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Abstract

We show that if every NP set is polynomial�time bounded truth�
table reducible to some P�selective set� then NP is contained in

DTIME��n
O���

p
logn�

�� In the proof� we implement a recursive procedure
that reduces the number of nondeterministic steps of a given nondeter�
ministic computation�

� Introduction

The class NP is commonly considered as a class of problems that cannot be
solved e�ciently� that is� by polynomial�time bounded� deterministic Turing
machines� Changing from �uniform� Turing machines to �nonuniform� circuits�
one of the important questions in computational complexity theory is whether
every NP problem is solvable by small� that is� polynomial�size� circuits� Fur�
thermore� assuming that NP problems can indeed be solved by small circuits� it
has been asked whether this is turn gives deterministic algorithms for NP faster
than the known exponential ones� In other words� if NP is easy in the nonuni�
form complexity measure� how easy is NP in the uniform complexity measure�
We study such type of questions in this paper� Karp and Lipton 	KL
�� have
shown that if NP has small circuits then the Polynomial Hierarchy 	Sto

� col�
lapses� therby giving strong evidence that the assumption might not hold� Note
however� that this does not answer the above question�
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Small circuits can be coded by sparse sets and vice versa� Therefore� the
class of sets that have polynomial�size circuits coincides with the class of sets
that are �polynomial�time� Turing reducible to some sparse set� We denote the
latter class by RP

T�SPARSE�� Hence� the above question is equivalent to the
following one� For which uniform deterministic complexity class C do we have
NP � RP

T�SPARSE� �� NP � C�
Nontrivial answers to this question are only known for even stronger assump�

tions such as that NP is contained in certain subclasses of RP
T�SPARSE�� For

example� Mahaney 	Mah
�� showed that if every NP set is many�one reducible
to some sparse set then P � NP� That is�

NP � RP
m�SPARSE� �� NP � P�

Ogiwara and Watanabe 	OW��� extended Mahaney�s result to bounded truth�
table reductions� that is�

NP � RP
btt�SPARSE� �� NP � P�

This result has been improved further more recently� see 	AHH����� How�
ever� it is open whether the result can be improved to b�n��bounded truth�
table reducibility for some nonconstant function b�n�� Indeed� Saluja 	Sal���
showed that� at least with the technique used by Ogiwara and Watanabe� such
an improvement is impossible� Furthermore� for b�n� � ��logn�� Homer and
Longpr�e 	HL��� �see also 	AHH����� constructed an oracle relative to which
NP � RP

b�n��tt�SPARSE�� but P is di�erent from NP�
Small circuits can also be coded as leftcuts of real numbers and vice

versa 	Ko
�� Sel
�b�� Leftcuts can be formalized in terms of P�selective
sets 	Sel
�b�� Therefore� the class of sets that have polynomial�size circuits
coincides with the class of sets that are �polynomial�time� Turing reducible to
some P�selective set� Let SELECT denote the class of P�selective sets� Thus�
we have RP

T�SELECT� � RP
T�SPARSE�� However� for reductions that are more

restrictive than the Turing reduction� classes obtained by reducing to P�selective
sets can be di�erent from classes obtained by reducing to sparse sets� For exam�
ple� Watanabe 	Wat��� showed RP

tt�SELECT� �� RP
tt�SPARSE� �see 	HHO����

for more separations�� Hence� it is interesting to investigate the consequences
of NP being reducible to P�selective sets with respect to some more restrictive
type of reducibility�

Selman 	Sel
�� showed that if every NP set is many�one reducible to some P�
selective set then P � NP� Assuming that NP sets are �unbounded� truth�table
reducible to P�selective sets� Toda 	Tod��� and Beigel 	Bei

� showed that NP
problems can be solved e�ciently by randomized Las Vegas type algorithms� a
class denoted by R�

NP � RP
tt�SELECT� �� NP � R� ���
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In this paper� we show a deterministic upper bound on NP when considering
bounded truth�table reductions� Namely� we show

NP � RP
btt�SELECT� �� NP � DTIME��n

O���
p

logn�

�� ���

Let us give a brief outline of our proof� We start by sketching the idea to
prove equation ���� The assumption NP � RP

tt�SELECT� is essentially used to
show�

��� for a given polynomial�time nondeterministic Turing ma�
chine M and a string x� if M on input x has exactly one
accepting path� then the path is computable in determinis�
tic polynomial time�

For M and x as above� the nondeterministic computation of M on x can
be viewed as a �binary� tree T � Using the randomized hashing technique of
Valiant and Vazirani 	VV
��� one can construct subtrees T�� � � � � Tm of T � all
having the same root as T � such that if T has an accepting path then� say� m��
of T�� � � � � Tm have exactly one accepting path� Then from property ���� for the
Tk�s having exactly one accepting path� one can compute this path� Thus� by
choosing Tk randomly for several times� one can compute some accepting path
of T with high probability if there are any� This is the idea of showing NP � R�

We also use ��� for proving equation ���� Consider again a nondeterministic
computation tree T as above� Using our stronger assumption� namely that NP
� RP

btt�SELECT�� we can construct subtrees T �
�� � � � � T

�
n of T such that if T has

some accepting path� then some T �
k has exactly one accepting path� and� by

property ���� such a path can be computed in polynomial time� The important
point here is that the number of subtrees� n� can be chosen fairly small compared
with m from above� or with the number of paths in T � Hence� the original NP
question �Does T have an accepting path�� is reduced to another NP question
�Is there a k such that T �

k has an accepting path��� and in addition� the size
of the search space in the latter NP question �searching for some k� is much
smaller than in the former one �searching for some path�� Hence� for solving the
reduced NP question� one needs a smaller number of nondeterministic guesses�
We show how to apply this process recursively � thereby successively decreasing
the search space of the reduced NP questions obtained� In total� this yields a
subexponential algorithm to solve the original problem deterministically �

Related work was done by Jenner and Tor�an 	JT���� They showed under
the assumption that functions that can be computed in polynomial time by
making truth�table queries to NP can already be computed in polynomial time
by making logarithmically many �adaptive� queries to NP �in symbols� FPNP

tt �

FPNP�log��� it follows that NP � DTIME��n� log
k n�� for any k � �� Note that

their assumption is seemingly weaker than ours since it is not hard to see that
NP � RP

tt�SELECT� implies FPNP
tt � FPNP�log�� but the converse implication
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is not known to hold� It seems� however� not possible to obtain our stronger
upper bound on NP from their assumption by their technique 	Tor����

Most notably� we mention that our result has been improved recently�
Namely� Agrawal and Arvind 	AA���� Beigel� Kummer� and Stephan 	BKS����
and Ogihara 	O��� showed that NP � RP

btt�SELECT� �� NP � P� In
fact� the result holds up to quasi�linear truth�table reducibility� i�e�� O�n����� for
any � � �� 	AA��� O���� The principal method in all three papers is a standard
search and pruning technique with the goal to �nd a satisfying assignment for
a given Boolean formula F in polynomial time �if there exist any�� During the
search� a set X of subformulas of F is maintained such that the following invari�
ant is ful�lled� F � SAT �� X 	 SAT �� 
� Initially� X � fFg� While going
breadth��rst through the self�reduction tree of F � X is successively extended
and then pruned again such that the size of X remains polynomially bounded�
The pruning task is to determine an x � X such that if X 	 SAT �� 
 then
�X � fxg� 	 SAT �� 
� Then x can be pruned from X since there will still be a
satis�able formula in X if there are any� thereby maintaining the invariant� By
assumption� formulas in X can be reduced to a P�selective set� The crucial point
in their proofs is to also produce new Boolean formulas by or�ing together some
�apppropriate� formulas of X � and to reduce them to the P�selective set as well�
Since the new instances are related to the formulas in X �by the or�function��
this must be re�ected in the way these strings are mapped by the reduction�
Exactly this property is used to �nd an instance x to prune as described above�

Thus� our approach is completely di�erent from the one�s mentioned above�
Roughly speaking� the proofs in 	AA��� BKS��� O��� essentially use the fact
that there are NP complete sets that are �disjunctively� self�reducible and have
an or�function in order to make their searching technique work� In contrast�
we use the completeness of certain NP sets� but we don�t use such or�functions�
and thus� we need to establish a more elaborate searching technique� Therefore�
although the main result we will derive in this paper is already subsumed� we
think that our proof technique is interesting for its own� and hence� we encourage
the reader to continue reading�

� Preliminaries

We follow the standard de�nitions and notations in computational complexity
theory �see� e�g�� 	BDG

� BDG�����

We �x an alphabet � � f�� �g� For any set X � ��� we denote the comple�
ment of X as X � �� �X � Natural numbers are encoded in �� by using their
binary representation� For any string x� let jxj denote the length of x� and for
any set X � let jjX jj denote the cardinality of X � We consider a standard one�
to�one pairing function from ����� to �� that is computable and invertible in
polynomial time� For strings x and y� we denote the output of the pairing func�
tion by �x� y� this notation is extended to denote tuples� For example �x� y� z�
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is de�ned as ��x� y�� z�� For a function f � we simply write f�x� y� instead of
f��x� y���

We use the standard Turing machine as our computation model� P �resp��
NP� denotes the class of languages that can be recognized by some polynomial�
time deterministic �resp�� nondeterministic� Turing machine� For a nondeter�
ministic Turing machine M � we assume that every nondeterministic con�gu�
ration of M has at most two succeeding ones� Hence� each nondeterministic
computation of M on a given input can be described by a string w� where the
ith bit of w indicates which branch to take at the ith nondeterministic branch
point� In this context� we call a string w a path of M � and� in case that w leads
to an accepting con�guration of M on a given input� we call w an accepting path
of M on that input �

For any sets A and B� we say that A is many�one reducible to B �and write
A 
P

m B� if there is some polynomial�time computable function f � the reduction�
such that for any x � ��� we have x � A �� f�x� � B� A set C is called NP�
complete if �i� every NP set is many�one reducible to C� and �ii� C itself is in NP�
The reducibility notions we are interested in are generalization of the many�one
reduction� We say that A is truth�table reducible to B �and write A 
P

tt B�
if there are two polynomial�time computable functions� generator g that� for a
given x � ��� produces a set of strings� and evaluator e that� when knowing
which of the strings produced by g are in B� decides membership of x in A�
That is� for any x � ���

x � A �� e�x� g�x�� g�x� 	 B� � ��

where we assume that g�x� �resp�� g�x� 	 B� is encoded as a string� For any
b�n� � �� we say that A is b�n��truth�table reducible to B �and write A 
P

b�n��tt
B� if the generator g produces at most b�n� strings for each input of length n�
We say that A is bounded�truth�table reducible to B �and write A 
P

btt B� if
A is 
P

k�tt�reducible to B� for some constant k � �� Hard and complete sets
with respect to these reducibilities are de�ned analogously as for the many�one
reducibility�

For any class C of languages� let RP
T�C�� RP

tt�C�� RP
b�n��tt�C�� and RP

btt�C�

respectively denote the class of sets that are 
P
T�� 
P

tt�� 
P
b�n��tt� and 
P

btt�
reducible to some set in C�

P�selective sets were introduced by Selman 	Sel
�� as the polynomial�time
analog of semi�recursive sets 	Joc�
�� A set A is P�selective� if there exists a
polynomial�time computable function f � called a P�selector for A� such that for
all x� y � ���

�� f�x� y� � fx� yg� and

�� if x � A or y � A� then f�x� y� � A�

Intuitively� f selects the one of the two given strings that is �more likely� to

�



be in A� More formally� if f�x� y� � x and y � A� then x � A� The class of
P�selective sets is denoted as SELECT�

Ko 	Ko
�� showed that for every P�selective set A� using the P�selector func�
tion f of A� one can de�ne a linear ordering on a quotient of �� such that A is
the union of an initial segment of this ordering� Toda 	Tod��� modi�ed this to
an ordering on a given �nite set Q �instead of ���� Here� we use this ordering�
That is� we de�ne the relation �f�Q on Q as follows� For all x� y � Q�

x �f�Q y �� there exist z�� � � � � zn � Q such that

f�zi� zi��� � zi for i � �� � � � � n� ��

f�x� z�� � x� and f�zn� y� � zn�

De�ne x ��f�Q y �� x �f�Q y � y �f�Q x� Then ��f�Q is an equivalence
relation on Q� and �f�Q induces a linear ordering on the quotient Q� ��f�Q�
This is re�ected by the following partial ordering �f�Q on Q�

x �f�Q y �� x �f�Q y � x ���f�Q y�

For simplicity� we omit the subscripts f and Q when both are clear from the con�
text� For technical reasons� we introduce a minimum and a maximum element�
denoted as � and � respectively� such that � � x � �� for all x � Q�

It is easy to see that the relations � and �� are decidable in polynomial time
in
P

x�Q jxj� The crucial point is that A 	 Q is an initial segment of Q with
respect to �� That is� we have

� z � Q � f�g � Q 	 A � f y � Q j y � z gand Q 	 A � f y � Q j y � z g�

We call a string z witnessing this property a cutpoint of A in Q �with respect
to ��� A consequence of this property is that �x� y � Q� x � y � y � A ��
x � A�

� Main Result

In this section� we show that if all NP sets are bounded truth�table reducible
to some P�selective set� then every NP set is solvable deterministically in

�n
O���

p
logn�

steps� We begin by recalling a result of Toda 	Tod��� that will
be used in our proof� We use a formulation in terms of promise problems�

De�nition ��� �ESY��	 A promise problem is a pair of sets �Q�R�� A set
L is called a solution of the promise problem �Q�R�� if for all x � Q� we have
x � R�� x � L�

In other words� if L is a solution of a promise problem �Q�R�� then L coincides
with R on all instances where the promise Q holds� That is� Q 	 R � Q 	 L�
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Toda 	Tod��� showed that if all NP sets are 
P
tt�reducible to some P�selective

set� then the promise problem �� �SAT �SAT � has a solution in P� where � �SAT
is the set of Boolean formulas that have at most one satisfying assignment�
We restate his theorem in a slightly more general form and include a proof for
completeness�

Theorem ��
 �Tod��	 If NP � RP
tt�SELECT� then� for any NP machine N

the promise problem ���L�N�� L�N�� has a solution in P� where ��L�N� is the set
of strings x such that N has at most one accepting path on input x� Furthermore�
if N is p�n� time bounded� then the solution is in DTIME�qT � p�n��� for some
�xed polynomial qT�

Proof� De�ne the NP set BitPATH as follows� For a nondeterministic Turing
machine N � a string x� d� t � �� and � 
 i 
 d�

�N� x� �d� �t� i� � BitPATH �� there exists w � ��d such that

N accepts x on path w in t steps

and the ith bit of w is ��

By assumption� BitPATH is truth�table reducible to some P�selective set
A� Let g be the generator and e the evaluator of the reduction� and let f be a
P�selector for A�

Let N be an NP machine� and let polynomial p bound its running time�
Consider an instance x� jxj � n� for N such that N has exactly one accepting
path w on input x� Clearly� we can reconstruct w when knowing the answers to
the questions �zi � �N� x� �p�n�� �p�n�� i� � BitPATH ��� for i � �� � � � � p�n��

Let Q be the set of strings queried to A on zi by the generator of the truth�
table reduction� for i � �� � � � � p�n�� i�e�� Q � f y j y � g�zi�� for some i�
� 
 i 
 p�n� g� If we know which point of Q is a cutpoint of A w�r�t� �f�Q�
we would be able to get the correct answer to each query �zi � BitPATH ���
thereby obtaining the unique accepting path w� Here� note that Q has only
polynomially many elements thus� we can try all elements y of Q and check
whether we obtain an accepting path �namely� w� assuming that y is a cutpoint�
�Note that we can easily verify whether a reconstructed path is an accepting
path�� The algorithm in �gure � makes this idea more precise� Here� N and p
are �xed parameters�

Let MN be a deterministic Turing machine that executes this algorithm�
Clearly� L�MN� is a solution for ���L�N�� L�N��� Furthermore� there exists
some polynomial qT such that for any N � MN halts in O�qT�p�n��� steps� tu

Now� we prove our main theorem�

Theorem ��� If NP � RP
btt�SELECT� then NP � DTIME��n

O���
p

logn�

��






Unique�Accepting�Path�x� jxj � n� 

Q � S
��i�p�n� g�N� x� �p�n�� �p�n�� i� 

for each y � Q � f�g do
for i � � to p�n� do

if the evaluator e accepts �N� x� �p�n�� �p�n�� i� when the answers

to g�N� x� �p�n�� �p�n�� i� are given according to cutpoint y
then wi � � else wi � � 
if w � w� � � �wp�n� is an accepting path of N on input x
then accept 

reject�

Figure �� Polynomial�time algorithm for ���L�N�� L�N���

Proof� Let us �rst de�ne two NP sets� The �rst one is similar to the canonical
universal NP complete set except that the number of nondeterministic steps is
stated explicitly� For a deterministic Turing machine M � a string x� and d� t � ��

�M�x� �d� �t� � UNIV �� there exists w � �d such that

M accepts input �x�w�

in at most t steps�

Obviously� UNIV is NP complete� Our second set is de�ned similarly except
that it has� as an additional component� the pre�x of an accepting path for the
considered machine� For a deterministic Turing machine M � a string x� d� t � ��
and a string u� where juj 
 d�

�M�x� �d� �t� u� � Pre�xPATH �� there exists v � �d�juj such that

M accepts input �x� uv�

in at most t steps�

Consider any instance � � �M�x� �d� �t� for UNIV � We can de�ne a binary
tree T associated with � as follows� The nodes of T are of the form ��� u�� for
u � ��d� which are instances for Pre�xPATH � T �s root is ��� �� �where � is the
empty string�� Clearly� � � UNIV �� ��� �� � Pre�xPATH � T �s leaves are
nodes ��� u� such that juj � d� A binary string u � ��d is viewed as a path
from the root to ��� u�� A string w � �d is called an accepting path of T if M
accepts input �x�w�� or� equivalently� ��� w� � Pre�xPATH � Clearly� � � UNIV
if and only if there exists an accepting path in T �

Let r and e be some integers that will be speci�ed later� Below� we de�ne
rdd�ee subtrees Tk of T in such a way that� if there is an accepting path in T �






then there exists a subtree Tk that has exactly one accepting path� That is�

� � UNIV �� �w � �d � w is an accepting path in T ���

�� �k 
 rdd�ee � Tk has exactly one accepting path� ���

At this point� we can explain our proof idea� that is� the strategy for deciding
whether � � UNIV in deterministic subexponential time� Consider the promise
problem �� �SubTREE �SubTREE�� where � �SubTREE is the set of Tk with at
most one accepting path� and SubTREE is the set of Tk having an accepting
path� SubTREE clearly is an NP set� Then� by Theorem ���� this promise
problem has a solution in P� Thus� if Tk has exactly one accepting path� we can
verify it in polynomial time� Hence� both� equation ��� and ��� give NP�type
predicates for deciding whether � � UNIV � While there are �d possibilities for
w in equation ���� we can reduce the scope of k in equation ��� by choosing e
large in other words� while d �binary� nondeterministic guesses are necessary
in equation ���� �d log r��e guesses are enough when using equation ���� On the
other hand� enlarging e will increase the time to decide the promise problem� We
will see below that by appropriately choosing e� we can fairly reduce the number
of nondeterministic guesses without increasing the time to decide the promise
problem too much� That is� the original NP�type predicate is reduced to a
simpler one� By iterating this process� we can �nally solve the problem without
any guesses� i�e� deterministically� and we will see that the whole process can be
done in subexponential time�

Let us de�ne the subtrees more precisely� We assign an integer label to
each node of T � Subtree Tk of T is then de�ned as consisting of all nodes
having label k and their father nodes� The way to assign labels is therefore
crucial� In order to do so� we divide T into blocks of depth e� More formally�
for each h� where � 
 h 
 dd�ee � �� and u � �h�e� we consider a set X��� u�
� f ��� uv� j v � �e g of nodes in T � which is regarded as a block of depth e��

Notice that if ��� u� � Pre�xPATH � then some elements of X��� u� also belong to
Pre�xPATH � Here� for the decomposition of T satisfying equation ���� we would
like to divide X��� u� into X���� u�� � � � � Xr��� u� so that if ��� u� � Pre�xPATH
then some Xi��� u� has exactly one element in Pre�xPATH � Key point of our
proof is that this is possible by using the assumption that Pre�xPATH �� NP�
is 
P

btt�reducible to some P�selective set� That is� we have the following lemma�

Key Lemma Let b� n � � and r � ��bb��c! �� � �� Let L be any set that
is 
P

b�tt�reducible to some P�selective set� Then� for any X � �n� there exist r
disjoint subsets X�� � � � � Xr of X with the following property�

X 	 L �� 
 �� �i 
 r � jjXi 	 L jj � ��

Furthermore� we can compute X�� � � � � Xr in polynomial time w�r�t� n and jjX jj�
�Precisely speaking� when juj � �dd�ee � 
�e �i�e�� h � dd�ee � 
�� X��� u� should be

f ��� uv� j v � �d�juj g� In the following� we omit explaining such exceptional cases�
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1 17 18 19

Figure �� Tree with branching factor � and its labeling�

Since Pre�xPATH is in NP� for some b � � it is 
P
b�tt�reducible to some P�

selective set by assumption� Thus� from the Key Lemma �with L � Pre�xPATH
and X � X��� u�� we can divide each X��� u� into r � ��bb��c! ��� � disjoint
subsets X���� u�� � � � � Xr��� u� of X��� u� such that

��� u� � Pre�xPATH ��
�j 
 r � Xj��� u� has exactly one element in Pre�xPATH �

An important point to note here is that r does not depend on e�
The root of T � ��� ��� gets label �� Now� let ��� u� be some node of T � where

u � v�v� � � � vh� for some � 
 h 
 dd�ee and v�� � � � � vh � �e� All nodes in a
set Xj��� u� get the same label� The nodes in X���� u� get the same label as
��� u�� For j � �� consider the r�ary tree� where the nodes are the sets Xi��� w��
If we go through this tree in a breath �rst left to right fashion� then the nodes
in Xj��� u� get as label the smallest number that not yet occured as a label�
Figure � provides an example�

More formally� let the history of ��� u� be the sequence �j�� � � � � jh� of indices�
where each ji �� 
 i 
 h� is the index such that ��� v� � � � vi� � Xji��� v� � � � vi����
Note that each history is expressed as a path �from the root to some node� of a
r�ary tree�

Let left�j�� � � � � jh� be the number of nodes in the r�ary tree that are in the
same depth to the left of the node with history �j�� � � � � jh�� That is� left�� � ��
and

left�j�� � � � � jh� j� � r � left�j�� � � � � jh� ! j � ��

Let v � �e and let �j�� � � � � jh� j� be the history of ��� uv�� Then

label ��� uv� �

�
label��� u�� if j � �� and
rh ! �r � �� � left�j�� � � � � jh� ! j � �� otherwise�

Now� for each k� where � 
 k 
 rdd�ee� de�ne Tk as the subtree of T consisting
of all nodes with label k and their father nodes�

��



It is not hard to show that label is computable in polynomial time w�r�t�
j��� u�j and �e� and furthermore� that the labels are bounded by rdd�ee�

Claim � T has an accepting path if and only if for some k� � 
 k 
 rdd�ee� Tk
has exactly one accepting path�

Proof� Since each path of T belongs to one of the subtrees� the if part is
obvious�

Assume that T has has an accepting path� Then ��� �� � Pre�xPATH  
hence� by the Key Lemma� some Xj���� �� has exactly one element ��� v�� in
Pre�xPATH � Then since ��� v�� � Pre�xPATH � again by the Key Lemma�
some Xj���� v�� has exactly one element ��� v�v�� in Pre�xPATH � Contin�
uing this argument� we can �nd j�� � � � � jdd�ee and v�� � � � � vdd�ee such that
each Xji��� v� � � � vi��� has exactly one element ��� v� � � � vi��vi� in Pre�xPATH �
In particular� v�v� � � � vdd�ee is an accepting path� Thus� Tk� where k �
label ��� v�v� � � � vdd�ee�� has exactly one accepting path� tu Claim �

Next� for each e � �� consider the following set� For a deterministic Turing
machine M � a string x� d� t � �� and � 
 k 
 rdd�ee�

�M�x� �d� �t� k� � SubTREE e �� Tk has an accepting path�

where Tk is the subtree of T

de�ned by �M�x� �d� �t� and e�

For each e� clearly SubTREE e is in NP and thus we could now solve
the promise problem �� �SubTREE e�SubTREE e� deterministically in poly�
nomial time applying Theorem ���� But we should be careful about the
polynomial�time bound� which depends on the choice of e� Precisely speaking�
�� �SubTREE e�SubTREE e� has the following upper bound�

Claim 
 For some polynomial qS and for all e � �� there exists a deterministic
Turing machine Me such that

�i� on inputs of length n� Me is qS�n ! �e��time bounded� and

�ii� L�Me� is a solution of �� �SubTREE e�SubTREE e��

In other words� for every input 	 � �M�x� �d� �t� k�� Me halts in qS�j	j ! �e�
steps� and if 	 � � �SubTREE e� then 	 � SubTREE e �� Me accepts 	�

Proof� Let � � �M�x� �d� �t� and 	 � ��� k�� Consider the problem of deciding
whether 	 is in SubTREE e� We can solve this problem by checking whether
there exists some w � �d such that �� M accepts �x�w� in t steps �i�e�� w
is an accepting path of the tree T de�ned by ��� and �� k � label��� w� �i�e��
the accepting path w belongs to Tk�� Thus� for some polynomial q� and for
all e � �� this can be done nondeterministically in q��j	j ! �e� steps� That is�

��



SubTREE e � NTIME�q��n ! �e��� Now the claim follows from Theorem ����
tu Claim �

Thus� we reached our goal to reduce the scope of the existential quanti�er 
that is� � � UNIV �� �w � �d � w is an accepting path in T �� �k 
 rdd�ee �
��� k� � L�Me�� Here� notice that we can easily translate our reduced problem to
a new instance for UNIV � Then we can apply the above construction recursively�

Claim � For any e� there exists a deterministic Turing machine cMe such that
for every input � � �M�x� �d� �t��

� � UNIV �� �cMe� �� �
d�

� �t
�

� � UNIV �

where d� � dlog re � dd�ee� r as above� and t� � qU�j� j ! �e�� for some �xed
polynomial qU�

Proof� Let � � �M�x� �d� �t� and w be string of length at most d� � dlog re �
dd�ee� Machine cMe is de�ned as follows� For a given input ��� w�� cMe simply
simulates Me� the machine de�ned in Claim �� on input ��� w�� where w is

interpreted as an integer k now� Note that � 
 k 
 rdd�ee� Finally� cMe accepts
��� w� if and only if Me accepts ��� k��

From Claim � and Claim �� we have � � UNIV �� cMe accepts ��� w�� for

some w� Since Me halts in qS�j��� k�j ! �e� steps� cMe halts in qU�j��� w�j ! �e�
steps� for some polynomial qU� tu Claim �

Note that although the time bound t increases to t�� the crucial point is that
the number of nondeterministic steps d� decreases about a factor �log r��e�

Finally� to show that every NP set L belongs to DTIME��n
O���

p
logn�

�� let
ML be a deterministic machine and pL be a polynomial such that for every
x � ��� x � L �� �ML� x� �

pL�jxj�� �pL�jxj�� � UNIV �
Let x� jxj � n� be a string for which we want to decide membership in L�

Let e � d�
�n� log re� where r � ��bb��c! ��� � and function 
 will be chosen
appropriately at the end of the proof� �We assume that n is large enough so that
e � ��� First� de�ne x	 � x� d	 � pL�n�� t	 � pL�n�� and �	 � �ML� x	� �

d� � �t���
For each i � �� de�ne inductively xi � �i��� di � dlog re � ddi���ee� ti �

qU�j�i��j! �e�� and �i � �cMe� xi� �
di � �ti�� until di � e �� d�
�n� log re�� Let m

be the �rst integer such that dm � e� Then from Claim �� we have �	 � UNIV
�� �� � UNIV �� � � � �� �m � UNIV � On the other hand� x � L ��
�	 � UNIV � Hence� x � L �� �m � UNIV � That is� the problem of deciding
x � L is reduced to that of deciding �m � UNIV �

Let us evaluate the deterministic computation time for deciding �m � UNIV �
First� we give an upper bound for tm� Note that for some polynomial p�� we
have j�ij 
 p��ti�� for i � �� � � � �m� Thus�

tm � qU�j�m��j! �e�

��




 qU�p��tm��� ! �e�


 qU�p� � qU�� � � �p� � qU�pL�n� ! �e�� � � �� ! �e��

Hence� for some constant c� and c�� we have

tm 
 nc
m
� �c

m
� e � �c

m
� �e�log n� 
 �c

m
� �c���n� log r�logn��

On the other hand� note that for any d � e � �� we have d� � dlog re � dd�ee

 ��d log r��e 
 d�
�n�� Thus�

m 
 log��n� d	 
 c
 logn�log 
�n��

for some constant c
� Therefore� for some constant c��

tm 
 �c
c� logn

log ��n�
� �c���n� log r�logn� 
 �n

c�
log ��n� �c���n� log r�logn��

which takes the smallest order when we choose 
�n� � n��
p
logn� Then� for

some constant c�� we have tm 
 �n
c��

p
log n

�
Clearly� ��m � UNIV �� is deterministically decidable in polynomial time

w�r�t� j�mj� Also �m is deterministically computable in polynomial time w�r�t�
j�mj� Recall that j�mj 
 p��tm�� Thus� the deterministic computation time
for computing �m and deciding �m � UNIV is polynomially bounded by tm�

Therefore� with some constant c	� it is bounded by �n
c��

p
logn

� That is� x � L

is deterministically decidable in �n
c��

p
logn

steps� tu
It remains to prove the Key Lemma�

Key Lemma Let b� n � � and r � ��bb��c! ��� �� Let L be any set that is

P
b�tt�reducible to some P�selective set� Then� for any set X � �n� there exist r

disjoint subsets X�� � � � � Xr of X with the following property�

X 	 L �� 
 �� �i 
 r � jjXi 	 L jj � ��

Furthermore� we can compute X�� � � � � Xr in polynomial time w�r�t� n and jjX jj�
Proof� Let g and e be the generator and the evaluator of a 
P

b�tt�reduction
from L to a P�selective set A� and let f be a P�selector for A� De�ne Q to be
the set of queries to A for all x � X  that is� Q �

S
x�X g�x�� Let � denote

�f�Q� Recall that � is polynomial�time decidable w�r�t� n and jjX jj�
For any u� v � Q�f���g� the interval 	u� v� is the set fw � Q j u � w � v g�

For any set I of intervals� we simply write
S I for

S
I�I I �

For each x � X � we can de�ne an associated set of intervals in Q that
characterizes the membership of x in L according to a cutpoint of A in Q� More
formally� letting g�x� � f y� � � � � � yh g �where h 
 b�� y	 � �� and yh�� � ��
we de�ne

Ix � f 	yi� yi��� j e�x� g�x�� fy�� � � � � yig� � �� where i � f�� � � � � hg g�

��



If two adjacent intervals� i�e�� 	yi� yi��� and 	yi��� yi���� belong to Ix� we regard
them as one interval 	yi� yi���� Note that each Ix has at most bb��c!� intervals�

Let Jx �
S Ix� J �

S
x�X Jx� and let z� be a cutpoint of A in Q� Then� for

all x � X � we have x � L �� z� � Jx� and hence� X 	 L �� 
 �� z� � J �
By the Combinatorial Lemma stated below� we can select r � ��bb��c!����

subsets X�� � � � � Xr of X such that

�z � J� �i 
 r� �x� � Xi � z � Jx�

Now� we show that X�� � � � � Xr have the property claimed in the lemma�
Suppose that X 	 L �� 
� Hence� z� � J � Then� from the above property of
X�� � � � � Xr� there exists some Xi that has exactly one x such that z� � Jx� This
means that Xi has exactly one element �namely� x� in L� �Recall that x � L
�� z� � Jx�� Therefore� jjXi 	 L jj � �� tu

Combinatorial Lemma Let fIxgx�X be any family of sets of intervals in
Q� where the index set X is �nite� and each Ix consists of at most � intervals�
Let I be the set of intervals appearing in Ix for some x � X  i�e�� I � f I j
I � Ix for some x � X g� Let J �

S I and Jx �
S Ix� Then there exist r �

��� � disjoint subsets X�� � � � � Xr of X such that

�z � J� �i 
 r� ��x � Xi � z � Jx�

Furthermore� if � is polynomial�time computable w�r�t�
P

u�Q juj� then the
selection of X�� � � � � Xr can be done in polynomial time w�r�t� �� jjX jj� andP

u�Q juj�

Proof� First� we construct a minimum size cover of I� We say that bI is a
minimum size cover of I if �i� bI � I� �ii�

S bI � J � and �iii� no I � such that

jj I � jj � jj bI jj satis�es both� �i� and �ii��

Claim � There is a polynomial�time algorithm that computes a minimum size
cover of I�

Proof� The following greedy algorithm computes a minimum size cover of I�

Minimum�Size�Cover�I���

bI � 
 J � � S I 
while J � �� 
 do

z � a smallest point in J � 
Select an I � I such that z � I and jj I 	 J � jj is maximal bI � bI � fIg J � � J � � I  

return bI �

��



Clearly� this algorithm runs in polynomial time� To show its correctness� leteI � feI�� � � � � eIkg be a minimal cover of I� and let these intervals be in increasing

order according to their left endpoints� By eJi we denote
Si
j
�

eIj � Let bI �
fI�� � � � � Ihg be the output of Minimum�Size�Cover� where each Ii is selected

at the ith iteration of the while�loop� By bJi we denote
Si
j
� Ij �

Since eI is a minimal cover� we have k 
 h� We will argue that k � h� and
hence bI is a minimal cover for J as well� Note that both eJi and bJi are initial
segments of J � Therefore� by the choice of Ii� we have eJi � bJi for all i � �� � � � � k�
and thus h 
 k� since otherwise� eI would not cover J � tu Claim �

For each I � bI � de�ne support�I� to be an x such that I � Ix� and let

support�bI� � f support�I� j I � bI g� �If there is more than one x such that

I � Ix� choose one of them for support�I��� We will partition support�bI� into

r � �l � � groups X�� � � � � Xr� such that for any two x� x� � support�bI��

��� if I is an interval in bI with support�I� � x and I has
nonempty intersection with Jx� � then x and x� will be in
di�erent groups�

Let us �rst see why property ��� of the partitioning X�� � � � � Xr satis�es the

condition of the lemma� Consider any z � J � Since bI is a cover of J � there is
some I � bI containing z� Let x � support�I� and let Xi be the subset containing
x� Then� since Jx� 	 I � 
 for all x� �� x in Xi� x is the only element of Xi such
that z � Jx�

To construct a partitioning of support�bI� having property ���� consider the
following undirected �simple� graph G � �V�E��

V � support�bI�� and

E � f fx� x�g j �I � bI � support�I� � x and Jx� 	 I �� 
 g�

Observe that property ��� is equivalent to that G is �l�� colorable� To show
this property of G� we �rst consider the following directed version G� � �V�E��
of G� where

E� � f �x� x�� j �I � bI � support�I� � x and Jx� 	 I �� 
 g�

Claim � Every vertex of G� has an outdegree of at most ��� ��

Proof� Notice �rst that every interval in I intersects with at most three inter�
vals in bI� since otherwise� one can de�ne a cover of J that has less elements thanbI� contradicting the minimality of bI � Similarly� every interval in bI intersects
with at most two intervals in bI� On the other hand� each x � V has at least one
interval in bI and thus at most �� � intervals not in bI� Therefore� Jx intersects
with at most ���� �� ! � � ��� � intervals in bI� tu Claim �

��



Claim 
 Every subgraph of G has a vertex with degree at most ��� �

Proof� Consider any subgraph bG � �bV � bE� of G� From Claim �� it is clear thatbG has at most ���� ��jj bV jj edges that is� the sum of the degrees of all vertices

is at most �������jj bV jj� Hence� there is a vertex with degree at most �������
� ��� �� tu Claim �

From Claim �� we derive the crucial property of G�

Claim � G is �� � ��colorable� That is� there exists a partition X�� � � � � Xr

of V � where r � �� � �� such that every Xi forms an independent set in G�
Furthermore� some polynomial�time algorithm computes the partition from a
given G�

Proof� We show by induction on the size of V that the simple greedy algorithm
that colors vertices in descending order of their degree needs at most �� � �
colours� This clearly holds for jjV jj 
 ��� �� For larger V � let x be the vertex

of G that is colored last by the algorithm and let bG be the subgraph of G
obtained by deleting x from G� Then� by Claim � � we can apply the induction
hypothesis to bG� that is� the algorithm needs at most ��� � colors for bG� Now�
since the degree of x is at most �� � �� the algorithm will �nd a color for x�

tu Claim 


tu
Theorem ��� can be extended to 
P

b�n��tt�reductions� for functions b� as long

as b is poly�logarithmically bounded� That is� for b�n� 
 �logn�a� for some
contstant a� if there exists a P�selective set A that is 
P

b�n��tt�hard for NP� then

NP � DTIME��n
O���

p
logn�

��
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