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Abstract

Measuring the information content of a set by the space-bounded Kolmogorov
complexity of its characteristic sequence, we investigate the (non-uniform) com-
plexity of sets A in EXPSPACE/poly that reduce to some set having very high
information content. Specifically, we show that if the reducibility used has a certain
property, called “reliability,” then A in fact is reducible to a sparse set (under the
same reducibility). As a consequence, the existence of hard sets (under “reliable”
reducibilities) of very high information content is unlikely for various complexity
classes as for example NP, PP, and PSPACE.

1 Introduction

An important subject of research in structural complexity theory is the study of reductions
to sets of low information content (as for example sparse sets). Historically, this study
originated in the Berman-Hartmanis conjecture that all NP-complete sets are polynomial-
time isomorphic, a hypothesis that is empirically supported by all natural examples of NP-
complete sets. An intuitive interpretation of the conjecture is that all NP-complete sets are
only different encodings of the same information. Since polynomial-time isomorphic sets
must have similar densities, and since there are NP-complete sets of exponential density,
the Berman-Hartmanis conjecture implies that sparse sets cannot be NP-complete.
Since then, several results concerning reductions of NP-complete sets to sparse sets
have been established. The basic results along this line of research were Mahaney’s
theorem that if any NP-complete set many-one reduces to a sparse set then P = NP
[Mah82], and the result of Karp, Lipton, and Sipser, that if NP has sparse Turing-hard
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sets then the polynomial hierarchy collapses to ¥5 [KL80]. The more recent result of
Ogiwara and Watanabe [OW91], that if NP has sparse hard sets under polynomial time
bounded truth-table reductions then P = NP, has been followed up by analogous results
for more general reductions in [AHHT92, RR92, AKM92a].

Recently, Book and Lutz [BL92] have considered reductions to sets whose characteristic
sequences are of very high space-bounded Kolmogorov complexity (they call the class
of such sets HIGH). Book and Lutz obtained the surprising result that every set in
ESPACE that is (polynomial-time) bounded truth-table reducible to a set in HIGH is
actually bounded truth-table reducible to some sparse set. Thus, oracles of very high
space-bounded Kolmogorov complexity are only as useful as sparse sets provided that
the oracle access is restricted to a constant number of queries to retrieve the information
from the oracle set. As a consequence, if SAT bounded truth-table reduces to a set in
HIGH, then SAT bounded truth-table reduces to a sparse set, and thus, using the result
of Ogiwara and Watanabe, it follows that P = NP.

Of course, one would expect similar results for a wider class of reducibility types, not
only for the bounded truth-table case. In the present paper, we prove analogous results
for a wide range of reducibilities which we call “reliable reducibilities”. Intuitively, A
reduces to B via a reliable reducibility if not only A is determined by B (and the specific
reduction used), but also information about B can be retrieved from the knowledge of A.
More precisely, in the case of a reliable reduction, given A and the reduction procedure,
it is possible to compute a minimum set B’ of strings to which A reduces via the given
reduction, that is, B’ is a subset of every set to which A reduces, or equivalently, B’ C B.

For example, deterministic many-one reductions f are reliable, since for every x € A
the membership of the image f(x) in B is guaranteed, and A correctly reduces to the
set B' = {f(x)| « € A} of all these images (a similar consideration applies for conjunc-
tive reductions). In contrast, Turing reductions are not considered to be reliable since in
general the information about B that can be derived from the knowledge of A and the
oracle machine performing the reduction is rather vague. On the other hand, as we show
in this paper, the Hausdorff reducibility [Wag90] is reliable. In spite of its reliability, the
Hausdorff reducibility is much more powerful than the many-one reducibility, and in some
cases 1t has been shown that the Hausdorff reducibility has the same power as the truth-
table reducibility. For example, Wagner [Wag90] proved that the closure of NP under
the Hausdorff reducibility coincides with the truth-table closure of NP. Furthermore, for
every set ring C it is known (cf. [WW85]) that the closure of C under bounded Hausdorff
reducibility is the same as its closure under bounded truth-table reducibility (as an exam-
ple we mention the equality R, ,(RP(SPARSE)) = R}, (RE(SPARSE)) [AKM92b], where
RP?(SPARSE) is the closure of sparse sets under conjunctive reducibility). In fact, it turns
out that even an extension of the Hausdorff reducibility (called non-monotone Hausdorff
reducibility) is reliable.

The main result of the paper states that if a set A in EXPSPACE/poly reduces via a
reliable reducibility to some set in HIGH, then A reduces (via the same reducibility) to a
sparse set. As a consequence of this result, it is unlikely that there exist hard sets (under
the non-monotone Hausdorff and other reliable reducibilities) for complexity classes like
UP, NP, PP, or PSPACE.

The paper is organized as follows. Section 2 introduces notation and gives basic def-
initions. In Section 3 we introduce the concept of a reliable reducibility and prove the
reliability of various reducibilities, as for example the (non-monotone) Hausdorff reducibil-



ities, the composed bounded Hausdorff and conjunctive reducibilities (henceforth called
bhd-c reducibility), the co-np many-one reducibility, and the co-rp many-one reducibility.
Finally, in Section 4, we prove that no set A in EXPSPACE /poly reduces via a reliable
reduction to a set B in HIGH unless A is reducible via a reduction of the same type to
a sparse set, and use this result to demonstrate the unlikeliness of the existence of hard
HIGH sets for various complexity classes under the reducibilities considered in Section 3.

2 Preliminaries

Let ¥ = {0,1} be the standard alphabet, and A C ¥* be a set. A™" (AS") denotes
the set of all strings in A of length n (up to length n, respectively). x4 denotes the
characteristic function of A. y4 denotes the characteristic sequence of A for all strings
up to length n, i.e. the i-th bit of y2, equals ya(s;) where s; is the i-th string in ¥* in
lexicographical order. The cardinality of A is denoted by |A|. The census function of a set
Ais censusa(17) = [AS"|. A set S is called sparse if its census function is bounded above
by a polynomial. A set T'is called a tally set if T' C 0*. We use TALLY and SPARSE to
represent the classes of tally and sparse sets, respectively. The empty string is denoted by
. (+,+) denotes a standard polynomial time computable pairing function whose inverses
are also computable in polynomial time.

For any reducibility type a, let R,(C) = {A | 3B € C : A <, B} denote the class
of sets <,-reducible to some set in C [BK88, AHOWO92]. The reducibilities discussed in
this paper are the standard polynomial-time reducibilities defined by Ladner, Lynch, and
Selman [LLS75] and the following Hausdorff reducibility introduced by Wagner [Wag87].

Definition 2.1 A is Hausdor(f reducible to B (in symbols: A <i, B), if there exists a
polynomial-time computable function f mapping every string x to a sequence of queries,

such that for all x € ¥*, if f(x) = (y1,...,yx) then
o y11 € B impliesy, € B foralli=1,...,k—1, and
e v A <= max{j|0<j<kand foralli=1,...,7:y; € B} is odd.

We call f a bounded Hausdorff reduction (A <, , B) if the number k(x) of queries pro-
duced by f on x is bounded by a constant for all x.

In this context, the i-th query y; computed by f(z), 1 <@ < k(a), is also denoted
by f(x,7). The following theorem gives two examples where the (bounded) Hausdorff
reducibilities lead to the same reduction classes as the (bounded) truth-table reducibilities.

Theorem 2.2
i) [AKM92b] B, (R2(SPARSE)) = RJ,,(R!(SPARSE))
it) [Wag90] R? (NP) = RI,(NP) (= 0%).

By removing in the definition of the Hausdorff reducibility the monotony condition
we obtain the following generalization of the Hausdorft reducibility which, as we will see
in Proposition 2.4, is equivalent in power to the composition of the Hausdorff and the
conjunctive reducibilities.



Definition 2.3 A is non-monotone Hausdorff reducible to B (A <!, . B), if there exists
a polynomial-time computable function f mapping every string x to a sequence of queries,

such that for all x € ¥*, if f(x) = (y1,...,yx) then
€A <= max{j |0<j<kand foralli=1,....j:y, € B} is odd.
Proposition 2.4 For every class C of languages, RL,,(C) = R}, (R?(C)).
Proof Assume that A <!, B via a function f € FP. Then let B’ be the set defined as
B ={{y1,...,y:) |y; € Bforall j =1,...,i}

which clearly is in R2(B). Furthermore, A <}, B’ via the F'P function f’ that produces
the same number of queries as f, and whose i-th query consists of the sequence f'(x,¢) =
(f(a,1),..., f(x,1)) of the first 7 many queries of f(x).

Conversely, assume that A <}, B via some function f € FP, and that B <? (' via

an FP function g, i.e., for all 2, g on @ computes a set (appropriately encoded) such that
x € B if and only if g(2) C C. Consider the FP function & defined as follows. For all x,

if f(z)=(y1,--..yx), and g(y;) = {y},..., ¥, } for i =1,...,k, then

k k k k k
h(l’) = <y%7y%7 te 7y71n1—17y71n1—17y71n17 s Y Y- '7ymk—17ymk—17ymk>

It is easy to see that the parity of the maximum index ¢ such that all queries f(z,7),
1 <y <, are answered positively by B and the parity of the maximum index [ such that
all queries h(x,7), 1 <j <[, are answered positively by C' are equal, and thus A <!,  C
via h. |

As an immediate consequence of Proposition 2.4 we have the following characteriza-
tions (observing that NP is closed under conjunctive reductions).

Proposition 2.5
i) Ry, (SPARSE) = R}, (RE(SPARSE)).
1) Rya(NP) = Ry (NP) (= 03).
Very recently, Buhrman, Longpré and Spaan [BLS92], proved that every sparse set is
conjunctively reducible to a tally set, that is, R2(SPARSE) = RE(TALLY). Therefore we

can state the following equality.
Proposition 2.6 R?, (TALLY)= R’ ,(SPARSE).

We now define nondeterministic and random many-one reductions. The notion of
<o reducibility (cf. [AKM92b]) can be seen as a generalization of the deterministic
polynomial-time conjunctive reducibility.

Definition 2.7 A set A is co-np many-one reducible to a set B (denoted AL B) if
there exists a polynomial-time nondeterministic Turing transducer M such that for every
x € X, x € A if and only if all outputs of M on input x are members of B.



Note that A< B if and only if A<" B where <" is the more familiar polynomial-
time nondeterministic many-one reducibility [LLS75]. Let ¢ be a polynomial bounding
the running time of the transducer in the above definition. Then every computation path
of M on input  can be described by a string w of length ¢(|z|), and it is easy to see that
the output generated on that path can be determined in polynomial time from x and w.
Thus, A< B if and only if there exist a polynomial-time computable function A and
a polynomial ¢ such that for all x,

v A Ve pe w)eB

A special case of the <¢7 reducibility is the co-rp many-one reducibility (cf. [AMT77,
VV86, Ro92, AKM92a)).

Definition 2.8 A set A is co-rp many-one reducible to a set B (denoted A<SPB) if
there exist a polynomial-time computable function h and a polynomial g such that

r € A= Prob,crupn[h(z,w) € Bl =1
z ¢ A= Prob,cyqpen [h(z,w) ¢ B] > 3/1

Here, the string w is chosen uniformly at random from the set $2U=D)

Let M be a Turing machine, z be a string and let d, s be natural numbers. We say
that z € KSy[d, s], if M on some input of length at most d outputs z using space at
most s. In other words, KSy/[d, s] is the set of strings whose s-space-bounded Kolmogorov
complezity relative to M is bounded by d. Similarly, for a string y, KSy[d, s|y] is the set
of all strings z for which there is a string x of length at most d such that M on input
(x,y) outputs z using space at most s. Well known simulation-techniques (see [LV92])
show that there is a Universal Turing machine U such that for every machine M there is
a constant ¢ such that for all d,s: KSy[d, s] C KSy[d+ ¢, ¢s+ ¢]. Henceforth, we fix such
a Universal Turing machine and omit the subscript. Note that there is a constant ¢ such
that for every set A and for all n, the characteristic sequence Y2, of A restricted to the
set of strings up to length n is in KS[2"t! 4 ¢ 2°7]. -

Finally, we define the class HIGH containing only sets of very high information content.
(We say that a property holds “for almost every n” if it holds for all but finitely many n.)

Definition 2.9 A set B is in HIGH, if for every constant ¢ > 0 there exists a polynomial
q such that for almost every n, Xgn ¢ KS[2"t! — ¢(n), 2.

Observe that our definition of the class HIGH is an extension of the original one given
by Book and Lutz [BL92] who required for ¢ the fixed polynomial 2n. It is easy to see
that for every set A in the class EXPSPACE/poly there is a polynomial p such that for
every n, x4 € KS[p(n),2°], where EXPSPACE = DSPACE(Z”O(l)).

For further definitions used in this paper we refer the reader to standard books on
structural complexity theory (for example [BDG]).



3 Reliable reducibilities

In this section, we introduce the concept of a reliable reducibility and prove the reliability
of various reducibilities, as for example the (non-monotone) Hausdorff reducibility, the
composition of the bounded Hausdorff and the conjunctive reducibilities (henceforth called
bhd-c reducibility), and the co-np as well as the co-rp many-one reducibilities.

Definition 3.1 A reducibility <, is reliable if for all sets A, B such that A <, B there
is a sequence B, C B, n >0, of sets fulfilling the following properties:

o All instances for A up to length n are correctly reduced (via the given reduction) to

B,,

V4]

o There exists a polynomial p such that for everyn >0, X?Z € KS [p(n),Zp(”)

We start by proving the reliability of the composed Hausdorff and conjunctive re-
ducibilities.

Theorem 3.2 The composition of the Hausdorff reducibility and the conjunctive re-
ducibility is reliable.

Proof Let A <}, B via a polynomial time computable function f, and let B conjunctively
reduce to C via a polynomial time computable function g. Let k(x) be the number of
queries in the list f(z). The following algorithm computes on input x%2, the characteristic
string Y7 of a finite set C,, C C such that A reduces to C,, via f and ¢ for all instances

up to length n. In fact, C', is the smallest set with this property.

input x2,
ri=¢
C,:=10
repeat
= max({0} U | 1< < bJe]) and g(f(z.)) € C, )
if Ulg(f(r.1)) |1 < J < 1} Z C, then
G 1= Oy U (f ) | 1< 5 < 1)
ri=¢
elsif r €¢ A <= [ is even then
Cn:i=CpUg(flz,l+1))
ri=¢
else x := suce(x) (* in lexicographical order *)
end
until z = 0"*!

output X?ﬁ

We have to show that (', is a subset of (' and that ), can be used in the composed
reduction from A to C instead of C for all instances up to length n:

i) C, is a subset of C for all n > 0.

ii) For all n > 0, A reduces to C, via f and g for all instances x € X",
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To prove ¢) we proceed by induction on the number of iterations of the repeat-loop. Before
the repeat-loop starts, the set €, is empty, and therefore C,, C . Assume that C,, C C
after the (m — 1)-st iteration, and that €, is extended by some set ¢g(f(x, 7)) during the
m-th iteration. There are two cases. In the first case there exists an index [ > j such
that g(f(x,1)) C C,, and since C,, C C, this implies g(f(x,7)) € C by the monotony of
the Hausdorff reduction.

In the second case it holds that j = [ 4+ 1 where [ = max{j | 0 < j < k(]z|) and
for all ¢ = 1,...,75 : g(f(x,2)) € C,} is even if and only if x is in A. It is clear that
[ < k(x) since C,, € C'. By way of a contradiction, assume g(f(/ + 1,2)) € C. Because
C, C C, this contradicts the fact that A reduces to C' via f and ¢ since it would imply
that # € A <= max{j |0 <7 <k(|z]) and for all i = 1,...,5 : g(f(x,i)) C B} is even.

To see 11), observe that every time when « is reset to the empty string inside the repeat-
loop then the set (), is extended by at least one new query whose length is polynomially
bounded in n. Thus, it follows that the algorithm terminates and outputs some set C,.
But at the time when the algorithm stops, there is no € X5 left for which one of the
two if-conditions is fulfilled. From this observation the validity of ¢¢) follows immediately.

To conclude the proof of the theorem observe that |C,| = 29", and therefore the
algorithm can be performed in time 2°("). As a consequence, it is easy to see that there

Xén]‘ n

exists a constant ¢ such that for every n, X?ﬁ € KS [c, 2°m

We note that the reliability of the non-monotone Hausdorff reducibility can be obtained
by a minor simplification of the above proof. Further, since the many-one, conjunctive,
(bounded) Hausdorff, and bhd-c reducibilities all are special cases of the composed Haus-
dorff and conjunctive reducibilities, we can state the following corollary.

Corollary 3.3 The many-one, conjunctive, (bounded) Hausdorff, and bhd-c reducibilities
as well as the non-monotone Hausdorff reducibility are reliable.

We proceed by proving the reliability of the co-np many-one and the co-rp many-one
reducibilities.

Theorem 3.4 The co-np many-one and the co-rp many-one reducibilities are reliable.

Proof Let A< B via a polynomial time nondeterministic Turing transducer M, that
is, for every € ¥*, x € A if and only if all outputs of M on input = are in B. Let B,, be
the set defined as

B, = {y | 3z € AS": M(z) outputs y}

Then B, is a subset of B to which A reduces via M for all instances up to length n.
Furthermore, it is easy to see that there exists a constant ¢ and a polynomial p such
that for every n, y2r € KS [c, 2p(n) Xén]‘ The proof for the co-rp many-one reducibility
proceeds analogously. - [ ]

At the end of this section we show that also the composed Hausdorff, co-rp many-one,
and conjunctive reducibilities are reliable.

Theorem 3.5 The reduction obtained by composing the Hausdorff, the co-rp many-one,
and the conjunctive reducibilities is reliable.



Proof Let A <§, B <P D via polynomial time computable functions f, h, and
g, respectively. Let k(x) be the number of queries in the list f(x), and let ¢ be the
polynomial associated with h. Then for all x € X~

o f(z,i+1)€ Bimplies f(x,i) € Bforalli=1,....k—1, and
o2 A < max{j|0<j<k(z)andforalli =1,....5: f(z,i) € B} is odd,
and for all y € ¥,
y € B = Prob[h(z,w) € (] =1,
y & B = Prob[h(z,w) ¢ C] > 3/4.

where w is chosen uniformly at random from X4(¥D. Third, for all z € ¥*, z € C if and
only if g(z) C D. Consider the following algorithm.

input Xén
Dy
repeat
I:={j|1<j<k(z]) and 1/4 < Prob[h(f(z,7),w) € C] < 1}
if I # () then
Dy i= D UU{g(h(f(x,),w)) | J € 1, Jw] = q(|f(z,5)])}
else‘_ )
[i=max({0} U{j |1 <j < k([z|) and Yw, g(A(f(z,)),w)) € Dn})
if U{g(A(f(z,7),w)) [1 <) <L |w|=q(|f(z,j))} € Dn then
Dy = Do UULg(h( (. ), w)) | 1 < < L]l = g(|f(x, )}

ri=¢
elsif r €¢ A <= [ is even then
D, = D, UUg(h(frs 1+ 1), ) | el = (1 (e, T+ D))
ri=¢
else x := suce(x) (* in lexicographical order *)
end
end
until z = 0"*!

output ng

Analogously to the proof of Theorem 3.2 it can be seen that D, is a subset of D that
can be used instead of D for all instances up to length n in the composed Hausdorft, co-rp
many-one, and conjunctive reduction of A to D, and that there exist a constant ¢ and a

polynomial p such that for every n, ng € KS [c, 20 | 4 [ ]




4 On reliable reductions to HIGH sets

In this section we prove that no set A in EXPSPACE/poly reduces via a reliable reduction
to a set B in HIGH unless A is reducible via a reduction of the same type to a sparse
set. In order to give an intuitive explanation how the proof works, consider the case that
A reduces to B via a many-one reduction function f. Since the set A is of relatively
low space-bounded Kolmogorov complexity, membership in B can be decided for all the
instances in the range of f using only a relatively small amount of resources (assuming
that f is honest). Therefore, the range of f cannot be too large since otherwise a sub-
stantial part of the characteristic sequence of B would contain only little information,
contradicting the fact that B is in HIGH.

For the proof we need two lemmas that are of independent interest. Intuitively spoken,
the following lemma shows that the Kolmogorov complexity of a string cannot be very
high, if “many” 1’s of the string are easily computable. For b € {0,1} let #4(y) be the
number of bits equal to b in the string y. Further, let < be the following partial ordering
on strings defined by ay...ap <by...b, itk <land a; < b, fore=1,... k.

Lemma 4.1 There exists a constant ¢ such that for all ¢,d € IN and for all x,y € ¥,
if v Ry and x € KS[d, c], then y € KS[2log |d| + d + |y| — #1(x) + ¢*, max(c¢, " - |y])].

Proof Consider the following machine M that on input (v,w) where w is a string of
length |y| — #1(«) and v is a description of x, at first produces the string = (from its
description v), and then outputs the string y obtained from x by replacing the i-th 0 in
x by the i-th bit of w.

input (v, w)
compute x from the description v
(* the following loop computes the output string y *)
Ji=ly:=¢
for ¢ :=1 to |w| + #1(x) do
if 7 < |z| and the i-th bit of = is 1 then

y =yl
else
y := yb where b is the j-th bit of w
7 =341
end
end
output y

Letting (-,-) be the self-delimiting encoding scheme (cf. [LV92]), we have that |(v,w)| =
2log |v| 4+ 2 4+ |v| 4 |w| for all v,w € ¥*. Furthermore, since for every pair of strings x,y
with @ < y there exists a string w of length |y| — #1(x) such that for an appropriate
description v of x, |[v| < d, M on input (v,w) outputs y, the claim follows easily by the
properties of the self-delimiting encoding scheme and the simulation properties of our
fixed Universal Turing machine. |

The second lemma that we need to establish our main result states that if in the
reduction of a set A to some set B the number of positively answered queries on instances
of length n is polynomially bounded, then the given reduction can be modified (by padding
the queries) to yield a reduction from A to a sparse set.
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Lemma 4.2 Assume that a set A reduces via a given reduction to some set. If there is
a polynomial v such that for every n > 0 there is a set S, of cardinality |S,| < r(n) such
that all length n instances for A are correctly reduced to S, then A reduces via the same
type of reduction (that is, only the queries need to be padded) to a sparse set S.

Proof Assume that there is a (non-decreasing) polynomial r such that for all n, |S,| <
r(n). Define the set S = {y10™ | y € S, }. Since for every n > 0 and all length n instances,
A reduces correctly to the set 5, it follows that A reduces to S via the reduction obtained
by replacing in the given reduction every query y on input z by the query y10/°l. Since
censusg(1") = X1 censuss, (177 71) < n - r(n) for all n, it follows that S € SPARSE. =

Now we are ready to prove the main result of this section. It states that in order to
decide a set in EXPSPACE/poly, all the information that a reliable reduction is able to
extract out of a set containing a lot of information can be provided just as well by a sparse
set (which is of very low information content).

Theorem 4.3 If a set A € EXPSPACE/poly reduces via a reliable reduction to a set
B € HIGH, then A reduces via the same type of reduction (that is, only the queries need
to be padded) to a sparse set.

Proof Let A € EXPSPACE/poly, B € HIGH and assume that A reduces to B via
a reliable reduction. Intuitively, using the reliability of the reduction and the fact that
A € EXPSPACE/poly, it is possible to compute within the resource bounds provided
by the complexity class EXPSPACE /poly a sequence of sets B, C B such that for all
instances up to length n, A reduces correctly to B,. Since B € HIGH, the number of 1’s
in the the characteristic sequences of the sets B,, cannot be large, and therefore, as we
will see, A reduces to a sparse set. In the sequel we give the formal proof.

Since A € EXPSPACE/poly, there exists a polynomial p such that for every n, x4, €
KS[p(n),2P™]. Also, since A reduces to B via a reliable reduction, there are a polynomial
g and a sequence B,, C B, n > 0, of sets such that for every n > 0,

e all instances for A up to length n are correctly reduced (via the given reduction) to

B, and

° X?Z € KS [q(n),Zq(”) Xén]‘

As an immediate consequence of the reliability of the reduction from A to B and the fact

that A € EXPSPACE/poly we have
XZi € KS[p(n), 2] (1)

for some polynomial p and every n > 0. Next we show that there is a polynomial ¢ such
that

censusp, (1") < g(n) (2)

for all n. Assume otherwise, then there exist for every polynomial ¢ infinitely many n for
which censusp, (1") > ¢(n). But since B, C B it follows by (1) above and by Lemma 4.1
(letting @ = X?Z and y = Xjfp(n)) that there is a constant ¢* such that for every polynomial
¢ there are infinitely many n for which

Xy € KS[21og [p(n)] + p(n) + 22" — g(n) 4 ¢, ¢ - 200
10



contradicting the fact that B € HIGH.
To complete the proof of the theorem let r be a (non-decreasing) polynomial bounding

the length of the queries of the given reliable reduction from A to B. Then for all
length n instances, A reduces correctly to the set Bf(:;()n). By (2) above it follows that

censusBr(n)(lT(”)) < ¢(r(n)) for all n, and thus the theorem follows by Lemma 4.2. [ |

As an easy consequence of the preceding theorem and the reliability results of Section 3
we can state the following corollary.

Theorem 4.4 Let A be in EXPSPACE/poly and let o be one of the following reducibility
types:

e non-monotone Hausdorff,
e bhd-c,
® co-np many-one,

o composed bhd, co-rp many-one, and conjunctive reductions.
Then A is in R,(HIGH) if and only if A is in R,(SPARSE).

Proof Since for every tally set T' there exists a set B € HIGH such that B N
0* = T, it follows that TALLY C R (HIGH). Furthermore, using the fact that
RP(SPARSE) = RE(TALLY) [BLS92], it follows that R,(SPARSE) C R,(R?(TALLY)) C
R.(Rr(HIGH)) C R,(HIGH) for every reducibility type a considered here. The backward
direction follows by Theorem 4.3 and the reliability of the considered reducibilities proved
in the preceding section. |

By Theorem 4.3 we know that the existence of hard sets in HIGH for any complexity
class C C EXPSPACE/poly with respect to a reliable reducibility implies the existence of
a sparse hard set for C with respect to that reducibility. Therefore the existence of hard
sets in HIGH leads to the same consequences as the existence of sparse hard sets.

Corollary 4.5 Let C be any of the complexity classes from {UP, NP, C_P,PP}. IfC C

Proof This is a direct consequence of Theorem 4.4 and the result that C C
Ry, (RE(SPARSE)) implies C = P [AKM92a]. u

Also, since the existence of a sparse hard set for NP (PSPACE) with respect to the
non-monotone Hausdorff reducibility implies the collapse of the polynomial hierarchy to

AY (PSPACE = A%, respectively) [AKM], we have the following corollary.
Corollary 4.6 For C € {NP,PSPACE}, if C C R, ,(HIGH), then C is low for A}.

Finally, applying the result that NP is not contained in R}, (R "?(R2(SPARSE)))
unless NP = RP [AKM92a], we get

Corollary 4.7 If NP is contained in Ry, ,(R;°7P(RP(HIGH))), then NP = RP.
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