth�table reduction of a certain
type then A reduces honestly to a sparse �respectively� tally� set S� via a truth�table
reduction of the same type�

Proof De�ne S � � fh�n� yi j n � �� y � Sg and in the new reduction to S� replace each
query y on input x by the query h�jxj� yi�

In the case of reductions to sparse sets we can even assume that the query length
depends only on the input length �via some strictly increasing polynomial��

Lemma ��� If A reduces to a sparse set S via a truth�table reduction of a certain type
with query generator g then A reduces to a sparse set S� via a truth�table reduction of
the same type with a query generator g� such that for all x the queries generated by g��x�
have length r�jxj� for a strictly increasing polynomial r�

�



Proof Replace each query y by y��t�jxj	�jyj and S by the sparse set fz��i j z � S� i � �g
where t is a polynomial bounding the computation time of the query generator g�

For a class C of sets and a class F of functions from �� to �� let C�F �KL�� be the
class of sets A such that there is a set B � C and a function h � F such that for all
x � ��	

�A�x� � �B�x� h��
jxj��

Although Karp and Lipton introduced the notion of advice functions in order to cha�
racterize nonuniform complexity classes by imposing a quantitative length restriction
on the functions in F 	 we will consider here complexity restricted advice function clas�
ses� We refer the reader to �KT�� for a general study of complexity restricted advice
functions�
For a set A the class ��A� �LS�� contains all languages L�M�A� accepted by a

deterministic polymomial time bounded oracle machineM asking on inputs of length n
at most O�log n� queries to A� A deterministic polynomial�time oracle machineM as in
the de�nition above is called a � machine� The � levels of the �relativized� polynomial
time hierarchy are de�ned as �p

k�A� � ���
p

k���A��� k � � �Wag��	 LS���
Similarly	 the class F��A� contains all functions computable by some deterministic

polymomial time bounded oracle transducer M asking on inputs of length n at most
O�log n� queries to oracle A	 and F�p

k�A� � F���
p
k���A��� k � ��

For further de�nitions used in this paper we refer the reader to standard books on
structural complexity theory �for example	 �BDG	 Sch����

� Upper bounds for sparse and tally descriptions

In this section we consider the following question� If a set A reduces to a sparse set S
via a reduction of a certain type	 does it follow that A reduces via a reduction of the
same type to some sparse set S� that is �simple� relative to A�
We notice that a simplicity argument was already used in the proof of Mahaney!s

theorem �Mah�
 that if NP has sparse hard sets then P � NP� Mahaney �rst showed
that P � NP under the stronger assumption that NP has a sparse complete set� From
that the theorem is derived by observing that if a set A � NP many�one reduces in
polynomial time to a sparse set then it actually many�one reduces to a sparse set in NP�
This observation can be formalized as a simplicity result for sets in Rp

m�SPARSE��

Theorem ��� �LS��	 If A � Rp
m�SPARSE� then there exists a sparse set S � Rnp

m �A�
such that A�p

mS�

It is easy to see that the same upper bound holds for Rp
c�SPARSE�	 i�e�	 every set

A � Rp
c�SPARSE� has a sparse c�description inR

np
m �A�� On the other hand	 for a set A in

Rp
b�SPARSE� the only known upper bound for the complexity of sparse b�descriptions
is "p

��A� �this can be seen by a minor modi�cation of the proof that every set A in
P#poly has an advice function computable in "p

��A� �Sch����
Surprisingly	 it turns out �see the following theorem� that each set A in the reduc�

tion class Rp
hd�R

p
c �SPARSE��	 which is larger than Rp

b�SPARSE�	 has a sparse hd�c��
description in NP�A�� From this it follows �see Section �� that Rp

hd�R
p
c �SPARSE��	 and

therefore Rp

b�SPARSE� are in EL
�
� �

�



Theorem ��
 For every set A � Rp
hd�R

p
c �SPARSE�� there is a sparse set $S � NP�A�

such that A � Rp
hd�R

p
c� $S���

Proof Let A be a set in Rp
hd�R

p
c �S�� for a sparse set S� Composing the Hausdor� and

conjunctive reduction functions	 we obtain FP functions g and k such that for all x	

�� for all i	 � � i � 
k�x� � �	 g�i% �� x� � S implies g�i� x� � S


� x � A� for some even i	 
 � i � 
k�x�	 g�i� �� x� � S and g�i� x� �� S

By Lemma ��� we can assume that there exists a strictly increasing polynomial r such
that jyj � r�jxj� for all x and all y �

S�k�x	
i�� g�i� x�� In order to prove the theorem we

give an NP�A� algorithm that accepts a sparse set $S � S such that A reduces to $S via
g and k� In other words	 we will show that $S ful�ls the two conditions above for all
x � ��� Intuitively	 on input y of length r�n� starting with T �  the algorithm expands
T inside S�r�n	 by guessing strings in �n witnessing that T does not yet ful�l the two
conditions above� Finally y is accepted if y � T � The NP�A� algorithm for $S is given
by the following code �p is a polynomial bounding the census of the sparse set S��

input w
if jyj �� fr�n� j n � �g then reject end
compute n such that jwj � r�n�
T �� 
guess k � f�� � � � � p�jwj�g and x�� x�� � � � � xk � �n

for j � � to k do
guess i � f�� � � � � 
k�xj�g
if i � 
k�xj� � g�i% �� xj� � T or
i � � � g�i� �� xj� � T � �i is odd � xj � A�

then T �� T � g�i� xj� end
end for
if w � T then accept else reject end

Clearly	 the running time of the algorithm is polynomially bounded� We prove that
the set $S accepted by the above algorithm has the required properties by establishing
the following claims�

Claim � T is a subset of S during each step of the computation�

Proof of Claim �� The claim certainly holds when the computation starts� Therefore
it su ces to show that whenever a set g�i� xj� is included in T then it holds that
g�i� xj� � S provided that T � S� But this immediately follows from the fact that T is
only expanded by g�i� xj� if

i � 
k�xj� � g�i% �� xj� � T

or
i � � � g�i� �� xj� � T � �i is odd � xj � A�

�

�



Claim 
 For every input of length r�n� there is a computation path along which the set
T � $S�r�n	 is computed� and $S�r�n	 ful
ls conditions � and 	 for all x of length n�

Proof of Claim 
� Let T �n� be a set of maximum cardinality that is computed along
some path 	 on some input of length r�n�� Since T �n� � S�r�n	 by Claim � it follows that
jT �n�j � p�r�n��� We �rst show that T �n� � $S�r�n	� In order to derive a contradiction
assume that there is an input y � $S�r�n	 that is not contained in T �n�� Then clearly
jT �n�j � p�r�n�� holds by Claim � since otherwise T �n� � S�r�n	� Therefore we can
assume w�l�o�g� that the value of k guessed on path 	 is smaller than p�r�n�� since we
can remove all strings xj from the list that don!t expand T along 	 �
Consider now some computation path accepting y� Since y �� T �n� the set T computed

along this path is not contained in T �n�� Let T � be the value of T just before an element
q not in T �n� is included to T for the �rst time	 and let j
 and i
 be the corresponding
values of j and i	 respectively	 i�e�	 q � g�i
� xj��� Then it holds that T

� � T �n�� Thus	
adding xj� to the list of strings guessed along path 	 and guessing i
 in the j
th iteration
of the for�loop gives a computation path 	 � that computes the set T �n� � g�i
� xj� �	
contradicting the maximality of jT �n�j�
Using the maximality of jT �n�j it is easy to see that T �n� � $S�r�n	 ful�ls conditions

� and 
 for all x of length n since otherwise T �n� could be expanded� �

Because the query sets for inputs of di�erent lengths are disjoint conditions � and 

are ful�lled by $S for all inputs x	 i�e�	 A reduces to $S via the given reduction�

Since the given hd�c��reduction function is not modi�ed in the proof of Theorem ��

we immediately obtain the following corollary�

Corollary ��� For every set A � Rp

bhd�R
p
c�SPARSE�� there is a sparse set S� � NP�A�

such that A � Rp
bhd�R

p
c�S

����

Since Rp
bhd�R

p
c �SPARSE�� � Rp

b�R
p
c �SPARSE�� by Theorem ��� and since every boun�

ded Hausdor� reduction is also a bounded truth�table reduction we additionally have
the following simplicity result for Rp

b�R
p
c �SPARSE���

Corollary ��� For every set A � Rp
b�R

p
c �SPARSE�� there is a sparse set S� � NP�A�

such that A � Rp
b�R

p
c �S

����

Next we consider sets in Rp
d�SPARSE� and show that every set A in Rp

d�SPARSE�
has a sparse d�description in NP�A � SAT��F�p

��A�� Furthermore we show that there
exists a set in NP�A��F�p

��A� such that every element h�
n�W i in this set encodes a

�nite set W to which A is disjunctively reducible with respect to strings of length n	
i�e�	 A�n�p

dW via the given disjunctive reduction function �cf� the notion of CIR�A�
�KoSc���� Our proof technique is a re�nement and an extension of the one developed
in �AHH��
 where it is shown that for every set A in Rp

d�SPARSE� there is a sparse
set S� � P�NP�A�� such that A � Rp

d�S
���

Theorem ��� Let A be a set in Rp
d�SPARSE� witnessed by the sparse set S and the

reduction function f � Then

�� there exists a set C � fh�n�W i j A�p
dW via f for inputs of length ng and a

polynomial p such that C � NP�A��F�p
��A� and for every n there is at least one

pair of the form h�n�W i in C�p�n	�

�



	� there exists a sparse set $S � NP�A � SAT��F�p
��A� such that A�p

d
$S via f �

Proof By Lemma ��� we can assume that A reduces to a sparse set via a reduction
function f such that for all x and y � f�x�	 jyj � r�jxj� and jf�x�j � r�jxj�	 where r
is a strictly increasing polynomial� Then it holds for all x that x � A if and only if
f�x� � S�r�jxj	 �� � We construct sparse sets S� � A and S� � A which de�ne a sparse
set $S �

S
y�S� f�y� �

S
y�S� f�y� such that for all x	 x � A if and only if f�x� � $S �� �

Consider the set L de�ned by

h�n� hx�� � � � � xji� hy�� � � � � ykii � L �

for all l� � � l � j� xl � A�n � f�xl� �
�S

��i�l f�xi� �
Sk
i�� f�yi�

�
� 

and

for all l� � � l � k� yl � A
�n
� f�yl� �

�Sj
i�� f�xi��

S
��i�l f�yi�

�
�� 

Clearly L is in P�A�� Note that for h�n� hx�� � � � � xji� hy�� � � � � ykii in L the set
Sk
i�� f�yi� is

a subset of S and therefore it holds for every l	 � � l � k	 that f�xl��
S
��i�l f�xi��S � 	

i�e�	 f�xl� generates at least one query in S that is not covered by any of the sets
f�x��� � � � � f�xl���� The advice that we use are the values of the following two functions	

j�n� � maxfj j �k �x�� � � � � xj � y�� � � � � yk � h�
n� hx�� � � � � xji� hy�� � � � � ykii � Lg

k�n� � maxfk j �x�� � � � � xj�n	� y�� � � � � yk � h�
n� hx�� � � � � xj�n	i� hy�� � � � � ykii � Lg

Claim � For all n it holds that j�n� � censusS��r�n	� and k�n� � r�n� � censusS��r�n	��

Proof of Claim �� Let h�n� hx�� � � � � xj�n	i� hy�� � � � � ykii � L� As noted above	 it holds
for every l	 � � l � j�n�	 that f�xl� �

S
��i�l f�xi� � S � � Since f�xi� � S �� 	

� � i � j�n�	 it follows that

censusS��
r�n	� �

������
�

��i�j�n	

f�xi� � S

������ �
j�n	X
i��

jf�xi� � Sj � j�n�

This proves the �rst part of the claim� The second part follows immediately by the
de�nition of L since for all x	 jf�x�j � r�jxj�	 i�e�	 j

S
��i�j�n	 f�xi�j � j�n� � r�n�� �

Since r�n� and censusS��n� are bounded by some polynomial the functions j�n� and
k�n� are also polynomially bounded	 and the following claim can be easily proved�

Claim � On input �n� j�n� and k�n� can be computed by an F�p
��A� computation�

Every element z � h�n� hx�� � � � � xj�n	i� hy�� � � � � yk�n	ii in L contains enough information
to construct a set Sz containing at most r�n� � j�n� elements such that A�n�p

dSz via f �

Claim � Let h�n� hx�� � � � � xj�n	i� hy�� � � � � yk�n	ii � L� Then for all x � �n it holds that

x � A if and only if f�x� � �
Sj�n	
i�� f�xi��

Sk�n	
i�� f�yi�� �� �

�



Proof of Claim �� In order to derive a contradiction let x � �n and assume that
x � A but f�x� � �

Sj�n	
i�� f�xi� �

Sk�n	
i�� f�yi�� � � Then it follows that the string

h�n� hx�� � � � � xj�n	� xi� hy�� � � � � yk�n	ii is contained in L which contradicts the maximality

of j�n�� To show the converse assume that x �� A and f�x���
Sj�n	
i�� f�xi��

Sk�n	
i�� f�yi�� �� �

Then h�n� hx�� � � � � xj�n	i� hy�� � � � � yk�n	� xii � L contradicting the maximality of k�n�� �

Now consider the sets C and C � de�ned by

h�n�W� j� ki � C � � �h�n� hx�� � � � � xji� hy�� � � � � ykii � L � W �
j�

i��

f�xi� �
k�
i��

f�yi�

and
h�n�W i � C � h�n�W� j�n�� k�n�i � C �

Clearly	 C � � NP�A�	 and therefore C � NP�A��F�p
��A�� By Claim � it holds for every

h�n�W i � C that A�n�p
dW via f � Furthermore	 by the de�nitions of L and C it follows

for all h�n�W i � C that W � �r�n	 and jW j � r�n� � j�n�� This proves the �rst part of
the theorem�
In order to prove the second part we select for every n the lexicographically smallest

pair h�n�Wni in C and de�ne the desired sparse set $S as the union of all the Wn	 n � ��
Consider the NP set D de�ned by

h�n�W� j� ki � D �

there exists a string h�n� hx�� � � � � xji� hy�� � � � � ykii such that

for all l� � � l � j� f�xl� �W ��  � f�xl� � �
S
��i�l f�xi� �

Sk
i�� f�yi�� �  and

for all l� � � l � k� f�yl� �W �  � f�yl� � �
Sj
i�� f�xi��

S
��i�l f�yi�� �� 

and h�n�
Sj
i�� f�xi��

Sk
i�� f�yi�i � h�n�W i

Claim  A string h�n�W� j�n�� k�n�i � C � is contained in D if and only if there exists
a string h�n�W �i � C which is lexicographically smaller than h�n�W i�

Proof of Claim � Let h�n�W� j�n�� k�n�i be a string in C �� Then there exists a string

h�n� hx�� � � � � xj�n	i� hy�� � � � � yk�n	ii � L such that W �
Sj�n	
i�� f�xi� �

Sk�n	
i�� f�yi�� Thus it

follows by Claim � that for all x of length n	 x � A if and only if f�x� �W �� 	 and
the claim follows by the de�nition of D� �

An immediate consequence of Claim � is

Claim � For every n there is exactly one element of the form h�n�W i in C � �D�

Now we are ready to de�ne the sparse set $S �
S
nfW j h�n�W i � C � Dg� For

r�n� � jwj the following algorithm accepts an input hw� j�n�� k�n�i if and only if w is in
$S�

input hw� j� ki
guess n � jwj
if jwj �� r�n� then reject end
guess x�� � � � � xj � y�� � � � � yk � �n

if h�n� hx�� � � � � xji� hy�� � � � � ykii �� L then reject end
W ��

Sj
i�� f�xi��

Sk
i�� f�yi�

if h�n�W� j� ki �� D and w �W then accept else reject end

��



Since the �rst if�statement queries oracle L �which is in P�A��	 the second if�statement
queries oracle D �which is in NP� and since the advice �namely j�n� and k�n�� can be
computed in F�p

��A� it follows that $S � NP�A � SAT��F�
p
��A��

The following theorem shows in general that a simplicity result for a reduction
class Rp

r�SPARSE� can be translated into a simplicity result for the reduction class
Rp
��tt�R

p
r�SPARSE���

Theorem �� Let C be a relativizable complexity class closed under join such that
C�A �B� � C�A� � C�A� for all sets A � �� and B � P� If every set L in Rp

r�SPARSE�
has a sparse r�description in C�L� then every set A in Rp

��tt�R
p
r�SPARSE�� has a sparse

��tt�r��description in C�A��

Proof Let A be in Rp
��tt�R

p
r�SPARSE�� witnessed by a generator f and a set B � Rp

r�S�
for some sparse set S� Then it holds for all x	

x � A� �f�x� � hq� idi and q � B or �f�x� � hq� negi and q �� B

Let X � fx j f�x� � hq� idi for some qg and Y � fx j f�x� � hq� negi for some
qg� Then it is clear that fX�Y g is a partition of ��� Furthermore	 A � X �p

r S and
A � Y �p

r S� Now	 using the assumption that every set L in the class R
p
r�SPARSE� has

a sparse r�description in C�L� it follows that there are sparse sets S� � C�A �X� and
S� � C�A � Y � such that

A �X �p
r S� and A � Y �p

r S�

via reduction functions g� and g�	 respectively� Now the proof is completed by combining
the two r�reductions g� and g� to a reduction witnessing A � Rp

��tt�R
p
r�S��S��� and by

observing that S� � S� is a sparse set in C�A��

Corollary ��� For every set A in Rp
��tt�R

p

d�SPARSE�� there is a sparse set S� in
NP�A � SAT��F�p

��A� such that A � Rp
��tt�R

p
d�S

����

Next we consider nondeterministic reduction classes to sparse sets� The notion of
�co�np

m reducibility can be seen as a generalization of the deterministic polynomial�time
conjunctive reducibility�

De�nition ��� A set A is co�np many�one reducible to a set B �denoted A�co�np
m B�

if there exists a polynomial�time nondeterministic Turing transducer M such that for
every x � ��� x � A if and only if all outputs of M on input x are in B�

Note that A�co�np
m B if and only if A�np

mB where �
np
m is the more familiar polynomial�

time nondeterministic many�one reducibility �LLS��� Clearly	 for every set B	 Rp
c�B� is

contained in Rco�np
m �B�	 and Rco�np

m �B� is closed downward under �p
c and �

co�np
m reduc�

tions�

Theorem ��� For every set A � Rco�np
m �SPARSE� there exists a sparse set S � � Rnp

m �A�
such that A � Rco�np

m �S���

��



Proof Let S be a sparse set and let M be an NP transducer witnessing A � Rco�np
m �S��

W�l�o�g� we can assume that there is a polynomial p such that for all output strings y
of M on input x it holds that jxj � p�jyj�� Consider the following subset S� of S�

S � � fy j �x � A �M on input x outputs y g

Then A � Rco�np
m �S�� via M � Furthermore	 the following NP transducer witnesses

S��np
mA�

input y
guess a string x� jxj � p�jyj�
guess a computation path
if M�x� produces the output y on the guessed path
then output x
else output a �xed string not in A end

The next theorem shows how to construct �relative to A� small descriptions for sets
in the reduction class Rp

hd�R
co�np
m �SPARSE���

Theorem ���� For every set A � Rp
hd�R

co�np
m �SPARSE�� there is a sparse set S� �

NP�SAT �A� such that A � Rp
hd�R

co�np
m �S����

Proof The proof is quite similar to that of Theorem ��
 and therefore we omit most of
the details� Let A be a set in Rp

hd�R
co�np
m �S�� for a sparse set S� Again we can combine

the Hausdor� reduction function and the NP transducer witnessing the co�np many�one
reduction to obtain an FP function k and an NP transducerM such that the following
conditions are ful�lled for all x�

�� for all i	 � � i � 
k�x� � �	 if all outputs of M�i % �� x� are contained in S then
also all outputs of M�i� x� are contained in S


� x � A� for some even i	 
 � i � 
k�x�	 all outputs of M�i � �� x� are contained
in S but some output of M�i� x� is not contained in S

We can assume that there exists a strictly increasing polynomial r such that jyj � r�n�
for all outputs y of M on any input �i� x� such that � � i � 
k�x� and jxj � n�
We give an NP�SAT�A� algorithm that accepts a sparse set $S � S such that A

reduces to $S via M and k�

input y
if jyj �� fr�n� j n � �g then reject end
compute n such that jyj � r�n�
T �� 
guess k � f�� � � � � p�jyj�g
guess x�� x�� � � � � xk � �n

for j � � to k do
guess i � f�� � � � � 
k�xj�g
if i � 
k�xj� � fy jM�i % �� xj� outputs yg � T or
i � � � fy jM�i � �� xj� outputs yg � T � �i is odd � xj � A�

then T �� T � fy jM�i� xj � outputs yg end
end for
if y � T then accept else reject end

�




The reason why we need the additional SAT oracle is to test for the inclusions fy j
M�i%�� xj� outputs yg � T and fy jM�i� �� xj� outputs yg � T 	 and to compute the
set fy jM�i� xj � outputs yg� The proof is completed by the following claims which can
be proved analogously to Claims � and 
 of the proof of Theorem ��
�

Claim � T is a subset of S during each step of the computation�

Claim 
 For every input of length r�n� there is a computation path along which the set
T � $S�r�n	 is computed� and $S�r�n	 ful
ls conditions � and 	 for all x of length n�

The following corollary is an immediate consequence of Theorems ���� and ����

Corollary ���� For every set A � Rp
b�R

co�np
m �SPARSE�� there is a sparse set S� �

NP�SAT �A� such that A � Rp

b�R
co�np
m �S����

At the end of this section we consider reduction classes to tally sets� The class
Rp
c�TALLY� � Rp

d�TALLY� is of particular interest since it coincides with the class
IC�log	poly of sets containing only strings of low instance complexity �AHH��
�
IC�log	poly and the notion of instance complexity were introduced by Ko	 Orponen	
Sch�oning	 and Watanabe �see �OKSW�� A set A is in IC�log	poly if there exist a con�
stant c � �	 a polynomial t and a set & � �� of programs such that for every x � ��

the following conditions are ful�lled�

�� there exists a p � &�c log �jxj	 that holds on input x in time t�jxj�	 and


� every p � & that halts on input x decides the membership of x in A�

Theorem ���
 �AHH��
	 IC�log�poly � Rp
c�TALLY� �R

p

d�TALLY��

Let & be the set of programs for A � IC�log�poly� Intuitively	 A is in Rp
c�TALLY� �

Rp

d�TALLY� because & can be encoded into a tally set T �T � f�num�p	 j p � &g where
num�p� is the number whose binary representation is given by �p�� Then A conjunc�
tively reduces to T via a reduction function that produces on input x all encodings
of small programs which reject x in polynomial time	 and A disjunctively reduces to
T via a reduction function that generates on input x all encodings of small programs
which accept x in polynomial time� Before we state our simplicity result for sets in
IC�log�poly we give a direct proof for the containment of Rp

c�TALLY��R
p
d�TALLY� inS

T�TALLYR
p
c�T � � Rp

d�T ��

Lemma ���� For every set A � Rp
c�TALLY� �R

p
d�TALLY� there is a tally set T such

that A �p
c T and A �p

d T �

Proof Let T�� T� be tally sets and let f� g be reduction functions witnessing A � Rp
c�T��

and A � Rp
d�T��	 respectively	 i�e� x � A� f�x� � T� � g�x� � T� ��  for all x� De�ne

the tally set T as follows

T � f��i�� j �i �� T�g � f�
�i j �i � T�g�

Furthermore	 consider the following reduction functions f � and g�

f ��x� � f��i�� j �i � f�x�g� g��x� � f��i j �i � g�x�g�

Then A reduces conjunctively to T via f � and disjunctively to T via g��

��



Theorem ���� For every set A � Rp
c�TALLY� � Rp

d�TALLY� there is a tally set T � �
P�SAT�A� such that A � Rp

c�T
�� � Rp

d�T
���

Proof By Lemma ���� we can assume that for A � Rp
c�TALLY� � Rp

d�TALLY� there
are honest polynomial time reduction functions f and g	 and a tally set T such that

x � A� f�x� � T �  � g�x� � T �� 

Let p be a polynomial such that jyj � p�jxj� and jxj � p�jyj� for all queries y in
f�x� � g�x�� Consider the following procedure for T ��

input �i

W �� 
for j �� � to p�p�i�� do
if there exists an x� jxj � p�i� such that �i � f�x� and �j � g�x� then
construct the lexicographically smallest such x by pre�x search
W ��W � fxg

end
if there exists an x� jxj � p�i� such that �j � f�x� and �i � g�x� then
construct the lexicographically smallest such x by pre�x search
W ��W � fxg

end
end
if for all x �W 	 x � A� �i � g�x� then accept else reject end

If we interpret �i and �j as encodings of programs pi and pj	 respectively	 �i�e�	 a program
pk accepts an input x if �k � g�x� and pk rejects x if �k � f�x�� then �i is in T � if there
is no program pj that decides some input x di�erently	 and pi is wrong on x� It is easy
to see that the set W can be computed using SAT as oracle and that the acceptance
condition can be evaluated asking oracle A� In order to show that T can be replaced by
T � we prove the following claims�

Claim � T � T ��

Proof of Claim �� An input �i is only rejected by the above procedure if either there
is a string x � A such that �i � f�x� or there is a string x �� A such that �i � g�x�� In
both cases it follows that �i �� T � �

Claim 
 For all x� g�x� � T � ��  � f�x� � T � �

Proof of Claim 
� Let �i be in g�x� � T � and assume that �j � f�x�� Since �i is
accepted there exists a string x� � A such that �i � g�x�� and �j � f�x��� Since x� � A	
it follows that f�x�� � T � 	 and therefore �j �� T � �

Claim � For all x� f�x� � T � ��  � g�x� � T � �

Proof of Claim �� Let �i be in f�x� � T � and assume that �j � g�x�� Since �i is
accepted there exists a string x� �� A such that �i � f�x�� and �j � g�x��� Since x� �� A	

��



it follows that g�x�� � T � 	 and therefore �j �� T � � Now the proof can be completed

by showing that A �p
c T

� via f and A �p
d T

� via g�

x � A� g�x� � T �� 
�Claim 	�
� g�x� � T � �� 

�Claim 
�
� f�x� � T �  � x � A

x �� A� f�x� � T �� 
�Claim 	�
� f�x� � T � �� 

�Claim ��
� g�x� � T �  � x �� A

Essentially by the same proof we obtain the following theorem�

Theorem ���� For every set A � Rnp
m �TALLY� � Rco�np

m �TALLY� there is a tally set
T � � P�SAT�A� such that A � Rnp

m �T
�� � Rco�np

m �T ���

The class IC�log�poly is known to be closed downward under polynomial time boun�
ded truth�table reductions �OKSW� It is interesting to note that IC�log�poly and
Rnp
m �TALLY� �R

co�np
m �TALLY� are also closed downward under polynomial time Haus�

dor� reductions�

Theorem ���

�� Rp
hd�IC�log�poly� � IC�log�poly

	� Rp
hd�R

np
m �TALLY� � Rco�np

m �TALLY�� � Rnp
m �TALLY� �R

co�np
m �TALLY�

Proof We prove the �rst part of the theorem� The second part can be proved similarly�
Let A�p

hdB for a set B � IC�log�poly via FP functions h and k	 i�e�	 x � A if and only if
there is an i � f�� � � � � k�x�g such that h�
i��� x� � B but h�
i� x� �� B� By Lemma ����
there is a tally set T such that B�p

cT via f and B�p
dT via g� Consider the tally set

T � � fhy� zi j y� z � Tg and the reduction function

g��x� �
k�x	�
l��

fhy� zi j y � g�h�
l � �� x��� z � f�h�
l� x��g

If x � A then there is an i � f�� � � � � k�x�g such that h�
i��� x� � B but h�
i� x� �� B�
Therefore	 g�h�
i� �� x�� � T ��  � f�h�
i� x�� � T �� 	 i�e� g��x� � T � �� �
In the case x �� A it holds for all i � f�� � � � � k�x�g that h�
i��� x� � B � h�
i� x� � B�

Therefore	 g�h�
i��� x���T ��  � f�h�
i� x���T � 	 which implies that g��x��T � � �
Hence A disjunctively reduces to T � via g�	 i�e� A � Rp

d�TALLY�� Since R
p
hd�C�

is closed under complementation for every class C	 we get that also A disjunctively
reduces to some tally set	 i�e� A � Rp

c�TALLY�� Since by Theorem ���
 IC�log�poly �
Rp
c�TALLY� �R

p
c�TALLY� it follows that A � IC�log�poly�

��



� Lowness

The low and high hierarchies inside NP were introduced by Sch�oning �Sch��� The notion
of lowness has turned out to be an important structural tool for classifying problems
and subclasses of NP not known to be NP�complete or in P� This idea was extended
by Balc�azar	 Book	 and Sch�oning �BBS�� who de�ned the extended low hierarchy in
order to classify decision problems and classes not contained in NP� Allender and
Hemachandra �AH�
 and Long and Sheu �LS�� re�ned the extended low hierarchy
and proved the optimality of the location of various classes therein�

De�nition ��� �BBS�� AH�
� LS��	 The �� "� and � levels of the extended low
hierarchy �denoted EL�

k � EL
�
k � and EL�

k � respectively� are de
ned as below�

�� EL�
k � fA j �p

k�A� � �
p
k���SAT�A�g� k � �

	� EL�
k � fA j "p

k�A� � "
p
k���SAT�A�g� k � 


�� EL�
k � fA j �p

k�A� � �
p
k���SAT�A�g� k � 


Various classes of sets reducible to sparse and tally sets have been shown to be in�
cluded in the extended low hierarchy �see for example �BBS��	 AH�
	 LS���� Using
the simplicity results of the previous section we are able to derive lowness results for
the reduction classes to sparse sets considered here� Some of our extended lowness
proofs contain a census argument similar to that used by Hemachandra �Hem�� and
Kadin �Kad��� The following useful lemma gives an upper bound for the complexity
of computing the census function of a sparse set�

Lemma ��
 For every sparse set S� censusS � F��Rnp
c �S���

Proof The value of censusS��n� can be computed by a binary search using the oracle
set C �� fh�n�mi j there are at least m di�erent strings of length at most n in Sg which
can easily be seen to be in Rnp

c �S��

The following technical lemma is used in several of our lowness proofs�

Lemma ���

�� For every set A and k � 
� �p
k�SPARSE � NP�A�� � �

p
���

p
k�� �A��

	� Let A be a set and let k � �� If L is in �p
k�SPARSE � NP�A � SAT��F�

p
��A �

SAT�� witnessed by a �p
k computation that on input x asks the sparse set only

queries of length p�jxj� for some 
xed polynomial p then L is in �p
���

p
k�� �A��

Proof

�� Let B be a set in �p

k�S� for a sparse set S in NP�A�	 and let M be a � machine
deciding B relative to some oracle C � �p

k���S� that is computed by a �
p
k�� oracle

machineM �� Let p be a polynomial bounding the length of the queries to S in the
�p

k�S� computation of B� We outline how B can be computed in �p
���

p
k�� � A��

On input x	 at �rst m � censusS��p�jxj	� is computed �by a F�
p
��A� computation	

as described in Lemma ��
�� Then machineM is simulated on input x where each

��



query y to C is replaced by the query hy�m� p�jxj�i to the NP��p
k�� � A� set C �

de�ned as

C � � fhy� i� ji j � y� � � � � � yi � S�j � y � L�M �� fy�� � � � � yig�g�


� Let B be a set in �p
k�S� for a sparse set S in NP�A � SAT��F�

p
��A � SAT�	 and

let M be a � machine deciding B relative to some oracle C � �p
k���S� that is

computed by a �p
k�� oracle machineM

�� The proof is similar to the one above� The
only di�erence is that now on input x the advice string for instances of S of length
p�jxj� and the cardinality of S�p�n	 has to be precomputed by an F�p

��A � SAT�
computation before the simulation of M on input x is started�

Theorem ��� Rp
hd�R

p
c�SPARSE�� � EL�

� �

Proof Let A be in Rp
hd�R

p
c �SPARSE��� Using Theorem ��
 we can assume that A �

Rp

hd�R
p
c �S�� for a sparse set S � NP�A�� In order to prove the theorem we have to show

that every set B � �p
��A� is already contained in �

p
��SAT�A�� Since A � Rp

hd�R
p
c�S��	

it follows that B � �p
��S�� Since S is in NP�A� we can apply Lemma ��� �part � for the

case k � �� and obtain that B is in �p
��SAT�A��

This result is optimal since SPARSE �� EL�
� as proved in �AH�
� Item 
 of the

following corollary follows from the closure under complementation of the classes in the
extended low hierarchy� Item � answers an open question in �AH�
 and also extends
the recent result by Long and Sheu �LS�� that Rp

��tt�SPARSE� � EL�
� � Item � is a

consequence of the closure of the � levels of the extended low hierarchy under�p
T �LS���

Corollary ���

�� Rp
c�SPARSE� � EL�

�

	� Rp
d�co�SPARSE� � EL�

�

�� Rp
b�SPARSE� � EL�

�

�� Ep
T �R

p
hd�R

p
c�SPARSE��� � EL�

�

The following theorem states the generalized �p
��lowness of NP�NP � SPARSE� �

Rco�np
m �SPARSE� and is an improvement of Kadin!s result that every sparse NP set is
low for �p

��

Theorem �� If A � NP�NP � SPARSE� and A�co�np
m S for a sparse set S then

�p
��A� � �

p
�� i�e� A is low for �p

��

Proof Let A � NP�S�� for a sparse set S� in NP and A�co�np
m S for a sparse set

S� By Theorem ��� we can assume that S � Rnp
m �A�� Since A � NP�S�� and since

NP�S�� is closed under �np
m �reductions it follows that S � NP�S��� This shows that

A � co�NP�NP�S�� � SPARSE� � NP�S ��� Let S�� � NP�S�� � SPARSE witness the
above inclusion for A	 i�e� A � co�NP�S ��� � NP�S��� It is not hard to infer that
NP�A� � NP�S � � S���� Hence	 it follows that �p

��A� � �p
��S

� � S���� Since S � � S��

��



is in NP�S�� � SPARSE we can invoke Lemma ��� �part � for the case k � 
� to get
�p
��S

�� S��� � �p
��S

��� Since S� � NP � SPARSE	 we invoke Lemma ��� �part �	 k � 
�
once more to get �p

��S
�� � �p

�� Combining the above inclusions yields that �
p
��A� � �

p
��

The following corollary improves the result of Lozano and Tor�an �LT�� that every
disjunctive self�reducible set that is many�one reducible to some sparse set is low for
�p
�� Since co�NP� log � Rco�np

m �TALLY� �AKM�
 it subsumes all previously known
�p
��lowness results �e�g� for NP � Rp

m�SPARSE� and for NP � co�NP� log	 cf� �LS���
regarding NP sets reducible to sparse or tally sets�

Corollary ���

�� If A � NP � Rp
c�SPARSE� then �

p
��A� � �

p
��

	� If A � NP � Rco�np
m �SPARSE�� then �p

��A� � �
p
��

Although we have simplicity results concerning nondeterministic reduction classes
to sparse sets �e�g� Theorem ����� extended lowness is not a meaningful measure of
lowness for such reduction classes since they contain either NP or co�NP� Nevertheless	
the next theorem is a kind of lowness result� We show that the full power of a �p

�

computation relative to an oracle in Rp
hd�R

co�np
m �SPARSE�� is not needed in order to

access the information contained in the oracle�

Theorem ��� If A � Rp
hd�R

co�np
m �SPARSE�� then �p

��A� � �
p
���

p
� �A��

Proof By Theorem ���� we can assume that A is in Rp
hd�R

co�np
m �S�� for a sparse set

S � NP�SAT �A�� Therefore	 �p
��A� � �

p
��S� � �

p
��NP�SAT�A� � SPARSE�	 and

by Lemma ��� �part � for the case k � �� we get �p
��NP�SAT �A� � SPARSE� �

�p
���

p
�� �SAT�A��� Now the theorem follows since �p

���
p
�� �SAT�A�� � �p

���
p
��A��

Our next lowness result exploits the simplicity of sparse d�descriptions for sets in
Rp
d�SPARSE��

Theorem ���

�� Rp

d�SPARSE� � EL�
� �

	� Rp
��tt�R

p
d�SPARSE�� � EL�

� �

Proof

�� Let A be in Rp
d�SPARSE�� We have to show that �

p
��A� � �

p
��A � SAT�� Since

A is many�one equivalent to the set fx��i j i � �� x � Ag we can w�l�o�g� assume
that all queries to A in the �p

��A� computation on input x are of length p�jxj�
for some �xed polynomial p� By Theorem ��� it follows that there is a sparse set
S � NP�A � SAT��F�p

��A� such that A is in R
p
d�S� via some function f 	 where all

queries in f�x� are of length q�jxj� for some �xed polynomial q� Then it follows
by Lemma ��� �part 
 for the case k � �� that �p

��A� � �
p
��S� � �

p
��A � SAT��

��




� Analogously to �� using Corollary ��� instead of Theorem ����

Corollary ����

�� Rp
c�co�SPARSE� � EL�

�

	� Ep
T �R

p
d�SPARSE�� � EL�

�

Finally we prove the location of IC�log	poly in the �rst level of the extended low
hierarchy� Since EL�

� � EL�
� � EL�

� the class IC�log�poly which equalsR
p
c�SPARSE��

Rp
d�co�SPARSE� is located two levels below Rp

c�SPARSE� in the extended low hierarchy�

Theorem ���� If A has a sparse description that is P�SAT�A� printable then A �
EL�

� �

Proof Let S be a P�SAT�A� printable description for A	 i�e�	 A � P�S�� We have
to show that NP�A� � P�SAT�A�� The NP�A� computation can be simulated by the
following P�SAT�A� computation� �rst compute a large enough initial segment of the
sparse set S and then simulate the NP�A� computation where oracle queries to A are
answered using the initial segment of S�

Since the class APT �almost polynomial time �MP��� is easily seen to be contained in
IC�log�poly the following corollary subsumes all previously known EL�

� �lowness results
�e�g� for APT �LS��	 for Ep

T �TALLY� �BB�� and for R
p
m�TALLY� �AH�
� regarding

sets reducible to sparse or tally sets�

Corollary ���


�� IC�log�poly � EL�
�

	� Ep
T �IC�log�poly� � EL�

�

Proof Let A be a set in IC�log�poly� By Theorems ���� and ���
 there is a tally
set T � P�SAT�A� such that A � Rp

c�T � � Rp

d�T �� Since T is actually P�SAT �A��
printable the EL�

� lowness of A follows by Theorem �����

The following theorem can be proved similarly�

Theorem ���� Rnp
m �TALLY� �R

co�np
m �TALLY� � EL�

� �

We summarize some of our results on simplicity and lowness in the following table�

For A in the reduction class simplicity lowness

Rp
hd�R

p
c�SPARSE�� NP�A� EL�

�

Rp
��tt�R

p
d�SPARSE�� NP�SAT�A��F�p

��A� EL�
�

Rp
c�TALLY� � Rp

d�TALLY� P�SAT�A� EL�
�

Rnp
m �TALLY� �R

co�np
m �TALLY� P�SAT�A� EL�

�

Rco�np
m �SPARSE� �NPNP�SPARSE Rnp

m �A� �p
��A� � �

p
�

Rp
hd�R

co�np
m �SPARSE�� NP�SAT�A� �p

��A� � �
p
���

p
� �A�

��
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