On Sets Bounded Truth-Table Reducible to
P-selective Sets *

Thomas Thierauf® Seinosuke Todat Osamu Watanabe®

December 14, 2000

Abstract
We show that if every NP set is polynomial-time bounded truth-
table reducible to some P-selective set, then NP is contained in
DTIME(?”O(l/\/b“)). In the proof, we implement a recursive procedure
that reduces the number of nondeterministic steps of a given nondeter-
ministic computation.

1 Introduction

The class NP is commonly considered as a class of problems that cannot be
solved efficiently, that is, by polynomial-time bounded, deterministic Turing
machines. Changing from (uniform) Turing machines to (nonuniform) circuits,
one of the important questions in computational complexity theory is whether
every NP problem is solvable by small, that is, polynomial-size, circuits. Fur-
thermore, assuming that NP problems can indeed be solved by small circuits, it
has been asked whether this is turn gives deterministic algorithms for NP faster
than the known exponential ones. In other words, if NP is easy in the nonuni-
form complexity measure, how easy is NP in the uniform complexity measure?
We study such type of questions in this paper. Karp and Lipton [KL82] have
shown that if NP has small circuits then the Polynomial Hierarchy [Sto77] col-
lapses, therby giving strong evidence that the assumption might not hold. Note
however, that this does not answer the above question.

*Part of the work was done while the authors were visiting the University of Rochester,
Department of Computer Science. This research is supported in part by JSPS/NSF Interna-
tional Collaboration Grant JSPS-ENGR-207/NSF-INT-9116781, DFG Postdoctorial Stipend
Th 472/1-1, and NSF grant CCR-8957604.

t Abteilung Theoretische Informatik, Universitit Ulm, 89068 Ulm, Germany. Email:
thierauf@informatik.uni-ulm.de.

fDepartment of Applied Mathematics, Nihon University, Setagaya-ku Sakura-Jyosui 3-25-
40, Tokyo 156, Japan. Email: toda@math.chs.nihon-u.ac.jp.

§Department of Computer Science, Tokyo Institute of Technology, Tokyo 152, Japan.
Email: watanabe@cs.titech.ac.jp.

Small circuits can be coded by sparse sets and vice versa. Therefore, the
class of sets that have polynomial-size circuits coincides with the class of sets
that are (polynomial-time) Turing reducible to some sparse set. We denote the
latter class by RE(SPARSE). Hence, the above question is equivalent to the
following one: For which uniform deterministic complexity class C do we have
NP C RE(SPARSE) = NP C C?

Nontrivial answers to this question are only known for even stronger assump-
tions such as that NP is contained in certain subclasses of RE.(SPARSE). For
example, Mahaney [Mah82] showed that if every NP set is many-one reducible
to some sparse set then P = NP. That is,

NP C RF(SPARSE) — NP = P.

Ogiwara and Watanabe [OW91] extended Mahaney’s result to bounded truth-
table reductions, that is,

NP C R}, (SPARSE) — NP = P.

This result has been improved further more recently, see [AHHT93]. How-
ever, it is open whether the result can be improved to b(n)-bounded truth-
table reducibility for some nonconstant function b(n). Indeed, Saluja [Sal93]
showed that, at least with the technique used by Ogiwara and Watanabe, such
an improvement is impossible. Furthermore, for b(n) = w(logn), Homer and
Longpré [HL94] (see also [AHH'93]) constructed an oracle relative to which
NP C Rlb:'(n)_tt(SPARSE), but P is different from NP.

Small circuits can also be coded as leftcuts of real numbers and vice
versa [Ko83, Sel82b]. Leftcuts can be formalized in terms of P-selective
sets [Sel82b]. Therefore, the class of sets that have polynomial-size circuits
coincides with the class of sets that are (polynomial-time) Turing reducible to
some P-selective set. Let SELECT denote the class of P-selective sets. Thus,
we have R} (SELECT) = RY (SPARSE). However, for reductions that are more
restrictive than the Turing reduction, classes obtained by reducing to P-selective
sets can be different from classes obtained by reducing to sparse sets. For exam-
ple, Watanabe [Wat90] showed Ri (SELECT) # R (SPARSE) (see [HHOT 93]
for more separations). Hence, it is interesting to investigate the consequences
of NP being reducible to P-selective sets with respect to some more restrictive
type of reducibility.

Selman [Sel79] showed that if every NP set is many-one reducible to some P-
selective set then P = NP. Assuming that NP sets are (unbounded) truth-table
reducible to P-selective sets, Toda [Tod91] and Beigel [Bei88] showed that NP
problems can be solved efficiently by randomized Las Vegas type algorithms, a
class denoted by R.

NP C RE(SELECT) = NP = R. (1)

In this paper, we show a deterministic upper bound on NP when considering
bounded truth-table reductions. Namely, we show

NP C RP,(SELECT) —> NP C DTIME(2"""/V™"

)- (2)

Let us give a brief outline of our proof. We start by sketching the idea to
prove equation (1). The assumption NP C R (SELECT) is essentially used to
show:

(¥) for a given polynomial-time nondeterministic Turing ma-
chine M and a string =z, if M on input z has ezactly one
accepting path, then the path is computable in determinis-
tic polynomial time.

For M and x as above, the nondeterministic computation of M on z can
be viewed as a (binary) tree T. Using the randomized hashing technique of
Valiant and Vazirani [VV86], one can construct subtrees T1,...,T,, of T, all
having the same root as T', such that if 7" has an accepting path then, say, m/4
of Th, ..., T, have ezactly one accepting path. Then from property (), for the
Ty’s having exactly one accepting path, one can compute this path. Thus, by
choosing T}, randomly for several times, one can compute some accepting path
of T' with high probability if there are any. This is the idea of showing NP = R.

We also use (x) for proving equation (2). Consider again a nondeterministic
computation tree T' as above. Using our stronger assumption, namely that NP
C R}, (SELECT), we can construct subtrees 77, ..., T, of T such that if T has
some accepting path, then some T} has exactly one accepting path, and, by
property (x), such a path can be computed in polynomial time. The important
point here is that the number of subtrees, n, can be chosen fairly small compared
with m from above, or with the number of paths in T. Hence, the original NP
question “Does T have an accepting path?” is reduced to another NP question
“Is there a k such that 7} has an accepting path?”, and in addition, the size
of the search space in the latter NP question (searching for some k) is much
smaller than in the former one (searching for some path). Hence, for solving the
reduced NP question, one needs a smaller number of nondeterministic guesses.
We show how to apply this process recursively, thereby successively decreasing
the search space of the reduced NP questions obtained. In total, this yields a
subexponential algorithm to solve the original problem deterministically.

Related work was done by Jenner and Toran [JT95]. They showed under
the assumption that functions that can be computed in polynomial time by
making truth-table queries to NP can already be computed in polynomial time
by making logarithmically many (adaptive) queries to NP (in symbols, FPNF =
FPNPlosly it follows that NP C DTIME(2"/ log* ™), for any k > 1. Note that
their assumption is seemingly weaker than ours since it is not hard to see that
NP C RE(SELECT) implies FPN" = FPNPI°8l but the converse implication

is not known to hold. It seems, however, not possible to obtain our stronger
upper bound on NP from their assumption by their technique [Tor93].

Most notably, we mention that our result has been improved recently.
Namely, Agrawal and Arvind [AA94], Beigel, Kummer, and Stephan [BKS95],
and Ogihara [094] showed that NP C RP, (SELECT) = NP = P. In
fact, the result holds up to quasi-linear truth-table reducibility, i.e., O(n!~¢), for
any € > 0, [AA94, 094]. The principal method in all three papers is a standard
search and pruning technique with the goal to find a satisfying assignment for
a given Boolean formula F' in polynomial time (if there exist any). During the
search, a set X of subformulas of F' is maintained such that the following invari-
ant is fulfilled: F € SAT <= X N SAT # 0. Initially, X = {F'}. While going
breadth-first through the self-reduction tree of F', X is successively extended
and then pruned again such that the size of X remains polynomially bounded.
The pruning task is to determine an x € X such that if X N SAT # () then
(X —{2})NSAT # 0. Then = can be pruned from X since there will still be a
satisfiable formula in X if there are any, thereby maintaining the invariant. By
assumption, formulas in X can be reduced to a P-selective set. The crucial point
in their proofs is to also produce new Boolean formulas by or-ing together some
(apppropriate) formulas of X, and to reduce them to the P-selective set as well.
Since the new instances are related to the formulas in X (by the or-function),
this must be reflected in the way these strings are mapped by the reduction.
Exactly this property is used to find an instance z to prune as described above.

Thus, our approach is completely different from the one’s mentioned above.
Roughly speaking, the proofs in [AA94, BKS95, 094] essentially use the fact
that there are NP complete sets that are (disjunctively) self-reducible and have
an or-function in order to make their searching technique work. In contrast,
we use the completeness of certain NP sets, but we don’t use such or-functions,
and thus, we need to establish a more elaborate searching technique. Therefore,
although the main result we will derive in this paper is already subsumed, we
think that our proof technique is interesting for its own, and hence, we encourage
the reader to continue reading!

2 Preliminaries

We follow the standard definitions and notations in computational complexity
theory (see, e.g., [BDG88, BDGI1]).

We fix an alphabet ¥ = {0,1}. For any set X C ¥*, we denote the comple-
ment of X as X = ¥* — X. Natural numbers are encoded in ¥* by using their
binary representation. For any string z, let |x| denote the length of x, and for
any set X, let || X || denote the cardinality of X. We consider a standard one-
to-one pairing function from ¥* x ¥* to ¥* that is computable and invertible in
polynomial time. For strings z and y, we denote the output of the pairing func-
tion by (z,y); this notation is extended to denote tuples. For example (z,y, 2)

is defined as ((x,y),z). For a function f, we simply write f(z,y) instead of
F((@,m)).

We use the standard Turing machine as our computation model. P (resp.,
NP) denotes the class of languages that can be recognized by some polynomial-
time deterministic (resp., nondeterministic) Turing machine. For a nondeter-
ministic Turing machine M, we assume that every nondeterministic configu-
ration of M has at most two succeeding ones. Hence, each nondeterministic
computation of M on a given input can be described by a string w, where the
ith bit of w indicates which branch to take at the ith nondeterministic branch
point. In this context, we call a string w a path of M, and, in case that w leads
to an accepting configuration of M on a given input, we call w an accepting path
of M on that input.

For any sets A and B, we say that A is many-one reducible to B (and write
A <P B) if there is some polynomial-time computable function f, the reduction,
such that for any z € ¥*, we have z € A < f(z) € B. A set C is called NP-
complete if (i) every NP set is many-one reducible to C, and (ii) C itself is in NP.
The reducibility notions we are interested in are generalization of the many-one
reduction. We say that A is truth-table reducible to B (and write A <F B)
if there are two polynomial-time computable functions, generator g that, for a
given z € ¥*, produces a set of strings, and evaluator e that, when knowing
which of the strings produced by g are in B, decides membership of z in A.
That is, for any = € X%,

1EA > el gla),g(x) N B) =1,

where we assume that g(z) (resp., g(xz) N B) is encoded as a string. For any
b(n) > 0, we say that A is b(n)-truth-table reducible to B (and write A Sf(n)_tt
B) if the generator g produces at most b(n) strings for each input of length n.
We say that A is bounded-truth-table reducible to B (and write A <P, B) if
A s Slk)_tt—reducible to B, for some constant k > 0. Hard and complete sets
with respect to these reducibilities are defined analogously as for the many-one
reducibility.

For any class C of languages, let RE(C), RE (C), Rl;(n)_tt (C), and R, (C)
respectively denote the class of sets that are <h-, <h- Sl;(n)—tt’ and Sgtt—
reducible to some set in C.

P-selective sets were introduced by Selman [Sel79] as the polynomial-time
analog of semi-recursive sets [Joc68]. A set A is P-selective, if there exists a
polynomial-time computable function f, called a P-selector for A, such that for
all z,y € ¥,

L. f(z,y) € {z,y}, and
2. ifx € Aory € A, then f(z,y) € A.

Intuitively, f selects the one of the two given strings that is “more likely” to

be in A. More formally, if f(z,y) = = and y € A, then x € A. The class of
P-selective sets is denoted as SELECT.

Ko [Ko83] showed that for every P-selective set A, using the P-selector func-
tion f of A, one can define a linear ordering on a quotient of ¥* such that A is
the union of an initial segment of this ordering. Toda [Tod91] modified this to
an ordering on a given finite set @ (instead of ¥*). Here, we use this ordering.
That is, we define the relation <f o on @) as follows. For all z,y € @,

T =r0y <= thereexist zi,...,2, € Q such that
f(zi,zip1) =z fori=1,...,n -1,

f(,z1) =z, and f(zn,y) = 2n.

Define v 25 y <= = 2r0 ¥y ANy <50 ® Then =, is an equivalence
relation on @, and =< ¢ induces a linear ordering on the quotient @/ =y o.
This is reflected by the following partial ordering < o on @:

T=QY < 3y N TFrQy.

For simplicity, we omit the subscripts f and) when both are clear from the con-
text. For technical reasons, we introduce a minimum and a maximum element,
denoted as L and T respectively, such that L <z < T, for all z € Q.

It is easy to see that the relations < and 2 are decidable in polynomial time
in } ,cqlz|- The crucial point is that AN @ is an initial segment of @ with
respect to <. That is, we have

JzeQU{l}: QNA={yeQ|ly=zlandQNA={yeQ|y>=z}.

We call a string z witnessing this property a cutpoint of A in @) (with respect
to <). A consequence of this property is that Vo, y € Q: z <y Ay € A =
x € A.

3 Main Result

In this section, we show that if all NP sets are bounded truth-table reducible
to some P-selective set, then every NP set is solvable deterministically in

gt/ Ve steps. We begin by recalling a result of Toda [Tod91] that will
be used in our proof. We use a formulation in terms of promise problems.

Definition 3.1 [ESY84] A promise problem is a pair of sets (Q,R). A set
L is called a solution of the promise problem (Q, R), if for all x € Q, we have
rE€ER<zx€lL.

In other words, if L is a solution of a promise problem (@, R), then L coincides
with R on all instances where the promise () holds. That is, QN R =@ N L.

Toda [Tod91] showed that if all NP sets are <[;-reducible to some P-selective
set, then the promise problem (1-SAT, SAT) has a solution in P, where 1-SAT
is the set of Boolean formulas that have at most one satisfying assignment.
We restate his theorem in a slightly more general form and include a proof for
completeness.

Theorem 3.2 [Tod91] If NP C Rf,(SELECT) then, for any NP machine N
the promise problem (1-L(N), L(N)) has a solution in P, where 1-L(N) is the set
of strings x such that N has at most one accepting path on input x. Furthermore,
if N is p(n) time bounded, then the solution is in DTIME(gr o p(n)), for some
fized polynomial qt.

Proof. Define the NP set BitPATH as follows. For a nondeterministic Turing
machine N, a string xz, d,t > 1, and 1 <i <d,

(N,2,0%,0',i) € BitPATH <= there exists w € £=7 such that
N accepts x on path w in t steps
and the ith bit of w is 0.

By assumption, BitPATH is truth-table reducible to some P-selective set
A. Let g be the generator and e the evaluator of the reduction, and let f be a
P-selector for A.

Let N be an NP machine, and let polynomial p bound its running time.
Counsider an instance z, |z| = n, for N such that N has exactly one accepting
path w on input z. Clearly, we can reconstruct w when knowing the answers to
the questions “z; = (N, z, 0P 0P(™ i) € BitPATH?”, for i =1,...,p(n).

Let @ be the set of strings queried to A on z; by the generator of the truth-
table reduction, for i = 1,...,p(n), i.e., @ = { y | y € g(zi), for some 4,
1 <i < p(n) }. If we know which point of @ is a cutpoint of A w.r.t. <70,
we would be able to get the correct answer to each query “z; € BitPATH?”,
thereby obtaining the unique accepting path w. Here, note that @ has only
polynomially many elements; thus, we can try all elements y of Q and check
whether we obtain an accepting path (namely, w) assuming that y is a cutpoint.
(Note that we can easily verify whether a reconstructed path is an accepting
path.) The algorithm in figure 1 makes this idea more precise. Here, N and p
are fixed parameters.

Let My be a deterministic Turing machine that executes this algorithm.
Clearly, L(My) is a solution for (1-L(N),L(N)). Furthermore, there exists
some polynomial gt such that for any N, My halts in O(gr(p(n))) steps. O

Now, we prove our main theorem.

Theorem 3.3 If NP C R, (SELECT) then NP C DTIME(2""/V'*™).

UNIQUE-ACCEPTING-PATH(z, |z| = n);

Q — Ulgtgp(n) g(N> z, Op(n)) Op(n)) Z)a
for each y e QU {1} do
for i «+ 1 to p(n) do
if the evaluator e accepts (N, z,0P(™,0P("™) i) when the answers
to g(N, z, 0™ 0P(") i) are given according to cutpoint y

then w; < 0 else w; + 1;
if w=wi -+ wy(,) is an accepting path of N on input =
then accept;

reject.

Figure 1: Polynomial-time algorithm for (1-L(N), L(N)).

Proof. Let us first define two NP sets. The first one is similar to the canonical
universal NP complete set except that the number of nondeterministic steps is
stated explicitly. For a deterministic Turing machine M, a string z, and d,t > 1,

(M,z,0%,0") € UNIV <= there exists w € £ such that
M accepts input (z,w)
in at most ¢ steps.

Obviously, UNIV is NP complete. Our second set is defined similarly except
that it has, as an additional component, the prefix of an accepting path for the
considered machine. For a deterministic Turing machine M, a string z, d,t > 1,
and a string u, where |u| < d,

(M, z,0%,0",u) € PrefitPATH <= there exists v € X%~ |ul such that
M accepts input (z,uv)

in at most ¢ steps.

Consider any instance 7 = (M, z, 0%, 0t) for UNIV. We can define a binary
tree T' associated with 7 as follows. The nodes of T are of the form (r,u), for
u € ¥ which are instances for PrefitPATH. T’s root is (1, \) (where X is the
empty string). Clearly, 7 € UNIV <= (7,)\) € PrefixtPATH. T’s leaves are
nodes (7,u) such that |u| = d. A binary string u € =9 is viewed as a path
from the root to (7,u). A string w € X% is called an accepting path of T if M
accepts input (z,w), or, equivalently, (7,w) € PrefixPATH. Clearly, 7 € UNIV
if and only if there exists an accepting path in T'.

Let r and e be some integers that will be specified later. Below, we define
rld/el subtrees T} of T' in such a way that, if there is an accepting path in T,

then there exists a subtree T} that has exactly one accepting path. That is,

7€ UNIV <<= 3Jwe x?: wis an accepting path in T (3)
= 3k < rl?¢l . T, has exactly one accepting path. (4)

At this point, we can explain our proof idea, that is, the strategy for deciding
whether 7 € UNIV in deterministic subexponential time. Consider the promise
problem (1-SubTREE, SubTREFE), where 1-SubTREE is the set of Ty, with at
most one accepting path, and SubTREE is the set of T} having an accepting
path. SubTREE clearly is an NP set. Then, by Theorem 3.2, this promise
problem has a solution in P. Thus, if T} has exactly one accepting path, we can
verify it in polynomial time. Hence, both, equation (3) and (4) give NP-type
predicates for deciding whether 7 € UNIV. While there are 27 possibilities for
w in equation (3), we can reduce the scope of k in equation (4) by choosing e
large; in other words, while d (binary) nondeterministic guesses are necessary
in equation (3), (dlogr)/e guesses are enough when using equation (4). On the
other hand, enlarging e will increase the time to decide the promise problem. We
will see below that by appropriately choosing e, we can fairly reduce the number
of nondeterministic guesses without increasing the time to decide the promise
problem too much. That is, the original NP-type predicate is reduced to a
simpler one. By iterating this process, we can finally solve the problem without
any guesses, i.e. deterministically, and we will see that the whole process can be
done in subexponential time.

Let us define the subtrees more precisely. We assign an integer label to
each node of T. Subtree T} of T is then defined as consisting of all nodes
having label k£ and their father nodes. The way to assign labels is therefore
crucial. In order to do so, we divide T into blocks of depth e. More formally,
for each h, where 0 < h < [d/e] — 1, and u € ¥, we consider a set X (r,u)
= {(r,uwv) | v € ¢} of nodes in T, which is regarded as a block of depth e.!
Notice that if (7,u) € PrefitPATH , then some elements of X (7, u) also belong to
PrefixtPATH . Here, for the decomposition of T satisfying equation (4), we would
like to divide X (7, u) into X; (7, u), ..., X, (7,u) so that if (7,u) € PrefitPATH
then some X;(7,u) has exactly one element in PrefitPATH. Key point of our
proof is that this is possible by using the assumption that PrefiztPATH (€ NP)
is <P, -reducible to some P-selective set. That is, we have the following lemma.

Key Lemma Let b, n > 0 and r = 6(|b/2] + 1) — 1. Let L be any set that
is Sf_“—reducible to some P-selective set. Then, for any X C X", there exist r
disjoint subsets X, ..., X, of X with the following property.

XNL#) < Fi<r: ||X;NnL|=1.

Furthermore, we can compute X, ..., X, in polynomial time w.r.t. n and || X ||.

! Precisely speaking, when |u| = ([d/e] — 1)e (i.e., h = [d/e] — 1), X(7,u) should be
{(7,uv) | v € 24~1u| }. In the following, we omit explaining such exceptional cases.

Figure 2: Tree with branching factor 4 and its labeling.

Since PrefiztPATH is in NP, for some b > 0 it is <}, -reducible to some P-
selective set by assumption. Thus, from the Key Lemma (with L = PrefitPATH
and X = X(7,u)) we can divide each X (7,u) into r = 6(|b/2] + 1) — 1 disjoint
subsets X1(7,u),..., X, (7,u) of X(7,u) such that

(1,u) € PrefitPATH <—

3j <r: X;(7,u) has exactly one element in PrefitPATH.

An important point to note here is that r does not depend on e.

The root of T', (7, A), gets label 1. Now, let (7,u) be some node of T', where
u = v1vs -+ - vy, for some 0 < h < [d/e] and vy,...,vp € X°. All nodes in a
set X;(7,u) get the same label. The nodes in X;(7,u) get the same label as
(1,u). For j > 1, consider the r-ary tree, where the nodes are the sets X;(7, w).
If we go through this tree in a breath first left to right fashion, then the nodes
in X;(r,u) get as label the smallest number that not yet occured as a label.
Figure 2 provides an example.

More formally, let the history of (7,u) be the sequence (ji1,. .., jx) of indices,
where each j; (1 <i < h) is the index such that (7,v1 -+ v;) € Xj, (7,01 - - - vi—1).
Note that each history is expressed as a path (from the root to some node) of a
r-ary tree.

Let left(j1,.-.,Jjn) be the number of nodes in the r-ary tree that are in the
same depth to the left of the node with history (j1, ...,). That is, left() = 0,
and

leﬁ(jh s 7jh7j) =T leﬁ(jh s 7jh) +j -1

Let v € ¥¢ and let (j1,...,4n,j) be the history of (7,uv). Then

B label (T, u), if j =1, and
label (T, uv) = { 4+ (r —1) - left(j1,...,5n) +j — 1, otherwise.

Now, for each k, where 1 < k < r[%/¢1 define T} as the subtree of T consisting
of all nodes with label k and their father nodes.

10

It is not hard to show that label is computable in polynomial time w.r.t.
|(1,u)| and 2¢, and furthermore, that the labels are bounded by rl?/el.

Claim 1 T has an accepting path if and only if for some k, 1 < k < rl#/¢l T,
has ezactly one accepting path.

Proof. Since each path of T belongs to one of the subtrees, the if part is
obvious.

Assume that T has has an accepting path. Then (r,\) € PrefitPATH;
hence, by the Key Lemma, some X, (7, A) has exactly one element (7,v1) in
PrefixtPATH. Then since (7,v1) € PrefitPATH, again by the Key Lemma,
some Xj,(r,v1) has exactly one element (7,v1v2) in PrefixPATH. Contin-
uing this argument, we can find ji,...,jra/] and vi,...,v74/.] such that
each X, (7,v1 - - - v;-1) has exactly one element (7,v; - --v;_1v;) in PrefitPATH.
In particular, viva---vpg/.] is an accepting path. Thus, Ty, where k =
label (T, v1v2 - - - vrq/61), has exactly one accepting path. O Claim 1

Next, for each e > 1, consider the following set. For a deterministic Turing
machine M, a string z, d,t > 1, and 1 < k < rld/¢l,

(M,x,Od,Ot, k) € SubTREE. <= T} has an accepting path,
where T}, is the subtree of T
defined by (M, z,0%,0!) and e.

For each e, clearly SubTRFE. is in NP and thus we could now solve
the promise problem (I-SubTREE.,SubTREE,.) deterministically in poly-
nomial time applying Theorem 3.2. But we should be careful about the
polynomial-time bound, which depends on the choice of e. Precisely speaking,
(1-SubTREE., SubTREE,) has the following upper bound.

Claim 2 For some polynomial qs and for all e > 1, there exists a deterministic
Turing machine M, such that

(i) on inputs of length n, M, is qs(n + 2°)-time bounded, and
(i) L(M.) is a solution of (1-SubTREE,., SubTREE.).

In other words, for every input n = (M, x,0%,0t, k), M, halts in qs(|n| + 2°)
steps, and if n € 1-SubTREE., then n € SubTREE, <= M, accepts 1.

Proof. Let 7 = (M,z,0%, 0! and n = (, k). Consider the problem of deciding
whether 7 is in SubTREE.. We can solve this problem by checking whether
there exists some w € X7 such that 1) M accepts (z,w) in t steps (i.e., w
is an accepting path of the tree T defined by 7), and 2) k = label(r,w) (i.e.,
the accepting path w belongs to T}). Thus, for some polynomial ¢; and for
all e > 1, this can be done nondeterministically in ¢ (|n| + 2¢) steps. That is,

11

SubTREE,. € NTIME(gq:(n + 2¢)). Now the claim follows from Theorem 3.2.
O Claim 2

Thus, we reached our goal to reduce the scope of the existential quantifier;
that is, 7 € UNIV <= 3w € £ : w is an accepting path in T <= Ik < rl?/cl .
(r,k) € L(M.). Here, notice that we can easily translate our reduced problem to
anew instance for UNIV. Then we can apply the above construction recursively!

Claim 3 For any e, there exists a deterministic Turing machine J\/Ze such that
for every input T = (M, z,0%,0t),

€ UNIV < (M,,,0% 0") € UNIV,

where d' = [logr] - [d/e], r as above, and t' = qu(|7| + 2¢), for some fized
polynomial qy.

Proof. Let 7 = (M,z,0%,0!) and w be string of length at most d' = [logr] -
[d/e]. Machine M, is defined as follows. For a given input (7, w), M, simply
simulates M., the machine defined in Claim 2, on input (7,w), where w is
interpreted as an integer k now. Note that 1 < k < r[4/¢]. Finally, J\/Ze accepts
(r,w) if and only if M, accepts (7, k).

From Claim 1 and Claim 2, we have 7 € UNIV <= J/M\e accepts (7, w), for
some w. Since M, halts in ¢s(|(7, k)| + 2°) steps, M, halts in qu(|(T,w)| +2°)
steps, for some polynomial qy. O Claim 3

Note that although the time bound ¢ increases to ', the crucial point is that
the number of nondeterministic steps d’ decreases about a factor (logr)/e.

Finally, to show that every NP set L belongs to DTIME(2”O(1/\/@)), let
M, be a deterministic machine and p; be a polynomial such that for every
r €Y xe L < (Mp,z o0rcz) orelz))y ¢ UNIV.

Let z, || = n, be a string for which we want to decide membership in L.
Let e = [36(n)logr], where r = 6(|b/2| + 1) — 1 and function ¢ will be chosen
appropriately at the end of the proof. (We assume that n is large enough so that
e > 3.) First, define 29 = x, dy = pr(n), to = pr.(n), and 7o = (M, zo, 0%, 0%).
For each ¢ > 1, define inductively z; = 7,1, d; = [logr] - [di—1/e], t; =
qu(|Ti—1| + 2¢), and 7; = (M\e,:ri,Odi,Oti), until d; < e (= [36(n)logr]). Let m
be the first integer such that d,, < e. Then from Claim 3, we have 7y € UNIV
< 1 € UNIV <= .- <= 1), € UNIV. On the other hand, ¢ € L <
7o € UNIV. Hence, x € L <= 1, € UNIV. That is, the problem of deciding
x € L is reduced to that of deciding 7,,, € UNIV.

Let us evaluate the deterministic computation time for deciding 7,,, € UNIV.
First, we give an upper bound for ¢,,. Note that for some polynomial p;, we
have |1;| < p1(t;), for i = 1,...,m. Thus,

tm = QU(|Tm—1|+2€)

12

qu (p1(tm—1) + 2°)
qu(proqu(---(p1oqu(pL(n) +29))---) +2°).

Hence, for some constant ¢; and co, we have

<
<

tm < nc'ln2c'1"e — 2(:'1"(e+10gn) < 2(:'1"((:26(71) 10gr+logn).
On the other hand, note that for any d > e > 3, we have d' = [logr] - [d/e]
< (3dlogr)/e < d/é(n). Thus,

m < logs,ydo < c3logn/logé(n),

for some constant c3. Therefore, for some constant ¢4,

cglogn e
Iog 6(n)
€1 (

4
J 1 1 log 6(n) J 1 1
tm < c28(n) log r+logn) < on (c26(n) log r+log n),

which takes the smallest order when we choose §(n) = n'/V1°6™ Then, for

c5/\/logn
some constant cs, we have t,,, < 27)

Clearly, “1,, € UNIV?” is deterministically decidable in polynomial time
w.r.t. |7m|. Also 7, is deterministically computable in polynomial time w.r.t.
|7m|. Recall that |7, < pi(tm). Thus, the deterministic computation time

for computing 7, and deciding 7,, € UNIV is polynomially bounded by t,.
co/\/log n

Therefore, with some constant c¢g, it is bounded by 2" . That is, z € L
is deterministically decidable in gno/Vicsn steps. O

It remains to prove the Key Lemma.

Key Lemma Let b, n > 0 and r = 6(|b/2] + 1) — 1. Let L be any set that is
Sf_tt—reducible to some P-selective set. Then, for any set X C X", there exist r
disjoint subsets X, ..., X, of X with the following property.

XNL#) < Fi<r: ||X;nL||=1.
Furthermore, we can compute Xj, ..., X, in polynomial time w.r.t. n and || X ||.

Proof. Let g and e be the generator and the evaluator of a <!’ -reduction
from L to a P-selective set A, and let f be a P-selector for A. Define) to be
the set of queries to A for all z € X; that is, @ = |J,cx 9(z). Let <X denote
=t0- Recall that < is polynomial-time decidable w.r.t. n and || X ||.

For any u,v € QU{L, T}, the interval [u,v)istheset {w € Q |u S w < v }.
For any set 7 of intervals, we simply write |JZ for |J; I.

For each x € X, we can define an associated set of intervals in @ that
characterizes the membership of z in L according to a cutpoint of A in (). More
formally, letting g(l’) = {yl j e j yh} (Where h S b)> Yo = J—: and Ynt+1 = T:
we define

T, = {[vi,yit1) | e(z, 9(x),{y1,...,y:i}) =1, where i € {0,...,h}}.

13

If two adjacent intervals, i.e., [y;, yi+1) and [yit1,¥it2), belong to Z,, we regard
them as one interval [y;, yi+2). Note that each Z, has at most [b/2] +1 intervals.
Let J, = UZs, J = U,cx Jz, and let 2* be a cutpoint of A in). Then, for
allz € X, wehavexr € L < 2* € J,, and hence, XNL #) < z* € J.
By the Combinatorial Lemma stated below, we can select r = 6(|b/2]| +1)—1
subsets X1,..., X, of X such that

VzeJ, Ji<r, dxte X;: z€ J,.

Now, we show that Xi,..., X, have the property claimed in the lemma.
Suppose that X N L # (. Hence, z* € J. Then, from the above property of
X1,..., X,, there exists some X; that has exactly one x such that z* € J,. This
means that X; has exactly one element (namely, z) in L. (Recall that z € L
<= 2* € J,.) Therefore, || X;NL|| = 1. O

Combinatorial Lemma Let {Z,},cx be any family of sets of intervals in
(@, where the index set X is finite, and each 7, consists of at most ¢ intervals.
Let Z be the set of intervals appearing in Z, for some z € X; ie., T = {I |
Ie€Z,forsomez e X}. Let J =T and J, = |UZ,. Then there exist r =
6/ — 1 disjoint subsets Xi,..., X, of X such that

Vze J, Ji<r, AzeX;: z€ J,.

Furthermore, if < is polynomial-time computable w.r.t. ZuEQ |u|, then the
selection of Xq,...,X, can be done in polynomial time w.r.t. ¢, || X ||, and

EUGQ |U’|

Proof. First, we construct a minimum size cover of Z. We say that 7isa
minimum size cover of T if (i) Z C Z, (ii) UZ = J, and (iii) no Z' such that
[|Z"]] < ||Z]| satisfies both, (i) and (ii).

Claim 4 There is a polynomial-time algorithm that computes a minimum size
cover of L.

Proof. The following greedy algorithm computes a minimum size cover of 7.
MINIMUM-S1ZE-COVER(Z, <)

I+ 0; J« UL

while J' # 0 do
z < a smallest point in J';
Select an I € Z such that z € I and || N J'|| is maximal;
T« ZIU{l}; J «J -1,

return 7.

14

Clearly, this algorithm runs in polynomial time. To show its correctness, let
={I,,...,I;} be aminimal cover of Z, and let these intervals be in increasing
order accordlng to their left endpoints. By J; we denote U3=1 f] Let 7 =
{I1,..., I} be the output of MINIMUM-S1ZE-COVER, where each I; is selected

at the ith iteration of the while-loop. By .J; we denote U;:1 I;

Since 7 is a minimal cover, we have k < h. We will argue that k = h, and
hence 7 is a minimal cover for J as well. Note that both Jl and J; are initial
segments of J. Therefore, by the choice of I;, we have J; C J; foralli = 1,...,k,
and thus h < k, since otherwise, I would not cover .J. O Claim 4

For each I € f define support(I) to be an x such that I € Z,, and let
support(I) = { support(I) | T € f} (If there is more than one z such that
I € T,, choose one of them for support(I).) We will partition support(f) into
r =6l — 1 groups X1,...,X,, such that for any two z,z’ € support(f):

(¥) if I is an interval in Z with support(I) = z and I has
nonempty intersection with .J,/, then x and z' will be in
different groups.

Let us first see why property () of the partitioning X, ..., X, satisfies the
condition of the lemma. Consider any z € J. Since 7 is a cover of J , there is
some I € 7 containing z. Let = support(I) and let X; be the subset containing
x. Then, since J,s NI = for all ' # x in X;, z is the only element of X; such
that z € J,. R

To construct a partitioning of support(Z) having property (x), consider the
following undirected (simple) graph G = (V, E).

vV = support(f), and
E {{z,2'} | AT €T : support(I) ==z and J,, NI #0}.

Observe that property (x) is equivalent to that G is 6] — 1 colorable. To show
this property of G, we first consider the following directed version G' = (V, E')
of G, where

E' = {(x,2") | AT €T: support(I)=z and J, NI #0 }.
Claim 5 Every vertex of G' has an outdegree of at most 3¢ — 1.

Proof. Notice first that every interval in 7 intersects with at most three inter-
vals in I since otherwise, one can define a cover of .J that has less elements than
Z contradicting the minimality of 7. Similarly, every interval in 7 intersects
with at most two intervals in 7. On the other hand, each z € V has at least one
interval in Z and thus at most £ — 1 intervals not in 7. Therefore, .J, intersects
with at most 3(¢ — 1) + 2 = 3¢ — 1 intervals in Z. O Claim 5

15

Claim 6 FEvery subgraph of G has a vertex with degree at most 6 — 2

Proof. Consider any subgraph G = (‘7, E) of G. From Claim 5, it is clear that
G has at most (3¢ —1)|| V|| edges; that is, the sum of the degrees of all vertices
is at most 2(3¢ —1)|| V' ||. Hence, there is a vertex with degree at most 2(3¢— 1)
=60-2. O Claim 6

From Claim 6, we derive the crucial property of G.

Claim 7 G is 6 — 1-colorable. That is, there exists a partition Xi,..., X,
of V., where r = 60 — 1, such that every X; forms an independent set in G.
Furthermore, some polynomial-time algorithm computes the partition from a
given G.

Proof. We show by induction on the size of V' that the simple greedy algorithm
that colors vertices in descending order of their degree needs at most 6/ — 1
colours. This clearly holds for ||V || < 6¢ — 1. For larger V, let be the vertex
of G that is colored last by the algorithm and let G be the subgraph of G
obtained by deleting = from GG. Then, by Claim 6 , we can apply the induction
hypothesis to G, that is, the algorithm needs at most 6¢ — 1 colors for G. Now,
since the degree of z is at most 6¢ — 2, the algorithm will find a color for z.

O Claim 7

a

Theorem 3.3 can be extended to Sf(n)_“—reductions, for functions b, as long
as b is poly-logarithmically bounded. That is, for b(n) < (logn)?, for some

contstant a, if there exists a P-selective set A that is Sf(n)_tt—hard for NP, then
NP C DTIME(27°"/V"**™).
Acknowledgments

We would like to thank M. Halldérsson of Japan Advanced Institute of Technol-
ogy and J. Radhakrishnan of Tata Institute of Technology for letting us know
that Claim 7 is provable. J. Radhakrishnan also helped us for simplifying the
proof of the Combinatorial Lemma. A. Mochizuki of Tokyo Institute of Tech-
nology pointed us some error in the earlier version of this paper.

References

[AA94] M. Agrawal and V. Arvind. Quasi-linear truth-table reductions to
P-selective sets. Theoretical Computer Science 158, 361-370, 1996.

[AHH'93] V. Arvind, Y. Han, L. Hemachandra, J. Kobler, A. Lozano,
M. Mundhenk, M. Ogiwara, U. Schéning, R. Silvestri, and T. Thier-
auf. Reductions to sets of low information content. Recent Devel-
opments in Complexity Theory. Cambridge University Press, 1993.

16

[Al186]

[BDGSS]

[BDGOI]

[Beigs]

[BKS95]

[ESY84]

[HHO*93]

[HOW92]

[HL94]
[JT95]
[Joc68]
[KL82]

[Ko83]

(Also available as Technical Report TR-417, University of Rochester,
Department of Computer Science, Rochester, NY, April 1992.)

E. Allender. The complexity of sparse sets in P. In Proceedings 1st
Structure in Complezity Theory Conference, 1-11, IEEE Computer
Society, 1986.

J. Balcézar, J. Diaz, and J. Gabarré. Structural Complexity I.
EATCS Monographs on Theoretical Computer Science, Springer-
Verlag (1988).

J. Balcazar, J. Diaz, and J. GabarrS. Structural Complexity II.
EATCS Monographs on Theoretical Computer Science, Springer-
Verlag (1991).

R. Beigel. NP-hard sets are P-superterse unless R = NP. Technical
Report 88-04, Department of Computer Science, The John Hopkins
University, 1988.

R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Infor-
mation and Computation 120(2), 304-314, 1995.

S. Evan, A. Selman, and Y. Yacobi. The complexity of promise prob-
lems with applications to public-key cryptography. Information and
Control, 61:114-133, 1984.

L. Hemachandra, A. Hoene, M. Ogiwara, A. Selman, T. Thierauf,
and J. Wang. Selectivity. In Proceedings of the 5th International
Conference on Computation and Information, ICCI 93, IEEE, 55-
59, 1993.

L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are
sparse sets? In Proc. 7th Structure in Complexity Theory Confer-
ence, IEEE 222—-238, 1992.

S. Homer and L. Longpré. On Reductions of NP to Sparse Sets.
Journal of Computer and System Sciences, 48:324-336, 1994.

B. Jenner and J. Tordn. Computing functions with parallel queries
to NP. Theoretical Computer Science 141, 175-193,1995.

C. Jockusch. Semirecursive sets and positive reducibility. Transac-
tions of the AMS, 131(2):420-436, 1968.

R. Karp, R. Lipton. Turing machines that take advice. L’Enseigne-
ment Mathématique, 28:191-209, 1982.

K. Ko. On self-reducibility and weak P-selectivity. Journal of Com-
puter and System Sciences, 26:209-221, 1983.

17

[LLS75]

[Mah82]

[094]

[OW91]

[Sal93]

[Sch90]

[Sel79)]

[Sel82a]

[Sel82b]

[Sto77]

[Tod91]

[Tor93]

[Val76]

[VV86]

[Wat90]

R. Ladner, N. Lynch, and A. Selman. A comparison of polyno-
mial time reducibilities. Theoretical Computer Science, 1(2):103—
124, 1975.

S. Mahaney. Sparse complete sets for NP: solution of a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences
25:130-143, 1982.

M. Ogihara. Polynomial-time membership comparable sets. STAM
Journal on Computing, 24(5):1068-1081, 1995.

M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-
table reducibility of NP sets to sparse sets. SIAM Journal on Com-
puting, 20(3):471-483, 1991.

S. Saluja. Relativized limitations of the left set technique and closure
classes of sparse sets. In Proc. 8th Structure in Complezity Theory
Conference, IEEE, 215—222, 1993.

U. Schoning. The power of counting. In Complezity Theory Retro-
spective (A. Selman Ed.), Springer-Verlag (1990), 204—223.

A. Selman. P-selective sets, tally languages, and the behavior of
polynomial time reducibilities on NP. Mathematical Systems Theory,
13:55-65, 1979.

A. Selman. Analogues of semirecursive sets and effective reducibili-
ties to the study of NP complexity. Information and Control, 52:36—
51, 1982.

A. Selman. Reductions on NP and P-selective sets. Theoretical Com-
puter Science, 19:287-304, 1982.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science 3:1—22, 1977.

S. Toda. On polynomial-time truth-table reducibilities of intractable
sets to P-selective sets. Mathematical Systems Theory, 24:69-82,
1991.

J. Toran. Personal Communication.

L. Valiant. Relative complexity of checking and evaluating. Infor-
mation Processing Letters, 5(1):20-23, 1976.

L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science 47:85—93, 1986.

0. Watanabe. Unpublished note.

18

