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Abstract

We study FPNPk � the class of functions that can be computed in
polynomial time with nonadaptive queries to an NP oracle� This is
motivated by the question of whether it is possible to compute wit�
nesses for NP sets within FPNPk � The known algorithms for this task
all require sequential access to the oracle� On the other hand� there is
no evidence known yet that this should not be possible with parallel
queries�

We de�ne a class of optimization problems based on NP sets� where
the optimum is taken over a polynomially bounded range �NPbOpt��
We show that if such an optimization problem is based on one of the
known NP�complete sets� then it is hard for FPNPk � Moreover� we

will characterize FPNPk as the class of functions that reduces to such
optimization functions� We will call this property strong hardness �

The main question is whether these function classes are complete
for FPNPk � That is� whether it is possible to compute an optimal value
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for a given optimization problem in FPNPk � We show that these op�

timization problems are complete for FPNPk � if and only if one can

compute membership proofs for NP sets in FPNPk � This indicates that
the completeness question is a hard one�

� Introduction

A fundamental issue in the study of NP and related classes is the complexity
of generating proofs that a string is a member of a given language� For NP�
complete sets� it is well known that the lexicographically smallest witness of
membership can be generated in FPNP� the class of functions computable
in polynomial time with access to an oracle in NP �Va�	
� For example� if
we consider the NP�complete set SAT� the following function is in FPNP�

fleft��� 


���
��
the lexicographically smallest
satisfying assignment of �� if � � SAT�
�� if � �� SAT�

where � is some special symbol to denote that a function is unde�ned at a
point� �The name fleft comes from the fact that the lexicographically small�
est satisfying assignment of a formula is the leftmost one in the standard
binary tree to represent all possible assignments��

Krentel �Kr��
 showed that every function in FPNP can be reduced to
fleft � and thus fleft is complete for FP

NP� His proof involved showing that the
leftmost accepting path of an NP computation can be made to correspond to
the correct query path of a FPNP computation and to the leftmost satisfying
assignment in the output of Cook�s reduction to SAT �Co��
�

While we have FPNP as an upper bound on the complexity of com�
puting NP witnesses� we note that there are satisfying assignments that
are more di�cult to compute than the leftmost one� Toda �To��
 showed
that computing the lexicographically middle satisfying assignments is FPPP�
complete� where PP denotes probabilistic polynomial time� In this paper�
we ask whether there are satisfying assignments that are easier to compute
than in FPNP� An interesting candidate class is FPNP

k � the class of functions

in FPNP that can be computed by making nonadaptive queries to NP� that
is� all the queries must be written down before any answers are received
from the oracle� More speci�cally� our work is motivated by the following
questions�
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��� What is the structure of FPNP
k � What functions are in FPNP

k � What

functions are hard �or complete� for FPNP
k �

��� Can proofs of membership for NP�complete sets �for example satisfying
assignments� be computed by functions in FPNP

k �

��� Are there classes of proofs that are easier to generate than the leftmost
proof� What is the relationship between di�erent proofs� Do all proofs
of membership contain the same amount of information�

With respect to ���� Chen and Toda �CT��
 showed many functions to
be complete for FPNP

k �see also �JT��
�� An example is the function that
for any Boolean formula � gives the supremum of the satisfying assignments
of �� Observe that the supremum does not necessarily have to be a satisfying
assignment of ��

With respect to ��� and ���� note that fleft minimizes over an exponential
range� Intuitively� we expect a function to be easier when we optimize over
a smaller range� As an example� we might ask for an satisfying assignment
having the maximum number of zeros� Then the range is polynomially �in
fact� linearly� bounded� However� such an assignment need not to be unique�
We de�ne Fzero as a class of functions�

�

f � Fzero �� f��� 


�����
����
some satisfying assignment of �
having the maximum
number of zeros� if � � SAT�
�� if � �� SAT�

Although we expect Fzero to at least contain satisfying assignments that
are easier to compute than the left most �if there are any�� we will show
in Section � that Fzero is hard for FP

NP
k under some appropriate functional

type of reduction� Moreover� we will show that FPNP
k is precisely the class

of functions that reduces to Fzero � Thus� although we don�t know whether
FPNP

k � Fzero �
 �� we show that at least any function that reduces to Fzero

is already in FPNP
k � We will call this property strong hardness� Hence� Fzero

is strongly hard for FPNP
k � An interesting consequence is that fleft cannot

be reduced to Fzero � unless FP
NP 
 FPNP

k � This supports the intuition that
Fzero is computationally easier than fleft �

In Section �� we link the question of whether these functions are complete
in the classical sense � some member has to be computable in FPNP

k � to

�An alternative de
nition is in terms of multivalued functions as for example in �Se����
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the complexity of generating proofs of membership for certain NP�complete
sets� For example consider the following function class�

f � Fsat �� f��� 


�
some satisfying assignment of �� if � � SAT�
�� if � �� SAT�

We show that some function in Fzero is computable in FP
NP
k if and only if

some function in Fsat is computable in FP
NP
k � In other words� if it is at all

possible to compute some satisfying assignment within FPNP
k � then this can

be done for Fzero � Thus� loosely speaking� the �easy� assignments survive
when going from Fsat to Fzero �

The above results extend to a large class of optimization problems� the
polynomially bounded NP optimization problems� NPbOpt for short� where
we have a polynomially bounded cost function associated with the solutions
of an NP set which we want to optimize� An example is Fzero � where we count
the number of zeros� We will show that the NPbOpt�s based on one of the
known NP�complete sets are all equivalent under an appropriate functional
reducibility� Therefore� the above results for Fzero carries over to any such
NPbOpt� Examples are maximum clique� longest paths� or various versions
of the travelling salesman problem� See Section ��� for more examples�

We note that Chen and Toda �CT��
 introduced a similar concept� the
NP combinatorial optimization problems� NPCOP for short� The di�erence
to an NPbOpt is that the domain of the optimization problem has to be
polynomial�time decidable� This di�erence doesn�t matter when consider�
ing for example the maximum clique problem� because here� the domain is
simply the set of all graphs� However� Fzero is not an NPCOP unless P

 NP� because here� the domain is SAT� Thus� the class of optimization
problems introduced in this paper� NPbOpt� is the more general framework�

NPSV is the class of functions that can be computed by single�valued
nondeterministic polynomial�time transducers� NPSV is a subclass of FPNP

k �
Is it possible to compute satisfying assignments even within NPSV� Hemas�
paandra et�al� �HNOS��
 give a negative answer� this is not possible within
NPSV� unless the polynomial�time hierarchy collapses to the second level�
i�e�� Fsat � NPSV �
 � 
� PH 
 �P� �

An improvement of their result to FPNP
k will therefore give a negative

answer to the completeness �in the classical sense� of functions computing
solutions to Fzero � In Section �� we will make a �rst step by extending
their result to FPNPSV���� Very recently� this has been improved further by
Ogihara �Og��
 to FPNPSV�c log�n��� for c � ��
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Furthermore� we show that Fsat is strongly hard for NPSV� FP
NPSV����

and FPNPSV
k under appropriate types of reducibilities� respectively� As a

consequence� we improve upon a result of Watanabe and Toda �WT��
�
They show that fleft cannot be reduced to Fsat � unless NP �
 co�NP� We

show that even FPNPSV��� cannot be reduced to Fsat � unless NP �
 co�NP�
�Note that fleft is hard for FP

NPSV�����
The following is a summary of our main results�

��� We extend the work of �CT��
 and show that a broad class of functions�
that are interreducible� is hard for FPNP

k �Theorem ��� and �����

��� We show that these functions are unlikely to complete for FPNP
k by

providing a link to the problem of generating proofs of membership
for NP�complete sets like SAT �Theorem �����

��� We will characterize FPNP
k as the class of functions that is �metric�

reducible to Fzero �Theorem ����� Furthermore� NPSV� FPNPSV
k � and

FPNP
k are precisely the class of functions that are reducible to Fsat

for appropriate types of reducibilities� respectively �Theorem ����� We
will call this property strong hardness�

��� As a consequence of the strong hardness results� we strengthen a result
of Watanabe and Toda �WT��
 �Corollary �����

� Preliminaries

��� NP�Relations and Optimization Problems

Let � 
 f�� �g be an alphabet and let R be a relation on �� � ��� The
domain of R is the set DR 
 fx � �� j 	y � �� xRy g� Any y � ��

witnessing that some x is in DR is called a solution for x with respect to R�
The set of all solutions for some x � �� with respect to R is denoted by
SR�x�� and SR is the set of all solutions�

We say that R is a NP�relation� if the following two conditions hold�

�i� There is a polynomial p such that for all x � DR� any solution for x
has length p�jxj�� i�e�� SR�x� 
 �

p�jxj�� and

�ii� R is decidable in polynomial time�
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By FR� we denote the class of all functions f � �
� � SR �f�g such that for

all x � ��

f�x� 


�
some y � SR� if x � DR�

�� otherwise�

Note that there is not a unique terminology for such function classes� The
proof generating functions such as FR are called inverse functions in �WT��
�
Most of the classes we are considering were de�ned in �BLS��
 or �Se��
�
Selman �Se��
 denotes these classes in terms of multivalued functions� An
inclusion of two function classes here becomes a re�nement in terms of
multivalued functions�

In this paper� we investigate how hard it is to compute some solution for
a given x with respect to some NP�relation� i�e�� some function in FR� For
comparing the complexity of this task for di�erent NP�relations� we need
to consider reductions between them� Here� the following question arises�
Given two NP�relations R� and R� such that we can many�one reduceDR�

to
DR�

via some function h � FP� where FP denotes the set of polynomial�time
computable functions� For any x � DR�

� can we compute a solution for x
with respect to R� from a given solution for h�x� with respect to R�� In gen�
eral� this is not known� But in some cases� there are such witness�preserving

reductions� Consider for example Cook�s reduction from an arbitrary NP
set to SAT �Co��
� For a �xed NP machine M � for any input x for M �
Cook constructed a Boolean formula �x such that x is accepted by M i�
�x � SAT� And in fact� from any satisfying assignment for �x� one can
compute in polynomial time an accepting path of M on input x�

But in general� a many�one reduction doesn�t respect the structure of
the solution spaces of the instances that are mapped to each other� It
just guarantees the existence�nonexistence of solutions� However� looking
at the many�one reductions of the NP�completeness proofs in the standard
textbooks �see for example in �BDG��� HU��
�� we know that all the known
NP�complete sets in fact share the above described property with SAT�

Let R be an NP�relation such that DR is NP�complete� We call R
witness�preserving complete� if� for any NP�relation R�� there exist func�
tions g� h � FP such that h is a many�one reduction from DR� to DR� and
for any x � DR� and any y � SR�h�x��� we have that g�x� y� � SR��x�� That
is� g computes a witness for x given a witness for h�x�� A set L is witness�
preserving complete� if it has a witness�preserving complete NP�relation�

Note that all sets that are isomorphic to SAT are witness�preserving NP�
complete� let L be isomorphic to SAT via an isomorphism h� say� from L

	



to SAT� De�ne RL by xRLy if y is a satisfying assignment for h�x�� Then
RL is a witness�preserving complete NP�relation for L because for any NP
set A� if f is the Cook reduction from A to SAT� then h�� 
 f reduces A to
L in a witness�preserving way since the Cook reduction does so� Thus� all
the known NP�complete sets are in fact witness�preserving complete�

In a very general approach� Agrawal and Biswas �AB��
 introduced the
notion of a universal relation� that captures the idea of witness�preserving
in a very strict way� They showed that any universal NP�relation is witness�
preserving complete� Since all sets that are isomorphic to SAT have a uni�
versal relation� the comment in the previous paragraph also follows from
their result�

We now turn to optimization problems associated with an NP�relation R�
A function c � FP� c � DR � SR � N� is called a solution cost function for
R� The optimal solution cost function for R� c� � DR � N is de�ned by

c��x� 
 maxf c�x� y� j y � SR�x� g�

For any x � DR� we de�ne the set of optimal solutions by OptSolR�c�x� 

f y � SR�x� j c�x� y� 
 c��x� g� For any NP�relation R and any cost func�
tion c for R� we say that �R� c� is an NP optimization problem� namely the
problem to compute an optimal solution for any given x � DR� For any
function f � �� � SR � f�g� we de�ne

f � OptR�c �� f�x� 


�
some y � OptSolR�c�x�� if x � DR�

�� otherwise�

�R� c� is called a polynomially bounded NP optimization problem�
NPbOpt for short� if there is a polynomial that bounds the solution cost
function c� Note that� from any NP set� we can derive a polynomially
bounded NP optimization problem by taking some relation witnessing the
set being in NP and some arbitrary polynomially bounded cost function c�
In contrast� Chen and Toda �CT��
 de�ned the more restricted notion of an
NP combinatorial optimization problem �NPCOP� which is de�ned similar
to an NPbOpt� but with the additional constraint that the domain DR is a
set in P�

Next� we de�ne two operations for NP�relations� join and embedding�
The join corresponds to the linear paddability operation for NPCOP�s from
Chen and Toda �CT��
� An NP�relation R has a join function� if there
are two functions joinR� g � FP such that for any x�� � � � � xn � ��� if
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joinR�x�� � � � � xn� 
 z and y � SR�z�� then g�x�� � � � � xn� y� 
 �y�� � � � � yn�
where yi � SR�xi�� for i 
 �� � � � � n�

That is� the join function combines several given strings into one string z
in such a way that from any solution for z� we can compute solutions for the
given strings� An even stronger version of the join function is required in
the de�nition of a universal relation by Agrawal and Biswas �AB��
� Since
they have shown that all the known NP sets have a universal relation� in
particular� they have a join function�

For example� the join function for SAT is essentially the conjunction�
That is� for any two Boolean formulas �� and ��� after renaming the vari�
ables so that �� and �� have disjoint sets of variables� joinsat ���� ��� 

�� � ���

For an NPbOpt �R� c� we say that the join function of R respects c� if�
when we join two instances� then we can compute an optimal solution for the
two instances from an optimal solution for the join of the instances� More
formally� there has to exist a function g � FP� g � DR�DR�SR � SR�SR
such that for all x�� x� � DR and for all y � OptSolR�c�joinR�x�� x���� if
g�x�� x�� y� 
 �y�� y��� then y� � OptSolR�c�x�� and y� � OptSolR�c�x���

We say that �R� c� has an embedding function� if there exist two func�
tions e� g � FP� e � �� � DR and g � �� � SR � SR� such that there is a
f � OptR�c such that for all x � �

�

�y � OptSolR�c�e�x�� � g�x� y� 
 f�x��

That is� e maps a given string x to some string z in the domain DR of R
such that from an optimal solution for z� one can either compute an optimal
solution for x� if x � DR� or detect that x �� DR�

We adapt the notion of Agrawal and Biswas �AB��
 to our framework
and call an NPbOpt �R� c� universal � if

�� R is a witness�preserving complete NP�relation�

�� R has a join function that respects c� and

�� �R� c� has an embedding function�

��� Examples

First of all� note that all examples of Chen and Toda for NPCOP�s can easily
be modi�ed to be universal NPbOpt�s� They mention for example
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� Maximum Two Satis�ability� where each clause of a CNF formula
contains at most two literals�

� Maximum Clique�

� Minimum Coloring�

� Longest Path�

� ��� Integer Programming� and

� ��� Travelling Salesman� where the edges have weights zero or one�

These problems can be formulated as universal NPbOpt�s because there
is an associated NP�complete decision problem for each of them� This�
however� we expect for any interesting optimization problem� and therefore�
we extend the concept of Chen and Toda� We give some examples that are
not expressible as an NPCOP unless P 
 NP� because the domain of these
problems is NP�complete�

� Fzero

Let Rsat be the NP�relation for SAT that checks satisfying assignments� and
�zero be the cost function that counts the number of zeros in a satisfying
assignment� Then �Rsat ��zero� is an NPbOpt that requires to compute some
satisfying assignment with the maximum number of zeros� i�e�� a function
from Fzero �

The join function is the conjunction which respects �zero � Further�
more� �Rsat ��zero� has an embedding function� Let � 
 ��x�� � � � � xn� be a
Boolean formula and let z�� � � � � zn	� be new variables� De�ne

 �x�� � � � � xn� z�� � � � � zn	�� 
 � � �z� � � � � � zn	���

Then  � SAT� and if � � SAT and a is a satisfying assignment with the
maximum number of zeros for �� then a�n	� is a satisfying assignment for
 with the maximum number of zeros� On the other hand� if � �� SAT� then
�n�n	� is a satisfying assignment for  with the maximum number of zeros�
Therefore� getting a satisfying assignment with the maximum number of
zeros for  � one can either get one for � or detect that � �� SAT�

We conclude that �Rsat ��zero� is a universal NPbOpt�

� Fmax�zero�guess
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Fmax�zero�guess is de�ned on instances �N�x� �
m� for the standard univer�

sal NP�complete set� i�e�� it is asked whether the nondeterministic Turing
machine N accepts input x in at most m steps� Any nondeterministic com�
putation path of N can be represented as a binary string corresponding to
the nondeterministic branch points in the computation� Fmax�zero�guess is
the class of functions that� on input �N�x� �m�� give some accepting path of
N on x with the maximum number of zeros� and are unde�ned� if there is
no accepting path� Join and embedding functions are similar as for Fzero �
Here� one has to manipulate the input machine N appropriately�

� Unary�TSP

In unary�TSP� there is given an undirected graph G with integer weights
given in unary notation on the edges� so that the weights are bounded by
the size of the input� The task is to determine a traveling salesman tour
in G having minimal weight�� For the join function see �AB��
� For the
embedding function� let B be the sum of the weights of the edges of G� Let
G� be the extension of G to a complete graph� where all new edges have
weight B ! �� Now� G� clearly has a traveling salesman tour� Furthermore�
if the tour with minimum weight in G� is bounded by B� then this is also a
minimum tour in G� Otherwise� there is no traveling salesman tour in G�

In Section � and �� we show several properties of universal NPbOpt�s�
Hence� in particular� this applies to all the above mentioned optimization
problems�

��� Functional Reducibilities

There are several notions of reducibility between functions� Krentel �Kr��

introduced the metric reduction� Let f � g be functions�

f �FP
��T g �� 	t�� t� � FP � f�x� 
 t��x� g 
 t��x���

This clearly captures the idea of being able to compute f�x� from one call
to g�

Watanabe and Toda �WT��
 and Chen and Toda �CT��
 extended this
reduction to function classes� Let G be a class of functions� We distinguish
the case that one pair of translation functions reduces f to all functions in

�Note that unary	TSP is a minimization problem� By de
ning an appropriate solution
cost function� this can be easily turned into a maximization problem�
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G� or that for each function g � G there is a pair of translation functions
that reduces f to g� In the �rst case� we call the reduction uniform�

f �uniform�FP
��T G �� 	t�� t� � FP �g � G � f�x� 
 t��x� g 
 t��x���

f �FP
��T G �� �g � G 	t�� t� � FP � f�x� 
 t��x� g 
 t��x���

We will also consider the more general type of reduction when more than
one instance is given to a function in G� That is� t��x� produces a list
of instances and t� gets the function values of some function in G of these
instances� This is called a truth�table reduction and denoted by �uniform�FP

tt

and �tt
FP � respectively�

If G is a class of partial functions� we must deal with the case that f�x�
is de�ned� while g 
 t��x� is unde�ned� We call a reduction strict � denoted
by f �FP�strict

tt G� if there are functions t�� t� � FP witnessing that f �
tt
FP G

such that for all x� if f�x� is de�ned� then g is de�ned for all instances
produced by t��x�� for all g � G�

Let �r be any of the reducibilities de�ned here� For a class F of func�
tions� we say that G is hard for F with respect to �r�reduction� if for all
functions f � F � we have f �r G� This is denoted by F �r G� Furthermore�
we say that G is complete for F � if in addition there is some function in G
that is also in F � i�e�� F �G �
 ��

We also consider the case that eventually not all functions in F are
reducible to G� but that any function in G can be used to compute some

function in F � We call this a weak reduction�

F �weak�FP
��T G �� �g � G 	t�� t� � FP � t��x� g 
 t��x�� � F�

The uniform and truth�table versions of this reduction are de�ned analo�
gously� The uniform weak Turing reduction was de�ned in �FHOS��
�

It is easy to see that all the reducibilities de�ned here are transitive� but
in general� only the weak reducibilities are re"exive�

Although the uniformness condition seems to be a strong restriction on
the reduction� Watanabe and Toda �WT��
� using a proof technique from
Grollmann and Selman �GS��
� have shown that for many function classes
these two reduction types are in fact equivalent�

Lemma ��� �WT��� Let f be a function� R an NP�relation and c a solu�

tion cost function for R� Then we have

�i� f �tt
FP FR �� f �uniform�FP

tt FR�
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�ii� f �tt
FP OptR�c �� f �uniform�FP

tt OptR�c�

The same holds for the other reducibilities de�ned above� i�e�� �FP
��T �

�FP�strict
tt � �FP�strict

��T � �weak�FP
��T � and �weak�FP

tt �

When we consider NP optimization problems that have embedding func�
tions as in the previous section� then reductions to it can always be made
strict�

Lemma ��� Let f be a function and �R� c� a universal NPbOpt� Then we

have f �tt
FP OptR�c �� f �FP�strict

tt OptR�c�

The lemma also holds for the other reducibilities de�ned above�

� Function Classes Hard for FPNP
k

Chen and Toda �CT��
 showed that linearly paddable NPCOP�s are hard
for FPNP

k under �FP
��T �reductions� Our �rst theorem states that this holds

as well for universal NPbOpt�s� as for example Fzero � The proof is similar
to that of Chen and Toda� however� we need the embedding function to get
around the di#culty that the domains of our optimization problems are in
NP�

Theorem ��� Let �R� c� be a universal NPbOpt� Then FPNP
k �FP

��T OptR�c�

Proof� Let f � FPNP
k via some polynomial�time transducer T and some

NP set A� Let x � �� be �xed� We show how to compute f�x� when getting
an arbitrary optimal solution for some instance z with respect to �R� c��

Let w�� � � � � wk be the queries of transducer T on input x to A� Since
DR is NP�complete� there is a function h � FP reducing A to DR� Let e
and g be embedding functions for �R� c� � We use e to map all strings h�wi�
to DR and then combine all the resulting strings into one string z using the
join function� joinR� of R� That is� we de�ne

z 
 joinR�e 
 h�w��� � � � � e 
 h�wk���

Let y � OptSolR�c�z�� Since joinR respects c� from y we can compute
solutions yi � OptSolR�c�e 
h�wi��� for i 
 �� � � � � k� Now� g�h�wi�� yi� either
gives a witness that h�wi� is in DR� and hence wi is in A� or g�h�wi�� yi� is
unde�ned� and hence wi is not in A�

��



Thus� we can compute the answers to w�� � � � � wk from y� and therefore�
we can compute f�x�� �

Our next theorem shows that any universal NPbOpt is hard for any other
NPbOpt under �weak�FP

��T �reductions� and hence� any two such NPbOpt�s
are equivalent to each other� In the previous theorem it was not necessairy
for the relation R to be witness�preserving complete� but now we seem to
need this property�

Theorem ��� Let �R�� c�� be a universal NPbOpt� Then� for any NPbOpt
�R� c�� we have OptR�c �

weak�FP
��T OptR��c�

�

Proof� We will show that for any x � ��� we can map x to some string
z � DR�

such that from an optimal solution for z with respect to �R�� c���
we can either compute an optimal solution for x with respect to �R� c� or
detect that x is not in DR�

Let us de�ne the NP�relation R� as follows� For any x � �� and k �
p�jxj�� where p is some polynomial that bounds the solution cost function c�

�x� k�R�y �� xRy and c�x� y� � k�

Let x � �� be �xed and let k� be the maximum k such that �x� k� � DR� �
Observe that any solution for �x� k�� with respect to R� is an optimal solution
for x with respect to �R� c�� i�e�� SR��x� k�� 
 OptSolR�c�x�� We will show
how to compute a witness for each �x� k� � DR� when getting an arbitrary
optimal solution for some instance z with respect to �R�� c��� From these
witnesses� we output the one for �x� k���

Since R� is an NP�relation and since R� is witness�preserving complete�
there is a function h � FP that reduces DR� to DR�

in such a way that for
any �x� k� � DR� and from any witness for h�x� k� � DR�

we can compute a
witness for �x� k� � DR� �

As in the proof of Theorem ���� using the embedding function
and the join function for R�� we combine all the resulting strings
h�x� ��� � � � � h�x� p�jxj�� into one string z such that from a witness for
z � DR�

� we can compute witnesses for all h�x� k� that are in DR�
�
�

Corollary ��� Let �R� c� and �R�� c�� be universal NPbOpt	s� Then we have

OptR��c� �
weak�FP
��T OptR�c

��



Thus all the examples of optimization problems we give in Section ��� are
equivalent with respect to �weak�FP

��T reductions� So although Fzero might
look as a somewhat technical problem� it is in fact equivalent to any of the
more natural NPbOpt�s�

We remark that if we don�t assume the existence of an embedding func�
tion for the NPbOpt�s� then the above theorems still hold� but with the
corresponding truth�table reductions� respectively�

� Completeness

In the previous section� we established a framework for proving certain
functions hard for FPNP

k � The natural question that arises is whether these

functions are also complete for FPNP
k � �Recall that G is complete for F if G

is hard for F and� in addition� F �G �
 ��� Chen and Toda �CT��
 showed
that a randomized version of FPNP

k can actually compute any NPCOP in

the following sense� for any NPCOP there is a two�place function f � FPNP
k �

that� when given as one input the problem instance x and as the other in�
put some randomly chosen string� outputs with high probability an optimal
solution for x with respect to the given NPCOP� This result holds also for
NPbOpt�s�

Theorem 	�� �CT��� Let �R� c� be an NPbOpt and let e be a polynomial�

Then there exist a function f � FPNP
k and a polynomial r such that for all

x � DR� jxj 
 n�

Probfw � f�� �gr�n� j f�x�w� � OptSolR�c�x� g � �� ��e�n��

However� at present time� we do not know whether the NPbOpt results
from the previous section can be extended to completeness results� Our
next theorem states that if it is at all possible to compute some satisfying
assignment with parallel queries to NP� then this is also possible within
Fzero � In other words� obtaining such a completeness result is exactly as
hard as any proof that one can indeed compute some satisfying assignment
in FPNP

k �

Theorem 	�� Let �R� c� be an NPbOpt and R� be a witness�preserving

complete NP�relation� Then FR�
� FPNP

k �
 � �� OptR�c � FPNP
k �
 ��

��



Proof� Let f � FR�
� FPNP

k � We de�ne an NP�relation R� as follows�
For any x � �� and k � p�jxj�� where p is some polynomial that bounds the
solution cost function c�

�x� k�R�y �� xRy and c�x� y� � k�

Since R� is an NP�relation and since R� is witness�preserving complete� there
are functions h� g � FP such that h many�one reduces DR� to DR�

and for
any �x� k� � DR� and any string z witnessing that h�x� k� � DR�

� g�x� k� z�
is a witness that �x� k� is in DR� �

Let x � �� be �xed� We show that we can compute some value in
OptSolR�c�x� with parallel queries to some NP set�

Let k� be the maximal k such that �x� k� � DR� � i�e�� we have c��x� 
 k��
Then h�x� k�� is in DR�

and� by our assumption� z 
 f 
 h�x� k�� is some
witness for this� Hence� g�x� k�� z� is a witness that �x� k�� � DR� and
therefore� we have that g�x� k�� z� � OptSolR�c�x�� That is� we de�ne

f ��x� 
 g�x� c��x�� f 
 h�x� c��x���

It remains to show that f � � FPNP
k � We leave this to the reader� �

Corollary 	�� Fsat � FPNP
k �
 � �� Fzero � FPNP

k �
 ��

On the other hand� we will show in the next theorem that all functions
that are �FP

��T �reducible to some NPbOpt are already in FP
NP
k � and there�

fore� together with Theorem ���� it follows that FPNP
k can be characterized

as the class of functions that are �FP
��T �reducible to some NPbOpt� This

can be interpreted as a weaker form of completeness�

De
nition 	�	 Let F and G be function classes� We say that G is strongly
hard for F under �r�reduction� if F 
 f f j f �r G g�

The next theorem and corollary show that the hardness results obtained
for NPbOpt�s can indeed be strengthened to strong hardness�

Theorem 	�� Let f be a function such that f �FP
��T OptR�c� for some

NPbOpt �R� c�� Then f is in FPNP
k �

��



Proof� By Lemma ���� we can assume that the reduction is uniform� Let
f be reducible to OptR�c via t�� t� � FP� i�e�� we have for any x and for all
y � OptSolR�c�t��x�� that f�x� 
 t��x� y��

De�ne NP sets A and B as follows� For any x � ��� k � p�jxj�� and i �
q�jxj�� where p is some polynomial that bounds the solution cost function c
and q is some polynomial that bounds the length of the solutions for x with
respect to R

�x� k� � A �� 	y � SR�t��x�� � c�t��x�� y� � k�

�x� k� i� � B �� 	y � SR�t��x�� � c�t��x�� y� � k and

the i�th bit of t��x� y� is a one�

Let k� be the maximal k such that �x� k� � A� Then the i�th bit of f�x�
is one� if �x� k�� i� � B� and zero� otherwise� for i 
 �� � � � � q�jxj�� Therefore�
we can compute f�x� by asking in parallel the queries �x� k� to A and �x� k� i�
to B� for k 
 �� � � � � p�jxj� and i 
 �� � � � � q�jxj�� Thus f � FPA�Bk 
 FPNP

k �
�

In fact� in Theorem ���� it su#ces to assume that f �tt
FP OptR�c�

Taking Theorem ��� and Theorem ��� together� we obtain the already
mentioned characterization of FPNP

k as the class of functions that is reducible
to any universal NPbOpt�

Corollary 	�� Let �R� c� be a universal NPbOpt� Then

FPNP
k 
 f f j f �FP

��T OptR�c g 
 f f j f �tt
FP OptR�c g�

Corollary 	�
 FPNP
k 
 f f j f �tt

FP Fzero g�

It follows that if any FPNP�complete function is reducible to� say Fzero �
then this function can already be computed with parallel queries to NP� and
hence FPNP would be the same as FPNP

k �

Corollary 	�� Let �R� c� be a universal NPbOpt� Then

fleft �
FP
��T OptR�c �� FPNP

k 
 FPNP �� PNP 
 PNP
k �

�	



� Negative Results and NPSV

For certain subclasses of FPNP
k � one can show that it is not possible to

compute satisfying assignments� unless the polynomial�time hierarchy� PH�
collapses� Hemaspaandra et al� �HNOS��
 showed such a result for the class
NPSV�

De
nition ��� A nondeterministic Turing transducer N is single�valued�
if� for each input x� N generates the same output on all accepting com�
putations� NPSV is the class of partial functions that can be computed by

single�valued nondeterministic polynomial�time transducers� FP
NPSV�k�
k de�

notes the class of functions that is computable in polynomial time with k

nonadaptive queries to an NPSV oracle�

Note that NPSV 
 FPNP
k � since with the help of an NP set one can

get in parallel all the bits of an NPSV function value� In fact� FPNP
k 


FPNPSV
k �FHOS��
�

Theorem ��� �HNOS�	� If NPSV � Fsat �
 �� then PH 
 �P� �

The following lemma will enable us to extend this result to FPNPSV����

Lemma ��� Let R be an NP�relation� Then

FR � FPNPSV��� �
 � �� FR � NPSV �
 ��

Proof� If FR � FP
NPSV��� 
 � then the lemma clearly holds� So assume that

f � FR � FPNPSV���� Let M be a FP machine and N be an NPSV machine
witnessing that f � FPNPSV���� We have to show that FR � NPSV �
 ��

Consider the following machine N � on input x� First� N � simulatesM on
input x until M queries it�s oracle� Let qx be the query� Then N

� assumes
that the answer to the query is � and continues the simulation of M � Let y
be the output of M � If xRy holds� then N � outputs y and halts� �Note that
this is a deterministic computation up to here�� Otherwise� N � simulates
N on input qx� If N rejects� then so does N �� If N accepts� let z be the
value computed by N � Now� N � continues the simulation ofM with z as the
answer to qx� Note that z is the answer that M actually gets when asking
its oracle� Therefore� N � will generate the same output as M at the end of
the computation�

Clearly� N � is an NPSV machine� Furthermore� if x �� DR� then N �

generates no output� If x � DR� then N
� outputs some y � SR�x�� �

��



Corollary ��	 If Fsat � FPNPSV��� �
 � then PH 
 �P� �

This result has been improved recently by Ogihara �Og��
 who showed
that Fsat � FP

NPSV�c log�n�� 
 �� for c � �� unless the polynomial�time
hierarchy collapses� It is an interesting open problem whether these results
can be extended to even larger function classes�

The following theorem shows that for any witness�preserving complete
NP�relation R� FR is hard� and� in fact� even strongly hard for NPSV�
FPNPSV��� and FPNPSV

k with respect to di�erent types of reductions�

Theorem ��� Let R be a witness�preserving complete NP�relation�

�i� NPSV 
 f f j f �FP�strict
��T FR g 
 f f j f �FP�strict

tt FR g�

�ii� FPNPSV��� 
 f f j f �FP
��T FR g�

�iii� FPNPSV
k 
 f f j f �tt

FP FR g�

Proof� �i� Let f be in NPSV and let N be an NPSV machine for f �
Consider the following NP�relation RN � For x� y � �

�� where jyj � p�jxj�
and p is some polynomial that bounds the the running time of N

xRNy �� y is a computation path of N on x

on which N produces an output�

Since R is a witness�preserving complete NP�relation� there exist two func�
tions t�� t� � FP such that t� maps any x from the domain of RN to the
domain of R and for any solution y for t��x�� i�e�� t��x�Ry holds� t��x� y�
gives a solution for x� i�e�� xRN t��x� y� holds� Clearly� from t��x� y� one
can compute f�x� in polynomial time� Furthermore� the reduction �t�� t�� is
strict�

For the other direction� let f be a function that is �FP�strict
tt �reducible

to FR via the functions t�� t� � FP� Consider the following NP machine N
on input x� First� N computes the queries t��x� 
 �w�� � � � � wk� and then
guesses solutions y�� � � � � yk for them with respect to R� If wiRyi for i 

�� � � � � k� then N outputs t��x� y�� � � � � yk��

Since the reduction is strict� there will be a path where N �nds solutions
for all w�� � � � � wk� Furthermore� for every k�tuple of solutions y�� � � � � yk�
t��x� y�� � � � � yk� will give the same value� namely f�x�� Hence� N is single�
valued and computes f �

��



The inclusion from left to right of �ii� and �iii� follows by an easy modi�
�cation of the argument for �i�� In fact� we get the more general result that

FP
NPSV�k�
k 
 f f j f �k�tt

FP FR g� for every k � FP�

For the reverse inclusion of �ii�� let f be a function that is �FP
��T �reducible

to FR via the functions t�� t� � FP� Consider the following NP machine N
on input x� First� N computes t��x� and then guesses a solution y for it
with respect to R� If t��x�Ry� then N outputs t��x� y��

Clearly� N is a NPSV machine that outputs f�x� if it is de�ned� Now a
FP machine with N as an oracle can compute f�x� by producing the same
output as N on x when it is de�ned� and t��x���� otherwise�

For the reverse inclusion of �iii�� let f be a function that is �tt
FP �reducible

to FR via the functions t�� t� � FP� We show how to compute f with
parallel queries to NP� Let x � �� be �xed and let w�� � � � � wk be the queries
produced by t��x�� By asking the wi�s to DR� we can �nd out which ones
of them actually have a solution with respect to R� Suppose l of w�� � � � � wk

are in DR� where � � l � k� Observe that an NP machine knowing l can
actually compute �on some path� the wi�s inDR together with some solution
for them� and therefore� via t� also f�x�� Since there are only k possibilities
for l� i�e� polynomially many� we can de�ne an NP set that� for each l� refers
to the bits of f�x�� similar as in the proof of Theorem ���� All together� we
can compute f�x� by asking polynomially many queries in parallel to DR

and the latter NP set� �

Corollary ��� Fsat is strongly hard for NPSV and FPNPSV���� but not com�

plete for these classes for �FP�strict
��T � and �FP

��T �reduction� respectively� un�

less the polynomial�time hierarchy collapses�

Watanabe and Toda �WT��
 asked whether one can compute the leftmost
satisfying assignment of a formula from any other satisfying assignment�
Recall that fleft is a FP

NP�complete function� They showed that this is very
unlikely to be true� if fleft �

FP�strict
tt Fsat � then NP 
 co�NP� However� by

the characterizations obtained in Theorem ���� we have that the assumption
made is equivalent to NPSV 
 FPNP� Thus we can now strengthen the result
of Watanabe and Toda �WT��
 by weakening the assumption to NPSV 

FPNPSV���� which still leads to the same consequence�

Corollary ��
 Let R be a witness�preserving complete NP�relation�

�i� If FPNPSV��� �FP�strict
tt FR� then NP 
 co�NP�

��



�ii� For any k � �� if FP
NPSV�k�
k �FP

��T FR� then P
NP�l�
k 
 PNP��� for any

l � �� and hence the polynomial�time hierarchy collapses�

�iii� Let �R�� c� be a universal NPbOpt� If OptR��c �
FP
��T FR� then P

NP
k 


PNP���� and hence the polynomial�time hierarchy collapses�

Proof� �i� From the assumption together with Theorem ��� �i�� we con�
clude that FPNPSV��� 
 NPSV� As a special case� when considering only
characteristic functions� it follows that PNPSV��� 
 NP� Now� observe that
co�NP 
 PNPSV����

�ii� From the assumption together with Theorem ��� �ii�� we conclude

that FP
NPSV�k�
k 
 FPNPSV���� and hence PNPSV�k� 
 PNPSV���� Now� the

claim follows since P
NPSV�l�
k 
 P

NP�l�
k for any l � � �FHOS��
�

�iii� Follows from a similar argument as in �ii� together with Theorem ���
and the transitivity of the �FP

��T �reduction� �
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