Functions Computable with Nonadaptive Queries
to NP

Harry Buhrman * Jim Kadin Thomas Thierauf ¥
CWI Amsterdam University of Maine Universitat Ulm
Abstract

We study FPﬂIP, the class of functions that can be computed in
polynomial time with nonadaptive queries to an NP oracle. This is
motivated by the question of whether it is possible to compute wit-
nesses for NP sets within FPﬂIP. The known algorithms for this task
all require sequential access to the oracle. On the other hand, there is
no evidence known yet that this should not be possible with parallel
queries.

We define a class of optimization problems based on NP sets, where
the optimum is taken over a polynomially bounded range (NPbOpt).
We show that if such an optimization problem is based on one of the
known NP-complete sets, then it is hard for FPﬂIP. Moreover, we

will characterize F‘PﬂIP as the class of functions that reduces to such

optimization functions. We will call this property strong hardness.
The main question is whether these function classes are complete

for FPﬂIP. That is, whether it is possible to compute an optimal value

*CWI. PO Box 94079, 1090 GB Amsterdam, The Netherlands. E-mail:
buhrman@cwi.nl. Part of this research was done while visiting the Univ. Politécnica
de Catalunya in Barcelona. Partially supported by the Dutch foundation for scientific re-
search (NWO) through NFI Project ALADDIN, under contract number NF 62-376. Part
of this research was done while visiting Boston University with the support of NSF Grant
CCR-8814339

tDepartment of Computer Science, University of Maine, 5752 Neville Hall, Orono,
Maine 04469-5752.

Abteilung Theoretische Informatik, Universitdt Ulm, Oberer Eselsberg, 89069 Ulm,
Germany. E-mail: thierauf@informatik.uni-ulm.de. Part of the work done while visiting
the Department of Computer Science at the University of Rochester, Rochester, NY and
the Department of Computer Science at the University of Maine, Orono. Supported in
part by DFG Postdoctorial Stipend Th 472/1-1 and NSF grant CCR-8957604 and DAAD
Acciones Integradas.

for a given optimization problem in FPﬂIP. We show that these op-
timization problems are complete for FPﬂIP, if and only if one can

compute membership proofs for NP sets in FPﬂIP. This indicates that
the completeness question is a hard one.

1 Introduction

A fundamental issue in the study of NP and related classes is the complexity
of generating proofs that a string is a member of a given language. For NP-
complete sets, it is well known that the lexicographically smallest witness of
membership can be generated in FPNF| the class of functions computable
in polynomial time with access to an oracle in NP [Va76]. For example, if
we consider the NP-complete set SAT, the following function is in FPNF.

the lexicographically smallest
fiept(p) = satisfying assignment of ¢, if ¢ € SAT,
1, if o &€ SAT,

where L is some special symbol to denote that a function is undefined at a
point. (The name fip comes from the fact that the lexicographically small-
est satisfying assignment of a formula is the leftmost one in the standard
binary tree to represent all possible assignments.)

Krentel [Kr88] showed that every function in FPNY can be reduced to
Jieft, and thus fiep is complete for FPNP . His proof involved showing that the
leftmost accepting path of an NP computation can be made to correspond to
the correct query path of a FPNY computation and to the leftmost satisfying
assignment in the output of Cook’s reduction to SAT [Co71].

While we have FPNY as an upper bound on the complexity of com-
puting NP witnesses, we note that there are satisfying assignments that
are more difficult to compute than the leftmost one: Toda [To90] showed
that computing the lexicographically middle satisfying assignments is FPY-
complete, where PP denotes probabilistic polynomial time. In this paper,
we ask whether there are satisfying assignments that are easier to compute
than in FPNFP. An interesting candidate class is FP‘TP, the class of functions

in FPNP that can be computed by making nonadaptive queries to NP, that
is, all the queries must be written down before any answers are received
from the oracle. More specifically, our work is motivated by the following
questions.

(1) What is the structure of FPﬁIP? What functions are in FPﬁIP? What

functions are hard (or complete) for FPﬁIP?

(2) Can proofs of membership for NP-complete sets (for example satisfying
NP9

assignments) be computed by functions in FP”

(3) Are there classes of proofs that are easier to generate than the leftmost
proof? What is the relationship between different proofs? Do all proofs
of membership contain the same amount of information?

With respect to (1), Chen and Toda [CT93] showed many functions to
be complete for FPﬁIP (see also [JT93]). An example is the function that
for any Boolean formula ¢ gives the supremum of the satisfying assignments
of ¢. Observe that the supremum does not necessarily have to be a satisfying
assignment of (.

With respect to (2) and (3), note that fj.p minimizes over an exponential
range. Intuitively, we expect a function to be easier when we optimize over
a smaller range. As an example, we might ask for an satisfying assignment
having the maximum number of zeros. Then the range is polynomially (in
fact, linearly) bounded. However, such an assignment need not to be unique.
We define Fl.,, as a class of functions.'

some satisfying assignment of ¢

having the maximum

number of zeros, if ¢ € SAT,
1, if o & SAT.

[€ Frro <= flp) =

Although we expect F,ep, to at least contain satisfying assignments that
are easier to compute than the left most (if there are any), we will show
in Section 3 that Fl,ep, is hard for FPﬁIP under some appropriate functional

type of reduction. Moreover, we will show that FPﬁIP is precisely the class
of functions that reduces to Fler. Thus, although we don’t know whether
FPﬁIP N F,ero # (), we show that at least any function that reduces to Fep

is already in FPﬁIP. We will call this property strong hardness. Hence. Flep,

is strongly hard for FPﬁIP. An interesting consequence is that fier cannot

be reduced to Fer,, unless FPNP = FPﬁIP. This supports the intuition that
Foero is computationally easier than fep.

In Section 4, we link the question of whether these functions are complete
in the classical sense — some member has to be computable in FPﬁIP - to

! An alternative definition is in terms of multivalued functions as for example in [Se94].

the complexity of generating proofs of membership for certain NP-complete
sets. For example consider the following function class.

_ some satisfying assignment of ¢, if ¢ € SAT,
fEFsat — f((p)_ {J_’ lf(,D€SAT

We show that some function in Fl.,, is computable in FPﬁIP if and only if
some function in Fj,; is computable in FPﬁIP. In other words, if it is at all

possible to compute some satisfying assignment within FPﬁIP, then this can
be done for F,en,. Thus, loosely speaking, the “easy” assignments survive
when going from Fg t0 Flepp-

The above results extend to a large class of optimization problems, the
polynomially bounded NP optimization problems, NPbOpt for short, where
we have a polynomially bounded cost function associated with the solutions
of an NP set which we want to optimize. An exampleis F.,, where we count
the number of zeros. We will show that the NPbOpt’s based on one of the
known NP-complete sets are all equivalent under an appropriate functional
reducibility. Therefore, the above results for F,.,, carries over to any such
NPbOpt. Examples are maximum clique, longest paths, or various versions
of the travelling salesman problem. See Section 2.2 for more examples.

We note that Chen and Toda [CT91] introduced a similar concept, the
NP combinatorial optimization problems, NPCOP for short. The difference
to an NPbOpt is that the domain of the optimization problem has to be
polynomial-time decidable. This difference doesn’t matter when consider-
ing for example the maximum clique problem, because here, the domain is
simply the set of all graphs. However, F,e, is not an NPCOP unless P
= NP, because here, the domain is SAT. Thus, the class of optimization
problems introduced in this paper, NPbOpt, is the more general framework.

NPSV is the class of functions that can be computed by single-valued
nondeterministic polynomial-time transducers. NPSV is a subclass of FPﬁIP.
Is it possible to compute satisfying assignments even within NPSV? Hemas-
paandra et.al. [HNOS94] give a negative answer: this is not possible within
NPSV, unless the polynomial-time hierarchy collapses to the second level,
ie., Foqy N NPSV#() = PH=/.

An improvement of their result to FPﬁIP will therefore give a negative
answer to the completeness (in the classical sense) of functions computing
solutions to Flen,. In Section 5, we will make a first step by extending
their result to FPNPSVI, Very recently, this has been improved further by
Ogihara [0g95] to FPNPSVIe log(m)] for ¢ < 1.

Furthermore, we show that Fy,; is strongly hard for NPSV, FPNPSV[”,
and FPﬁIPSV under appropriate types of reducibilities, respectively. As a
consequence, we improve upon a result of Watanabe and Toda [WT93].
They show that fjo cannot be reduced to Fyq, unless NP # co-NP. We
show that even FPNPSVIH cannot be reduced to Fyqt, unless NP # co-NP.
(Note that fiep is hard for FPNPSV[I].)

The following is a summary of our main results:

(1) We extend the work of [CT91] and show that a broad class of functions,
that are interreducible, is hard for FPﬁIP (Theorem 3.1 and 3.2).

(2) We show that these functions are unlikely to complete for FPﬁIP by
providing a link to the problem of generating proofs of membership
for NP-complete sets like SAT (Theorem 4.2).

(3) We will characterize FPﬁIP as the class of functions that is (metric)
reducible to Flep (Theorem 4.5). Furthermore, NPSV, FPﬁIPSV, and
FPﬁIP are precisely the class of functions that are reducible to Fyy

for appropriate types of reducibilities, respectively (Theorem 5.5). We
will call this property strong hardness.

(4) As a consequence of the strong hardness results, we strengthen a result
of Watanabe and Toda [WT93] (Corollary 5.7).

2 Preliminaries

2.1 NP-Relations and Optimization Problems

Let ¥ = {0,1} be an alphabet and let R be a relation on ¥* x ¥*. The
domain of R is the set Dp = {z € ¥* | Jy € ¥* zRy}. Any y € ¥*
witnessing that some z is in Dp is called a solution for x with respect to R.
The set of all solutions for some z € »* with respect to R is denoted by
Sr(z), and Sp is the set of all solutions.

We say that R is a NP-relation, if the following two conditions hold.

(i) There is a polynomial p such that for all z € Dp, any solution for x
has length p(|z|), i.e., Sg(z) C £P(2D, and

(ii) R is decidable in polynomial time.

By Fr, we denote the class of all functions f : ¥* — SgpU{L} such that for
all z € ¥*

_ some y € Sg, if x € Dp,
flz) = { 1, otherwise.

Note that there is not a unique terminology for such function classes. The
proof generating functions such as Fg, are called inverse functions in [WT93].
Most of the classes we are considering were defined in [BLS84] or [Se94].
Selman [Se94] denotes these classes in terms of multivalued functions. An
inclusion of two function classes here becomes a refinement in terms of
multivalued functions.

In this paper, we investigate how hard it is to compute some solution for
a given z with respect to some NP-relation, i.e., some function in Fr. For
comparing the complexity of this task for different NP-relations, we need
to consider reductions between them. Here, the following question arises.
Given two NP-relations Ry and R; such that we can many-one reduce Dg, to
Dpg, via some function h € FP, where FP denotes the set of polynomial-time
computable functions. For any = € Dp,, can we compute a solution for z
with respect to Ry from a given solution for h(z) with respect to R;? In gen-
eral, this is not known. But in some cases, there are such witness-preserving
reductions. Consider for example Cook’s reduction from an arbitrary NP
set to SAT [Co71]. For a fixed NP machine M, for any input z for M,
Cook constructed a Boolean formula ¢, such that x is accepted by M iff
wg € SAT. And in fact, from any satisfying assignment for ¢, one can
compute in polynomial time an accepting path of M on input z.

But in general, a many-one reduction doesn’t respect the structure of
the solution spaces of the instances that are mapped to each other. It
just guarantees the existence/nonexistence of solutions. However, looking
at the many-one reductions of the NP-completeness proofs in the standard
textbooks (see for example in [BDG88, HU79]), we know that all the known
NP-complete sets in fact share the above described property with SAT.

Let R be an NP-relation such that Dp is NP-complete. We call R
witness-preserving complete, if, for any NP-relation R/, there exist func-
tions g, h € FP such that h is a many-one reduction from Dg to Dp, and
for any € D and any y € Sg(h(z)), we have that g(z,y) € Sg/(z). That
is, g computes a witness for z given a witness for h(x). A set L is witness-
preserving complete, if it has a witness-preserving complete NP-relation.

Note that all sets that are isomorphic to SAT are witness-preserving NP-
complete: let L be isomorphic to SAT via an isomorphism h, say, from L

to SAT. Define Ry, by xRpy if y is a satisfying assignment for h(z). Then
Ry is a witness-preserving complete NP-relation for L because for any NP
set A, if f is the Cook reduction from A to SAT, then h~' o f reduces A to
L in a witness-preserving way since the Cook reduction does so. Thus, all
the known NP-complete sets are in fact witness-preserving complete.

In a very general approach, Agrawal and Biswas [AB92] introduced the
notion of a universal relation, that captures the idea of witness-preserving
in a very strict way. They showed that any universal NP-relation is witness-
preserving complete. Since all sets that are isomorphic to SAT have a uni-
versal relation, the comment in the previous paragraph also follows from
their result.

We now turn to optimization problems associated with an NP-relation R.
A function ¢ € FP, ¢: D x Sg — N, is called a solution cost function for
R. The optimal solution cost function for R, ¢*: Dr — N is defined by

c*(z) = max{c(z,y) |y € Sr(x) }.

For any = € Dg, we define the set of optimal solutions by OptSolg .(z) =
{y € Sgr(z) | ¢(z,y) = ¢*(z)}. For any NP-relation R and any cost func-
tion ¢ for R, we say that (R, c) is an NP optimization problem, namely the
problem to compute an optimal solution for any given z € Dpg. For any
function f : ¥* — SpU{L}, we define

some y € OptSoly .(x), if z € Dp,
J€Optp, = [fl) = { 1, 2e?) otherwise.

(R,c) is called a polynomially bounded NP optimization problem,
NPbOpt for short, if there is a polynomial that bounds the solution cost
function ¢. Note that, from any NP set, we can derive a polynomially
bounded NP optimization problem by taking some relation witnessing the
set being in NP and some arbitrary polynomially bounded cost function c.
In contrast, Chen and Toda [CT91] defined the more restricted notion of an
NP combinatorial optimization problem (NPCOP) which is defined similar
to an NPbOpt, but with the additional constraint that the domain Dy is a
set in P.

Next, we define two operations for NP-relations: join and embedding.
The join corresponds to the linear paddability operation for NPCOP’s from
Chen and Toda [CT91]. An NP-relation R has a join function, if there
are two functions joing, g € FP such that for any x,...,z, € X*, if

joing(xy,...,z,) = z and y € Sgr(z), then g(z1,...,2n,y) = (Yy1,---,Yn)
where y; € Sp(z;), fori=1,...,n.

That is, the join function combines several given strings into one string z
in such a way that from any solution for z, we can compute solutions for the
given strings. An even stronger version of the join function is required in
the definition of a universal relation by Agrawal and Biswas [AB92]. Since
they have shown that all the known NP sets have a universal relation, in
particular, they have a join function.

For example, the join function for SAT is essentially the conjunction.
That is, for any two Boolean formulas ¢; and s, after renaming the vari-
ables so that ¢; and @2 have disjoint sets of variables, joing, (o1, p2) =
1 N\ 3.

For an NPbOpt (R, c) we say that the join function of R respects c, if,
when we join two instances, then we can compute an optimal solution for the
two instances from an optimal solution for the join of the instances. More
formally, there has to exist a function g € FP, g: Drp x Dp x Sg — Sr X Sgp
such that for all zp, z1 € Dg and for all y € OptSolg .(joing(wo, 1)), if
9(wo,71,y) = (Yo, 41), then yo € OptSolg .(z9) and y1 € OptSolg .(1).

We say that (R,c) has an embedding function, if there exist two func-
tions e,g € FP, e : ¥* — Dpg and g : ¥* x Sp — Sg, such that there is a
[€ Optp . such that for all z € X~

Vy € OptSolg (e(z)) : g(z,y) = f(2).

That is, e maps a given string z to some string z in the domain Dg of R
such that from an optimal solution for z, one can either compute an optimal
solution for z, if z € Dp, or detect that x € Dp.

We adapt the notion of Agrawal and Biswas [AB92] to our framework
and call an NPbOpt (R, c¢) universal, if

1. R is a witness-preserving complete NP-relation,
2. R has a join function that respects ¢, and

3. (R,c) has an embedding function.

2.2 Examples

First of all, note that all examples of Chen and Toda for NPCOP’s can easily
be modified to be universal NPbOpt’s. They mention for example

e Maximum Two Satisfiability, where each clause of a CNF formula
contains at most two literals,

e Maximum Clique,

e Minimum Coloring,

e Longest Path,

e 0-1 Integer Programming, and

e (-1 Travelling Salesman, where the edges have weights zero or one.

These problems can be formulated as universal NPbOpt’s because there
is an associated NP-complete decision problem for each of them. This,
however, we expect for any interesting optimization problem, and therefore,
we extend the concept of Chen and Toda. We give some examples that are
not expressible as an NPCOP unless P = NP, because the domain of these
problems is NP-complete.

o Foro

Let Ry, be the NP-relation for SAT that checks satisfying assignments, and
#ero be the cost function that counts the number of zeros in a satisfying
assignment. Then (Rsq, #zer0) is an NPbOpt that requires to compute some
satisfying assignment with the maximum number of zeros, i.e., a function
from Flepp.

The join function is the conjunction which respects #,er,. Further-

more, (Rsqt, #er0) has an embedding function. Let ¢ = ¢(z1,...,2,) be a
Boolean formula and let z1,..., 2,41 be new variables. Define
R(21,- -y Ty 2155 2n41) = PV (21 Ao Aznga).

Then ® € SAT, and if ¢ € SAT and « is a satisfying assignment with the
maximum number of zeros for ¢, then a0"*! is a satisfying assignment for
® with the maximum number of zeros. On the other hand, if ¢ & SAT, then
071"+ is a satisfying assignment for ® with the maximum number of zeros.
Therefore, getting a satisfying assignment with the maximum number of
zeros for @, one can either get one for ¢ or detect that ¢ ¢ SAT.

We conclude that (Rsat, #2er0) is a universal NPbOpt.

® Fraz-zero -guess

Finaz-zero-guess is defined on instances (NN, z,1™) for the standard univer-
sal NP-complete set, i.e., it is asked whether the nondeterministic Turing
machine N accepts input x in at most m steps. Any nondeterministic com-
putation path of N can be represented as a binary string corresponding to
the nondeterministic branch points in the computation. Fy,uz-sero0-guess 18
the class of functions that, on input (V,z,1™), give some accepting path of
N on z with the maximum number of zeros, and are undefined, if there is
no accepting path. Join and embedding functions are similar as for F,ep,.
Here, one has to manipulate the input machine N appropriately.

e Unary-TSP

In unary-TSP, there is given an undirected graph G with integer weights
given in unary notation on the edges, so that the weights are bounded by
the size of the input. The task is to determine a traveling salesman tour
in G having minimal weight.? For the join function see [AB92]. For the
embedding function, let B be the sum of the weights of the edges of G. Let
G’ be the extension of G to a complete graph, where all new edges have
weight B + 1. Now, G’ clearly has a traveling salesman tour. Furthermore,
if the tour with minimum weight in G’ is bounded by B, then this is also a
minimum tour in G. Otherwise, there is no traveling salesman tour in G.

In Section 3 and 4, we show several properties of universal NPbOpt’s.
Hence, in particular, this applies to all the above mentioned optimization
problems.

2.3 Functional Reducibilities

There are several notions of reducibility between functions. Krentel [Kr88]
introduced the metric reduction. Let f, g be functions.

[<ihg == 3, eFP: f(z)=ty(z,g0h ().

This clearly captures the idea of being able to compute f(z) from one call
to g.

Watanabe and Toda [WT93] and Chen and Toda [CT91] extended this
reduction to function classes. Let G be a class of functions. We distinguish
the case that one pair of translation functions reduces f to all functions in

?Note that unary-TSP is a minimization problem. By defining an appropriate solution
cost function, this can be easily turned into a maximization problem.

10

G, or that for each function g € G there is a pair of translation functions
that reduces f to ¢g. In the first case, we call the reduction uniform.

[T G 3t €FP VG E G f() = ta(w, g0t (),
[<IG = VYgEG I b eFP: f(z) =ty(z,g0t(x)).

We will also consider the more general type of reduction when more than
one instance is given to a function in G. That is, t;(z) produces a list
of instances and ty gets the function values of some function in G of these
instances. This is called a truth-table reduction and denoted by g;‘tmf orm-FP
and <%, respectively.

If G is a class of partial functions, we must deal with the case that f(z)
is defined, while g o #1(z) is undefined. We call a reduction strict, denoted
by f <EP-strict G if there are functions t1, to € FP witnessing that f <%, G
such that for all z, if f(z) is defined, then ¢ is defined for all instances
produced by t1(z), for all g € G.

Let <, be any of the reducibilities defined here. For a class F' of func-
tions, we say that G is hard for F' with respect to <,-reduction, if for all
functions f € F, we have f <, G. This is denoted by F' <, G. Furthermore,
we say that G is complete for F, if in addition there is some function in G
that is also in F, i.e., FNG # 0.

We also consider the case that eventually not all functions in F' are
reducible to G, but that any function in G can be used to compute some
function in F'. We call this a weak reduction.

F <pesk-FP @« Vg€ G It,ty €FP: ty(w,goti(x)) € F.

The uniform and truth-table versions of this reduction are defined analo-
gously. The uniform weak Turing reduction was defined in [FHOS93].

It is easy to see that all the reducibilities defined here are transitive, but
in general, only the weak reducibilities are reflexive.

Although the uniformness condition seems to be a strong restriction on
the reduction, Watanabe and Toda [WT93], using a proof technique from
Grollmann and Selman [GS88], have shown that for many function classes
these two reduction types are in fact equivalent.

Lemma 2.1 [WT93] Let f be a function, R an NP-relation and ¢ a solu-
tion cost function for R. Then we have

(i) f<Up Fp <« f<pmiform-FP g,

11

(”) f StFtP OptR,c — f Sgtniform—FP OptR,C'

The same holds for the other reducibilities defined above, i.e., <IL.

FP-strict FP-strict weak -FP weak -FP
<t » SIT » SIT ; and <f .
When we consider NP optimization problems that have embedding func-
tions as in the previous section, then reductions to it can always be made
strict.

Lemma 2.2 Let f be a function and (R,c) a universal NPbOpt. Then we
have f <, Optgp, <= f < P -strict Optpc-

The lemma also holds for the other reducibilities defined above.

3 Function Classes Hard for FPﬁIP

Chen and Toda [CT91] showed that linearly paddable NPCOP’s are hard
for FPITIP under gf_ }} -reductions. Our first theorem states that this holds
as well for universal NPbOpt’s, as for example Fl,e. The proof is similar
to that of Chen and Toda, however, we need the embedding function to get

around the difficulty that the domains of our optimization problems are in
NP.

Theorem 3.1 Let (R,c) be a universal NPbOpt. Then FP‘TP <rr Optp. -

Proof. Let f € FPﬁIP via some polynomial-time transducer T" and some
NP set A. Let z € £* be fixed. We show how to compute f(z) when getting
an arbitrary optimal solution for some instance z with respect to (R, c).

Let wy,...,w; be the queries of transducer T on input z to A. Since
Dpg is NP-complete, there is a function h € FP reducing A to Dg. Let e
and g be embedding functions for (R, c) . We use e to map all strings h(w;)
to Dp and then combine all the resulting strings into one string z using the
join function, joing, of R. That is, we define

z = joing(eo h(wy),...,eo h(wyg)).

Let y € OptSolg .(2). Since joinp respects ¢, from y we can compute
solutions y; € OptSolg (e o h(w;)), for i =1,..., k. Now, g(h(w;),y;) either
gives a witness that h(w;) is in Dpg, and hence w; is in A, or g(h(w;),y;) is
undefined, and hence w; is not in A.

12

Thus, we can compute the answers to w1, ...,wg from y, and therefore,
we can compute f(z). O

Our next theorem shows that any universal NPbOpt is hard for any other
NPbOpt under g'l“_ef‘—‘,k'F P _reductions, and hence, any two such NPbOpt’s
are equivalent to each other. In the previous theorem it was not necessairy
for the relation R to be witness-preserving complete, but now we seem to
need this property.

Theorem 3.2 Let (Ry,co) be a universal NPbOpt. Then, for any NPbOpt
(R,c), we have OptR,C S’f’f%k'FP OPtRO,co-

Proof. ~ We will show that for any z € ¥*, we can map z to some string
z € Dpg, such that from an optimal solution for z with respect to (Ry, cp),
we can either compute an optimal solution for x with respect to (R,c) or
detect that x is not in Dg.

Let us define the NP-relation R’ as follows. For any z € ¥* and k£ <
p(|z|), where p is some polynomial that bounds the solution cost function ¢,

(z,k)R'y <= zRy and c(z,y) > k.

Let z € ¥* be fixed and let k* be the maximum k such that (x,k) € Dgr.
Observe that any solution for (z, k*) with respect to R’ is an optimal solution
for z with respect to (R,c), i.e., Sr(z,k*) C OptSolg .(z). We will show
how to compute a witness for each (z,k) € D when getting an arbitrary
optimal solution for some instance z with respect to (Rg,cp). From these
witnesses, we output the one for (z, k*).

Since R’ is an NP-relation and since Rq is witness-preserving complete,
there is a function h € FP that reduces Dp to Dpg, in such a way that for
any (z,k) € Dp and from any witness for h(z,k) € Dg, we can compute a
witness for (z,k) € Dpr.

As in the proof of Theorem 3.1, using the embedding function
and the join function for Ry, we combine all the resulting strings
h(z,1),...,h(x,p(]z|)) into one string z such that from a witness for
z € Dg,, we can compute witnesses for all h(z,k) that are in Dpg,.

O

Corollary 3.3 Let (R,c) and (R', ') be universal NPbOpt’s. Then we have

OptR’ ! quu—e]a’k P OptR,c

13

Thus all the examples of optimization problems we give in Section 2.2 are
equivalent with respect to Si”_e]‘ik'F P reductions. So although Fle,, might
look as a somewhat technical problem, it is in fact equivalent to any of the
more natural NPbOpt’s.

We remark that if we don’t assume the existence of an embedding func-
tion for the NPbOpt’s, then the above theorems still hold, but with the
corresponding truth-table reductions, respectively.

4 Completeness

In the previous section, we established a framework for proving certain
functions hard for FPﬁIP. The natural question that arises is whether these

functions are also complete for FPﬁIP. (Recall that G is complete for F if G
is hard for F' and, in addition, F N G # (). Chen and Toda [CT91] showed
that a randomized version of FPﬁIP can actually compute any NPCOP in

the following sense: for any NPCOP there is a two-place function f € FPﬁIP,
that, when given as one input the problem instance = and as the other in-
put some randomly chosen string, outputs with high probability an optimal
solution for z with respect to the given NPCOP. This result holds also for
NPbOpt’s.

Theorem 4.1 [CT91] Let (R,c) be an NPbOpt and let e be a polynomial.
Then there exist a function f € FPﬁIP and a polynomial r such that for all
x € Dg, |z| =n,

Prob{w € {0,1}"™ | f(z,w) € OptSolg.(z)} > 1—27°".

However, at present time, we do not know whether the NPbOpt results
from the previous section can be extended to completeness results. Our
next theorem states that if it is at all possible to compute some satisfying
assignment with parallel queries to NP, then this is also possible within
F,ero. In other words, obtaining such a completeness result is exactly as

hard as any proof that one can indeed compute some satisfying assignment
in FP)".

Theorem 4.2 Let (R,c) be an NPbOpt and Ry be a witness-preserving
complete NP-relation. Then Fr, N FP‘TP # 0 <= Optg, N FPﬁIP # .

14

Proof. Let f € Fr, N FPﬁIP. We define an NP-relation R’ as follows.
For any z € ¥* and k < p(|z|), where p is some polynomial that bounds the
solution cost function ¢,

(r,k)R'y <= xRy and c(z,y) > k.

Since R’ is an NP-relation and since Ry is witness-preserving complete, there
are functions h, g € FP such that h many-one reduces Dg to Dp, and for
any (z,k) € Dp and any string z witnessing that h(z, k) € Dg,, g(x,k, z)
is a witness that (z,k) is in Dpr.

Let x € X* be fixed. We show that we can compute some value in
OptSolp () with parallel queries to some NP set.

Let k* be the maximal k such that (z,k) € Dpg, i.e., we have ¢*(z) = k*.
Then h(z,k*) is in Dg, and, by our assumption, z = f o h(z,k*) is some
witness for this. Hence, g(x,k*,z) is a witness that (z,k*) € Dg and
therefore, we have that g(z,k", z) € OptSolg .(z). That is, we define

fl(z) = g(z,c"(2), f o h(z,c" ().

It remains to show that f’ € FPﬁIP. We leave this to the reader. O

Corollary 4.3 Fyy N FPYY # () <= Fop N FPIT #£10.

On the other hand, we will show in the next theorem that all functions
that are gf_ PT -reducible to some NPbOpt are already in FPﬁIP, and there-

fore, together with Theorem 3.1, it follows that FPﬁIP can be characterized

as the class of functions that are gf_ PT -reducible to some NPbOpt. This
can be interpreted as a weaker form of completeness.

Definition 4.4 Let F' and G be function classes. We say that G is strongly
hard for F under <,-reduction, if F={f|f <, G}.

The next theorem and corollary show that the hardness results obtained
for NPbOpt’s can indeed be strengthened to strong hardness.

Theorem 4.5 Let f be a function such that fgf_PT Optg., for some
NPbOpt (R,c). Then f is in FPﬁTP.

15

Proof. By Lemma 2.1, we can assume that the reduction is uniform. Let
[be reducible to Optp . via t1, t2 € FP, i.e., we have for any x and for all
y € OptSolg .(t1(z)) that f(z) = t2(z,y).

Define NP sets A and B as follows. For any z € ¥*, k < p(|z|), and 7 <
q(|z|), where p is some polynomial that bounds the solution cost function ¢
and ¢ is some polynomial that bounds the length of the solutions for « with
respect to R

(z,k) € A <= 3y € Sg(ti(z)) : c(tr(z),y) = k,
(x,k,i) € B <= 3Jy € Sg(ti(z)) : c(ti(z),y) > k and
the i-th bit of to(z,y) is a one.

Let k* be the maximal k such that (x,k) € A. Then the i-th bit of f(z)
is one, if (z,k*,i) € B, and zero, otherwise, for i« = 1,...,¢(|z|). Therefore,
we can compute f(z) by asking in parallel the queries (x, k) to A and (x, k, 1)
to B, for k=1,...,p(|z|) and i = 1,...,q(|e|). Thus f € FP{*” C FP"".

O

In fact, in Theorem 4.5, it suffices to assume that f <, Optp,-

Taking Theorem 4.5 and Theorem 3.1 together, we obtain the already
mentioned characterization of FP‘TP as the class of functions that is reducible
to any universal NPbOpt.

Corollary 4.6 Let (R,c) be a universal NPbOpt. Then
FPYY = {f| f <% Optr,.} = {f| f <l Optg, }.
Corollary 4.7 FPﬁIP ={f1f<% Frero }-

It follows that if any FPNP-complete function is reducible to, say Fiero,
then this function can already be computed with parallel queries to NP, and
hence FPNF would be the same as FPﬁIP.

Corollary 4.8 Let (R,c) be a universal NPbOpt. Then

fiep <IH. Optp, < FPhVP =FPNP — PpNP PﬁIP.

16

5 Negative Results and NPSV

For certain subclasses of FPﬁIP, one can show that it is not possible to
compute satisfying assignments, unless the polynomial-time hierarchy, PH,
collapses. Hemaspaandra et al. [HNOS94] showed such a result for the class
NPSV.

Definition 5.1 A nondeterministic Turing transducer N is single-valued,
if, for each input z, N generates the same output on all accepting com-
putations. NPSV is the class of partial functions that can be computed by
single-valued nondeterministic polynomial-time transducers. FP‘NPSVM de-
notes the class of functions that is computable in polynomial time with k

nonadaptive queries to an NPSV oracle.

Note that NPSV C FPﬁIP, since with the help of an NP set one can
get in parallel all the bits of an NPSV function value. In fact, FPﬁIP =
FP|"Y [FHOS93].

Theorem 5.2 [HNOS94] IfNPSV N Fyy # 0, then PH = %L,
The following lemma will enable us to extend this result to FPNPSVI],
Lemma 5.3 Let R be an NP-relation. Then
Fr N FPNPSVIl £ — Fp N NPSV # 0.

Proof. IfFrN FPNPSVIL = () then the lemma clearly holds. So assume that
f € Fr N FPNPSVIL Let M be a FP machine and N be an NPSV machine
witnessing that f € FPNPSVI We have to show that Fp N NPSV # 0.

Consider the following machine N’ on input z. First, N’ simulates M on
input z until M queries it’s oracle. Let ¢, be the query. Then N’ assumes
that the answer to the query is L and continues the simulation of M. Let y
be the output of M. If 2Ry holds, then N’ outputs y and halts. (Note that
this is a deterministic computation up to here.) Otherwise, N’ simulates
N on input q;. If N rejects, then so does N'. If N accepts, let z be the
value computed by N. Now, N’ continues the simulation of M with z as the
answer to g;. Note that z is the answer that M actually gets when asking
its oracle. Therefore, N’ will generate the same output as M at the end of
the computation.

Clearly, N’ is an NPSV machine. Furthermore, if z ¢ Dpg, then N’
generates no output. If z € Dp, then N’ outputs some y € Sr(z). a

17

Corollary 5.4 If Fyyy N FPNPSVU £ () then PH = 51

This result has been improved recently by Ogihara [Og95] who showed
that Fy, N FPNPSVle logm)] — ¢ for ¢ < 1, unless the polynomial-time
hierarchy collapses. It is an interesting open problem whether these results
can be extended to even larger function classes.

The following theorem shows that for any witness-preserving complete
NP-relation R, Fgr is hard, and, in fact, even strongly hard for NPSV,
FPNPSVI and FPﬁIPSV with respect to different types of reductions.

Theorem 5.5 Let R be a witness-preserving complete NP-relation.
(1) NPSV = (1| J <[By = {1 | § <}t B,

(it) FPRPSVH = {f | f <{f Fr},

(iii) FPIPSY = { f | f <lfp Fr}.

Proof. (i) Let f be in NPSV and let N be an NPSV machine for f.
Consider the following NP-relation Ry. For z,y € ¥* where |y| < p(|z|)
and p is some polynomial that bounds the the running time of NV

tRyy <= y is a computation path of N on z

on which N produces an output.

Since R is a witness-preserving complete NP-relation, there exist two func-
tions t1, to € FP such that £; maps any x from the domain of Ry to the
domain of R and for any solution y for ¢,(z), i.e., t1(z)Ry holds, ts(x,y)
gives a solution for z, i.e., zRnto(x,y) holds. Clearly, from ty(z,y) one
can compute f(z) in polynomial time. Furthermore, the reduction (¢, t2) is
strict.

For the other direction, let f be a function that is <[F5!"! _reducible
to Fr via the functions t;, to € FP. Consider the following NP machine N
on input z. First, N computes the queries t1(x) = (w1,...,w;) and then
guesses solutions yi,...,y, for them with respect to R. If w;Ry; for ¢ =
1,...,k, then N outputs to(z,y1,...,Yk)-

Since the reduction is strict, there will be a path where IV finds solutions
for all wy,...,w,. Furthermore, for every k-tuple of solutions yi,...,yx,
to(z,y1,...,yx) will give the same value, namely f(x). Hence, N is single-
valued and computes f.

18

The inclusion from left to right of (ii) and (iii) follows by an easy modi-
fication of the argument for (i). In fact, we get the more general result that

FP\"SVI C [| £ <t i}, for every k € FP.

For the reverse inclusion of (ii), let f be a function that is <fZ. -reducible
to Fg via the functions t1, to € FP. Consider the following NP machine N
on input z. First, N computes ¢;(z) and then guesses a solution y for it
with respect to R. If ¢1(x) Ry, then N outputs to(z,y).

Clearly, N is a NPSV machine that outputs f(x) if it is defined. Now a
FP machine with N as an oracle can compute f(z) by producing the same
output as N on z when it is defined, and t2(x, L), otherwise.

For the reverse inclusion of (iii), let f be a function that is <%, -reducible
to Fr via the functions ¢, to € FP. We show how to compute f with
parallel queries to NP. Let z € ¥* be fixed and let w1, ..., w; be the queries
produced by t1(z). By asking the w;’s to Dg, we can find out which ones
of them actually have a solution with respect to R. Suppose [of wy,..., wyg
are in Dp, where 0 < [< k. Observe that an NP machine knowing [can
actually compute (on some path) the w;’s in Dg together with some solution
for them, and therefore, via to also f(z). Since there are only k possibilities
for [, i.e. polynomially many, we can define an NP set that, for each [, refers
to the bits of f(x), similar as in the proof of Theorem 4.5. All together, we
can compute f(x) by asking polynomially many queries in parallel to Dg
and the latter NP set. a

Corollary 5.6 F,; is strongly hard for NPSV and FPNPSVM, but not com-
plete for these classes for <ILrstrict _and <FI. _reduction, respectively, un-
less the polynomial-time hierarchy collapses.

Watanabe and Toda [WT93] asked whether one can compute the leftmost
satisfying assignment of a formula from any other satisfying assignment.
Recall that fi.p is a FPNP—complete function. They showed that this is very
unlikely to be true: if fi.p <fpostrict f o, then NP = co-NP. However, by
the characterizations obtained in Theorem 5.5, we have that the assumption
made is equivalent to NPSV = FPNP. Thus we can now strengthen the result
of Watanabe and Toda [WT93] by weakening the assumption to NPSV =
FPNPSVM, which still leads to the same consequence.

Corollary 5.7 Let R be a witness-preserving complete NP-relation.

(i) If FPNPSVI <FP-strict B, - then NP = co-NP.

19

(ii) For any k > 1, if FPﬁIPSV[k] <FP Fg, then P‘TP[Z] — PNPI fop any

[> 1, and hence the polynomial-time hierarchy collapses.

(iii) Let (R',c) be a universal NPbOpt. If Optps . <{%. Fg, then PﬁIP =
PNPUL - and hence the polynomial-time hierarchy collapses.

Proof. (i) From the assumption together with Theorem 5.5 (i), we con-
clude that FPNPSVIH — NPSV. As a special case, when considering only
characteristic functions, it follows that PNPSVI = NP. Now, observe that
co-NP C PNPSVIIL,

(ii) From the assumption together with Theorem 5.5 (ii), we conclude
that FPNTSVIEL FPNPSV[”, and hence PNPSVIEl — pNPSVIl - Now, the

I
claim follows since P‘TPSVM = P‘TP[Z] for any [> 0 [FHOS93].
(iii) Follows from a similar argument as in (ii) together with Theorem 3.1

and the transitivity of the <’/ -reduction. O

Acknowledgements

We want to thank Manindra Agrawal and Somenath Biswas for helpful dis-
cussions. The referee comments helped a lot to improve the representation
of the paper.

References

[AB92] M. Agrawal, S. Biswas. Universal Relations. In Proc. 7th Struc-
ture in Complexity Theory Conference, pages 207-220, 1992. To
appear in Information and Computation.

[BDG88] J. Balcdzar, J. Diaz, and J. Gabarrd. Structural Complezity I.
EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 1988.

[BLS84] R. Book, T. Long, A. Selman. Quantitative relativizations of
complexity classes. STAM Journal on Computing 13(3):461-487,
1984.

[CoT1] S. Cook. The Complexity of Theorem-Proving Procedures. In
Proc. 3rd ACM Symposium on Theory of Computing, pages 151—
158, 1971.

20

[CT91]

[CT93]

[FHOS93]

[GS88]

[HNOS94]

[HU79)

[JT93]

[Kr88]

[0g95]

[Se94]

[To90]

[VaT76]

Z. Chen and S. Toda. On the Complexity of Computing Optimal
Solutions. In International Journal of Foundations of Computer
Science 2:207-220, 1991.

Z. Chen and S. Toda. An Exact Characterization of FPﬁIP.
Manuscript, 1993.

S. Fenner, S. Homer, M. Ogiwara, and A. Selman. On Using
Oracles That Compute values. In Proc. 10th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), 398-407,
1993. To appear in SIAM Journal on Computing.

J. Grollmann and A. Selman. Complexity Measures for Public-
Key Cryptosystems. SIAM Journal on Computing 17:309-335,
1988.

L. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. Com-
puting Solutions Uniquely Collapes the Polynomial Hierarchy. In
Algorithms and Computaation, International Symposium ISAAC
'94, Springer Verlag LNCS 834, pages 56—64, 1994. To appear in
SIAM Journal on Computing.

J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

B. Jenner and J. Tordn. Computing Functions With Parallel
Queries to NP. Theoretical Computer Science 141, 175-193, 1995.

M. Krentel. The Complexity of Optimization Problems. Journal
of Computer and System Sciences 36(3):761-767, 1988.

M. Ogihara. Functions Computable with Limited Access to NP.
Information Processing Letters 58:35-38, 1996.

A. Selman. A taxonomy of complexity classes of functions. Jour-
nal of Computer and System Science 48:357-381, 1994.

S. Toda. The complexity of finding medians. Proc. 31st IEEE
Annual Symposium on Foundations of Computer Science, 778—
787, 1990.

L. Valiant. The Relative Complexity of Checking and Evaluating.
Information Processing Letters 5:20-23, 1976.

21

[WT93] O. Watanabe and S. Toda. Structural Analysis on the Complexity
of Inverse Functions. Mathematical Systems Theory 26:203-214,
1993.

22

