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abstract

This paper deals with two aspects of transformational programming, viz. the formal derivation of

logic programs from non-operational specifications and the construction of algorithms to solve

Problems formally specified by "inverse properties". Both aspects are illustrated by sample

derivations of Standardalgorithms for recognition and parsing of context-free grammars.

0. Introduction

Transformational programming is short for a methodology of Software development where,
from a formal specification of a problem to be solved, programs correctly solving that problem
are constructed by stepwise application of formal, semantics-preserving transformation rules.
In the following the reader is assumed to be basically familiär with the idea of transformational
programming and its basic principles. A brief introduction and an overview can be found, e.g.,
in [Bauer et al. 89] or [Boiten et al. 92]. For a comprehensive treatment of the subject, cf.,
e.g., [Partsch 90].

In this paper two examples of transformational programming are dealt with, both from the area
of recognition and parsing of context-free grammars. Therefore, basic knowledge on context-
free grammar theory is advantageous, but not mandatory to grasp the essence of the
derivations.

Parsing and recognition of context-free grammars is a rather fruitful field for studying aspects
of programming methodology, since a lot of generally applicableprogrammingknowledge has
accumulated in this area over many years. A comprehensive attempt to make this knowledge
available for transformational programming is documented in [Partsch 86]. In front of this
background, the present paper is to be seen as a kind of addendumto cover two further, not yet
considered aspects.

The first case study we deal with gives a very simple derivation of Prolog programs for top-
down recognition and parsing of context-free grammars. It is intended to illustrate that two
paradigms of modern, formal Software development, viz. transformational programming and



logic programming, fit nicely together and how they can benefit from each other. The second
case study deals with recognition of context-free grammars as a typical representativeof a class
of problems, in the Community known as "inverse problems".

As to the notation in our case studies, we will use fairly self-explanatory concepts from
mathematics and functional programming, respectively, occasionally augmented by comments
on less commonly known concepts or Operators.

1. Preliminaries

In order to be able to specify the problem we want to deal with, we have to introduce some
basic notions, notably in connection with sequences and context-free grammars.

1.1 Sequences

The primitive data type we are building on is the type of sequences (over some basic type oc)
which we abbreviate by a*. As elementary, totally defined Operations on sequences we assume
to have available (for s, t of type a*, x of type a):

£ empty sequence
<*> sequence former
s -fl- / concatenation, and
\s\ length.

Whenever clear from the context, explicit sequenceformers will be avoided, i.e., concatenation
will also be used for adding (Single) elements to a sequence.

In addition to the totally defined Operations, we also assume to have available some partially
defined ones:

S( indexed access (only definedfor 1 < i < Lsl, otherwiseundefined)
s\ first dement (undefined for s = e)

s# last dement (undefined for s = 6)

5 rest (undefined for s = e)

7 Starter (undefinedfor s = e).

For all Operations, characteristic properties such ass*£=>s = s\-$- s, usually explicitly
given by an algebraic type definition (cf. [Partsch 90]), are also assumed to be available.
Furthermore, we will use x e D to denote "x is of type D" (for arbitrary data type D).

1.2 Context-free grammars

As usual, a context-free grammar G is defined by

G =def (N, T, Z, Prods)

where

N is a non-empty, finite set of Symbols ("non-terminals");
T is a non-empty, finite setof Symbols ("terminals") with NnT = 0;
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ZeN("axiom");and

Prodsis anon-empty,finitesubsetof Nx V* ("productions"), where V =«jef NuT.

In order to keep our treatment of the problem reasonably short, we further assume (w.l.o.g.)
that

- G is reduced (i.e., has no unproductive or unreachable non-terminals);

- G has no chain or e-productions

(i.e., no productions of the forms (X, Y) or (X, e) for X, Y e N)

In order to be able to specify our sample problems, viz. recognition and parsing, we need some
notions fom the theory of context-free grammars, notably the notions of "direct derivability",

-» cV*xV*:jc4} =def3/, re V*, (a,b)e Prods: x = lar a y = Ihr,

and "derivability"

=>* c V* x V*,

the reflexive, transitive closure of —>.

As to the latter, rather than giving an explicit deflnition of derivability, we just State two of its
characteristic properties (which hold analogously for arbitrary reflexive, transitive closures):

(0) (x =>* y) = (x = y v 3 z e V*: x =>* z a z -> y).

(1) {x =^* y) = (x = y v 3 z e V*: x ->z a z =>* y)

Also, we will use the following characteristic property of context-free grammars (for arbitrary
natural number n > 1):

(2) (*=>*y) =

3xlt...,x„ e V*, vi,..., yne T*: x = xx -\t--^x„ av = vj ü-...ü-vn a

(xi=**y\A...Axn =>*y„).

With these preliminaries, we are now able to State what is meantby "recognition problem" (for
w e T*) in context-free grammar theory:

Z=>* w.

The "parsing problem" is closely relatedto the recognition problem: ForweT* with Z =>* w
the "parse structure" of w is asked for. This parse structure contains all information on how to
derive w from Z by successive applications of productions from the grammar. In its simplest
form, the parse structure consists of a sequence of productions to be successively applied (to
the leftmost occurrence of a nonterminal symbolof the string athand) in order to finally arrive
at w. More frequently, however, the parse structure is representedby a "parse tree" which has
Z as its root, nonterminal Symbols as its inner nodes, and the terminal symbols from w as its
leaves (from left to right). Additionally, it is required for a parse tree that every inner node
together with the sequence of its son nodes(from left to right) is a production of the grammar.



2. Deriving prolog programs for top-down recognition and parsing

The goal of this case study is to illustrate that the idea of transformational programming
profitably can be used in the synthesis of logic programs to solve problems given by a
descriptive specification. As willbe seenbelow, this is particularly advantageous for such kind
of problems wherea Solution is not immediately obvious from the specification of the problem.

2.1 The formal specification

To Start with, we assume

T, N, V, Prods

to denote given, basic types to represent theconstituents of our given context-free grammar G =
(N, T, Z, Prods). The definitions of the recognition and parsing problems then are simple
transcriptions of the definitions as givenin the previous section:

rec: T* -> Bool,

rec(w) =def Z =>* w

and

parse: T* -> Prods* Idummy,
parse(w) =def ü rec(w) then some/? e Prods*: isparseip, Z, w) eise dummy fi,

(where a suitabledefinition of the predicate isparse still is to be given, see below).

2.2 The essence of the formal development

Our primary focus of interest is the body of thefunction rec

Z=** w

from which, by a simple generalization (VforN;V* forV)weobtain

rec(w) =def K<Z>, w) where
r: V*xTMBool,

r(u, v) =def u =>* v.

Thus, the function r becomes our new focus of interest and we aim at transforming r into an
operational specification using the "generalized unfold-fold strategy" from [Partsch 90].

Westart by introducing a case distinction (v =evv^E) motivated bythe structure of type T*:

(v = e A k =>* v) v (v*e Au =>* v)

(where A denotes sequential conjunction).

Next, we try to simplify both disjuncts. For the firstdisjunct we use

v = e h (u =>* v) = (u = £)

which is an immediate consequence from (1) and the definition ofcontext-free grammar. For
the second disjunct we use
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which is an obvious consequence from (1) and

tt^eh« =u\ -fl- m,

one of the characteristic propertiesof sequences. Together, we obtain

(v = e A u = e) v (v * e A u -*• e A {u\ -h- w) =>* v).

In order to proceed, we now concentrate on the last conjunct of the second disjunct and try to

simplify further (under the premise v * e A u * e). To this end, we first introduce another case

distinction by adding the tautology (u\e Tvu\e N), which simply exploits the definition of

V, as an additional conjunct. Thus, by additionally using the distributivity of v over A we get

(u\ 6 T A {u\ -H- u) =>* v) v

(u\ g NA (u\ -ff- u) =^* v).

Now, both disjuncts may be simplified individually:

«i€ T h

(«l + u) =>* v

s [ property (2)]

3 vi, V2 g T*: v = v\ -ff- V2 a u\ =>* vi am =>* vi

= [ u\ e T => u\ = vi; «i = vi => V2 = v; A for a ]

Mi = Vi A M=>* V

wie N h

(wi -ff «Ö =>* v

e [ property (2)]

3 vi, V2€ T*: v = vi -f|- V2 a u\ =>* v\ a u=>* vi

= [ property (1) applied to u\ =>* vi ]

3 vi, V2 e T*: v = vi -H- V2 a (3 z g V*: u\ —> z a z =»* vi) a m=>* V2

s [ «i € N => («i -» z) = (mi, z) € Prods ]

3 vi, V2 g T*: v = vi -ff- V2 a (3 z g V*: (mj, z) g Prods a z ^* vi) a m=>* V2

s [rearrangementof quantifiers ]

3 z e V*: (u\, z) g Prods a 3 vi, V2G T*: v = vi if- V2 a z =>* vi a m=>* V2

= [ property (2); A for a ]

3 z g V*: (i*i, z) g Prods A (z -ff m) =»* v

Putting together all pieces, we have as an (intermediate) overall result for r.

(v = e A m= e) v

(v^eAm^eAmigT Ami=vjAm =>* v) v

(v ?fc e A m9te A Mi g N A 3 z g V*: (m, z) e Prods A (z -fl- m) =>* v)



This can be further simplified. Forthe second disjunct, we firstuse

u\ = vi => U\ g T

and by the general property

(B=*A)h (AAB)sB)

result in

(v*eAM*eAMi = viAM =>* v ).

For the third disjunct we first use

3 z g V*: (mi, z) g Prods => Mi g N

andby the same general property obtain

(v*£Am*£A3zg V*: (mj, z) g Prods A (z -ft- m) =>* v).

Thus, altogether, we have

(v = e A m= E) v

(v^eAm^eAmi=viAm =>* v) v

(v*£Am*eA3zgV*: (mi, z) g Prods A (z -fl- m) =>* v).

Finally, by folding with the definition of r we get:

(v = £ A m= £) v

(v*£Am*eAmi =viA r(ü, v))v

(v*£Am*eA3zg V*: (mi, z) g Prods A r(z -ff «, v)).

However, when trying to prove termination (in order to ensure correctness of folding), we
realize that the absence of left-recursive productions as an additional constraint on our grammar
G has to be required for a successful termination proof.

In order to deal withthe parsing problem, we concentrate on itscharacterisitic predicate isparse
which can be specified as follows:

isparse: Prods* x V* x T* -> Bool,
isparseip, m, v) =def r(u, v) A applyip, u) = v

whereapply is a partial function definedby

apply: Prods* xV*-> V*,
m, if p = £

"l + applyip, m), ifp ^E A m ^6 A «i e T

apply(jp, z if- u)
. if/?*£AM*£A3zG V*:pi = (Mi,z)

From its specification, a definition of isparse can be derived by simple transformation steps.
First, we unfold the call of r and distribute v over A:

apply{p,u) =def
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(v = £Am = eA applyip, u) = v) v

(v^eAmt^eAmi =viA t(m, v ) A applyip, u) = v) v

(v^eAm^eASzg V*: (u\, z) g Prods A r(z -ff- m, v) A applyip, u) = v).

Now, all three disjuncts can be treated separately (under the respective premises):

• v = £Am = £ h

apply(p, m) = v

= [ =-substitutivity ]

applyip, £) = £

= [ def. of apply ]

p = e

• V5t£AM^£AMi=Vil-

t*(m, v) A applyip, ü) = v

= [ premise v^eAh^e]

r(ü, v) A applyip, u\ if- u) =vi -ff- v

s [ mi g T; def. of apply ]

r(M, v) A Mi ü- applyip, u) = vj -ff- v

s [ premise mi = vi; = on sequences ]

r(M, v) A applyip, u) = v

s [ def. of isparse ]
isparse(p, m, v)

• V9t£ A M?te A3 z g V*: (mi, z)g Prods h

Kz -ff- m, v) A apply(p, u) = v

s [ def. of app/y ]

r(z -H- S, v) Ap * £ Api = (mi, z) Aapply(p, z if- m) = v
s [ commutativity of independent disjuncts; def. of isparse ]

p^EApi =(mj,z)A isparse(p, z if- m, v).

Summing up, we get the following definitionfor isparse:

(v = eAm = eAp = e)v

(vtteAw^eAwi =viA isparse(py m, v)) v

(v*eAm*eA3zg V*: (mi, z) g Prods Ap 9t £ Api = (mi, z) A isparse(p, z -ff- m, v)).

2.3 Prolog programs

The result of our previous derivations can straightforwardly be rewritten into equational form
with "pattern matching". Thus, for the recognition problem we get

r(£, £) =def true,

r(ui -fl- m, vi -ff- v) =def Mi = vi A r(M, v),



r(Mi if- m, v) =def 3 z g V*: (mi, z) g Prods A r(z -fr w> v)),

and for the parsing problem

isparse(e, £, £) =def true,

isparse(p, u\ -fr m, vi if- v) =def "i = vi A isparseip, m, v),

isparse((u\, z) -fr p, u\ if- ", v) =def («i, z) e Prods Aisparse(p, z -fr m, v).

Both definitions can be immediately transcribedinto Prolog programs, if we use lists to
represent sequencesof Symbols, the facts

i sprod (x, y) (for all (x, y) e Prods)

to represent the production rules of ourgrammar G, andtheconstant s to denote its axiom. For
the recognition problem, we thus get:

rec(s,W) :- r([s],W).

r([], []).

r([UlUrest],[VlVrest])

:- U = V, r(Urest/Vrest).

r([UlUrest],V)

:- isprod(U,Z), append(Z,Urest,X) , r(X,V).

If we furthermore represent the initial terminal word wby a list [wx,...,wn] the desired result
for the recognition problemwill be computed by the query

?- rec(s/ [wlf ».,wn] ) .

Likewise,we obtain immediately a Solution to the parsing problem:

P([], [], [])•

p(P,[UlUrest],[VlVrest])

:- U = V, ptP^rest^rest) .

p([(U,Z)IPrest], [UlUrest],V)

:- isprod(U/Z)/ appendtZ^rest^) , p(Prest/X/V) .

Ifwe again represent the initial terminal word wby a list [wx,..., wn] the desired result for the
parsing problem willnow be computed by thequery

?- p(P, [s], [wlf...,wn] ) .

3. Bottom-up recognition considered as an "inverse problem"

In this second case study, we deal with a typical representative of a class of problems
frequentiy called "inverse problems". Intuitivdy, the problems in this class ask for Computing a
function

for some valuex, where/is initially specified in terms of its "inverse"

g' ß -> a,
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e.g. by

fix) =defsome y: g(y) = x.

Specifying a problem in this way is particularly profitable in cases where / is hard to be
specified "directly", whereas a (constructive) specification of g is already available or rather
straightforwardly to formulate.

A simple instance of such an "inverse" problem is the specification of a (real) Square root in
terms of (real) multiplication:

some y: y x y = x.

A somewhat larger class of "inverse problems" is covered, if we additionally allow further
constraints on the result of the desired function/:

fix) =defsomey: g(y) =xa P(x,y)

where P is some additional predicate.

Again, an instance is provided by specifying the Square root - this time constrained to non
negative results:

sqr(x) =def some y:yxy = jcAy>0.

In the following we deal with a more interesting instance of this latter form of "inverse
problems", viz. recognition of context-free grammars, and show how a bottom-up algorithm
can be derived by very simple transformation Steps.

3.1 The formal specification

To start with, we assume, again,

T, N, V, Prods

to denote given, basic types for the constituents of a context-free grammar G = (N, T, Z, Prods).

Then the parse structure P of a terminal word with respect to grammar G can be defined by

P=defTINont

where

Nont =def(N Ihs x P* rhs: (Ihs, symbs(rhs)) g Prods)

and where

symbs: P* -» V*

£, if p = E

P\ -H- symbs(p), if p ;* £ A pi g T

^ lhs(p\) -fr symbs(p), otherwise
symbs{p) =def <

According to this definition, a "parse" P is either a terminal symbol from T or an dement from
Nont. An dement q of Nont is in turn defined to be a pair consisting of a nonterminal symbol
fromN (its "root") to be obtained by lhs(q) anda sequence of parses (to be obtained by rhs(q))
such that lhs(q) and the "roots" of rhs(q) constitute a production from Prods. In this context,
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the auxiliary function symbs, given a sequence of parses, returns the sequence of Symbols at
the "roots" of the parses (where Adenotes"sequential conjunction"). Thus, intuitivdy, parses
are parse trees representedby "bracketedstrings".

Subsequently, all functions will be uniformly defined on P* (ratherthan P), in order to avoid
unnecessary distinctionsbetween elementsof P and P*, respectively.

Our ultimate goal are functions to solve the recognition and parsing problems. A suitable
"inverse" of such functions is a function unparse that, given an dement of P*, returns the
sequence of terminal Symbols composed of all leaves ("fromleft to right")of the parses in the
sequence:

unparse: P* —> T*

£, lf p = £
unparseipi) -fr q -fr unparseipi,

if p * e A pi -fr q -fr pr= p A q G T
unparseipi) -fr unparse(rhs(q)) -ff- unparse(pr),

ifp*eApi-frq-frpr=P A q g Nont

unparseip) =def ^

Now we have all prerequisites to formally define the problem(s) we want to deal with. Using
the above definitions, the recognitionproblemcan be specified (as an "inverse problem") by

rec: T*-»Bool

rec(w) =def 3 p g P: unparse(<p>) = w a symbs(<p>) = <Z>

and the parsing problem by

parse: T* -> (P Idummy)
parse(w) =def

if rec(w) then some p g P: unparse(<p>) = w a symbs(<p>) = <Z>
eise dummy fi.

Although, maybe intuitivdy obvious, weshould give a formal account of the adequacy of our
specification, i.e., we should prove that

rec(w) = <Z> =>* w

holds.

To this end, we introduce an auxiliary function

der: P* x P* -> Bool

der(u, v) =def symbs(u) =>* symbs(v)

and prove (see appendix) that thefollowing property holds for arbitrary wg T* and p g P*:

(2) unparseip) = w s der(p,w).

Withthisproperty theproofforadequacy is a straightforward calculation:

rec(w)

= [ def. of rec ]

3 p g P: unparse{<p>) = w a symbs(<p>) = <Z>
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= [ property (2) ]

3 p g P*: derip, w) a symbsip) = <Z>

= [def. of der]

3 p g P*: symbsip) =>* symbsiw) a symbsip) = <Z>

= [ substitutivity; def. of symbs ]

3p g P*: <Z>=>* w

= [ 3-simplification]

<Z>=>* w

3.2 The formal development

Based on the formal problem specification as given in the previous section, we now aim at
deriving an algorithm, basicallyby "inverting" the function unparse.

3.2.1 Auxiliary Operations

The basic strategy to achieve a synthesis of an "inverse" of unparse tries to make use of "local
inverses", i.e., the alternatives of the definition of unparse applied from right to left. For the
first and second alternative, this is straightforward. For the third alternative, we introduce an
auxiliary Operation (as a kind of "inverse" corresponding to unparseipi -fr q -fr pr) =
unparseipi) -fr rhsiq) -fr unparseip,))

red: (P* p x P* p': isredip)) -> Bool,

redip, pO =def 3 n e N, p/, pnqe ?*:pi~frq -frpr=p A in, symbsiq)) g Prods A
P' = PI if- in, q) -fr pr

where

isred: P* -> Bool,

isredip) =def 3 n e N,p/,pr, q e ?*:pi-frq -frpr-p A in, symbsiq)) e Prods.

For our subsequent development, some properties iof der, red and isred for allp, m, m' g P*)
will be needed:

(3) —lisrediu) h iderip, u) = isymbsip) = symfo(M)))

(proof: definition of der,property of =>*; assumption—dsrediu))

(4) isrediu) a derip, u)Ap±u => 3 m' g P*: Jer(p, m*) a rediu, m1))
(proof: transitivity of der)

(5) isymbsiu) = <Z>) => -lisrediu)
(proof: no chain productions in G)

(6) For p, p' with rerf(p, p1)s true, we have:

(Ipl < Ipl) v (Ipl = |p| a #7^0 < #tO>))
(where#r<p) denotes the numberof terminal Symbols inp)
(proof: no chain and £-productions in G)
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3.2.2 Theformal development proper

Our focus of interest is the function rec:

reciw) =def 3 p g P: unparsei<p>) = w a symbsi<p>) = <Z>.

By a simple generalization (replacing elements by singleton sequences) weobtain:

rec{w) =def 3 P g P*: unparseip) = wa symbsip) = <Z>.

Next, we use property (2):

reciw) =def 3 p g P*: derip, w) a symbsip) = <Z>.

The next crucial Step is to find an appropriate embedding (cf. [Partsch 90]). This Step is not
motivated in itself,but ratherby the failure of an attempt to directly transform this specification
intoan algorithm using the"generalized unfold-fold strategy" from [Partsch 90]. Technically,
this embedding makes use of the property w = £ -fr w and turns the constant £ into an
additional parameter by means of an abstraction Step. Moreover, it introduces an assertion to
formalize the relationshipbetween the old and the new parameters:

reciw) =def r(£, w) where

r. (P* m x T* s: unparseiu) -fr s = w) -> Bool,

Hu, s) =def 3 p g P*: derip, u -fr s) a symbsip) = <Z>.

Now the function r becomes our new focus of interest and the remainder of the development
proceeds along the "generalized unfold-fold strategy".

First, we introduce a case distinction which is guided by the type and the properties of the
parameters. For the parameter s of type sequence we know that is = £v s * £) is a tautology.
For the parameter m, £ is the value we started from (in the embedding). Thus, a similar
discrimination using (m = £ v u* £) is certainly doomed to fail. Therefore, we rather use the
tautology -lisrediu) v isrea\u). By combination of the two tautologies we come up with the
following case distinction:

is = £ a -dsrediü) A 3 p g P*: derip, u -fr s) a symbsip) = <Z>) v

is * £ A 3 p G P*: derip, u -fr s) a symbsip)=<Z>) v

iisrediu) A 3 p g P*: derip, u -fr s) a symbsip) = <Z>)

Ournext efforts aimat simplifying theindividual disjuncts. Wereason as follows:

s = £ A —iisrediu) h

3 p G P*: derip, u -fr s) a symbsip) =<Z>
= [ substitutivity usingpremise s = e;neutrality of £ w.r.t. -fr ]

3 p g P*: derip, u) a symbsip) = <Z>

s [ property (3) ]

3 p g P*: symbsip) = symbsiu) a symbsip) =<Z>
s [commutativityandtransitivityof=]
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3 p g P*: symbsiu) = <Z>

s [ 3-simplification ]

symbsiu) = <Z>.

Thus, for the first disjunct, we obtain as an intermediate result of the simplification

s = £ A —iisrediu) A symbsiu) = <Z>

which can be further simplified (using property (5) and (B => A) h (AAB)s B) into:

s = £ A symbsiu) = <Z>

s*E h

3 p g P*: derip, m-ff- j) a symbsip) = <Z>

= [s*er- s = s\-frs', associativity of if-]

3 p g P*: derip, (m -ff- s\) -fr s) a symbsip) = <Z>

isrediu) h

3 p G P*: derip, u-fr s) a symbsip) = <Z>

= [ property (4)]

isrediu) A 3 u' g P*: rea\u, m*) A 3 p g P*: dfer(p, m' ü- 5) a symbsip) - <Z>

Hence, the overall result of the simplifications is:

(5 = £ A symbsiu) = <Z>) v

is * £ A 3 p g P*: <fer(p, (m if- si) -ff- 5) a symbsip) = <Z>) v

iisrediu) A 3 m' g P*: ra/(M, m*) A 3 p g P*: derip, u' -fr s) a symbsip) = <Z>).

Now we realize that folding is possible in the second and third disjunct which results in

is = £ A symbsiu) = <Z>) v

is^e Ariu-fr s\, s) v

iisrediu) A 3 m' g P*: red(M, mO A t(m', 5).

Since, however, r was defined to be a partial function, we also have to prove that its assertion
holds for the generated recursive calls. But this is simple, since the following properties
obviously hold:

unparseiu) -frs = WAs*e\- unparseiu -H- ^i) -fr- s =w;

unparseiu) -fr s = w a isrediu) A 3 u' g P*: rea\u, m") h unparseiu1) -fr s = w.

Moreover, we have to ensure the correctness of folding, e.g., by means of an additional proof
of termination. But this again is simple, since either the length of s is reduced or u becomes
"smaller" according to property (6).

3.3 Final remarks

Obviously, the result of our derivation can be specialized to the classical "shift-reduce"-
recognition algorithm(withbacktracking) by using particular versions (p2 = £) of isred and red:
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isred': P* -> Bool,

isred'ip) =def 3ne N, pi,q e ?*: pi-frq =p A in, symbsiq)) e Prods

red': (P* p x P* p': isred'ip)) -> Bool,
red'iptp') =def 3/ig N, p/,^G P*:p/-ff-^ =p A in, symbsiq)) e Prods A

p' = Pl-t(n,q)

Also, a final transition to a functional or logic program (as in section 2) is straightforward for
the recognition problem, since definition of logical disjunction implicitly takes care of
backtracking. The same holds for alogic program for parse (where ontermination, according to
the assertion in r, u yields the requested parse structure). For a functional program forparse,
however, we have to explicitly take care of backtracking. Technically, this can be done by
strengthening the assertionof r to

is = £ A symbsiu) = <Z>)=> unparseiu)= w

and using therule "argument on termination" from [Partsch 90].
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Appendix

Property

(2)unparseip)=w=derip,w).

proof(byinductiononthelengthofp):

a)basecase.p=£:

unparseie)=wse=wse=>*wssymbsie)=^*wsderie,w)

b)inductionStep:letp=#if-p'

bl)q&T:

unparseiq-frp")=w

s[def.ofunparse;w=w\-frw]

q-frunparseip")=w\-frw

=[def.of=]

q=w\aunparseip')=w

s[inductionhypothesis]

q=w\aderip',w)

=[def.der]

q=w\asymbsip1)=»*symbsiw)

s[def.symbs;q=w\=q=>*w\\property(2)]

symbsiq-H-/0^*Jym^(wiif-w)

s[def.der;w=w\-frw]

deriq-frp',w)

bl)qgNont:

unparseiq-frpr)=w

s[def.ofunparse]

unparseirhsiq))-frunparseip")=w

=[def.of=;qgNonthunparseirhsiq))=unparseiq)]

3w\w":w=w'-frw"aunparseiq)=w'aunparseip")=w"

=[inductionhypothesis]

3w',w":w=w'-frw"aderiq,w")aderip',w")
s[def.der]

3w',w":w=w'-frw"asymbsiq)=>*symbsiw1)asymbsip")=>*symbsiw")
=[def.symbs]

3w',w":w=w'-frw"aIhsiq)=>*symbsiw")asymbsip")=>*symbsiw")
b[property(2)]

3w',w":w=w'-frw"aIhsiq)-frsymbsip1)=>*symbsiw1)-frsymbsiw")
=[def.symbs]
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3w',w":w = w'-fr w" a symbsiq -fi-P') =>* symbsiw' -fr w")

s [ def. ßfer; 3-elimination ]

deriq-frp', w)

(end of proof)
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