A Pumping Lemma
for Output Languages
of Attributed Tree Transducers

ARMIN KUHNEMANN AND HEIKO VOGLER

Abt. Theoretische Informatik, Universitat Ulm
Oberer Eselsberg, D-89069 Ulm, Germany

e-mail: {kuehne, vogler} @ informatik.uni-—ulm.de

Abstract

The concept of attributed tree transducer is a formal model for studying properties of
attribute grammars. In this paper, for output languages of noncircular, producing, and
visiting attributed tree transducers, we introduce and prove a pumping lemma. We ap-
ply this pumping lemma to gain two results: (1) there is no noncircular, producing, and
visiting attributed tree transducer which computes the set of all monadic trees with expo-
nential height as output and (2) there is a hierarchy of noncircular, producing, and visiting
attributed tree transducers with respect to their number of attributes.

1 Introduction

In formal language theory we are often confronted with the task to decide, whether a given
language L is an element of a class £ of languages, where £ usually is defined by a class
of grammars or translation schemes. If L is an element of £, then, in general, the proof
of this fact is relatively easy, because we only have to specify a grammar or a translation
scheme which generates L. If L is not an element of £, then the situation is much harder.
Sometimes we can use necessary conditions which every language in £ has to fulfill, to
deduce a contradiction to the assumption that L is an element of £. Pumping lemmata
are such necessary conditions which have proved to be very useful tools.

Pumping lemmata have been invented for different kinds of languages, for example string
languages, graph and hypergraph languages, picture languages, and tree transducer lan-
guages.

In the case of string languages we can observe the following evolution of pumping lemmata:
Scheinberg has used in [Sch60] a proof technique which can be seen as a predecessor of the
well known pumping lemma for context—free languages of Bar—Hillel, Perles, and Shamir
[BPS61]. The structure of the latter pumping lemma has served as pattern for most of
the existing pumping lemmata in the literature and therefore it seems to be the root of
the research about pumping lemmata. Since it also has influenced our pumping lemma,
we present here a short version of the lemma’s central statement and we recall its proof
idea:

For every context—free grammar GG there is a natural number ng, called the pumping index
of GG, such that for every string z which is an element of the language L((') generated by
G and which has at least the length ng, there is a decomposition z = uvwazy, such that
for every natural number j, the pumped string uv’/wa’y is an element of L(G).

The proof can be sketched as follows: A derivation tree e of a sufficiently long string z
of L(G) is high enough, such that it has a path p, on which two nodes z; and z3 can be
found, which are labeled by the same nonterminal symbol. Assuming that z; is closer to
the root of e than 25, we can define the following tree e: Roughly speaking, the tree € is
that part of e which has z; as root and from which the subtree rooting at x5 is pruned.
Since the two nodes are compatible with respect to their label, we can construct new
derivation trees by repeating e arbitrarily often. Taking the yield of these derivation trees,
we obtain new elements of L(G).

As stated above, the pumping lemma of Bar—Hillel, Perles, and Shamir is only a necessary
condition for the context—{reeness of a string language. Thus there exist non—context—
free languages which fulfill the requirements of the pumping lemma. In the sequel more
and more stronger pumping lemmata for context—free string languages have been invented.
Most of them, however, represent no sufficient condition for context—freeness. For example,
in the Ogden—Lemma (cf. [Ogd68]) we can designate distinguished positions in the pumped
string. This allows us to concentrate on those substrings, in which pumping is effective.
Bader and Moura have developed in [BM82] a stronger version, the Generalized Ogden—
Lemma, where additionally positions in the pumped string can be excluded. In the paper
of Bader and Moura it is also shown that there is no stronger version of the Generalized

Ogden—Lemma which exactly characterizes the context—free string languages.

Wise has introduced in [Wis76] his Strong Pumping Lemma which is a necessary and
sufficient condition for context—free string languages. The central idea of this lemma is
to pump sentential forms of a grammar for a context—free language L instead of pumping
terminal strings of L. The Strong Pumping Lemma of Wise represents another method
to prove that a certain language is not context—{ree by assuming that it is context—free
and by applying the lemma. In contrast to the other pumping lemmata stated above,
this application guarantees the existence of a contradiction, because the Strong Pumping
Lemma characterizes the class of context—free languages. Clearly, it depends on the skill
of the researcher, whether he can construct this contradiction, yes or no.

There also exist pumping lemmata for subclasses of the class of context—{ree languages:
Boonyavatana and Slutzki have invented pumping lemmata for linear context—free and
nonterminal bounded string languages in [BS86a] and [BS86b], respectively. Yu has deve-
loped in [Yu89] a pumping lemma for deterministic context—free languages. Ehrenfeucht,
Parikh, and Rozenberg have introduced in [EPR81] the Block Pumping Lemma as cha-
racterization of regular string languages.

There are also pumping lemmata in the area of context—free graph and hypergraph lan-
guages: Kreowski (cf. [Kre79]) and Habel (cf. [Hab89]) have invented pumping lemmata
for edge-replacement and hyperedge-replacement languages, respectively. These pum-
ping lemmata require a certain size of the pumped graphs. In comparison with them,
the Maximum Path Length Pumping Lemma for edge-replacement languages of Kuske
(cf. [Kus91, Kus93]) needs a certain length of a path in the pumped graphs.

Another kind of language paradigm are the picture languages. Hinz has developed in
[Hin90] pumping lemmata for certain subclasses of picture languages.

Aho and Ullman have inspected in [AU71] for the first time pumping lemmata for output
languages of translation schemes, namely for generalized syntax directed translations.
Perrault and Esik have introduced in [Per76] and [E’Jsi80]7 respectively, pumping lemmata
for (nondeterministic) top-down tree transducers (cf. [Rou70, Tha70, Eng75]). The results
of Esik also appear in the book of Gécseg and Steinby (cf. [GS83]). Engelfriet, Rozenberg,
and Slutzki have presented in [ERS80] a pumping lemma for deterministic top—down tree—
to—string transducers which has a structure that is closely related to the pumping lemma
for context—free string languages. The proof of this lemma had a big influence on the
development of the pumping lemma for attributed tree transducers which we present in
this paper.

The concept of attributed tree transducer has been invented by Fiilop in [Fil81]; it is
a formal model for studying properties of attribute grammars that were introduced by
Knuth in [Knu68]. Attributed tree transducers are abstractions of attribute grammars in
the sense that they take trees over an arbitrary ranked alphabet of input symbols rather
than derivation trees as argument, and that the values of the attributes are also trees over
a ranked alphabet of output symbols.

Like in attribute grammars, the set of attributes is divided into the set of synthesized and
inherited attributes which are associated to the input symbols and which compute their
values in a bottom—up manner and in a top—down manner, respectively. Every node of

an input tree has the same set of attribute occurrences. Roughly speaking, computing
the value of a synthesized attribute occurrence of a node z of an input tree, the values
of the inherited attribute occurrences of z and of the synthesized attribute occurrences
of its sons (if they exist) may be used and, computing the value of an inherited attribute
occurrence of z, the values of the inherited attribute occurrences of its father (if it exists)
and of the synthesized attribute occurrences of # and of its brothers may be used. This
refers to the usual Bochmann Normal Form of attribute grammars [Boc76].

For every node x of an input tree which is labeled by a particular input symbol and for
every synthesized attribute s, the computation of the attribute occurrence of s at x is fixed
by a particular rule. Similarly, for every node z which is labeled by a particular input
symbol and for every inherited attribute 7, the computation of the attribute occurrence of
1 at the j—th son of z is fixed by a particular rule.

As in attribute grammars, these dependencies can induce circularities among the attribute
occurrences of an input tree. If we restrict the attributed tree transducers to be noncircular
and if we designate a synthesized attribute as initial attribute and thus designate an initial
attribute occurrence at the root of every input tree to contain the calculated output tree,
then every attributed tree transducer M computes a total function from input trees to
output trees which we call the tree transformation of M. The output language of an
attributed tree transducer M is defined as the range of the tree transformation of M.

We restrict our pumping lemma to special attributed tree transducers, namely producing
and visiting (and noncircular) attributed tree transducers. An attributed tree transducer is
producing, if every rule application delivers at least one new output symbol. An attributed
tree transducer is visiting, if for every input tree and for every node z of it, the value of at
least one attribute occurrence of z is needed to compute the value of the initial synthesized
attribute occurrence at the root.

The central idea of our pumping lemma for output languages of producing and visiting
attributed tree transducers is adopted from the proof of the pumping lemma for context—
free string languages that was outlined at the beginning of this introduction. As in the case
of context—{ree string languages, where we have to inspect a derivation tree of a sufficiently
long string to deduce new pumped strings, here we have to consider input trees belonging
to a sufficiently large output tree to obtain new pumped output trees:

If we choose an output tree t from the output language of an attributed tree transducer
M which has at least a certain number ny; of nodes, called the pumping index of M,
then every input tree e which can be transformed into ¢ has the following property: e
is high enough, such that it has a path p, on which two nodes x; and x5 can be found,
which have the same set of attribute occurrences that are needed to calculate the initial
attribute occurrence at the root of e. Assuming that x; is closer to the root of e than x5,
we can define the following tree e: Roughly speaking, the tree € is that part of e which has
x1 as root and from which the subtree rooting at z5 is pruned. Since the two nodes are
compatible with respect to the needed attribute occurrences, we can construct new input
trees by repeating e arbitrarily often. Translating these input trees by M, we obtain new
elements of the output language of M.

Here we do not give details of the proof, however we only mention that the decomposition

of the input tree e induces a decomposition of the output tree ¢t into output patterns and
that these patterns are used to construct the new output trees. Thus the pumping process
itself can be described by using only the output patterns. Therefore the applications of
the pumping lemma are completely independend of the underlying input trees.

In this paper we apply our pumping lemma to prove the following two results:

e There is no noncircular, producing, and visiting attributed tree transducer which
computes the set of all monadic trees with exponential height as output.

e There is a hierarchy of noncircular, producing, and visiting attributed tree transdu-
cers with respect to their number of attributes.

This paper is divided into five sections, from which this one is the first. In Section 2
we fix all the notions and notations, especially about attributed tree transducers, which
are necessary for the remaining sections. Section 3 contains the pumping lemma together
with its proof. In Section 4 we show the two applications of the pumping lemma. Finally,
in Section 5 the reader can find a short summary and a presentation of further research
topics.

2 Preliminaries

In this section we collect the notations, notions, and definitions which are used throughout
this paper. Most of the definitions are taken from [KV92], some of them in a slight
variation.

2.1 General notations

We denote the set of natural numbers by IN. For every m € IN, the set {1,...,m} is
denoted by [m], thus [0] denotes the empty set §. The empty word is denoted by ¢. For
an arbitrary set S, the cardinality of S is denoted by card(S) and the set of all subsets of
S is denoted by P(S). If S is a subset of IV, then maz(5) denotes the maximum of S;
maz(() is defined as 0.

For a string v and two lists uy, ..., u, and vy,..., v, of strings such that no pair u; and u;
overlaps in v, we abbreviate by v[uy /vy, ..., u,/v,] the string which is obtained from v by
replacing u; by v;. The resulting string is also denoted by v[u;/v; ; ¢ € [n]]. |p| denotes the
length of a string p with respect to an alphabet which should be known from the context.
If P, and P, are two sets of strings, then Py - Py := {pip2 | p1 € P1, p2 € P }.

Let = be a binary relation on some set S. Then, =* and =% denote the transitive,
reflexive closure of = and the transitive closure of =, respectively. The normal form of
s € S with respect to = is denoted by nf(=,s), if it exists. The relation = is confluent,
if for every s,s1,s9 € S with s =* s; and s =™ sy, there is an s’ € S such that s =* &
and sy =* §'. It is noetherian or terminating, if there is no infinite derivation sequence of
=. If = is noetherian and confluent, then for every s € 5, the normal form of s exists
and it is unique.

2.2 Ranked alphabets, trees, and tree transformations

A ranked alphabet is a pair (X, ranky) where ¥ is a finite set and ranky : ¥ — IV is
a mapping which associates with every symbol a natural number called the rank of the
symbol. If o € ¥ and ranks(c) = n and ¥ is clear from the context, then we also write
o™ and rank(c) = n. If the rank function is clear from the context, then it is dropped
from the notation. The set of elements with rank n is denoted by %(™).

For a ranked alphabet X, the set of trees over 3, denoted by T'(X), is the smallest subset
T C (2U{(,),,})” such that for every o € X" with n > 0 and ty,...,t, € T, the string
o(ty,...,t,) € T. For a symbol ¢ €) we simply write ¢ instead of o().

For a tree t € T'(3), the following objects are defined inductively on the structure of ¢:
the height of t, denoted by height(t); the size of t, denoted by size(t); the size of t with
respect to a subset X' C X, denoted by sizexs(t); the set of paths of t, denoted by path(t);
the label of the node of t which is reached by a path p € path(t), denoted by label(t, p); the
subtree of t which is reached by a path p € path(t), denoted by subtree(t, p); and the tree
which is obtained from t by replacing the subtree which is reached by a path p € path(t),
by another tree t' € T(X), denoted by t[p < t'].

Ift =o(ty,... t,) with o € X n >0, and t1,...,t, € T(X), then

o height(o(ty,...,tn)) = 1+ max({height(t;) | i € [n]}),
o size(o(t1,...,1n)) = 14 2 ep size(ty),

o sizesi(o(ty, ... tn)) = 1+ Fepy sizes (i), if o € X,

(
o(ty, ..., t,)) = 2 ien] sizesy(t;), if o ¢ 3,
e path(o(ty,...,t,)) ={c}U{p|p=1p,i € [n],p € path(t;)}
)
)

9

stzexy

y=o,if p=c¢,

o label(o(ty,... 1,
(tn), p) = label(t;,p'), if p=ip’ for some ¢ € [n],

p
label(o(ty, ... tn),p
o subtree

(O'(th...,tn
subtree(o(t

),p)=0o(tr,... t,), if p=c¢,
o(tr,...,tn),p)

= subtree(t;,p), if p=ip’ for some i € [n],

o o(ty,... . ty)[pt]=t,if p=c¢,
oty ... ty)[p=t=oty,...,.t,[p «t],....t,), if p=1ip’ for some i € [n].

For a tree t € T'(X), the node of t which is reached by a path p € path(t), is denoted by
node(t, p).

Let ¥ be a ranked alphabet, ¢t € T(X), and let U be a set of symbols with rank(u) =0
for every u € U and with UNX = . A tree t’ € T(XUU) is called a pattern in t € T(X),
if there is a symbol v ¢ ¥ with rank(v) = 0, there is a tree t” € T(X U {v}), and for every
u € U there is a tree t, € T(X), such that t = t"[v/t'[u/t, ; u € U]].

For two ranked alphabets ¥ and A, a total function 7 : T(X) — T(A) is called tree
transformation.

2.3 Attributed Tree Transducers

In this subsection we define the syntax of so called si—tree transducers and the derivation
relations which are induced by them. In [Gie88] si-tree transducers are called full attri-
buted tree transducers. Though si—tree transducers are an extension of attributed tree
transducers as they are defined in [Fiil81], we also use simply the notion attributed tree
transducer for an si—tree transducer. If we restrict the transducers to be noncircular, then
their derivation relations are confluent and noetherian, and every noncircular transducer
computes a tree transformation.

Similar to top—down tree transducers, we designate the argument position of every at-
tribute to contain its control argument e. Additionally, in attributed tree transducers
the control tree e is associated with a path through e. Actually, in the argument of an
attribute, only a path through e will occur, the control tree itself will parameterize the
derivation relation (cf. Definition 2.6).

A system of attributes is the first component in the definition of an attributed tree trans-
ducer M. We specify a ranked input alphabet 3. Then, intuitively, M takes an argument e
where e is the control tree over > on which the evaluation of attribute values is performed.

An output tree is built up over a ranked alphabet A of working symbols. The derivations
of M will start with an initial synthesized attribute s;, and with an extra marker root on
top of the control tree where root is a new symbol of rank 1. Of course, the kernel of the
definition of an attributed tree transducer is the finite set of rewrite rules. The possible
right—hand sides of rules are fixed at the end of the definition.

Definition 2.1 An si-tree transduceris a tuple (A, A, X, s, root, R) where

o A= (A, A, A)) is a system of attributes, where

— A is a ranked alphabet of attributes; for every a € A, rank4(a) = 1.

— A; C A and A; C A are the disjoint sets of synthesized attributes and inherited
attributes, respectively, with 4 = A, U A;.

A is the ranked alphabet of working symbols (or: output symbols) with AN A = 0.
e Y is the ranked alphabet of input symbols with ANY = (.
o s;, € A, is the initial attribute.

e root is a symbol of rank 1, called the root marker, where root ¢ AU A UX.

*R= U R, is a finite set of rules, defined by Conditions 1. and 2.
o € X U {root}

1. The set R,.,; contains exactly one rule of the form
sin(2) = p
with p € RHS(As, 0, A, root).
For every © € A;, the set R,,,; contains exactly one rule of the form
i(z1) = p

with p € RHS(As, 0, A, root).
2. For every o € X5 with k > 0 and for every s € Aj, the set R, contains exactly
one rule of the form
s(z) = p
with p € RHS(A,, A;, A, o).
For every o € (%) with k > 0, for every i € A; and for every j € [k], the set
R, contains exactly one rule of the form

i(zj) = p

with p € RHS(A,, A;, A, o).

For every Gy C A, G; C A;, and 0 € ¥ U {root} with rank(c) = k > 0, the
set of o—right-hand sides over G, G; and A, denoted by RHS (G, G, A, 0), is the
smallest subset RH S of (G,UG;UAU[k]U{z,(,),,})" such that the following three

conditions hold:
(i) For every § € A" with » > 0, and p1,...,p, € RHS, the tree
d(p1y.--ypr) € RHS.
(i) For every s € Gy, j € [k], the tree s(zj) € RHS.
(iii) For every ¢ € GGy, the tree i(2) € RHS. o

For an si-tree transducer M = (A, A, 3, s;,, root, R), we fix the following notions and
notations.

e The set X U {root} is denoted by ¥.

e In the rules of R, the symbol z is called path variable.

e For every 0 € Y%, the set of inside attribute occurrences of o, denoted by in(o),

is the set {s(z) | s € A} U {i(zj) | i € A;,7 € [k]}. The set of inside attribute
occurrences of root, denoted by in(root), is the set {s;,(2)} U {i(z1) | i € A;}. The
set of outside attribute occurrences of o, denoted by out(o), is the set {i(z) | i €
Ay UA{s(zg) | s € As,j € [k]}. The set of outside attribute occurrences of root,
denoted by out(root), is the set {s(z1) | s € A;}. The set of attribute occurrences of
o € ¥4, denoted by att(o), is the set in(o) U out(o).

Fora € A, 0 € Ef) and n € {zj | j € [k]UA{e}}, we call a rule of R, with the
left-hand side a(n) an (a,n,o)-rule. The right-hand side of this rule is denoted by
rhs(a,n,0). We note that in rhs(a,n, o) only outside attribute occurrences of o
appear and that for every a(n) € in(o), there is exactly one (a,n, o)-rulein R.

Example 2.2 We define the si—tree transducer M; = (A, A, X, s, root, R) with:

A = {B(l),T(Q), JAONON E(O)}7

Y= {0(2)7 04(0)}7

A= (A, A, A;) with A = {s,i}, A, = {s}, and A; = {i}, and
R=R,0t U R, U R, is the following set of rules:

R,

Rt = {s(z) — B(s(zl)), (1)
i(zl) —» F } (2)

= {s(z) — T(s(z1),s(22)), (3)

i(zl) — L(i(2)), (4)

i(22) — R(i(2)) P 0)

= {s(z) —= B(i(?)) P (6)

R,

The si—tree transducer M; takes a binary tree e over the ranked alphabet ¥ = {0(2), a(o)}
as argument and it delivers a tree ¢t which has the same structure as e, but in which

every leaf node n is substituted by an encoding of the reverse path from the root of
e to n. The encoding of a reverse path is a monadic tree over the ranked alphabet
{BW M, RV FO} where the symbol L (and R) represent the left son (and the right
son, respectively) of a node and the symbol B (and F) is the first symbol (and the last

symbol, respectively) of each path encoding (cf. Figure 1). O
root(e) : r0|0t t: B
|
o T
7N\ N
o o T B
/N SN
o o B B R
| | |
L R F
| |
L L
| |
F F

Figure 1: Example input tree e and calculated output tree t.

Observation 2.3

1. Top—down tree transducers [Rou70, Tha70, Eng75] are si—tree transducers without
inherited attributes.

2. Attributed tree transducers [Fiil81] are si-tree transducers in which, for every in-
herited attribute ¢, the right-hand side of the (7, z1,root)-rule may not contain
synthesized attributes. In accordance to [Gie88] si—tree transducers are full attri-
buted tree transducers. But in the sequel we also use simply the notion attributed
tree transducer. a

Before working out the definition of the derivation relation, we first introduce a uniform
classification scheme for subclasses of si—tree transducers which are induced by the number
of attributes.

Definition 2.4

o Let ks € IN — {0} and k; € IN. An s i) —tree transducer M is an si—tree
transducer with at most k; synthesized attributes and with at most k; inherited
attributes.

o An s-tree transducer is an s(;)i(o)-tree transducer for some ks € IN — {0}, i.e., an

s

si—tree transducer without inherited attributes. O

In the next definition we inductively describe the set of all sentential forms of attributed
tree transducers. For a given input tree é = root(e), a sentential form is a tree over

attributes, working symbols, and paths through é. Moreover, the argument of an attribute
always is a path through é and vice versa a path may only occur in the argument of an
attribute.

Definition 2.5 Let M = (A, A, Y, s, r00t, R) be an si-tree transducer with system
A = (A, A,, A;) of attributes. Moreover, let € € {root(e) | e € T(X)} and let A’ be
a ranked alphabet with A C A’. The set of (A, s;,, path(€é), A’)-sentential forms, de-

noted by SF(A, si,, path(€), A’), is defined inductively as follows where we abbreviate
SF(A, sin, path(é), A’) by SF.

(i) For every § € A7) with > 0 and ty,...,t. € SF, the tree Oty ..., t.) € SE.
(ii) For every a € A and p € path(é) with p # &, the tree a(p) € SF.
(iii) The tree s;,(c) € SF.]

Notice that the tree € does not occur in sentential forms. It is only needed to define the
set of paths of €.

For an attributed tree transducer M = (A, A, X, s;,,, root, R) with system A = (A4, As, A;)
of attributes and for a tree é € {root(e) | e € T(X)}, the set of attribute occurrences of €,
denoted by att(é), is the set {s;,(e)} U {a(p) | a € A,p € path(é),p # c}. If € = root(e)
for a particular tree e € T(3), then we define att(e) = att(é) — {s;,(e)}.

Let ¢ € T(3; U{w}) with exactly one occurrence of a symbol w ¢ ¥, be a pattern in a
control tree € € {root(e) | e € T(X)}, such that ¢’ = subtree(é[p’ + w], p) holds for some
paths p, p’ € path(€). The set of inside attribute occurrences of €' with respect to é is the
set ({s(p) | s € A} U{i(p)) | 7 € A;}) Natt(é). The set of outside attribute occurrences of
€' with respect to € is the set ({i(p) |7 € A;J U {s(p’) | s € As}) Natt(é). The intersection
with att(€) is necessary to handle the case p = . If the underlying control tree € is clear
from the context, then we simply use the notions inside and outside attribute occurrences
of €.

Now we describe the derivation relation of an attributed tree transducer M with respect to
a tree €. For later purposes, we restrict the derivation relation to work only on particular
parts of € parameterizing the derivation relation with a subset P C path(é).

Definition 2.6 Let M = (A, A, 3, s, r00t, R) be an si-tree transducer with system
A = (A, A, A;) of attributes. Let € € {root(e) | e € T(X)} and P C path(é). The
derwation relation of M with respect to € and P, denoted by =r¢ p, is a binary relation
on SF(A, s, path(€), A) defined as follows:

For every t1,ty € SF(A, sin, path(é),A), t; =mepty, iff

e there is a t' € SF(A, sy, path(é), AU {u}) in which the 0-ary symbol v ¢ AU A
occurs exactly once,

e there is an attribute a € A,

e there is a path p € path(é€),

10

such that ¢y = t'[u/a(p)] and if one of the following two conditions holds:

1. e ¢ is a synthesized attribute,

p € P and label(é, p) = o for some o € Ef) with k& > 0,

there is a rule a(z) — p in R,, and
ta =t'[u/plz/p]]-

2. e ¢ is an inherited attribute,

e p = p'j for some p’ € P, label(é,p’) = o for some o € Ef) with £ > 1, and
J € [&],
e there is a rule a(zj) — p in R,, and

o o= Ulu/plz/p]). 0

Note that in case 2. the path p itself needs not to be in P. This is important for the later
construction in the pumping lemma.

If M or é are known from the context, we drop the corresponding indices from =. If
P = path(é), then we drop P. The tree € is also called the control tree of = s ¢ p, because
it controls the derivation of the transducer.

Example 2.7 Let M; be the attributed tree transducer defined in Example 2.2 and let
¢ = root(o(o(a,a),a)) be the control tree. We abbreviate =y 2 paene by =. The
number of the applied rule is indicated as a subscript. The control tree and the calculated
output tree are also shown in Figure 1.

s(€)
=) B(s(1))
= (3) B(T(s(11),s(12)))
= (3) B(T(T(s(111),s(112)), s(12)))
=) BT(T(B(i(111)), s(112)),s(12)))
=) B(T(T(B(L(i(11))),s(112)),s(12)))
=) B(T(T(B(L(L(i(1)))),s(112)),s(12)))
=) BT(T(B(L(L(E))),s(112)),s(12)))
=% B(T(T(B(L(L(E))), BIR(L(E)))), B(R(E))))

2.4 Noncircular attributed tree transducers

Since an attributed tree transducer can be circular (in the same sense as an attribute
grammar), we can conclude that, in general, the derivation relations of attributed tree
transducers are not noetherian (cf., e.g., [Ems91] for an example of a circular attributed
tree transducer.) However, noncircular attributed tree transducers induce noetherian de-
rivation relations. The notion of circularity is taken from [Fil81]:

11

Definition 2.8 Let M = (A, A, Y, s, r00t, R) be an si-tree transducer with system
A= (A, A, A;) of attributes.

1. M is circular if

o there is an é € {root(e) | e € T(X)}

e there is an a(p) € SF(A, si,, path(é), A) with a« € A and p € path(é),

o thereisat € SF(A, si,, path(é), AU{u}) in which the 0-ary symbol u ¢ AUA
occurs exactly once,

such that a(p) =7, tlu/a(p)].

2. M is noncircular if it is not circular. O

For the definition of the tree transformation computed by an attributed tree transducer
we use the following result (cf. Theorem 3.17 of [KV92]).

Lemma 2.9 Let M = (A, A, X, s;,,, root, R) be an si-tree transducer. If M is noncircular,
then for every é € {root(e) | e € T(X)}, the relation = sz is confluent and noetherian. O

Since the derivation relations of noncircular attributed tree transducers are confluent and
noetherian, every sentential form has a unique normal form. This is the basis for the
definition of the tree transformation which is computed by an attributed tree transducer.

Definition 2.10 Let M = (A, A, 3, s, root, R) be a noncircular si-tree transducer.

The tree transformation computed by M, denoted by 7(M), is the total function of type
T(¥) — T(A) defined as follows. For every e € T'(X),

T(M) (6) = nf(:>M,root(e)7 Sin (5)) a

In the rest of this paper, we always mean noncircular attributed tree transducers when we
talk about attributed tree transducers.

For a given control tree &, for a given derivation s;,(¢) =2 ¢ (abbreviated by d), where
t = nf(=e¢,sin(€)), and for a given path p in € we define the set attset(d,p) of those
attributes a, for which there are attribute occurrences a(p) in a sentential form during the
derivation d. This concept is the same as the concept of state—set described in [ERS80],
however, we use another way of definition.

Definition 2.11 Let M = (A, A, X, s, root, R) be an si-tree transducer with system
A = (A, A, A;) of attributes. Let € € {root(e) | e € T(X)}.

Let d be the derivation s;,(c) = to =¢ t1 =¢ ... =z t, = nf(=¢, sin(e)) with n > 1
derivation steps, and let p € path(€). Then we define the attribute-set of d and p, denoted
by attset(d, p), by

n
U attset' (t;, p) where
J=0

12

attset’ : SF(A, sip, path(€é), A) x path(é€) — P(A) is defined as follows:

For every 6 € AU, >0, t1,...,1, € SF(A, sin, path(é), A) ,p € path(é),
attset'(6(ty,...,t,),p) = Uj= attset'(t;,p).

For every a(p') € att(é), p € path(é), if p=p/, then
attset' (a(p'), p) = {a}.

For every a(p') € att(é), p € path(é), if p # p/, then
attset’ (a(p'), p) = 0. -

Example 2.12 Let M; be the attributed tree transducer defined in Example 2.2 and let
€ = root(a) be the control tree.

Let d = (s(e) =& B(s(1)) =z B(B(i(1))) =z B(B(FE))) be a derivation.
Then attset(d,c) = attset’ (s(e),e) = {s}
and attset(d, 1) = attset’' (B(s(1)),1) U attset’(B(B(i(1))), 1) = {s, 1} hold. a

In fact, the attribute—set of a path does not depend on the chosen derivation.

Lemma 2.13 Let M = (A, A, X, s;,, root, R) be an si-tree transducer. Let d; and dy be
two derivations s;,(c) =1 nf(=¢, siu(c)) for some é € {root(e) | e € T(X)}.

Then, for every path p € path(é), the sets attset(dy, p) and attset(dy, p) are equal. O

Definition 2.14 Let M = (A, A,Y, s, root, R) be an si-tree transducer. Let é €
{root(e) | e € T(X)} and let p € path(é€).

The attribute-set of é and p, denoted by attset(é, p), is the set attset(d, p) for some deri-
vation d = (s;,(2) =T nf(=¢,sim(e))). o

2.5 Producing and visiting attributed tree transducers

The pumping lemma in the next section is only valid for special kinds of attributed tree
transducers. In the following definition we introduce the concepts of producing (every
rule application produces at least one new output symbol), and visiting (every node of an
input tree is visited by at least one attribute) tree transducers.

Definition 2.15 Let M = (A, A, 3, s, root, R) be an si-tree transducer. M is

e producing, if, for every rule A — p in R, the size of p with respect to A is at least 1,
ie., sizea(p) > 1,

e visiting, if, for every control tree € € {root(e) | e € T(X)} and for every p € path(é),
the attribute—set of € and p is not empty, i.e., attset(é, p) # 0. a

In the rest of this paper we always mean producing and visiting (and noncircular) attri-
buted tree transducers, when we talk about attributed tree transducers. We denote the
classes of tree transformations computed by (noncircular, producing, and visiting) si-tree
transducers, s(,yi(r)—tree transducers, and s—tree transducers by SIT, S,)I(x,)T, and

s

ST, respectively.

13

2.6 Output languages of attributed tree transducers

The pumping lemma which we introduce in the next section, deals with output languages
of tree transformations of attributed tree transducers. The output language of a tree
transformation 7 is defined as range of 7.

Definition 2.16 Let 7 :7T(X) — T(A) be a tree transformation.

The output language of T, denoted by L, (7) is defined as follows:
Loyt (7) = {t € T(A) | there is an e € T(3) such that 7(e) = t}. a

If 7(M) is a tree transformation computed by an attributed tree transducer M, we simply
write Loy (M) instead of Ly (7(M)) and we simply call L,y (M) the output language of
M instead of the output language of the tree transformation computed by M.

We denote the classes of output languages of (noncircular, producing, and visiting) si—tree
transducers, s, yi(r)—tree transducers, and s—tree transducers by ST Toue, Sk)l (k) Touts

s

and ST,z respectively.

If we want to prove that a certain tree transformation 7 is not an element of the class SIT,
then the output language L., (7) can be very useful. It would suffice to show with the
help of the pumping lemma presented in the next section that L, (7) ¢ SIT,u. Thus,
since Loy (7) is not the range of an si-tree transducer, 7 cannot be the tree transformation
computed by an si—tree transducer.

Our pumping lemma is usable for every output language of attributed tree transducers.
But, if we take output languages which are constructed over an arbitrary output alphabet,
then the use of the pumping lemma is very difficult. Hence, we only apply our pumping
lemma to output languages with monadic trees that in fact can be handled like strings.
Thus from now on we choose a string—like notation for right—hand sides and sentential
forms, omitting superfluous parantheses. We also use this simpler notation for monadic
subtrees of non-monadic trees.

14

3 Pumping lemma for attributed tree transducers

Before presenting the pumping lemma for si—tree transducers and working out the proof
formally, we want to illustrate the central idea and show an example. Although the
pumping lemma only deals with output trees and not with the control trees corresponding
to them via a tree transformation, the control trees play an important part.

Let M be an attributed tree transducer. If we choose a sufficiently large output tree ¢,
then every control tree é = root(e) with 7(M)(e) = ¢ is high enough, such that it has a
path p, on which two nodes #; and z3 can be found such that (cf. Figure 2)

e there exist strings py, p2, and ps with p = pypaps,

e z1 and z2 can be reached from the root by p; and pypo, respectively, i.e., x1 =
node(é, p1) and z3 = node(é, p1p2), and

e the attribute-sets attset(é,p1) and attset(€, pipz) are equal.

These two nodes define a decomposition of € into three input patterns e’, €”

Intuitively,

, and €.

e ¢’ is the tree ¢ without the subtree, which has z; as root.
e ¢” is the tree, which has x; as root without the subtree, which has z, as root.

e ¢'" is the tree, which has x5 as root.

Figure 2: Control tree € with input patterns and induced output patterns.

This decomposition of the control tree € induces a decomposition of the output tree ¢t into
certain output patterns t, t, and t, for every synthesized attribute s, and ¢; and #; for
every inherited attribute 7. Roughly speaking, these patterns correspond to normal forms

of certain attribute occurrences of the patterns €', e”, and e’”’. More precisely,

15

e The tree f corresponds to the normal form of s;, () that is calculated only on the
nodes of €.

e For every synthesized attribute s in the attribute—set of the two relevant nodes x
and x4, the tree t, (and i) corresponds to the normal form of s(p;) (and s(pip2),
respectively) that is calculated only on the nodes of €’ (and €”| respectively).

e For every inherited attribute 7 in the attribute—set of the two relevant nodes -
and zy, the tree t; (and ;) corresponds to the normal form of i(p;ps) (and i(py),
respectively) that is calculated only on the nodes of ¢’ (and €', respectively).

In Figure 2 these output patterns are indicated; the root of every output pattern is repre-
sented by an arrow. The reader should not be misleaded by the cycles among the pieces of
the final output tree: we consider noncircular attributed tree transducers and, only for the
sake of simplicity of the figure, we show only one inherited attribute and one synthesized
attribute; thus, dependencies are folded and suggest cycles which are not there.

If we construct new control trees by repeating the pattern ¢’ arbitrarily often, then we can
get new output trees by translating the new control trees. All of them are by definition
elements of L,y (M). The output patterns ¢, and ¢; must be used for every repetition of
e’ to obtain the new output tree. Figure 3 shows the situation in which e” is repeated
twice.

Figure 3: Control tree with two repetitions of €’ and output patterns.

In the pumping lemma we use a recursive function tree’ which walks through the patterns
of the control tree and builds up the output using the output patterns defined above.

16

Note that for the pumping process it is not necessary that the nodes x; and z5 are labeled
by the same symbol, in contrast to the pumping lemma for context—free languages (cf. for
example [BPS61]). This is due to the fact that we only deal with ranked alphabets rather
than heterogeneous signatures; thus only the rank of the symbols is important when
building up trees.

We show the input patterns, the output patterns and the pumping process in the following
example.

Example 3.1 Let M; be the si—tree transducer defined in Example 2.2. For simplicity
we repeat the rules of M;:

Rt = {s(z) — B(s(zl)),

i(zl) —» F }
R, = {s(z) — T(s(z1),s(22)),

i(zl) — L(i(2)),

i(22) — R(i(2)) }
R, = {s(z) — B(i(2)) }

Although the pumping lemma only guarantees to work with an output tree ¢ with size(t) >
npg, for a certain natural number nyy, (which is called the pumping index of M), it often
also works for smaller output trees. However the pumping index is needed in the proof of
the pumping lemma. In this example we have ny;, = 2!5. The reader can check this after
having read Definition 3.2.

Here we take the smaller tree t = nf(=+¢, sin(c)), where é = root(o(a, a)) is the control
tree. In Figure 4 the control tree € is shown by dotted lines, where additionally the right—
hand sides of those rules are incorporated which are necessary to compute the values of
the attribute occurrences of é.

Now we consider the two nodes node(é, 1) and node(é, 11) of the control tree é which can
be reached from the root of € by paths 1 and 11. Note that o = label(€, 1), a = label(é, 11),
and attset(é, 1) = attset(e,11) = {s,7}. In this case we have chosen the path p = 11 with
its subpaths py = 1, po = 1, and ps = . In Figure 5 we show three patterns in € with
the nodes reached by the paths ¢, 1, and 11, respectively, as roots. Again the right-hand
sides of rules are incorporated into the figure.

For later purposes, in Figure 6 we also show the control tree é and the patterns ¢, ¢”, and
e’ framing those parts of the patterns which only consist of input symbols. In fact, we

have € = €'[w/e"[w/e"]].

With these preparations we can obtain the patterns in the output tree ¢ as follows: Roughly
speaking, for each of the patterns €/, ¢”, and €, we calculate the values of the inside attri-
bute occurrences as function in the values of the outside attribute occurrences. Therefore
we can use the dependencies among the attribute occurrences presented in Figure 5, where
the outside attribute occurrences and the inside attribute occurrences are depicted as non—
filled cycles and non—filled boxes, respectively, whereas the other attribute occurrences are
depicted as filled cycles. More precisely, we calculate

17

Figure 4: Control tree € with right—-hand sides of rules.

e : root
¥

",

Figure 5: Input patterns €, ¢” and € with right—-hand sides of rules.

€: root e (root el o @
|
w w

Oé/U\Oé

Figure 6: Control tree € and its decomposition.

18

e the values and #; of the inside attribute occurrences s(¢) and i(1) of ¢/, respectively,
as function in the value of the outside attribute occurrence s(1) of €/,

e the values ¢, and t; of the inside attribute occurrences s(1) and i(11) of €”, respec-

tively, as function in the values of the outside attribute occurrences s(11) and ¢(1)
of ",

e and the value 7, of the inside attribute occurrence s(11) of " as function in the
value of the outside attribute occurrence i(11) of e,

and replace the synthesized attribute occurrences s(1) and s(11) by the symbol s with
rank 0 and the inherited attribute occurrences ¢(1) and ¢(11) by the symbol ¢ with rank
0. For the sake of understanding we choose exactly the attributes as names for the new
symbols. Based on the rank, the reader can retrieve whether symbols or attributes are
concerned at a time. The values of the output patterns are as follows:

t: nf(:> e S (8))[8(1)/8] B s,

i = nf(=iei(1)s(1)/5] = L,

o= nf(GegaapsOs()/5, i(1)/i] = T(s,B R,
tj = nf(=e 20 (10)[s(11) /s, i(1) /7] = L,

ts = nf(=e¢puy,s)[(1)/4] Bi.

In Figure 7 we show the output tree ¢ and the output patterns defined above. For later
purposes we also frame the parts of the patterns which only consist of output symbols.

t: ? i t;: @ ls: [@ ts:

Figure 7: Output tree ¢t and output patterns.

Now we show the pumping process in the cases in which

(i) the pattern €” is dropped (r = 0),
(ii) the pattern ¢” occurs once (r = 1), and

(iii) the pattern e” occurs twice (r = 2).

Thus we have the control tree

19

(i) éo = €'[w/e", if r =0,
(ii) e =€, = €e[w/e"[w/e"]],if r =1, and

(iii) éy = €e'[w/e"fw/e"[w/e"]], if r = 2.

For every 0 < r < 2, the normal form nf(=+¢,, sin(c)) is denoted by tree(r). It can also
be calculated using the above defined patterns of ¢ as follows:

We start with the pattern { = Bs that corresponds to the attribute occurrence s(c), and
replace the symbol s by the function call tree/(s,r,1). Roughly speaking, the recursive
function tree’ moves through the different patterns of €, and it constructs the output using
the output patterns. Every function call of tree’ delivers one output pattern, in which the
symbols s and ¢ are replaced by new function calls of tree’.

The function tree’ has three parameters. The first parameter is one of the symbols s or
i. It indicates, whether we have to use one of the patterns ¢, or #, (in case of the symbol
s), or one of the patterns ¢; or #; (in case of the symbol i). The other two parameters are
natural numbers. The second parameter r indicates the number of repetitions of €’ in the
control tree €,.. It is constant during the calculation of a certain output tree. The third
parameter [indicates the level of the input pattern, where tree’ currently works. { = 0
means the pattern €/, 1 <[< r means the [-th repetition of the pattern ¢”, and [= r + 1

means the pattern e,

If 1 <1 < r, then tree’ uses the pattern t, = T'(s, BRi) (or t; = Li); this pattern
corresponds to the normal form which is calculated only on the nodes of the pattern e”
starting with the attribute occurrence s(1) (or i(11), respectively).

If I = r+ 1, then tree’ uses the pattern {; = Bi; this pattern corresponds to the normal
form which is calculated only on the nodes of the pattern e”’ starting with the attribute
occurrence s(11).

If | = 0, then tree’ uses the pattern #; = F; this pattern corresponds to the normal
form which is calculated only on the nodes of the pattern €’ starting with the attribute
occurrence ¢(1).

If [is the current level of the function tree’, then every occurrence of the symbol s
(or i) in the produced output pattern is replaced by a function call tree’(s,r, 1+ 1) (or
tree’(i,r,{—1), respectively), because tree’ has to move one level down (or up, respectively)
in €,.

In Figure 8 we show besides the calculations of the output trees tree(0), tree(1l), and
tree(2), their decompositions into the output patterns. Every output pattern is labeled
with the level 0 <! < r 41 of the input pattern which causes it. We also show the control
trees, corresponding to the output trees, and their decompositions into input patterns
which are labeled with their level. a

The pumping process only works for output trees which are large enough. This requi-
rement is satisfied, if the size of the output tree is at least the pumping index of the
given attributed tree transducer. Recall that we only consider noncircular, producing,
and visiting attributed tree transducers.

20

tree(0)

B tree'(s, 0, 1)
B B tree'(i, 0,0)
BBE

tree(1)

B tree'(s,1,1)

B T(tree'(s,1,2), B R tree’(i,1,0))
B T(B tree'(i,1,1), BR E)
BT(B L tree(i,1,0), B R E)
BT(BLE,BRE)

tree(2)
B tree'(s,2,1)
B T'(tree'(s,2,2),B R tree'(i,2,0))
B T(T(tree'(s,2,3),
B R tree'(i,2,1)), B R E)
— BT(T(B trec(i,2,2),
B R L tree'(i,2,0)), BR E)
— BT(T(BL tre(i,2,1),
BRLE),BRE)
— BT(T(BL L tree(i,2,0),
BRLE),BRE)
— BT(I(BLLE,BRLE),BRE)

Figure 8: Calculations of tree(r) for 0 < r < 2 and decompositions of €, and tree(r).

Definition 3.2 Let M = (A, A, X, s;,,, root, R) be an si—tree transducer with ky synthe-
sized and k; inherited attributes. We define

ey = max{sizes(p) | (A — p) € R}
(maximum number of attribute occurrences in right-hand sides),
Iy = max{sizea(p) | (A = p) € R}

(maximum number of output symbols in right-hand sides),
my = max{rank(o)|o € X}
(maximum rank of input symbols),

and the pumping index ny; of M:

(kstki)nh, 4 2ki.(2%s —1) 4
ny =1+ Z (ear)? where nhyy = Z (mar)?.
7=0 7=0 a

21

In the proof of the pumping lemma we need the fact that the subtree e of a control tree
root(e) has at least some particular height; the desired height is 2% . (2% — 1) 4-2 (cf. the
proof of Theorem 3.4 for an argumentation on this number). If, for an attributed tree
transducer M and for a derivation s, (¢) :>;,|'00t() t, the size of ¢ is at least the pumping
index npy, then e has the desired height.

Lemma 3.3 Let M = (A, A, X, 54, root, R) be an si—tree transducer with &, synthesized
attributes, k; inherited attributes, and with pumping index nys. Let t € L, (M).

If size(t) > nar, then for every e € T(X) such that ¢ = nf(=,0(c), Sin(€)), the height
height(e) > 28 - (2% — 1) + 2.

Proof:

Consider ¢t € Ly (M) with size(t) > npr. We examine a control tree é = root(e) with
sin(e) =7 t. We abbreviate this derivation by d and the number of derivation steps of d
by length(d). The proof consists of a sequence of five implications. First, we list these
implications and afterwards we give some explanations.

(ksthi)nh, 4 (ksthi)ny ,
(1) Ifsize(t) >np =1+ 3 (car)?,then length(d) > 1+ > (cm)’.
=0 =0
(ks—l—k,')%%d

If length(d) > 1+ S (cam)?,then card(att(€)) > 2+ (ks + k;) - 1}
7=0

(2)
(3) 1If card(att(é)) > 2+ (ks + k;) - ny;, then card(att(e)) > 14 (ks + k;) - n
(4) 1If card(att(e)) > 1+ (ks + k;) - ny;, then size(e) > 1+ n)y,.
2ki.(2ks —1)]
(5) If size(e) > 1+nfy, =1+ Zo (mar)?, then height(e) > 25 - (2% — 1) + 2.
]:

(1) Since lps is the maximum number of output symbols in the right-hand sides of the

rules of M, Z]k (;l—k M(cpr)? tule applications can produce at most Iar- Z]k J—k o M(epr)?

. kstk; .
output symbols Hence, since size(t) > 14 Iy - Z;:J— yn M{cpr)?, it needs at least
1+ Z] (;I_ M{cpr)? rule applications to generate ¢.

(2) Since every attribute occurrence can call at most cps other attribute occurrences in

one derivation step, 1+ (ks + k) n?w different attribute occurrences of € can cause at most

Z;k J—k) M(cpr)? rule applications during the whole derivation d. To understand this

fact, we can construct the calling tree of d with attribute occurrences of é as nodes: the
root of this tree is labeled s;, (¢); every node of the tree labeled a(p) has as many sons as
there are attribute occurrences in ¢’ with a(p) =¢ t'; the sons are labeled by the different
attribute occurrences. It is easy to observe that the length length(d) of the derivation
d is equal to the size of the calling tree. Under the assumption that there are at most
14 (ks+ki)- nM different attribute occurrences of €, the height of the calling tree is at most

1+ (ks + k;) - nly;, because M is noncu’cular Thus its size is at most Z]k J—k) M(epr)?.

Hence, since length(d) > 1 —I—ZJk J—k M(cpr)?, we have at least 2+ (ks + k;) - ny; different

attribute occurrences of €.

22

(3) At the root of € we only have the attribute occurrence s;,(¢), thus there exist at least
14 (ks + k;) - ny; attribute occurrences of e.

(4) Since M has ks+k; attributes, a control tree e with n’; nodes can only have (ks+k;)-ny,
attribute occurrences. Hence, since card(att(e)) > 14 (ks + k;) - n}y;, we must have
size(e) > 1+ nhy,.

(5) Since myps is the maximal rank of the input symbols, a control tree with height

ki (oks_ . . .
2% . (2% —1) 41 can only have the size 2320(2 1)(mM)]. Hence, since size(e) > 14n)y,

— 2ki-(2k-1) ‘ - ki . (ke
=1+ (mar)?, we must have height(e) > 2% . (2% — 1) 4 2. a

Theorem 3.4 (Pumping Lemma)
Let M = (A, A, X, s, root, R) be an si—tree transducer with system A = (A4, A,, A;) of
attributes and pumping index njs.

For every t € L, (M) with size(t) > ny
e there exist ranked alphabets

— (Us, ranky,) with Us C Ag, card(Uy) > 1, and ranky,(s) = 0 for every s € U,
— (U, ranky,) with U; C A; and ranky, (i) = 0 for every ¢ € U,
—let U =U,UU;,

e there exists £ € T(AUU;) — T{A) with sizea(f) > 1,

e for every i € U;, there exists a tree {; € T(AUU,) with sizea (f;) > 1,

e for every s € Uy, there exists a tree t, € T(AUU) with 1 < sizea(ts) < nm,
e for every ¢ € U;, there exists a tree t; € T(AUU) with 1 < sizea(t;) < np,

e for every s € Uy, there exists a tree t; € T(AUU;) with 1 < sizeA(fs) < nm,
with

e for every s € Uy, the symbol s occurs in ¢ or there is an ¢/ € U; such that s occurs in
tAi’7

e for every s € U,, there is an s’ € U, such that s occurs in ¢, or there is an i/ € U;
such that s occurs in ¢,

e for every ¢ € U;, there is an s’ € U, such that ¢ occurs in ¢, or there is an ¢ € U;
such that ¢ occurs in ¢,

e for every i € U;, there is an s’ € U, such that i occurs in £,
such that ¢t = tree(1) and for every r > 0, the tree tree(r) € L, (M), where the function

tree : IN — T(A)

23

is for every r > 0 defined by tree(r) =t [s/tree’(s,r, 1) ; s € U,], where

tree/ : U X IN X IN — — T(A) is defined as follows:
For every s € Ug and r > 0, if [€ [r],

tree’(s,r,l) = ts[s'/tree(s',r,l4+1); s € Uy, ¢ [tree’ (7', r,1— 1) ; ¢ € Uj].
For every s € Us and r > 0, if [=r 4+ 1,

tree'(s,r,l) = t5[i' [tree’ (i, r,1—1) 5 i' € Uy].
For every i € U; and r > 0, if [€ [r],

tree’(i,r,l) = t;[s'/tree’ (', r,l+1) 5 8" € U, @/ Jtree (i, r, 1= 1) 5 7" € U;].
For every 1 € U; and r > 0, if [=0,

tree'(i,r,l) = G;[s'/tree’(s',r 14+ 1) ; 8" € U]
Proof:

Let M = (A, A, X, s, root, R) be an si—tree transducer with system A = (A4, A,, A;) of
attributes, k,; synthesized attributes, and k; inherited attributes.

Consider t € L, (M) with size(t) > np. By Lemma 3.3 we know that, for every control
tree € = root(e) with s;,(¢) =7 t, the condition height(e) > 2% . (2% — 1) 4+ 2 holds.

We choose a control tree é = root(e), a derivation d = (s;,(¢) =¥ t), and a longest path p
from the root of € to a leaf of €. Then we know that |p| > 2% . (2% — 1) 4-2 > 2ki . (2ks — 1),
Note that here it would have been sufficient to have |p| > 2% - (2% — 1) 4 1, but later in
the proof of the size conditions for the output patterns we again make use of the pumping
index njs to avoid the definition of a new constant. Otherwise we would have had another
formulation of the pumping lemma with two constants (like in [BPS61], there the constants
are called p and q).

Since there are exactly 2% possibilities to choose an arbitrary subset of the k; inherited
attributes and since there are exactly 2% —1 possibilities to choose an arbitrary, nonempty
subset of the k; synthesized attributes, we have that

card({attset(é,p’) | p' # ¢, and p' is a prefix of p}) < 2k . (2’“5 -1).

Since |p| > 9ki . (2’“5 — 1)7 there must exist strings p; 75 £, P2 75 ¢ and p3 with p = pipaps,
such that
attset(é,p1) = attset(é, pips).

We choose py, po, and ps such that |paps| is minimal. This means that we take the first
repetition of attset(é,p’), where p’ is a prefix of p, beginning from the leaf at p. Then we
know that |pops| < 2% - (2% — 1), because otherwise there is another repetition of attset
in that part of p between node(é, p1) and node(€, p1p2ps), in contradiction to |pzps| being
minimal.

We define the subsets Ug; C A; and U; C A;, such that
Us = attset(€, p1) N A and U; = attset(€é, p1) N A;.

In fact, card(Us) > 1, because M is visiting and thus every symbol of the control tree
must be visited by a synthesized attribute.

24

Let w ¢ X4 with rank(w) = 0. We define trees ¢/ € T(X; U {w}) and €’ € T(X U {w}),
where both, ¢’ and ¢” have exactly one occurrence of w, and ¢” € T(X) with the help of
p1, p2 and p3 as follows:

6/ = é[pl — w:l
subtree(é[p1ps < wl, p1)
subtree(€, p1p2)

Then the representation € = ¢'[w/e"[w/e"]] holds. The reader can find these patterns of
€ and the paths leading to them in Figure 2.

In the sequel we need the sets Py, P», and Ps of paths, which lead from the root of € to
the nodes in the three parts €/, €”, and e, respectively:

P = path(e') = {p1}
Py ({p1} - path(e”)) — {p1p2}
Ps = {pip2} - path(e")

Note that the path p; leading to the root of €’ is excluded from Py and that the path pip,
leading to the root of ¢’ is excluded from P,.

Now we calculate, roughly speaking, the values of the inside attribute occurrences of the

" " as functions in the values of the outside attribute occurrences of

patterns €/, €”, and e
the same patterns in order to gain the desired output patterns that are needed for the
pumping process. Therefore we restrict the derivation relation of M to the sets Py, Ps,

and Ps, respectively, as it is defined in Definition 2.6.

For the definition of the output patterns, we use symbols from the ranked alphabets
(Us, ranky,) and (U;, ranky,) with ranky,(s) = 0 for every s € Uy, with ranky, (¢) = 0 for
every ¢ € U;, and with U = U; U U;. We choose exactly the attributes as names for the
symbols, to emphasize their strong connection, although they have different ranks. It is
easy to decide from the context in which the names occur, whether symbols or attributes
are concerned at a time.

Now we can define (cf. Figure 2):

t = nf(=ep,sin(e)s'(p)/s; 8" €Uyl

For every s € Us,
ts = nf(=ep,s(p)s (pip2)/s'; s € Us, i'(p) /"5 7 € U] and
ts = nf(=ep,s(pp2))[i(pip2)/i' s @ € Uy

For every 7 € U,
ti = nf(=ep,i(pp2))[s'(pip2)/s 5 ' € Us, ¥'(p1)/i'; 7' € U;] and
ti = nf(zer,ilp)s(m)/s s s €U

Note that, by the definition of = p,, the inherited attribute occurrences i'(p;) can-
not be evaluated and thus may occur in nf(=¢p,,s(p1)) and nf(=zp,,i(p1p2)). The
same holds for =; p, and the inherited attribute occurrences ¢/(p;p;) that may occur in

nf(=ep,,s(pip2))-

25

By this definition, every pattern has the type, which is required by the pumping lemma.
We only have to check that ¢ ¢ T(A). Again the reason is that every symbol of the control
tree must be visited by synthesized attributes. Thus, one of the synthesized attribute
occurrences s(p;) must be called directly from s;;, (¢) via a sequence of attribute occurrences

of €.

Otherwise the derivation would never reach e”.

Now we prove the size conditions for the patterns:

(a)

(b)

sizea (f) > 1:

We have sizeA(f) > 1, because p; # € and thus there must be at least one rule
application to calculate nf(=¢ p,, sin(€)) # sin(€). Note that M is producing.

For every i € U;, SiZ@A(tAZ') > 1:

We have sizea ({;) > 1, because nf(=z p,,i(p1)) can only consist of output symbols
and attribute occurrences s'(py) and thus cannot be equal to i(p;). Again there is
at least one rule application to calculate the normal form.

For every s € Uy, 1 < sizea(ts) < nas:

We have sizea(ts) > 1, because p; # ¢ and thus there must be at least one rule
application to calculate nf(=:p,,s(p1)) # s(p1). We have sizea(t;) < npr, because
the calculation of nf(=¢ p,, s(p1)) only takes place on the part ¢” of the control tree.
Since p is a longest path in €, its subpath paps with |paps| < 2% - (28 — 1) is a longest
path of ¢”[w/e™] and thus e” can have no path with a length greater than 2% (2% —1).
Then height(e") < 2Fi-(2F< —1)4-1 and (with a reverse argumentation to fix height(e)
in the proof of Lemma 3.3 we get size(e”) < Z?:d(zks_l)(mM)j = ny;, we have less

than 1+ (ks;+k;)-n), attribute occurrences of €, we have less than Z;k:(j—k’)nM (enr)?

. . . kedki)n', .
rule applications to generate t; and thus sizea (t5) < las - Z;:’J)nM(CM)] < ny-

For every ¢ € U;, 1 < sizea(t;) < nas:

We have sizea(t;) > 1, because py # ¢ and thus there must be at least one rule
application to calculate nf(=: p,,i(p1p2)) # 1(p1p2). The proof for sizea (t;) < nas
is analogous to that in (c).

For every s € Us, 1 < sizea(f,) < nay:

We have sizea(ls) > 1, because nf(=¢p,,s(pip2)) can only consist of output
symbols and attribute occurrences i'(pyp2) and thus cannot be equal to s(pipz).
Again there is at least one rule application to calculate the normal form. We have
sizea(ts) < mar, because the calculation of nf(=¢ p,,s(pip2)) only takes place on
the part €’ of the control tree. Since p is a longest path in €, its subpath p3 with
Ips| < |paps] < 2% - (2% — 1) is a longest path of €. Now we can apply the same

argumentation as in (c).

In the next step we have to check, whether the symbols s € U, and ¢ € U; occur at least
once in the desired patterns of t. We show the proof only for the occurrences of s € Uy in
the tree £ or in a tree ¢; for some i’ € U;. The other cases can be treated analogous. The
proof works by contradiction:

26

If there is an s € U, such that s does not occur in ¢ and not in ; for every ¢ € U,
then, by the definition of the patterns of ¢, the attribute occurrence s(p;) does not occur
in nf(=¢p,,sin(c)) and not in nf(=¢ p,i(p1)) for every i € U;. But the calculation of
these normal forms are the only parts of the derivation d, in which the attribute occurrence
s(p1) can be introduced into the derivation. Thus s(p;) cannot occur in d, in contrast to
s € attset(d, p1) = attset(é, py).

The last item of this proof is to show that ¢ = tree(1) and that for every r > 0, the
property tree(r) € Loy (M) holds.

We abbreviate the control tree, which is built up by repeating r > 0 times the pattern €”,
by é,:

e =€w/elw/ ... [w/e"]..]]
—_——— S——
» times » times

Thus, in particular, € = €.

First we have to verify the following Statements (la) and (1b) concerning the function
tree':

(la) Foreveryse€ Uy, r>0,1<I1<r+4+1, tree(s,rl) = nf(igr,s(plpé_l)).
(1b) Foreveryie U;, r>0,0<[<r, tree’(i,r, 1) = nf(=¢,i(pph)).

Since M is noncircular, there must exist an order in which, for every r > 0, the attribute
occurrences of the set {s(piph) | s € U,,0 <1 < r}uU{i(piph) | i € U;,0 <1 <7} can
be evaluated. This order induces an order 6 on the set {tree’(s,r,1) | s € Us,1 <1 <
r+ 1} U {tree(i,r,0) | ¢ € U;,0 <1 < r} of function calls and thus it is guaranteed that
the recursive function tree’ is well defined.

If, for example, the evaluation of tree’(s,r,1) forces us to evaluate tree’(s’,r,14 1), then,
for every 1 < [< r, the attribute occurrence s'(pyph) has to appear earlier than the
attribute occurrence s(p;p, ') in an order of the above attribute occurrences. But this is
guaranteed, because in this case t; must contain a symbol s (compare the definition of
tree’ in Theorem 3.4) and by the definition of ¢5, we must have an attribute occurrence
s'(p1ip2) in nf(==¢p,,s(p1)). Hence, s'(p1pz) must be evaluated before s(p;) and thus, for
every 1 <1 <r, s'(pp}) must be evaluated before s(plplz_l).

Now we take an arbitrary such order € of function calls which can be considered as a
string of length (r + 1) - card(U). Then we can prove the Statements (la) and (1b) by
finite (mathematical) induction on v with 1 < v < (r+1) - card(U), i.e., v is a position
in this string. Depending on the function call at position v, we have to prove either the
statement tree'(s,r, 1) = nf(=z,,s(pip5 ")) (if the v—th function call is tree’(s,r,[)) or
the statement tree’(i,r,l) = nf(=z,i(p1ph)) (if the v—th function call is tree’(i,r,l)).
If we want to prove the statement for the function call at position v in @, then we can
use the induction hypothesis which says that, for every function call at position ¢/ with
1 < V' < v, the corresponding statement holds.

27

Case (a): The function call at position v is tree’(s,r,l) with s € Us, r > 0,and 1 <1 < r+1.
Thus we have to prove the statement tree'(s,r,[) = nf(igr,s(plpé_l)). There are two
cases:

Case : 1 <[<r

tree’(s,r, 1)
= t[s'/tree (s, r 1+ 1) ; s € Us, i Jtree’ (', r, 1= 1) 5 7' € Uj]
(Definition of tree’)
= t[s'/nf(=z, 5 (p1ph)) s & € Us, i /nf(=, i (pp5 ")) 5 i € UJ)
(Induction Hypothesis for function calls
with positions less than v)
nf(=e, b5/ (p1ph) 5 8 € Us, @'/ (pap") 5 4 € Ui))
nf(=z,s(piph™t)) (Calculation on the [~th occurrence of e”)

Casell: Il=r+1

tree'(s,r,r+1)

ts[i! [tree' (i v, r) 5 i € U] (Definition of tree’)

ts[i'/nf(=e., ' (piph)) 5 i € Uj (Induction Hypothesis for function calls
with positions less than v)

Wl (e 77 pap5) ;7 € UY)

nf(=e,s(p1ph)) (Calculation on €”)

Case (b): The function call at position v is tree’(i,r,l) with ¢ € U;, r > 0, and 0 < [< r.
Thus we have to prove the statement tree’(i,r, 1) = nf(==,,i(pips)). There are two cases:

Case : 1 <[<r

tree’(i,r, 1)
= [/tree! (' r,l+ 1) ; s € U, o' [tree’ (7', r, 1 — 1) 5 7' € Uj]
(Definition of tree’)
= 4l /nf(=z,5 (pph)) i & € Uy, i'/nf(=e,, i (ppy ")) 5 i € U]
(Induction Hypothesis for function calls
with positions less than v)

nf(=e tils' /8" (mph) 5 8 € Uy, @' [i'(pupy) 5 1 € U3))
nf(=e,,i(piph)) (Calculation on the [~th occurrence of €”)

Casell: 1 =0

tree’(i,r,0)

ti[s'Jtree'(s',r, 1) ; 8" € U] (Definition of tree’)

ti[s'/nf(=z, 5 () ; 8" € Us] (Induction Hypothesis for function calls
with positions less than v)

nf(=e,ils'/s'(p) 5 ' € U))

nf(=e,i(p1)) (Calculation on €')

28

Then we can prove for every r > 0 the equation tree(r) = nf(=-¢,, sin(€)):

tree(r)
t [s/tree'(s,r,1); s € U] (Definition of tree)
nf (e sin(ENls(m)/s 5 8 € Ullls/tree(s,m1) 5 s € U]

(Definition of)

=e,pr5in(9)[s(p)/nf(=e.s(p1) s s€ U] (Statement (1a))
=z P Sin(€))[s(p1)/nf(=¢.s(p1)) ; s € Us) (Subterm €’ in €, unchanged)

& Sin(€))

nf(=ep,sin(e))[s(p1)/tree’(s,r, 1) ; s € Us]
nf())[s(p1)
nf(
nf(=

This equation has the two desired consequences that finish the proof of the pumping
lemma:

o tree(l) = nf(=¢,si(e)) = nf(=e siml(e)) =t

e For every r > 0, () =nf(=¢,5n(€)) € Lowt(M),
because 7(M)(e) tree(r) where €, = root(el.). a

We want to conclude this section with an observation concerning the requirements of the
attributed tree transducers to be producing and visiting.

If we would have dropped the ”producing—condition”, then the pumping process itself
would not have been affected. But it would have been impossible to prove that the output
patterns consist of at least one output symbol. In the next section we shall see that the
applications of the pumping lemma demonstrated there, are no more feasible without this
size—condition.

If we would have dropped the ”visiting—condition”, then the proof of the pumping lemma
itself would have been impossible. Since for the control tree é and for every subpath p’ of
the chosen path p, attset(é, p') # () cannot be guaranteed, the following construction is no
more feasible.

29

4 Applications

We want to apply the pumping lemma in proofs for monadic output languages. The
following Theorem 4.1 is a specialized version of our pumping lemma for the case of
monadic output languages. Observation 4.2 makes a statement about the number of
occurrences of the output patterns in the trees tree(0) and tree(1) in the case of monadic
output languages. We use this theorem and this observation in the following proofs. Recall
that we only consider noncircular, producing, and visiting attributed tree transducers.

4.1 Pumping lemma for monadic output languages

In order to simplify the study of this paper we state here a complete monadic version of
the pumping lemma instead of giving only the additional conditions.

Theorem 4.1
Let M = (A, A, X, s, root, R) be an si—tree transducer with system A = (A4, A,, A;) of
attributes, pumping index nps, and A = ADYAO),

For every t € L, (M) with size(t) > ny

e there exist ranked alphabets

— (Us, ranky,) with Us C Ag, card(Uy) > 1, and ranky,(s) = 0 for every s € U,
— (U, ranky,) with U; C A; and ranky, (i) = 0 for every ¢ € U,
— with card(Us) = card(U;) or card(Us) = card(U;) + 1,
—let U =U,UU;,
o there exist u € U, and { € T(AM U {u}) with sizea () > 1,

e for every i € U;, there exist u € A® UU; and {; € T<A(1) U{u}) with sizea(t;) > 1,

o for every s € U,, there exist u € U and t, € T(AMW U {u}) with 1 < sizea(t,) < nay,

for every i € U;, there exist u € U and t; € T(AMW U {u}) with 1 < sizea(t;) < nar,

e forevery s € U,, there exist u € AU, and ¢, € T<A(1)U{u}> with 1 < sizea(t5) <
npr,

such that

e exactly one tree of the set {t; | i € U;} U {t, | s € Uy} is of type T(A),
if card(Us) = card(U;), then there is exactly one i € U; such that #; € T(A),
if card(U,) = card(U;) + 1, then there is exactly one s € Uy such that £, € T(A),

e for every s € Uy, the symbol s occurs in exactly one tree of the set {t}U{ty | i’ € Us},

e for every s € Uy, the symbol s occurs in exactly one tree of the set {ty | s’ € Us}U

{ti’ | e UZ},

30

e for every i € U;, the symbol ¢ occurs in exactly one tree of the set {ts | ' € Us}U

{ti/ | Ve Ui},

e for every i € U;, the symbol i occurs in exactly one tree of the set {{y | s’ € U,},
such that ¢t = tree(1) and for every r > 0, the tree tree(r) € Loy (M), where the function
tree : IN — T(A)
is for every r > 0 defined by tree(r) =t [s/tree’(s,r, 1) ; s € U,], where

tree’ : U x IN x IN — — T(A) is defined as follows:
For every s € Ug and r > 0, if [€ [r],

tree'(s,r,l) = t[s'/tree(s',r,l+1); s € U, @/ Jtree’ (', r, 1= 1) ; 7' € U;].
For every s € Us and r > 0, if [=r 4+ 1,

tree'(s,r,l) = t5[i' [tree’ (i, r,1—1) 5 i' € Uy].
For every i € U; and r > 0, if [€ [r],

tree’(i,r,l) = t[s'/tree(s',r,l+1); s € Uy, i/ /tree’ (¢, r, 1 = 1) ; ¢ € Uj].
For every 1 € U; and r > 0, if [=0,

tree'(i,r,l) = t;[s/tree!(s',r i+ 1) ; s € U).
Proof:

We only have to prove the additional conditions of the pumping lemma. The proofis based
on the proof of Theorem 3.4. Thus we make use of some notions which were introduced
there.

We first prove the substitutions of "occurs in a tree” in Theorem 3.4 against ”occurs in
exactly one tree”. We show the proof only for the occurrence of s in the tree £ or in a tree
t;r. The other cases can be treated analogous. The proof works by contradiction:

Assume that there is an s € U, such that s occurs in at least two different trees of
the set {f} U {ts | ¢ € U;}. Then, by the definition of the patterns of ¢, the at-
tribute occurrence s(pq) occurs in two different normal forms of nf(=: p, sin(c)) and
nf(=¢p,"(p)) for ' € U;. The calculation of these normal forms correspond to dif-
ferent parts of the derivation s;,(¢) =¥ t. Thus s(p;) occurs in two different sen-
tential forms of the derivation s;,(¢) =% t. There must exist t1,¢, € (AU with
sin(e) =T tis(p1) =7 titas(pr) =T t. Consequently, M is circular, which is a con-
tradiction.

The conditions that

e there exist u € U, and £ € T(AMW U {u}),
e for every i € U;, there exist u € A UU, and {; € T<A(1) U{u}), and

o for every s € Uy, there exist u € A UU; and i, € T(AM U {u})

are direct consequences of the pumping lemma, because A is monadic.

31

e For every s € U, there exist v € U and ¢, € T(AM U {u}) and

o for every i € U;, there exist u € U and t; € T(AM U {u}),

because each of the card(U) symbols of U occurs in exactly one of the card(U) trees of
the set {t; | s € Us} U{t; | ¢ € U;}, and because each of these trees can contain at most
one (and thus exactly one) of the symbols.

We know that each of the card(U;) symbols of U; occurs in exactly one of the card(Us) trees
of the set {f, | s € U}, and that each of these trees can contain at most one of the symbols.
Thus we must have card(Us) > card(U;). We also know that each of the card(U,) symbols
of U, occurs in exactly one of the card(U;) 4 1 trees of the set {f} U {¢; | i € U;}, and that
{ contains exactly one and each of the other trees can contain at most one of the symbols.
Thus we must have card(U;) > card(Us) — 1. We can conclude that card(U,) = card(U;)
or card(Us) = card(U;) + 1 holds.

If card(Us) = card(U;), then every tree {; contains exactly one of the symbols of U; and
every tree t; except one of them contains exactly one of the symbols of U,. Thus there is
exactly one i € U; with i; € T(A).

If card(Us) = card(U;) + 1, then every tree {; contains exactly one of the symbols of U

and every tree ¢ except one of them contains exactly one of the symbols of U;. Thus there
is exactly one s € Uy with £, € T(A). O

Observation 4.2 Let M = (A, A, X, s;,, root, R) be an si-tree transducer with system
A= (A, A,, A;) of attributes and A = AW UA®), Then in Theorem 4.1,

1. tree(0) is built up, using each of the trees of the set
{DYUu{t; i€ Uy U{t, | s €U} exactly once and

2. t = tree(1) is built up, using each of the trees of the set
{DYU{t; i e Uy U{ts |scUYU{t; |i €U U{ty|se U} exactly once.

Proof:
Again we make use of some notions which were introduced in the proof of Theorem 3.4.

(a) The tree { is used exactly once in tree(0) and tree(1), because { is introduced calling
the function tree’ the first time and nowhere else.

(b) The argumentation for the statement that the trees of the set {; | i € U;}U{t, | s € U}
are used at most once in tree(0) works as follows by contradiction:

W.l.o.g. we assume that a tree {; is used twice (or more than twice). Then the calculation of
nf(=¢p,i(p1)) corresponds to different parts of the derivation s;,(e) =% tree(0). Thus
i(p1) occurs in different sentential forms of the derivation s;, (¢) =¥ tree(0). There must
exist t1,ty € (ANt with s;,(e) =1 tii(p1) =L titai(py) =7 tree(0). Consequently, M
is circular, which is a contradiction.

(c) The same argumentation can be applied for the proof of the statement that the trees
of theset {#; | i ¢ U;yU{ts |s € U yU{t; | i € U U{ts | s € Us} are used at most once
in tree(1).

32

(d) The argumentation for the statement that the trees of the set {t; | i € U;YU{t, | s € U,}
are used at least once in tree(0) works as follows by contradiction:

By Theorem 4.1 we have card(Us) = card(U;) or card(Us) = card(U;) + 1. We show the

proof only for the case card(Us) = card(U;). The other case can be proved analogous.
We let k = card(Us) = card(U;), Us = {s1,..., sk}, and U; = {i1,..., 1%}

Assume that not all of the desired output patterns occur in tree(0). The number of used
trees {; with 7 € U; and the number of used trees ¢, with s € U, has to be equal, because
the process of building up tree(0) starts with ¢, it must end with the only tree #; € T(A)
by Theorem 4.1, and the use of trees {; with ¢ € U; and of trees {; with s € U, must
alternate, as can be seen observing the function tree’.

Thus we can assume that there is a ¥’ € [k —1], such that only the patterns t}l, .. -7£ik/ ylsys
. .,fsk, occur in tree(0) (possibly by renaming the trees). We construct a circularity in €y

with the remaining patterns bigrgrs e bigy Loy oo oo bsy which can not be of type T'(A),
as follows:
Because of Theorem 4.1 and because the symbols sq,..., sy, 21,..., ¢ must occur in the

patterns which are used to construct tree(0), we know:

e For every 7 with &'+ 1 < 7 < k, the tree tAZ'J € TIAMW U {spryq,...,s1}),

e for every j with &' + 1 < 7 < k, the tree fsj e TAW U {igrgr, ... i),

e and every symbol sg/1, ..., Sky tg/g1, - - -, ¢ MUst occur in exactly one tree of the set
{tik/+17“‘7tik7t5k/+17“‘7t5k}‘

Thus, possibly by renaming the trees, there must exist &” € [k — k'] with:

e For every 7 with &' +1 < 7 <k + k", the tree t}ﬂ e T(AM U {s;1),
e for every j with &' +1 < j <k + k" — 1, the tree fsj e T(AM U {i;:1}),

€ T(AM U {iyr1}).

e and Lsprpm

By the definition of the patterns in the proof of Theorem 3.4 we know that these pat-
terns correspond to normal forms of certain attribute occurrences and we can construct a
derivation on the control tree €y as follows:

igry1(p1)
e iy Sk (p1)
ié‘o ik/+1t5k/+1ik/+2(p1)

U
NI
bl

&0 ik’+1 Spiyq ---tik/+k//§k’+k”(p1)

Spiy1 " ik/+k//t5k/+k//7’k’+1(p1)

U
"+
bl

€0 TRl

33

We can conclude that M is circular, which is a contradiction. An example situation which
would be a consequence of the assumption that not all of the desired output patterns occur
in tree(0) is shown in Figure 9.

Figure 9: Circularity in ég with k =3, &' =1 and & = 2.

(e) The trees of the set {t; | i € U;yU{t, | s € U U{t; | i € U;} U{t, | s € Uy} are
used at least once in tree(1), because these patterns correspond to parts of the derivation
sin(e) =T t = tree(1) by the definition of the output patterns in the proof of Theorem
3.4. O

4.2 Arithmetic Proof

It is known from Lemma 4.1 of [Fil81] that, if M is an attributed tree transducer and if
7(M)(e) =t for a control tree e and an output tree ¢, then there is a constant ¢ > 0 such
that height(t) < c - size(e) holds. Thus, there cannot exist an attributed tree transducer
M, which calculates the tree transformation (M) : T({v1),a®}) — T{BW, EO})
with 7(M)(v"a) = B?"F for every n > 0. We only mention here that there is a macro
tree transducer (cf. Example 4.3 of [EV85]) which calculates this tree transformation.

If we do not restrict the control trees to be monadic trees, then the lemma of Fiillép makes
no statement, whether an attributed tree transducer M’ exists, which calculates a tree
transformation 7(M’) : T(X) — T({BW, E©Y}) with 7(M')(e,) = B*"F and e, € T(X)
for every n > 0. Such a producing and visiting attributed tree transducer cannot exist,
because we can use our pumping lemma to prove that {B?" E | n > 0} ¢ SIT,,; holds.

We call the following kind of proof arithmetic proof, because we use arithmetic arguments
while applying the pumping lemma.

34

Theorem 4.3 {B*' E | n >0} ¢ SIT,

Proof:

Assume that there is an si—tree transducer M = (A, A, X, s, root, R) with system A =
(A, A, A;) of attributes and Lo (M) = {B* E | n > 0}. By Theorem 4.1, for every
t € Lo (M) with size(t) > npa, where nyr > 1 is the pumping index of M, certain

npr-card(A)

properties hold. Consider ¢t = B? F; clearly, size(t) > nays.

According to Theorem 4.1 there exist Us C Ay with card(Us) > 1, U; C A;, a tree t, trees
t}, t; for every ¢ € U;, and trees fs, ts for every s € U fulfilling the conditions of Theorem
4.1, such that ¢t = tree(1).

t = tree(1) is built up, using each of the trees of the set {{} U {f; | i € U;JU{t, | s €
Usy U{t; | i € U} U{ts | s € Us} exactly once, because of Observation 4.2.

tree(0) is built up, using each of the trees of the set {{} U {t; | i € U U {t, | s € Us}
exactly once, because of Observation 4.2.

Thus we can estimate size(tree(0)) with the size conditions of Theorem 4.1 as follows:

size(tree(0))
= size(tree(1)) — 3 cp, sizea(ts) — 2, sizea(t:)
> ommeeard(A) L (g — 1) - (card(Us) + card(U;)) (sizea(ts), sizea(t;) < nap — 1)
> ormeewrd(A) 4] (g — 1) - (card(A,) + card(A;))
= mmeeard(A) Ly (nyp — 1) - card(A)
> gnarcard(4) —|— 1 — (nag - card(A) — 1)
> QnMcard(A) _onm- card(A)—1
— QnMcard(A) 1 7 and
size(tree(0))
= size(tree(l)) - Soep, sizealts) - Sieu, sizealt)
< graeeard(A) L1 (card(Uy) + card(U;)) (sizea(ts), sizea(t;) > 1)
< QnMcard(A) 41,

Note that the requirement of M to be producing is necessary for this part of the proof.

Thus 2meardA=1 41 < size(tree(0)) < 244 11 and therefore tree(0) ¢ Loy (M) =
{B¥E |n >0}, contradicting the assumption. O

4.3 Structural Proof

In contrast to the (easier) arithmetic proofs, we want to demonstrate here, how structural
properties of a certain output language can be used while applying the pumping lemma for
attributed tree transducers. We use the results of this subsection to present a hierarchy
for attributed tree transducers with bounded number of attributes.

35

Lemma 4.4 For every k > 1, {(BD”)%‘HE |n>0}¢ Sy (k) Tout-

Proof:

Let £ > 1. Assume that there is an si-tree transducer M = (A, A, ¥, s;,,, root, R) with
system A = (A, A,, A;) of attributes, Lo (M) = {(BD™)***'E | n > 0} and with k
synthesized attributes and & inherited attributes. By Theorem 4.1, for every t € L, (M)
with size(t) > nas, where nps > 1 is the pumping index of M, certain properties hold.
Consider ¢ = (BD"v 2kt 2L B clearly size(t) > nyy.

According to Theorem 4.1 there exist Us C A with card(U,) > 1, U; C A; with card(Uy) =
card(U;) or card(Us) = card(U;) + 1. Additionally, there exist a pattern ¢, patterns #;,¢;

for every i € U;, and patterns t,,t, for every s € U, fulfilling the conditions of Theorem
4.1, such that ¢t = tree(1).

t = tree(1) is built up, using each of the patterns of the set {{} U{t; | i € Uy U {ts | s €
UshU{t; | 1 € U JU{ts | s € Us} exactly once, because of Observation 4.2. In the following,
we simply identify these patterns with the sequence of their output symbols from the root
to the leaf by dropping the symbols s € U, and ¢ € U;. This notation is slightly inaccurate,
but easier to read.

We let ky = card(Usy), ky = card(U;), Us = {s1,..., 5k, }, and U; = {i1,..., ik, }.
Case 1: ky = k9

In this case we can represent ¢ as follows, where for every [€ [ky], t0 is a sequence of
patterns taken from the 3k, patterns ¢, .. by s tins e ti fsl, .. .,fskl :

t=tree(l) = £4W & (D g, M)

Zkl

For every [€ [kq], the tree t0 is built up from at least one pattern. It is constructed from
at most 2ky + 1 patterns, if the other trees t0) are built up from exactly one pattern,
because each pattern can only be used once, according to Observation 4.2.

Since for every j € [ky], 1 < sizea(ts;) < num, 1 < sizea(ti;) < ny, and 1 < sizeA(fsj) <
nar, we know for every [€ [kq]:

1< sizea(t) < 2k + 1) -npy < 2k +1) -0y
Thus every sequence t() can overlap at most two parts of successive symbols D in tree(1).
The ki sequences together can overlap at most 2k; < 2k parts of successive symbols D in

tree(1). Since there are 2k + 1 parts of successive symbols D in tree(1), there must exist
one subsequence

b=BD" B or p=pBD M IR

of tree(1) which completely is a part of £ or of a tree ¢;, for some [€ [ky].

36

We present an example situation with £ = ky = 2 and with a subsequence b=B D...D B
in #;,:

k>
o~

—
o~
o~

[S)
o~

This subsequence b must appear in tree(0), because tree(0) is built up, using each of the
patterns &,%;,, .. '7£ik1 sy .,fskl exactly once by Observation 4.2. (It is not important
for this proof that the relative positions of these patterns can change from tree(1) to

tree(0).)

The patterns ¢, , .. log s tips eyt do not appear in tree(0) any more. These patterns

gy
can only contain symbols D and B, because sizeA(tikl) > 1 and thus the last symbol F

must be a part of t}kl .

If there is a symbol B in one of these patterns, then the number of symbols B decreases
and thus tree(0) ¢ {(BD™)**1E | n > 0}, contradicting the assumption.

If these patterns only contain symbols D, then the number of symbols D decreases and
the number of symbols B is constant. Thus we must have a block & = B D...D B or
b= B D...D E with less than nas - (2k 4 1) successive symbols D. Since b and b’ have
a different number of successive symbols D, we have tree(0) ¢ {(BD™)***'E | n > 0},
contradicting the assumption.

Note that the last steps of the above argumentation need the requirement of M to be
producing.

Case 2: k1 = ko + 1

In this case we can represent ¢ as follows, where for every [€ [ky], tW is a sequence of
patterns taken from the 3k, — 1 patterns ¢5,, .. log s tips eyt P)

gy —17 Skt

t=tree(1) =i tW i 1@, . 4F—1) i, sy

For every [€ [ky — 1], the tree tW is built up from at least one pattern, and t¥1) is built
up from at least two patterns. For every [€ [ky — 1], the tree t®) is constructed from at
most 2ky — 1 patterns, if the other trees t0) with " € [k1 — 1] are built up from exactly
one pattern and ¢(51) is built up from exactly two patterns, because each pattern can only
be used once, according to Observation 4.2. The tree t(*1) is constructed from at most 2k,
patterns, if the other trees t(') with I’ € [k1 — 1] are built up from exactly one pattern.
Then we can apply the same argumentation as in Case 1. a

Lemma 4.5 For every k > 1, {(BD")?*E | n > 0} ¢ Syl (k1) Tout-

Proof:
The proof of this lemma is analogous to the proof of Lemma 4.4. a

The following lemma completes the requirements for the desired hierarchy of attributed
tree transducers.

37

Lemma 4.6

e For every k > 1, {(BD")*E |n >0} € Sy L gy Tout-

e For every k > 0, {(BD")*+'F | n >0} € Se1) L) Tout-

Proof:

For every k£ > 1 we define an si—tree transducer

M(2k) — (A(zk), A, Y, 81, root, R(zk)) with:

A ={BW, DO EO}

Y= {4y,],

ARR) = (AR AR Afzk)) With ACK) = {51, spy i1, ik
k):{sl,.. y Sk andA —{21,...,ik}, and

RCH Z R RO ROR it

root

R = {si(z) — Bsi(z1) }U
{ij(z1) — Bsjyi(zl) |je[k-1]}U
{ir(z1) - F }

R = {si(2) = Dsi(z1) |jelR}u
{ijz1) = Dijz) |jelk}

RV = {si(x) = Bijz) |jelkl)

For every k > 0 we define an si—tree transducer
MEFHD) = (AR A S 51 root, RPAHD) with:
A= {B(l), D), E(O)}7

£ = {4(,00),
A(?k—l—l) = (A(2k+1) A(2k+1)7 A(2k+1)) with A(2k+1) = {817 ceey Skt Ty e e ey lk},

AR - {s1,...,8k+1}, and A (2k+1) = {iy,..., 1z}, and
RCHH) = Rf?o’;j” U REHD y MY with,
RESFY = {si(x) = Bsi(s1) }U
{ij(z1) — Bsjyi(z1) [je[k]}
RPHY = {si(2) = Dsi(21) |jelk+1]}U
{i;(z1) = Di(2) | j € [k]}
BRIV = {s;(s) = Bi») |jelR}u
{sk41(2) = F }

Clearly, for every k > 1, Lout(M(k)) = {(BD")*E | n > 0}. Thus we can conclude the
statement of the lemma. a

From Lemma 4.4, Lemma 4.5, and Lemma 4.6 we gain the following hierarchy for classes
of output languages of si—tree transducers with bounded number of attributes:

Theorem 4.7 S(k)l(k—l)Tout C S(k)l(k)Tout C S(k-|—1)l(k)Tout ,forevery k> 1. O

38

This theorem can be transformed into the following theorem that presents a hierarchy for
classes of tree transformations of si—tree transducers with bounded number of attributes
(cf. also Figure 10):

Theorem 4.8 Siyl—n)T C Sy lmyT C SgyrylmyT , for every k > 1. a
ST
/
Sy l-nT
Sy LT
@7 \
Syl
(2)4(1)
/
SwloT

Figure 10: Hierarchy of tree transformation classes.

39

5 Summary and further research topics

In this paper we have developed a pumping lemma for output languages of noncircular,
producing, and visiting attributed tree transducers. We have restricted the applications
of the pumping lemma to monadic output languages yielding two results for attributed
tree transducers. In particular,

e we have proved that the language {B?"E | n > 0} can be no output language of a
noncircular, producing, and visiting attributed tree transducer, using our pumping
lemma together with arithmetic properties of this language, and

e we have proved a hierarchy for noncircular, producing, and visiting attributed tree
transducers with bounded number of attributes, using our pumping lemma together
with structural properties of languages.

There are several further research topics in the area of pumping lemmata for attributed
tree transducers and other kinds of tree transducers:

e Are there non—monadic languages which can be proved not to be output languages
of attributed tree transducers with the help of our pumping lemma in a justifiable
expense? In the case of non—-monadic languages the proofs become very much harder,
because the output patterns can no more be treated like concatenated strings as in
the proof of Lemma 4.4. The output patterns are non—monadic trees which occur in
a non—monadic output tree. The main problem is to find a complete case analysis
for all possibilities to construct an output tree with output patterns. Then we have
to derive a contradiction for every case. Additionally we have the difficulty that
output patterns can occur more than once in an output tree tree(1), as can be seen
in Figure 8. Thus in the case of non-monadic output languages there is no helping
observation as Observation 4.2.

e A similar pumping lemma as for attributed tree transducers can be developed for
macro tree transducers (cf. [EV85]). It will be introduced in another paper which
is in preparation (cf. [Kiih94]). Is it possible to use this pumping lemma in a proof
that the difference set SI1;T-S,T of subclasses of macro attributed tree transducers
is not empty, as it was conjectured in [KV92]?

o As next step it should be possible to construct a pumping lemma for macro attributed
tree transducers (cf. [KV92]) as combination of the lemmata for attributed tree
transducers and macro tree transducers. Then as special case of it we have a pumping
lemma for the class SI;7" and perhaps it is possible to prove that the difference set
S¢T—SI;T is not empty, as it also was conjectured in [KV92].

Acknowledgement

We would like to thank Zoltan Fiilop for carefully reading an earlier version of this paper
and for making useful suggestions on its contents.

40

References

[AUTL]
[BMS82]
[Boc76]
[BPS61]
[BSS6a]
[BSS6b]
[Ems91]
[Eng75]
[EPRS81]
[ERSS0]
[si80]
[EVS5]

[Fiil81]
[Gie88]

[GS83]
[Hab89]

[Hin90]

A. V. Aho and J.D. Ullman. Translations on a context free grammar. Inform. and
Control, 19:439-475, 1971.

C. Bader and A. Moura. A generalization of Ogden’s lemma. J. Assoc. Comput.
Mach., 29:404-407, 1982.

G. Bochmann. Semantic evaluation from left to right. Comm. Assoc. Comput.
Sei., 19:55-62, 1976.

Y. Bar—Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase
structure grammars. Z. Phonetik. Sprach. Komm., 14:143-172, 1961.

R. Boonyavatana and G. Slutzki. A generalized Ogden’s lemma for linear context—
free languages. Bulletin of the FAT(CS, 28:20-26, 1986.

R. Boonyavatana and G. Slutzki. Ogden’s lemma for nonterminal bounded lan-
guages. RAIRO, 20:457-471, 1986.

K. Emser—Loock. Integration von attributierten Grammatiken und primitiv—
rekursiven Programmschemata. Master Thesis, RWTH Aachen, 1991.

J. Engelfriet. Bottom—up and top—down tree transformations — a comparison.
Math. Syst. Theory, 9:198-231, 1975.

A. Ehrenfeucht, R. Parikh, and G. Rozenberg. Pumping lemmas for regular sets.
SIAM J. Comput., 10:536-541, 1981.

J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L. systems, and
two—way machines. J. Comput. Syst. Sci., 20:150-202, 1980.

7. Esik. Decidability results concerning tree transducers. Acta Cybernetica, 5:1—
20, 1980.

J. Engelfriet and H. Vogler. Macro tree transducers. .J. Comput. Syst. Sci.,
31:71-145, 1985.

7. Fiilop. On attributed tree transducers. Acta Cybernetica, 5:261-279, 1981.

R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta
Informatica, 25:355-423, 1988.

F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest, 1983.

A. Habel. Hyperedge replacement: grammars and languages. PhD thesis, Uni-
versity of Bremen, 1989.

F. Hinz. Frzeugung von Bildsprachen durch Chomsky-Grammatiken — Fnt-
scheidbarkeits— und Komplexititsfragen. PhD thesis, RWTH Aachen, 1990.

41

[Knu68]

[Kre79]

[Kiih94]

[Kus91]

[Kus93]

[KV92]

[Ogd68]

[Per76]

[Rou70]

[Sch60]

[Tha70]

[Wis76]

[Yu89]

D.E. Knuth. Semantics of context—free languages. Math. Syst. Theory, 2:127-145,
1968.

H.-J. Kreowski. A pumping lemma for context—free graph languages. Lect. Not.
Comp. Sci., 73:270-283, 1979.

A. Kithnemann. A pumping lemma for output languages of macro tree transdu-
cers. Technical report, University of Ulm, 1994. in preparation.

S. Kuske. Ein Pumping-Lemma fiir Kantenersetzungssprachen beziiglich maxi-
maler Weglinge. Master Thesis, University of Bremen, 1991.

S. Kuske. A maximum path length pumping lemma for edge-replacement lan-
guages. In FCT’93, pages 342-351. Springer-Verlag, 1993. LNCS 710.

A. Kiihnemann and H. Vogler. Synthesized and inherited functions — a new
computational model for syntax—directed semantics. Technical Report 92-06,
University of Ulm, 1992. to appear in Acta Informatica.

W. Ogden. A helpful result for proving inherent ambiguity. Math. Syst. Theory,
2:191-194, 1968.

C.R. Perrault. Intercalation lemmas for tree transducer languages. J. Comput.
Syst. Sei., 13:246-277, 1976.

W.C. Rounds. Mappings and grammars on trees. Math. Syst. Theory, 4:257-287,
1970.

S. Scheinberg. Note on the boolean properties of context free languages. In-
Jorm. and Control, 3:372-375, 1960.

J.W. Thatcher. Generalized? sequential machine maps. .J. Comput. Syst. Sci.,
4:339-367, 1970.

D. 5. Wise. A strong pumping lemma for context—free languages. Theoret. Comp.
Set., 3:359-369, 1976.

S. Yu. A pumping lemma for deterministic context—free languages. Inform. Proc.
Letters, 31:47-51, 1989.

42

