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abstract

This paper deals with a case study in the formal derivation of data-parallel
algorithms by means of program transformations. Particular emphasis is on the
Observation that a careful choice of suitable Operations on abstract data structures
and a thorough investigation of their algebraic properties can reduce substantial
parts of the development activities to pure algebraic calculation.

0. Introduction

Transformational development summarizes the idea of deriving an algorithm from a formal
problem specification by stepwise application of semantics-preserving transformation rules. For
a brief introduction to and overview of the approach, cf., e.g., [Bauer et al. 89] or [Boiten et al.
92]. A comprehensive treatment of the subject can be found in [Partsch 90].

0.1 Transformational development

For the following, a slightly more precise characterization of the idea of transformational
development can be given, if we assume the following scenario:

C set of language constructs
L(C): set of syntactically correct programs over C
Cs: "source constructs'*
q. "target constructs" • (non-empty) subsets of C
C^ "machine characteristics"
M(p): semantics of p e L(C)

As a suitable Interpretation of these sets, we could view Cs to consist of typical applicative
constructs (inclusive of recursion) and Q to comprise variables, assignment, and loops.



In the scenario as sketched above, a formal specification is the description of a concrete
problem in terms of source constructs, i.e., as a p e LfQ).

Program transformations are (partial) mappings

%\L(C)-> L(C'),

where C, C'S Cand M(p)= M(%(p)) holds for all "admissible" p e L(C'), i.e., all those p
for which %is defined. A typical example of a program transformation is given by the well-
known transition from a tail-recursive function to an (equivalent) while-loop.

A transformational development, finally, is a mapping

T. L(CS)^> L(Ct v Cm) such that M(p)= M(T(p)) holds for all "admissible" p e L(CS)

viewed as a stepwise process described by a composition of transformations.

By means of this fairly vague characterization it is already possible to give an account of
relevant research topics within this approach. On the one hand, there are various linguistic
aspects such as the identification of suitable source and target constructs Q and Q inclusive of
their semantic definition, an aspect utterly important for the practical use of the methodology.
On the other hand, there are, of course, the major problems of finding suitable transformations
<Zj and adequately representing them by appropriate rules, as well as the identification of
generally applicable forms of compositions of transformation rules ("development strategies").
It is especially this latter aspect our case study will focus on.

0.2 Sequential and parallel algorithms

In case of sequential algorithms a distinctionbetween the sets Qand C^ in the above scenario is
"irrelevant" resp. superfluous, since all sequentialmachines are characterized by essentially the
same constructs. This is certainly not the case for parallel algorithms, where it is well
neccessary to represent the different machine characteristics (of different classes of parallel
architectures) by means of appropriate language constructs and to take this information into
account in the development process.

In its widest sense, parallel executionmeans the "simultaneous" applicationof "Operations" (by
means of several processors) to (possibly additionally structured) collections of data. An
important aspect in this context is the "processor distribution", i.e., the assignment of the
available processors to the "Operations" to be executed. A rough, well-known Classification (for
architectures as well as for algorithms targeted at these architectures) results from a more
precise characterization of the term "Operations". If it is required that the "Operations" are
identical and elementary, we get a class usually termed SIMD (single Instructionmultiple data).
If different (and not just elementary) operationes are allowed, the class MIMD (multiple
Instruction multiple data) is obtained. In between there is a class sometimes called SPMD
(single program multiple data) where all Operations are required to be identical ("data
parallelism"), but not neccesarilyelementary. Within these classes a finer Classification can be
obtained, if the connections between the individual processors ("processor topology") are taken
into account. Typical topologies for the SIMD or SPMD class are the (linear) processor array,
the processor ring, or an arrangement of the processors in a mesh or a hypercube.



0.3 Formulation of parallel algorithms

In order to characterize specific hardware structures, it would, of course, be possible to develop
new language constructs and to integrate them with established data and control structures into a
new (parallel) target language. In terms of the scenario sketched in 0.1, this would mean a
(new) definition of C^ independentof other available languageconstructs. The disadvantage of
proceeding this way, however, is obvious: for each new construct, not only new semantics has
to be defined (consistently with the semantics of existing constructs), but also, and even more
important with respect to the development process, programming knowledge codified by
corresponding transformation rules has to be explored, in order to be integrated with the
existingformalism - in all, a laborious, error-prone, and, above all, rather inflexibleapproach.

Therefore, we follow an approach based on the idea of using available language constructs for
the description of hardware characteristics, i.e., making Cm a set of definitions composed of
constructs from Cs u Cv Taking into account that processor topologies as well as data
collections may be viewed as finite mappings on suitable index domains, the use of functional
constructs is at hand. This leads in a natural way to the notion of "skeletons" (cf. [Harrison
92], [Darlington et al. 93], [Boiten et al. 93]): particular higher-order functions that abstract
elementary Operations of specific parallel architectures and allow a simple and straightforward
transition to the corresponding machine commands. A typical example of such a skeleton is the
apply-to-all, i.e., a higher-order function for the application of an Operation to all elements of a
data collection represented by a finite mapping, under the additional assumption that there is a
unique correspondence between the index domain of the data collection and the available
processors.

Aspects of processor topology also allow for an adequate representation by means of
appropriate skeletons (cf., [Geerling x]). The important issue from an algorithmic point of
view, however, is not the topology itself, but rather the "communication structure" induced by
it, which appropriately can be abstracted into suitable skeletons. In this way, for example, the
linear shift (of a data collection) is a typical communication skeleton for a linear processor
array.

The advantages of using skeletons as abstractions of elementary parallel Operations and
communication aspects are at hand. By using available language constructs, viz. higher-order
functions, it is to be expected that the effort for developing new methodical knowledgecan be
reduced to a minimum, since higher-order functions are already used in the development of
sequential algorithms, and are, therefore, fairly extensively explored. Further (obvious)
advantages are the following: Having an explicit goal (viz., the skeletons) for a development,
Supports a more clearly goal-directed development process. Relying on a common basis of
description is a good startingpoint to investigate the portability of parallel algorithmsfor some
class of architectures to another one. Integrating future architectures into the approach is
straightforward and not a principal problem.

0.4 Problem-oriented skeletons

In earlier experiments (cf., e.g., [Geerling 92, 94a, 94b], [Partsch 93]) machine characteristic
skeletons (based on finite mappings on index domains) were involved in the development
process at a rather early stage. This caused some of the derivations to become unnecessarily
burdened by extensive index calculations which, although straightforward in most cases, are



cumbersome to read, decrease clarity of the algorithms involved, and, above all, entail long and
fatiguing derivations.

Meanwhile, recent research (cf., e.g., [Achatz, Schulte 94]) has shown that a careful choice of
suitable Operations on abstract data types ("problem-oriented skeletons"), a thorough
investigation of their algebraic properties, and their use in the development process leads to
much more elegant - since more abstract and thus more concise - and architecture-independent
derivations.

Our subsequent sample derivation is essentially intended to back this claim. We deal once more
with a problem that already has been tackled in [Partsch 93], viz. the odd-even-transposition
sort algorithm. In our previous treatment indices were introduced fairly early in the
development, which certainly obscured some of the subsequent development Steps. In the
present case study, we follow the idea of "problem-oriented skeletons", i.e., we use exlusively
abstract Operations on sequences and their algebraic properties in our development, and defer
the transition to machine-oriented skeletons to the very last step in our derivation. In this way,
the majority of the development becomes purely calculational und thus much more lucid. In
order to convince himself of this latter claim, the reader is invited to compare the derivation in
this paper with the one in [Partsch 93].

1. The problem specification

In order to be able to specify the problem we want to deal with, we have to introduce some
basic notions, notably sequences.

1.1 Sequences

The primitive data type our problem is based on is the type of sequences (over some basic
type a) which we abbreviate by sequ. As elementary, totally defined Operations on sequences
we assume to have available (for s, t of type sequ, x of type cc):

e empty sequence

<*> sequence former

s -ft-t concatenation, and

\s\ length.

Whenever clear from the context, explicit sequence formers will be avoided, i.e., concatenation
will also be used for adding (single) elements to a sequence.

In addition to the totally defined Operations, we also assume to have available some partially
defined ones:

Si indexed access (only defined for 1 < i < kl, otherwise undefined)

s i first dement (undefined for s = e)

5# last dement (undefined for s = e)

s rest (undefined for s = e)

7 Starter (undefinedfor s s e).



For all Operations, characteristic properties such 2lss^e=^s = s\-^- 's, usually explicitly
given by an algebraic type definition (cf. [Partsch 90]), are also assumed to be available.

1.2 Sorting

Based on the notion of sequences, a specification of the sorting problem is straightforward:

sort(S) where

sort: sequ —» sequ,

sort(s) =defsome sequ x: sameels(x, s) a issorted(x),

sameeis: (sequ x sequ) —> bool,
sameels(x, s) =def« x and s have the same elements »,

issorted: sequ —> bool,

issorted{s) =defV (inat i,j): i<j=> s[i] < s\j],

inat =def (nat i: 1 < i < 151).

Above, the function sameeis has not been formalized. This was done on purpose, since for our
derivation we only need intuitively obvious properties of this function.

2. Development of an algorithm

In the following an algorithm for the sorting problem will be developed. As to the rules used in
the development, the reader is referred to [Partsch 90].

2.1 Preparatory considerations

Our first goal is to transform the specification in order to have a better starting point which
clearly motivates the central idea finally leading to the intended algorithm. Starting with the
definition of the predicate issorted, we can simply reason as follows:

V (inat i,j): i <j => s[i] < s\j]

= [ relationship between V and 3 ]

-i 3 (inat ij): -i(i <j => s[i] < s\j))

s [ def. of =♦ in terms of v; de Morgan's law ]

-i3 (inat ij): i<JA s[i] >s{j]

= [ relationship between 3 and set comprehension ]

{(inat ij): i<j a s[i] > s\j]} = 0

= [ trivial property of sets ]

l{(inat ify): i <j a s[i] > s\j]}\ = 0.

Thus, by abstraction, we have as a new specification of the predicate issorted:



issorted(s) =def#invs(s) = 0,

#invs: sequ -> nat,
#invs(s) =def l{(inat /J): /<;a s[j] > s\j]}\.

Our next efforts aim at deriving an algorithm from this modified specification. Obviously, we
have

\s\-l

Zi =(\s\x(\s\-l))/2

as an upper bound for #invs(s), and, by rearranging the elements of s, we want to achieve that
#invs(s) = 0 becomes true. This motivates the basic idea for an algorithm by successivdy
reducing the Upper bound on the number of inversions (until it becomes < 0) by means of
suitable Operations. Naively, we could eliminate just one inversion per step by swapping
mispositioned elements. This, however, would lead to an algorithm with worst case complexity
0(lsl2). Therefore, as an additional idea to obtain an algorithm with better Performance, we try
to find an Operation that reduces the upper bound for #invs(s)by \s\-l in each step. Obviously,
this has to be an Operation that changes the sequence as a whole, e.g., by multiple swaps.

2.2 Development

As motivated in the previous section, we start our development by adding the upper bound on
#invs(s) as an additional parameter to the function sort. Technically, this means, we use an
embedding (with assertion) which results in

sort'(S, 151) where

sort': (sequ x int) -» sequ,

sort'(s, i) =defsort(s)

with

#invs(s)<(ix(\s\-l))/2

as the assertion (invariant) for sort'.

The following Steps follow the "generalized unfold-fold strategy" from [Partsch 90] applied to
the definition of sort'. By unfolding the definition of sort, applying a case introduction (based
on the tautology i < 0 v i > 0), and exploitingthe distributivity of some over if - fi, we get

sort'(s, i) =def
if / < 0 then some sequ x: sameels(x, s) a issorted(x)

eise some sequ x: sameels(x, s) a issorted(x) fi.

Next, both branches of the conditional are simplifiedexploiting the condition 1< 0 and the
assertion of sort'.

In the then-branch (under premise #invs(s)< (i x (lsl-l))/2 a i < 0) we simply have:

#invs(s)<(ix(\s\-l))/2Ai<0) => #invs(s)<0 => issorted{s)\ and

sameels(s, s) = true,

i.e., s satisfies the required properties.



In the else-branch (under premise #invs(s) < (i x (Lsl-l))/2a/>0) we assume to be able to
find an Operation

transp: sequ —> sequ,

with the properties (necessary to maintain the assertionof sort'and to allow a subsequent
folding)

s s (transpiSfiW2 => (#invs(transp(s)) < ((i-2) x (l5l-l))/2; and
sameels(transp(s), s) s true.

Together, we thus obtain:

sort'(s, i) =def
if / < 0 then s

eise some sequ x: sameels{x, transp{s)) a issorted{x) fi,

and folding with the original definition of sort' results in

sort'(s, i) =def if i ^ 0 then s eise sort'(transp(s), i-2) fi.

2.3 Additional Operations

Of course, we still have to justify the essential assumption in our development by providing a
definition of transp and proving the postulated properties. To this end, we first introduce some
additional Operations on sequences:

<si'. P(/)> sequence comprehension

°(s) =def <*/• odd i> subsequence of elements with odd index

e(s) =def <Sim. even i> subsequence of elements with even index

split(s) =def (o(s), e(s)) split of s into the pair of subsequences with odd and even
indices, resp.

ilv(s, t) inverse of split, i.e.ilv(split(s)) = s and
split(ilv(s, t)) s (s, t) hold (for abs(kl - \t\) < 1)

s© t =def (<min(Sj, t{): \<i< \s\>, <max(si, r,-): 1<i < l^l>) (provided 1^1 = Irl)
s © t =def (<max(si, t(): l<i< \s\>, <min(si, /,-): 1< i< \s\>) (provided \s\ = Irl)
Ts =def max{5,-: 1 < i < 1^1} (provided 1^1 > 0)

is =def min{5,-: 1 < i < \s\) (provided \s\ > 0)

Among these Operations, we are primarily interested in split, ilv, © and ©.These Operations
have a number of interestingalgebraic properties whichwill be used in our further derivations.
Some of these properties are listed below where, for brevity, the definedness of all
subexpressions is assumed withoutexplixitly statingthe respective conditions, in particular \s\ =
Irl. In addition, in order to save parentheses, wealso assume © to have lower priority than-fl~.
Thus, for sequ s, t, u, v, and elements a,bwt have:

(a) o(ilv(s, t)) b s, e(ilv(s, t)) = t



(b) o(ilv(s, t)') = s, e(ilv(s, t)') s /, e(ilv(s, t)) = t, o('ilv(s, t)) =s

(c) a<b => a-frb =ilv(a© b)
(d) ilv(s© t) -fr *7v(w © v) e ilv(s -fr w © f -fr v)

(e) a -fr i/vfo 0 "fr fc = üv(a -fr /, 5 -fr fc)

(f) o(//v(5 © r)) = e(*7v(f © *)), e(//v(5 © t)) s ö(//v(r © 5))
(g) a>& => q-fr o(ilv(s © Q) = o(ilv(a-fr s © fr-fr t))
(h) e(//v(5 © 0) = e(ilv(a -fr * © b -fr 0)
(i) odd kl =♦ 0(5) s o(s) -fr s#, even kl => 0(5) s ö(7)
(k) odd kl =» c(j) s e(s), even kl => e(.s) = e(s) -fr s#

The proofs of these properties are fairly straightforward and left to the interested reader.

2.4 The odd-even-transposition sort algorithm

Based on the Operations introduced above, we are now able to complete the definition of our
sorting algorithm (for a proof that the definitionof transp satisfies the postulated conditions, cf.
[Völker 92]):

sort'(S, 151) where

sort': (sequ x int) -> sequ,
sort'(s, i) =def ifi^O thenseisesort'(transp(s), i-2) fi,

transp: sequ —> sequ ,

transp(s) =def transpe(transpo(s)),

transpo: sequ —» sequ ,

ilv(o(s)© e(s)), if even kl

ilv(o(s) © «(*)) -fr s#, if odd kl
transpo(s) =def

transpe: sequ -» sequ ,

j, -fr ilv(e(7) © <?Cs)) -fr 5#, if even kl
transpe(s) =def

5, -fr ilv(e(s)© o(s)), if odd kl

This algorithm works as follows. Assume as input, the sequence

<3, 7, 5, 2, 1, 4, 6 >.

Then the algorithmperformsthe following computation:

3 3 3 2 2 1 1
7 7 2 3 12 2

5 transpo 2 transpe 1 transpo 1 transpe 3 transpo 3 transpe 3
2 -» 5 -» 1 -» 7-> 4 -> 4-» 4
115 4 7 5 5
4 4 4 5 5 7 6
6 6 6 6 6 6 7



Obviously, if we assume an operational realization of the Operation ©, which (by means of
sufficiently many processors) is able to perform the necessary comparisons betwen and
interchanges of sequence elements "simultaneously", we already have an algoithm which is
parallel in principle. A key issue in this respect, from a methodical point of view, is the fact that
an algorithm has been derived from the specification which uses powerful Operations that
change the data structure as a whole, but are elementwise executable.

3. Improvement of the algorithm for parallel execution

The algorithm given in the previous section, however, stillhas some unwanted peculiarities that
should be eliminated: On the one hand there are case distinctions involving scalar Operations
(viz. -fr) in the definitions of transpo and transpe which should be avoided for parallel
execution. On the other hand, we immediately see that in each iteration only part of the
processors are active which is a waste of resources. In both cases, we have phenomina that are
important for parallel algorithms in general: Avoiding scalar Operations by means of
"uniformization" of dataand optimal exploitationof the available processors. In both cases it is
also possible to obtain the desired form by appliction of suitable transformation rules which
essentially exploit the algebraic properties of the Operations used.

3.1 Elimination of scalar Operations

As a first step towards diminating the scalar Operations in transpoltranspe we try to diminate
the case distinctions. To this end, we introduce auxiliary Operations (essentially to obtain
sequences of uniform, even length):

* __ j s -fr T.s, if odd kl
s def \s -fr Ts-fr Ts, if even kl

unstar(s*, kl) =def
$*\ if odd kl

s*1, if even kl

Again, these Operations have interesting algebraic properties that profitably can be used laterin
our development. Some of these properties (the proofs of which are again straightforwardand
left to the reader) are (for arbitrary sequ s):

- even k*l

- odd kl =^ s = s^

- even kl ^i5?

- (**)» = Tj

- kl > 0 => ($*), = s] = (o(s*))t

- e(s*) = e(s) -fr ts

- even kl => o(s*) = o(s) -fr ts

- odd kl => o(s*) = o(s)



- odd kl =» e(s*) = e(s)

- odd kl => o(s*) = o(s).

Our next efforts aim at "adapting" sort' to these "uniform" sequences. By an embedding we
define

sort"(s*, 151) where

sort": (sequ x int) -> sequ,
sort"(s*, f) =def unstar(sort'(s, i))*),

and then calculate as follows:

unstar(sort'(s, /))*)

= [ def. of sort'; distr. of * over if - fi ]

unstar(if i < 0 then s* eise sort'(transp(s), i-2)* fi)

s [ distr. of unstar over if - fi ]

if i < 0 then unstar(s*) eise unstar(sort'(transp(s), i-2))*) fi

s [ def. of sort"', def. of transp ]

if i < 0 then unstar(s*) eise sort"((transpe(transpo(s)))*, i-2) fi

e= [ new def. see below ]

if i < 0 then unstar(s*) eise sort"(transpe*(transpo*(s*)), i-2) fi

where

transpo*(s*) =def (transpo(s))*
transpe*(s*) =def (transpe(s))*.

Similar to the above calculation, explicit defintions for transpo*and transpe* can be obtained
by further calculation:

For the case odd kl we have

transpo*(s*)

= [ def. of transpo* ]

(transpo(s))*

= [ def. of transpo, * ]

ilv(o(ls) © e(s)) -fr 5# -fr ?s

= [(c)]

i7v(<?C?) © e(5)) -fr (5# © 1k)

s [ (d) ]

i/v((o(5) -fr 5#) © (e(5) -fr Tj))

s [def. of?, * ]

f/v(o(5*) © e(.s*))

and

10



transpe*(s*)

s [ def. of transpe*]

(transpe(s))*

s [ def. of transpe, * ]

sl-\tilv(e(s)©o(s))-fts

= [ properties of ~s and * ]
5i -fr ilv(e(s*7 © Tö(s*)) -fr 1k

Likewise, for the case even kl we have

transpo*(s*)

s [ def. of transpo*]

(transpo(s))*

= [ def. of transpo, * ]

ilv(o(s)©e(s))-trS-t/ts

* [(c)]

ilv(o(s)©e(s))-ti-(ts ©Is)

* [ (d) ]

ilv((o(s) -fr Tj) ©(e(j) "fr 1k))

s [def.of*]

*7v(ö(s*) © e(s*))

and

/ra/M/?e*(.y*)

s [ def. of transpe*]

(transpe(s))*

s [ def. of transpe, * ]

j, -fr i/v(e(3 ©S(ä)) "fr*# "fr1k"fr 1k
s [(c)]

5, -fr ilv(ejsl ©o(sj) -fr (*# © 1k) -fr ty

a [(d)]

5, -fr i/v((i(s7 -it- *#) © Cö(sj -fr 1k)) -fr Tj
s [ properties of s and * ]

si -fr ilv(e(s*7 © ^*)) -H- tj.

Putting these pieces together, we get as an intermediate result

transpo*(s*) =def ilv(o(s*)© e(s*))

transpe*(s*) =def Ji "fr (ilv(ejs*^ © roJs*)) -fr 1k.

11



Still, however, there are scalar Operations in the definition of transpe*. Therefore, we calculate
further as follows:

s\ -fr ilv(ejs*l © 0(5*))-fr 1k

s [ def. of ilv ]

5i -fr ilv(o(ilv(e(s*l © o(s*))), e(ilv(ejs*^ © 0(5*))))-fr 1k

= [ (f)]

5! -fr ilv(e(ilv(o(s*) © i(5*J)), tf(*7v(o(s*) © iC**)"))) "fr T5

* [(c)]

ifvfo -fr o(//v(o(5*) © iCJ*)1)), e(//v( 0(5*) © «(j*?)) -fr 1k)
= [(g),(h)]

i/v(o(i/v(5i-fr 0(5*) © 45-fr i(5*)*)), e(//v(51-fr o(s*) © J, j-fr <?(5*7)) -fr 1k)
= [def. ofS]

ilv(o(ilv(o(s*) © 4,5-fr i(5*y)), e(//v(o(5*) © ij-fr «fMk*})) -fr T5)
s [ where-abstraction ]

ilv(o(ilv(o', e'), e(ilv(o', e')) -fr T5) where (o\ e') =def 0(5*) © (is -fre(5*J)
= [(a)]

ilv(o', V'-fr T5) where (<?', O =def 0(5*) © (is -fr 5(s^)

3.2 Optimal exploitation of available processors

Although successful in diminating scalar Operations, we still have the problem that in each step
of the computation processors with even (resp. odd) index are inactive. The basic idea to solve
this problem is to have two separate sequences for even and odd indices and to appropriately
modify the sorting algorithm.

Again by an embedding, we transform our previous problem Statement into

sort*(split(S*), I5I, I5I) where

sort*: (sequ x sequ x int) —» sequ,
sort*(o, e, i) =def sort"(ilv(o, e), i)

and calculate an explicit definition for sort*as follows:

sort"(ilv(o, e), i)

s [def.of5orr"]

if i < 0 then unstar(ilv(o, e)) eise sort"(transpe*(transpo*(ilv(o, e))), i-2) fi

= [define transp* by ilv(transp*(o, e)) =def transpe*(transpo*(ilv(o, e))) ]

if i < 0 then unstar(ilv(o, e)) eise sort"(ilv(transp*(o, e)), i-2) fi

= [ def. of sort* ]

if i < 0 then unstar(ilv(o, e)) eise sort*(transp*(o, e), i-2) fi.

12



As in the previous section, an explicit definition of transp* is obtained by further,
straightforward calculation:

transp*(o, e)

s [ property of split/ilv ]

split(ilv(transp*(o, e)))

s [ defining property of transp*(o, e) ]

split(transpe*(transpo*(ilv(o, e))))

= [ def. of transpo* ]

split(transpe*(ilv(o', e*))) where (o', e1) =def o(ilv(o, e)) © e(ilv(o, e)) = o © e
= [ def. of transpe*; simplification ]

split(ilv(o", P-fr?j) where (o",e") =def o' © (is -fr7p); (</,<?') =def o ©e
= [ property of split/ilv ]

o", V'-tls where (o",e") =def o'© (is -frT1"); (o\ e1) =def o ©e

3.3 Final algorithm

Putting all pieces together, we have as the final result of our derivation:

sort*(split(S*), 151,151) where

sort*: (sequ x sequ x int) —> sequ,

sort*(o, e, i) =def
if i < 0 then unstar(ilv(o, e)) eise sort*(o", e" -fr 1k , i-2)

where (o",e") =def 0'© (^-frT7'); (o', O =def o © e fi.
In order to illustrate how this algorithm works, we consider again the sequence

<3, 7, 5, 2, 1,4, 6 >.

Now, the computation proceeds as follows (with SHR as abbreviation for (45 -fr e) and SHL
for £-fr1k):

i = 7

3 7 3 7 3 1 3 1 3 2

5 2

1 4 ©
2

1

5

4
SHR

2

1

7

5 ©
7

5

2

1
SHL

7 1

5 4

6 7 6 7 6 4 6 4 6 7

3 2 2 3 2 1 2 1 2 1

7 1

5 4 ©
1

4

7

5
SHR

1

4

3

7 ©
3

7

1

4
SHL

3 4

7 5

6 7 6 7 6 5 6 5 6 7

2 1 1 2 1 1 1 1 1 2

3 4

7 5 ©
3

5

4

7
SHR

3

5

2

4 ©
3

5

2

4
SHL

3 4

5 6

6 7 6 7 6 7 7 6 7 7

13

i = 5

i = 3



1 2 12 11 1 1 1 2

3 4

5 6 ©
3 4 3 2

5 6 SHR 5 4
3 2

© 54 SHL
3 4

5 6

7 7 7 7 7 6 7 6 7 7

1 = 1

I = -l

Hence, our algorithm results in

unstar(ilv(<\, 3, 5, 7>, <2, 4, 6, 7>, 7) = <1, 2, 3, 4, 5, 6, 7>

as expected.

3.4 Final remarks on the development and the algorithm

The algorithm as given in the previous section still admits a sequential Interpretation. There is,
however, also a straightforward Interpretation as a parallel algorithm for a linear processor
array, if we interprete

sequ by vector

(Is + e) by SHR(e, is)

e + ts by SHL(e, 1k)

o © e by MAP2.2(<, 0, e)

o ©e by MAP2.2(>, 0, e)

Here, SHR(e, is) and SHL(e, 1k) denote machine-oriented skeletons describing a linear shift
(by one position) to the left and right, respectively, where the empty position is filled with is
and 1k, respectively. Also, MAP2-2(op, v, v") denotesdenotes a skeleton which formalizes the
elementwise application of a binary Operation op with two results to the elements of v and v',
respectively. For formal definitions of these skeletons, we refer the reader to [Partsch 93].

Of course, some further, rather straightforward optimizations are possible, too. For instance,
the case kl = 0 could be treated separately, already in the definition of sort*. Also, 1k and 4-5
could be computed in advance (with complexity O(kl)) and replaced in sort* by corresponding
global constants.

4. Concluding remarks

In comparing the derivation in the previous sections with the one in [Partsch 93], it can be seen
that both are of approximatdy the same length. The major difference, however, is not in the
length of the derivations, but rather in their complexity. Whereas in our previous attempt to
tackle the same problem we had to use a number of inventive Stepsadditionally burdened by a
too early introduction of index calculations, the present one consists mainly of pure algebraic
calculations which benefit from a suitable choice of high-levd Operators and an investigation of
their algebraic properties. In addition, several of these calculations (e.g. those where the
defintion of the sort function is adapted to a new domain) follow similar, fairly straightforward
patterns such that a compactification by suitable abstraction would be reasonable and,
moreover, substantially reduce the length of the derivations.
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The key step in the approach illustrated by our sample derivation is the one from the original
problem Statement into a form which allows the parallel execution of suitably structured
collections of data. In our sample development this was not problem at all, since already the
original problem Statement contained such a collection of data, viz. sequences. Other case
studies (cf., e.g., [Partsch 93], [Geerling 92, 94a, 94b], [Boiten et al. 93]) where this was not
the case, have shown that well-know program transformations (such as curryingor tabulation,
cf. [Partsch 90]) are suited to achieve this important transition.

From the considerations in this paper, one might get the (wrong) impression that all problems
with respect to the development of parallel algorithms are already solved, and that not much still
needs to be investigated. Of course, this is not the case. Even if the central problem of
characterizing different classes of parallel architectures is solved by the definition of suitable
sets of skldetons, there is still a major task to be solved, viz. the exploration and acquisition of
methodical knowledge necessary for the derivation of parallel algorithms from formal
specifications in a much more goal-directed fashion. Another open problem is the aspect of
"data partitioning" which we ignored in our sample development. This aspect deals with a
suitable distribution of the data to be processed to the available processors, in case the size of
the data collection exceeds the number of available processors. First attempts towards solving
this problem in a transformational setting can be found in [Pepper et al. 93] and [Südholt 94].
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