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We show that every sparse set S can be many-one reduced to an appropriate
tally set T' by a polynomial-time, randomized reduction (see formal definitions
below.) Since T is in NP if S is in NP, this result can be used to show that
there is a tally set in NP being randomized many-one complete for all sparse

sets in NP. This partially answers an open problem posed by Hartmanis and

Yesha [6].

In [6] it is shown that there is a tally set in NP being polynomial-time
Turing complete (actually, truth-table complete) for all sparse sets in NP, and
the question was posed whether there is also a many-one complete set for all

sparse sets in NP.

In [3] it was first shown that every sparse set is conjunctively reducible to
an appropriate tally set. This is proved by a certain “low degree polynomial
trick.” Alternatively, in [8] the result is proved by a “chinese remainder trick.”
We use a modification of the latter proof method to present our randomized

reduction. (A modification of the former method could be used just as well.)

A set A C{0,1} is called (polynomially) sparse if there is a polynomial p



such that for each n, the cardinality of AN {0,1}" is upper bounded by p(n).
Any set A C {1}* over a one-letter alphabet is called tally. (Every tally set is

clearly sparse.)

A set A randomly many-one reduces to a set B if there is a randomized,
polynomial-time transducer algorithm M and a polynomial ¢ > 1 such that

for all z,

r €A = M(x)€ B with probability 1,

r € A = M(x)¢ B with probability at least 1 — 1/¢(]z]).
Here M(x) denotes the output of M on input x. This definition coincides
essentially with Adleman and Manders’s UR-reducibility [1], with the PR-
reductions in [9] and the <%~"? reductions in [4]. In [9], a problem is shown to

be NP-complete under PR-reductions which is not known to be NP-complete

under polynomial-time Turing reductions.

We say that A randomly many-one reduces to B with error polynomial q if

we want to specify the polynomial ¢ in the above definition explicitly.

In the following, let py, ps, p3,... denote the sequence of prime numbers.
For a string « € {0,1}*, num(x) denotes the natural number whose binary
representation is 1z. We will make use of a polynomial-time computable pair-

ing function (-, -) and its generalization to arbitrary n-tuples.

Theorem. For every sparse set S there is a tally set T such that for every

polynomial q, S randomly many-one reduces to T with error polynomial q.

Additionally, if S € NP, then T' € NP.

Proof. Let S be a sparse set, and let p be a polynomial such that [SN{0,1}"| <
p(n) for all n. Define the tally set T' as follows.

T = {19 | n >0, and there is an = € S,

|z| = n, such that r = (num(z) mod p;)}

The randomized reduction algorithm M works as follows.

input « ; (*x |z| = n *)



guess randomly ¢ € {1,2,... . n-p(n)-q(n)};
r:=num(z) mod p;

output 10}

By the prime number theorem (cf. [7]) the value of the i-th prime p; is of order
O(i - Ini). Therefore, the length of the binary encoding of the n - p(n) - g(n)-
th prime is O(Inn). That means, any inefficient, exponential-time primality
test will be efficient enough—relative to the input length n—to guarantee that
the procedure works in polynomial-time. (An interesting detail here is that
the above procedure, for performing the random guess instruction, needs only

logarithmically many random bits.)

Clearly, by definition of T, if + € S, then every possible output 10 of
M on input x will be a member of 7.

On the other hand, if © & S, then there is the possibility that the output

n,0,7)

string 1 is in T because for some y € S with |y| = n, (num(y) mod p;) =
r. We estimate now the probability that this happens. By the Chinese re-
mainder theorem, if ¢ # b and py1,ps,...,p, are different primes satisfy-
ing [IT7, p; > max(a,b), then the sequences of remainders (ry,...,r,) and
(rl,...,r" ) obtained by taking r; = ¢ mod p; and r. = b mod p; are different
(in at least one component of the sequence.) We apply this to our scenario
here: @ = num(z) and b = num(y) where both numbers are bounded by 2"+1.
Further, [T, p; > 2"t is garanteed if m = n + 1 since p; > 2 for all . Now
consider all potential remainders r1,79,. .., 75p(n)g(n) that might be calculated
by the randomized procedure on input x. At least one of the first n + 1 will
be different for an arbitrary input y # . Taking out this different one, but
adding the (n 4 2)-nd remainder, there will be again at least one difference in
the remainder sequences, and so on. Altogether, we are sure to find at least
np(n)q(n) — n different points in the remainder sequences for x and y where

they differ, and at most n remainders are equal.

Therefore, for fixed y # x, the probability for hitting an equal element in
the remainder sequence is at most m, and the probability for hitting with
the output string 1{™) an element of T' (because of some y € S, |y| = n) is

at most |S N {0,1}"]- m < ﬁ



The set T is in NP if S is in NP. This can be seen as follows. On input
1067 guess some x of length n and verify that € S. Then, the i-th prime
has to be found and r = (num(x) mod p;) needs to be verified. O

In some sense, in the above proof, the information contained in the sparse
set S is distributed in logarithmically smaller pieces in the tally set, and this
is done in a certain redundant, error-correcting way. Encoding a sparse NP
set in a tally NP set such that the original information can be recovered is the
key technique of Hartmanis’s result [5] that DTIME(2°() £ NTIME(2°()) if
and only if there exist sparse sets in NP — P. The above technique can also be

used to prove this.

With very similar techniques as in [5] Hartmanis and Yesha [6] show that
there is a tally set in NP being complete for all sparse sets in NP. The complete-
ness notion here is understood for Turing reducibility. (Actually, any Turing
reduction to a tally set is already a truth-table reduction.) The authors ask
whether there is also a many-one complete set for all sparse sets in NP, but
in the same paper they show that there are relativizations which do not allow

such sets. Therefore, we think the following (relativizable) result is of interest.

Corollary. There is a tally set in NP which is complete for all sparse sets in

NP under randomized many-one reductions.

Proof. There is a set A that is complete for NTIME(2°(™) under linear-time

many-one reductions. Consider its tally version
TALLY(A) = {1™"®) | » € A}.

TALLY(A) is a member of NP (cf. [2]) and is a tally set. Let S € NP be
a sparse set. By the last theorem there is a tally set T' € NP such that S

randomly many-one reduces to T'. Consider the binary encoded version of T',
BIN(T) = {x € {0,1}* | 1™™@) ¢ T,

BIN(T) is a member of NTIME(2°("), and therefore linear-time many-one re-

ducible to A. This implies the existence of a polynomial-time many-one reduc-

4



tion from T'to TALLY(A). Combining the reductions, we obtain a randomized

many-one reduction from S to TALLY(A). O
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