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Abstract

Weinquireinto the complexity oftraininga neuron with binary weights when
the training examples are Boolean and required to have bounded coincidence
and heaviness. Coincidence of an example set is defined as the maximum inner
product of two elements, heaviness of an example set is the maximum Hamming-
weight of an element. We use both as parameters to define classes of restricted
consistency problems and ask for which values they are NP-complete or solvable
in polynomial time.

The consistency problem is shownto be NP-complete when the example sets
are allowed to have coincidence at least 1 and heaviness at least 4. On the other
hand, we givelinear-time algorithmsfor solving consistency problems with coin
cidence 0 or heaviness at most 3. Moreover, these results remain valid when the
threshold of the neuron is bounded by a constant of value at least 2, whereas
consistency can be decided in linear time for neurons with threshold at most 1.

We also study maximum consistency problems and obtain NP-completeness
for example sets of coincidence at least 1 and heaviness at least 2, whereas we
againfindlinear-timealgorithmsfor the complementary cases. The same is shown
to be true for neurons with bounded thresholds the bound being at least 1. On
the other hand, maximum consistency can be decided in linear time for a neuron
with threshold 0.



... to divide each of the difficulties that I was examinlng into as
many parts as might be possible and necessary in order best to
solve it.

... to conduct my thoughts in an orderly way, beginning with the
simplest objects and the easiest to know, in order to climb gra-
dually, as by degrees, as far as the knowledge of the most complex,
and even supposing some order amongthose objects which do not
precede each other naturally.

—Rene Descartes (1637) Discourse on the Method of Properly
Conducting One's Reason and ofSeeking the Truth in the Sciences,
translation by F. E. SutclifFe

1 Introduction

From a computational point of view, learning in neural networks can be regarded as
calculating weights that minimize the error of the net being trained with respect to a
given set ofexamples. In formal treatments it is convenient—and in applications often
sufficient—to appropriate the hypothesis that input and Output values of neurons are
restricted to a finite set. Consequently, learning can always be accomplished in finite
time by exhaustively searching through the set of network functions.

A useful tool for investigating whether there are more clever learning algorithms
is the so-called consistency problem. Stated as a decision problem and associated
with a network architecture, it constitutes a non-constructive paradigm of learning
to the efFect that just the existence of weights producing no error has to be confirmed
or rejected. The consistency problem, however, is geared to the Situation of one's
knowing in advance that the architecture being adapted has a weight configuration
agreeing with the whole set of examples. Often the best one can hope for is finding a
network with an erroras smallas possible. This optimization problem finds expression
as decision problem in the so-called maximum consistency problem where an instance
consists of an example set and a natural number which is to be a lower bound on the
number of examples learned correctly. The complexity of consistency and maximum
consistency problems for networks Computing Boolean functions has been investigated
by several theorists. Diverse constraints onarchitectures and weights have lead to NP-
completeness results on the one hand and polynomial-time algorithms on the other
[2, 3, 7, 12, 13, 15].

The most restrictive architecture we can think of is a network consisting of a Single
unit known asMcCulloch-Pitts neuron [16]. It has been introduced by McCulloch and
Pitts to model the logical behavior of nerve cells and is based on the hypothesis of
an all-or-none character of neural activity. The model can be simplified further if we
extend the hypothesis to the synaptic weights restricting them to binary values {0,1}.
The threshold is then allowed to take on values from 0 to n where n is the number of
inputs to the neuron. Thus, we obtain a piain Computing device that still embodies
the threshold principle of neurons and has a non-trivial consistency problem: it has
been proved to be NP-complete by Pitt and Valiant [20].

In this report we take a closer look at consistency problems for this simple neuron.
Where previous work has mainly concentrated on architectural and weight constraints



leaving the examples out of consideration, we are here concerned with the question
whether the consistency problem becomes easier when we put constraints on the
examples. To that means we introduce two measures for the complexity of example
sets: coincidence and heaviness. The former counts the number of components in
which two examples have a one in common and takes their maximum over all pairs
of examples; the latter counts the number of ones in each example, i.e. its Hamming-
weight, and takes the maximum as well. We use both to restrict the possible input
Space and ask to what extent the degree of simplicity of the permitted example sets
has influence on the complexity of the consistency problem.

This is done by Splitting the Single problem into an infinite class of problems
parameterized by coincidence and heaviness of their instances. Our main result is a
dichotomy theorem for this problem class. In particular, weshow that the consistency
problem for neurons with binary weights is NP-complete when the example sets are
allowed to have coincidence at least 1 and heaviness at least 4. On the other hand, if
the instances are restricted to coincidence 0 or heaviness at most 3 then the problem
becomes solvable in polynomial time. The latter is in fact possible in linear time on
a random access machine.

We also ask what happens when the threshold of the neuron is bounded from
above by a constant. It turns out that NP-completeness is still preserved when the
constant is at least 2, whereas linear time is sufficient to decide consistency with a
neuron having threshold at most 1.

Concerning the maximum consistency problem we raise the same questions and
obtain similar but slightly more restrictive answers. We get NP-completeness for
neurons with unbounded threshold with example sets of coincidence 1 and heaviness 2.
Again, the complementary cases can be solved in linear time. The Statements remain
valid for neurons with bounded threshold when the bound is at least 1. On the other
hand, maximum consistency with aneuron having threshold 0 can be decided in linear
time.

In the following section we give definitions for the basic concepts and State the
main theorems. Section 3 is devoted to NP-completeness results. For the problems
the complexity of which is left open in that section we present linear-time algorithms
in Section 4. Finally, in Section 5 we report on some further work on neurons with
binary weights in theory and applications, and conclude with some suggestions and
open questions.

2 Definitions and Main Results

2.1 Neurons

Let B= (£„)n>o denote theset ofBoolean functions that can becomputed by McCul-
loch-Pitts neurons with binary weights. In other words, a function / : {0, l}n -• {0,1}
satisfies / € Bn if and only if there exist weights ti>i,...,wn 6 {0,1} and a threshold
t e {0,..., n} such that for all x € {0, l}n

f(x) = 1 «<=>• tuizi + •••+ wnxn > t.

By B*^k wedenote the set of functions computed by neurons with binary weights and
threshold t € {0,.. .,*}. Thus, Bn = ß£n.



In the above definition, a Synapse can have a positive strength or no strength at
all. In their original model, McCulloch and Pitts also defined inhibitory synapses that,
when active, absolutely prevent the activity of the neuron regardless of the sum of
the excitatory synapses [16]. Later, the name McCulloch-Pitts neuron was commonly
used to refer to a neuron with arbitrary real weights [5].

2.2 Examples

An example is a pair (x, a) where x is supposed to be an input value and a to be
the corresponding Output value for the function being learned. In the context of this
report, (x,a) is an example for a Boolean function, i.e. x 6 {0,l}n and y 6 {0,1}.
Therefore, sets of examples are finite sets of pairs.

Given an example set S = {(x^\ a*1)),..., (x(m\ a<m))}, we denote by pos(S) the
set of positive examples, and by neg(5) the set of negative examples where

pos(S) = {x |(as,1)6 5},

neg(S) = {x\(xy0)eS}.

For the sake of generality, we allow example sets to contain contradictions. The set
S is said to be consistent if pos(5) n neg(S) = 0. The domain of 5 is defined as
dom(S) = pos(S) Uneg(S).

We consider sets of examples to be instances of decision problems. To narrow
down the set of possible instances we introduce two measures. Coincidence £(S) and
heaviness n(S) of an example set S are defined as

C(S) = max{a; •y | (s, o), (y,b) G5, (s, a) £ (y,6)},

n(S) = max{a; •x \ (s, a) 6 S}.

where x • y denotes the inner product. In case l^l < 1 we define ((S) = 0, in case
S = 0 we let r)(S) = 0.

Thus, ((S) is the maximum number of components in which two elements of the
domainhavea onein common, and n(S) is the maximum Hamming-weight, or number
of ones, of the elements. Bounded heaviness is a stronger restriction than bounded
coincidence because of C(S) < rj(S).

2.3 Consistency Problems

A function / is said to be consistent with an example set S if f(x) = a holds for all
(x,o) € S. The notion ofconsistency of an example set with a function must clearly
be distinguished from consistency of example sets alone as defined in 2.2. But there
might be no confusion because the latter is a unary predicate whereas the former is
binary.

The consistency problem for a set of functions T is the problem to decide if a
gyven set of examples S has a function / € T that is consistent with S. Alternative
terms frequently used in the literature aretraining problem [7], loading problem [13],
and fitting problem [17]. The name consistency problem often occurs in the context
of Valiant's pac-learning paradigm [4, 8].



The consistency problem for B was proved to be NP-complete by Pitt and Valiant
[20, Section 5]. Now we make use of coincidence and heaviness to define the classes
of consistency problems we are concerned with. We State them in the style of Garey
and Johnson [10].

Let C and H be arbitrary natural numbers. The classes of consistency problems
for B with bounded coincidence and heaviness are defined as follows. Let

ß-CONSISTENCY WITH COINCIDENCE C
Instance: Example set 5 with C(S) < C.
Question: Is there a function /6ß that is consistent with 5?

and

tf-CONSISTENCY WITH HEAVINESS H
Instance: Example set 5 with rj(S) < H.
Question: Is there a function f € B that is consistent with SI

Finally, the problem tf-CONSISTENCY WITH COINCIDENCE C AND HEA
VINESS H has only sets with C(S) < C and n(S) < H as instances. For B^k, the
problems are defined in an analogous way.

The maximum consistency problem for a set of functions T has as instance a set
of examples S and a natural number K. The question is whether there is a subset of
5 with at least K elements and a function / € T consistent with that subset. Amaldi
[2] has shown that the problem is NP-complete for single neurons with threshold t —0
and arbitrary weights. The constraint t = 0 was removed by Höffgen and Simon [12].

For natural numbers C and H we define maximum consistency problems for B as
follows. Let

MAXIMUM tf-CONSISTENCY WITH COINCIDENCE C

Instance: Example set S with {(S) < C, natural number K.
Question: Is there a subset S' C S with \S'\ > K and a

function / 6 B that is consistent with 5"?

and

MAXIMUM ß-CONSISTENCY WITH HEAVINESS H
Instance: Example set S with n(S) < H> natural number K.
Question: Is there a subset S' C S with \S'\ > K and a

function / € B that is consistent with 5"?

Again, we combine both to MAXIMUM ß-CONSISTENCY WITH COINCIDENCE
C AND HEAVINESS H. Finally, we consider all problems with £'-* in place of B.

An algorithm that solves the consistency problem with heaviness H canbe used to
solve consistency problems with heaviness H' where H' < H. Thus, consistency pro
blems with bounded heaviness form a class of increasingly harder decision problems.
From the definition also follows that NP-completeness of the consistency problem
with heaviness H implies NP-completeness of the consistency problem with heaviness
E" where H" > H. It is not hard to see that the consistency problem with heaviness



1 has a polynomial-time algorithm. Therefore, interesting questions are whether there
are larger constantswith polynomial-time solvable consistency problem, and whether
there is a constant with NP-complete consistency problem. In the following we shall
answer both questions in the affirmative. In particiliar, we shall prove a dichotomy
theorem stating that each problem is NP-complete or solvable in linear time on a
random access machine.

Similar considerations can be made with respect to coincidence. But here we
have to expect that algorithms for consistency problems with bounded coincidence
have to be stronger. In fact, an algorithm that solves the consistency problems with
coincidence C will also solve the consistency problem with heaviness C because the
instances of the latter problem are a subset of the instances of the former. The results
will confirm our expectation.Weshallprove that the constant whereNP-completeness
occurs at the first time with respect to coincidence is smaller than the constant where
it occurs with respect to heaviness.

All wehave said in the previous two paragraphs about the consistency problem can
be repeated with respect to the maximum consistency problem. In general, maximum
consistency cannot be easier than consistency because wecan reduce the latter to the
former letting K = \S\. Our results demonstrate that there are indeed NP-complete
maximum consistency problems that can be solved in linear time if we require zero
error.

The vaguely formulated Statements ofthis subsection are to be made more precise
in the following.

2.4 Main Results: Dichotomy Theorems for Consistency Problems

Here we formulate four so-called dichotomy theorems the proofs of which are distri-
buted over Sections 3 and 4. The Statements concerning solvability in linear time are
based on a random access machine1 with uniform cost criterion.

Theorem 1 ß-CONSISTENCY WITH COINCIDENCE C AND HEAVINESS H is
NF-complete whenever C > 1 and H > 4. On the other hand, tf-CONSISTENCY
WITH COINCIDENCE 0 is solvable in linear time, as well as tf-CONSISTENCY
WITH HEAVINESS H for all H < 3.

We obtain a similar result for neurons with bounded threshold if the threshold
is allowed to be at least 2. If the threshold is required to be at most 1 then we get
solvability in linear time regardless of coincidence and heaviness.

Theorem 2 For all k > 2, Theorem 1 holds for B*^k in place of B. On the other
hand, tf'̂ -CONSISTENCY WITH COINCIDENCE C and ^^CONSISTENCY
WITH HEAVINESS H are solvable in linear time for all natural numbers C and H.

Theorem 1 follows from Theorem 6, Corollary 11, and Theorem 12 below. Theo
rem 2 will be proved by Corollary 7, Theorem 10, and Corollary 13.

The next two theorems are concerned with maximum consistency, at first regar-
ding neurons with arbitrary threshold.

1see e.g. [1] for a definition and its relationship to other modeis of computation



Theorem 3 MAXIMUM tf-CONSISTENCY WITH COINCIDENCE C AND HEA
VINESS H is NP-comp/ete whenever C > 1 and H > 2. On the other hand, MA
XIMUM tf-CONSISTENCY WITH COINCIDENCE .0 is solvable in linear time, as
well as MAXIMUM tf-CONSISTENCY WITH HEAVINESS H for all H < 1.

At last, we have the Statement corresponding to Theorem 2 above.

Theorem 4 For all k > 1, Theorem 8 holds for B*^k in place of B. On the other
hand, MAXIMUM ß^°-CONSISTENCY WITH COINCIDENCE C and MAXI
MUM ß^°-CONSISTENCY WITH HEAVINESS H are solvable in linear time for
all natural numbers C and H.

Theorem 3 is covered by Theorem 8 and Theorem 14, whereas Theorem 4 is
consequence of Corollary 9, Corollary 15, and Lemma 16.

Dichotomy properties are also known for other problem classes, the most famous
among them might be Ä-SAT, the problem ofdeciding whether a set of clauses withk
literals per clause has a satisfying assignment [10, p. 259]. A moregeneral result has
been shown by Schaefer for GENERALIZED SATISFIABILITY revealing a dicho
tomy as well [10, 21]. Finally, we mention GRAPH-üf-COLORABILITY [10, p. 191].
One should have in mind that all these dichotomies are proper only if P ^ NP.

3 NP-Complete Consistency Problems

To show NP-completeness of the unrestricted consistency problem for 5, Pitt and
Valiant defined a reduction from ZERO-ONE INTEGER PROGRAMMING [20]. It
turns out that the example sets used therein have coincidence at least (n - l)/2.
So, nothing can be inferred from their proof concerning constant coincidence and
heaviness. We obtain the result by reducing a variant of ONE-IN-THREE 3SAT
which we call ALMOST DISJOINT POSITIVE 1-IN-3SAT.

ALMOST DISJOINT POSITIVE 1-IN-3SAT

Instance: Set U of variables, collection of subsets C of U such that
each subset c 6 C has |c| = 3 and each pair of subsets c, d €
C,c^ d satisfies \cn d\ < 1.

Question: Is there a truth assignment ß : U -»• {0,1} such that each
subset in C has exactly one true variable?

POSITIVE 1-IN-3SAT is already known to be NP-complete [10, p. 259]. We show
that it remains NP-complete under the requirement of almost disjointness.

Lemma 5 ALMOST DISJOINT POSITIVE 1-IN-3SAT is NP-comp/ete.

Proof. We give a reduction from POSITIVE 1-IN-3SAT. Let c and d be subsets
violating the condition of almost disjointness. Without loss of generality let c =
{«1,1*2,^3} and d = {«2)^3,1*4}. According to the Statement of the problem, every
satisfying assignment has

jö(ttl) +0(112)+/*(«3) = ßM + ß^ + ßfa),



and ß{u\) = ß{ui) follows. Therefore, oneofthe variables u\ and u4 is redundant, and
we may delete one of the dauses c and d. Thus proceeding with all pairs of subsets
having two variables in common, we obtain a coUection of almost disjoint subsets
that has a 1-IN-3SAT assignment if and only if the original coUection has such an
assignment. D

The following theorem Covers the first Statement of Theorem 1.

Theorem 6 ^-CONSISTENCY WITH COINCIDENCE 1 AND HEAVINESS 4 is
NP -complete.

Proof. The proof is by reduction from ALMOST DISJOINT POSITIVE 1-IN-3SAT.
Let (U,C) be an instance of the latter where U = {«i,.. .,ttn}. We define a set of
examples S where dom(5) C {0,l}4n+2. For every V C U let Ty denote the dement
x € {0,l}n where &,• = 1 iff U{ € V. We also write 0 instead of 1$. The components
1,..., An + 2 are partitionend into six blocks, the first four comprising n components
each, the last two consisting both of a Single component.

For each variable U{ € U we define four examples

(Ü,Ü,T{tt.},T{u<},0,0) 6 neg(S) (2)
(T{tx.},Ü,Ü,T<Ui},l,0) 6 pos(5-) (3)
(Ü,T{ui},T{ui},Ü,l,0) e pos(5). (4)

Each dause c € C is represented by two examples

(Tc, 0,0,0,0,1) € pos(S) (5)

(Ö,Ic,u", 0,0,0) e pos(S). (6)

Finally, there are three examples

(Ö, 0,0,0,1,1) € pos(S) (7)
(ü,u",u",u",l,0) € neg(5) (8)
(Ü,Ü,Ü,Ü,0,1) € neg(5). (9)

Obviously, ((S) = 1, n(S) = 4, and S can be computed from (11,0) in polynomial
time. We showthat Chas a 1-IN-3SAT assignment if and only if there exists a function
in £?4n+2 that is consistent with S.

For the only-if part, let ß : U -*• {0,1} be an assignment such that each c e Chas
exactly one true variable. We define the wdght vector (u>i,..., tü4n+2*, t) by

(T/?-i(i), T/?-i(o)> ^-1(1)^-1(0), 1,1; 2),

where ß~x(a) = {x \ß(x) - a}. It can easüy be verified that the function represented
thereby is consistent with S.



Conversdy, let (iui,.. .,w4n+2;t) he consistent with 5. From (7), (8), and (9) we
obtain

V>4n+1 + w4„+2 > t

V>4n+1 < t

W4n+2 < t,

from which u>4n+i > 0 and u>4n+2 > 0 foUow. Thus we have

K>4n+1 = «>4n+2 = 1 and t = 2.

From (1) to (4) for every i e {1,..., n}

Wi + wn+i < 2

V>2n+i + ™3n+t < 2
^i + ™3n+t + 1 > 2
wn+i + w2n+i + 1 > 2

can be derived. These inequalities imply the identities

W{ - w2n+i

U>2n+i + mn+i = 1
W{ + wn+i = 1. (10)

Let ß : U — {0,1} be defined by

ß(ui) = Wi for t 6 {1,..., n).

Then by virtue of (5), (6), and (10), we obtain for each dause c = {wj, Uk, ui} € C

j0(ttj) + 0(ttjb) + 0(«f) = 1.

Consequently, /3 is a 1-IN-3SAT assignment for C. •

The proof shows that the reduction can be defined whenever the threshold is
aüowed to take on the value 2. Thus, NP-completeness for Bl-k where k > 2 foUows
as a corollary.

Corollary 7 For a// k > 2, £^*-CONSISTENCY WITH COINCIDENCE 1 AND
HEAVINESS 4 is NP-comp/ete.

In the remainder of the section we address maximum consistency problems.

Theorem 8 MAXIMUM tf-CONSISTENCY WITH COINCIDENCE 1 AND HEA

VINESS 2 is NY-complete.

Proof. The proof is an adaptation of the proof of Theorem 3.1 in Höffgen and Simon
[12]. They have established NP-completeness of the maximum consistency problem
for neurons with arbitrary wdghts. Thdr result remains valid if the wdghts are to be
from the set {—1,1}. It turns out that a slight modification of their construction is
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suflBident for our purpose. The reduction is from VERTEX COVER [10, p. 190]. Let
(V, £), üf be aninstance of the latter where V = {vi,..., vn}. The set of examples S
where dom(5) C {0, l}2n is constructed as foUows.

For each v,- € V we define a Vertex example

(T{v.},T{v.}) € neg(S).

For each e € E we define two edge examples

(Te,Ü) € pos(S),

(Ü,TC) € pos(S).

Obviously, £(5) = 1, n(S) = 2, and S can be computed in polynomial time. We
daim that (V, E) has a Vertex cover of size at most K if and only if there exists a
function in B2n that is consistent with at least \S\ —K examples.

Let V be a Vertex cover with at most K dements. We define the weight vector

(wi,...,u>2n;*)as

t=l and wi =wn+i ={ * ;t^erewL for *=̂( 1 if Vi
1 0 othe

If Vi € V then the corresponding Vertex example is dassified wrongly. The rest of
the vertex examples and aU edge examples are mapped correctly. The latter holds
because V is a Vertex cover. Thus, the vector is consistent with at least \S\ - K
dements. The remainder of the proof proceeds just Uke in Höifgen and Simon. We
indude it for completeness.

Let (t»i,... ,w2n\t) be a wdght vector consistent with a subset of S of size at
least \S\ - K. Construct a set of vertices V as foUows. For each vertex example
wrongly dassified put the corresponding vertexintoV; for each edge example wrongly
dassified choose arbitrarüy one of the vertices the edge is inddent with and put it
into V. Consequently, V contains at most K elements. To show that it is a vertex
cover let {v,-,Vj} be an edge where {vi,Vj} n V = 0. But then the wdght vector is
consistent with the two vertex examples corresponding to vt- and Vj, as weU as with
the two edge examples corresponding to {t>i, Vj}. Thus we have

^ + wn+i + Wj + wn+j < 2t

Wi + wj + iün+t- + wn+j > 2t

and, by contradiction, V is a vertex cover. D

As can be seen from the proof, a threshold of value 1 is always sufiident for the
reduction. Thus, we obtain the counterpart of CoroUary 7 above.

Corollary 9 For all k > 1, MAXIMUM ß^Ä-CONSISTENCY WITH COINCI
DENCE 1 AND HEAVINESS 2 is NP-comp/ete.
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4 Consistency Problems Solvable in Linear Time

In the foUowing, we show that aU consistency problems not yet considered above
have polynomial-time algorithms. Consequently, the minimum values of coincidence
and heaviness required in the NP-completeness proof of Theorem 6 are optimal if
P 7^ NP. Furthermore, the algorithms presented bdow to witness polynomiality are
in fact linearly time-bounded on a random access machine and therefore optimal for
this modd of computation. Thus, we not only obtain a complete characterization of
the complexity ofconsistency problems for B and Bl-k with bounded coincidence and
heaviness, but also the striking result that, with respect to a random access machine,
the problem dasses soldy consist of dements of the highest and—if we disregard
subhnear time—lowest complexity in NP.

We start this section from where we have ended the previous one considering
neurons with bounded threshold, now bounding the threshold by 1. The foUowing
result is valid for sets of examples with arbitrary coinddence and heaviness.

Theorem 10 tf'^-CONSISTENCY is solvable in linear time.

Proof. We daim the foUowing algorithm to compute a wdght vector with threshold
t < 1 consistent with a given set of examples S for aU S that have such a wdght
vector.

Algorithm 5<^1-CONSISTENCY(5):
ifneg(5) = 0then

t:=0;
for i := l,...,n do

Wi := 0

endfor

eise

t:=l;

for i := l,...,n do
Wi:=0 <*=}• 3y 6 neg(5)[yt- = 1]

endfor

endif.

Clearly, the algorithm runs in linear time on a random access machine. The procedure
is based on the Observation that t certainly has to be 1 if neg(5') ^ 0, but then we
must ensure w •x = 0 for aU x € neg(S). D

If a set of examples S with ((S) = 0 has a consistent function from B then it
also has a consistent function from B*-1. Therefore, we can employ Algorithm B1-1-
CONSISTENCY to dedde ß-CONSISTENCY WITH COINCIDENCE 0.

Corollary 11 ß-CONSISTENCY WITH COINCIDENCE 0 is solvable in linear
time.

Up to here we have covered aU Statements of Theorem 1 except the last one which
is concern of the foUowing.
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Theorem 12 ß-CONSISTENCY WITH HEAVINESS 3 is solvable in linear time.

Proof. Consider the foUowing dedsion algorithm.

Algorithm £-CONSISTENCY(S):
begin
I. (w; t) := tf^-CONSISTENCY^);

if (w]t)is consistent with S then
output(wyesM);
stop

endif;
n. t := 3;

for t := 1,...,n do
Wi := 1 <=> 3x e pos(S)[a:t- = 1]

endfor;
if (w\ t) is consistent with S then

output("yes");
stop

endif;
III. (* let Cbe the set of dauses over the set of variables W = {iüi,..., wn}

constructed as foUows: *)
1. C:=0;
2. for all x 6 dom(S) do

I:={i\xi = l};
(a) if|J| = 3then

Ü,*,/}:=J;
if x € pos(£) then

C:=CU{ {wj,wk},{wj,wi},{wkiwi} }
elsif x e neg(5) then

C :=C U{ {wjtwriiiwjtwfiiiwkiWi} }
endif

endif;
(b) if|J| = 2then

if x 6 pos(5) then
C:=CU{{tzv},{ti;jfe}}

elsif x e neg(5) then
C:=Cu{{whWk}}

endif

endif;
(c) if|/| = lthen

0'} := I\
if x € pos(S) then

C:=CU{{tüi},{Wi}}
endif

endif

endfor;
3. if there is a truth assignment ß : W -• {0,1} such
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that each dause in C has at least one true üteral then

output("yesM)
eise

output("no")
endif

end.

Part I, II, and UI of the algorithm make a distinction between the possible values for
the threshold, namdy t < 1, t > 3, and t = 2 respectivdy. Part I employs Algorithm
5*<i-C0NSISTENCY defined in the proof of Theorem 10. By virtue of this, the
Output is correct if S has a consistent function from ß*-1. Part II tries to find a
Solution with t > 3, and thus without loss ofgenerality with t = 3 because S satisfies
n(S) < 3. In this case we have to ensure w•x = 3for aU x 6 pos(S) what is done by
the Statement. At the beginning of part III we know that the threshold has to be 2.
Then a set of dauses is constructed that is satisfiable if and only if there is a weight
vector with t = 2 consistent with S. SatisfiabiUty is verified by Statement III.3.

FinaUy, we have to make sure of the daimed running-time. Parts I and II can
easüy be seen to run in Unear time when we use Theorem 10. The construction of the
set of dauses in part III is possible in Unear time as weU. Each dause contains at most
two Uterais. Thus, we are solving a 2-SAT problem in Statement HI.3. A Unear-time
algorithm for 2-SAT has been outUned by Even, Itai, and Shamir [9]. AspvaU, Plass,
and Tarjan [6] give a füll description ofan algorithm that even deddes satisfiabiUty of
quantified 2-SAT formulas in Unear time and uses the strong components algorithm
by Tarjan [1, 24]. AU in aU, Algorithm ß-CONSISTENCY runs in Unear time. D

Herewith, Theorem 1 is proved. Obviously, Algorithm 5-CONSISTENCY can be
used to solve the consistency problem for £*-* with heaviness 3 for aU k > 2. (If
k = 2 then part II is redundant.) Furthermore, for aU k > 2, 0'̂ -CONSISTENCY
WITH COINCIDENCE 0 is equivalent to tf^-CONSISTENCY. Thus, by virtue of
Theorem 10 and 12, we can formulate the foUowing coroUary which completes the
proof of Theorem 2.

CoroUary 13 For all k > 2, ß^*-CONSISTENCY WITH COINCIDENCE 0 as
well as ß*^*-CONSISTENCY WITH HEAVINESS 3 is solvable in linear time.

We now turn to maximum consistency problems, starting with the counterpart to
CoroUary 11 and Theorem 12.

Theorem 14 MAXIMUM ß-CONSISTENCY WITH COINCIDENCE 0 as well as
MAXIMUM ß-CONSISTENCY WITH HEAVINESS 1 is solvable in linear time.

Proof. We give an informal description of the algorithm. Let

*- 1 and «, =( J «l* «^fc=*) for i=1,...,».
1 0 otnerwise

If (-(5) = 0 then aU examples are dassified correctly unless 0n € pos(S) where we
have consistency with \S\ -1 examples. Thelatter can be improved only if neg(5*) = 0
when we let t = 0.
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If 7/(5) = 1 then we proceed the same way, but we have to take into account
that S may be inconsistent due to contradictory examples (s,0) and (rc, 1). Thus, we
append an additional step where we count the examples the generated wdght vector
is consistent with, and compare the number with the bound K. •

Herewith, Theorem 3 is proved. In the previous algorithm, a wdght vector with
threshold at most 1 is generated as Solution. This impUes the foUowing Statement.

Corollary 15 For all k > 1, MAXIMUM ß^*-CONSISTENCY WITH COINCI
DENCE 0 as well as MAXIMUM tf'^-CONSISTENCY WITH HEAVINESS 1 is
solvable in linear time.

Being left with maximum consistency for 5'-°, we are about to complete theproof
of Theorem 4.

Lemma 16 MAXIMUM ß*^°-CONSISTENCY is solvable in linear time.

Proof. If the threshold is equal to 0 then everything is dassified as positive. Thus,
consistency with at least K examples in S is equivalent to pos(S) > K. D

5 Concluding Remarks

Though neurons with binary wdghts constitute a fairly simple model of neural com
putation, theyhave been subject ofexperimental andtheoretical research almost from
the very beginning ofthe artifidalneural network era. The learning matrices ofStein
buch consisted of conditioned connections that, in their simplest version, were able
to attain two possible conductance values during a learning phase [22, 23]. Willshaw
et al. used neurons with binary wdghts as buüding blocks for networks bdng able
to perform pattern assodation [27] and generalization tasks [26]. Information storage
capadty for Hebbian learning in these modeis has been calculated by Palm [18] (see
also thereview [19] where binary synapses are compared to arbitrary synapses and ar
bitrary learning rules). Venkatesh examined algorithms for finding binary wdghts ofa
Single neuron consistent with an example set ina distribution dependent manner [25].
An inconsistent algorithm for pac-learning such a neuron under certain distributions
has been presented by Golea and Marchand [11].

The previous short Ust of references is by no means intended to be complete, let
alone unbiased. At least, we consider it suflident to give evidence for the perseverating
interest in simple neurons.

With our work, we aimed to investigate sufiident and necessary conditions for the
existence of eflident learning algorithms. The approach was to introduce criteria for
the complexity ofexample sets to define simpler problem instances. As results we ob-
tained exact characterizations of the dividing lines between polynomial-time solvable
and NP-complete consistency problems as wdl as maximum consistency problems.
Figure 1 is to ülustrate the dichotomies of the problem dasses.

Forfurther investigations there seem to emerge two lines of thought, one concer-
ning the architecture, the other concerning the problem instances. With respect to
the latter, we do not daim our choosing ofrestrictions to betheonly one that makes
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Figure 1: On the left, consistency problems with coincidence C and heaviness H for
architectures B and B*^k where k > 2 (Theorem 1 and 2); on the right, the corre
sponding maximum consistency problems for B and #*-* where k > 1 (Theorem 3
and 4). The term linear refers to time complexity on a random access machine with
uniform measure.

sense2. One has to look for further characterizations, for example, by taking into
account the label, i.e. the second component, of the examples. With respect to the
latter, one condusion can already be drawn from our results. AU assertions remain
vaUd if the example sets are required to be monotonous, that is, if x < y impUes a <b
for aU (x, a), (y,6) € S. This is true because aU functions represented by the neurons
here considered are monotonous.

As fax as the architecture is concerned, it is worth considering whether the results
can be extended to neurons with fixed threshold ßt==fc. We are confident that the
methodshereprovided are strongenough to show NP-completeness where coincidence
is kept low wliüe heaviness obviously increases with A;.

Another way Starts from our constraining the wdghts to binary values {0,1}. It
might not be difficult to show that, at least for the architecture with unbounded
threshold, any pair of values can be chosen without changing the results. Now the
question arises, to what degree, and if at aU, coinddence and heaviness have to be
modified when wepermit sets of larger cardinaUty. We conjecture that the discrepancy
between consistency and maximum consistency evident from Figure 1 increases. This
is due to the foUowing Observation. It is not hard to seefrom the proof of Theorem 8
that maximum consistency with coinddence 1 and heaviness 2 is NP-complete even
if the wdghts are aUowed to take on arbitrary values. Consistency for neurons with
unconstrained wdghts, however, can be dedded in polynomial time using algorithms
for Linear Programming [14]. Therefore, with respect to arbitrary weights there is no
dichotomyfor consistencyproblems,whereas the dichotomyfor maximum consistency
coincides with the right-hand side of Figure 1.

'In any case, this is not justified until alter the results.
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