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Abstract

During the execution of functional logic programs� particular E�uni�cation pro�
blems have to be solved quite frequently� In this paper we contribute to the e�cient
solution of such problems in the case where E is induced by particular term rewriting
systems called macro tree transducers� We formalize the implementation of a deter�
ministic partial E�uni�cation algorithm on a deterministic abstract machine� called
twin uni�cation machine� The uni�cation algorithm is based on a particular narrow�
ing strategy which combines leftmost outermost narrowing with a local constructor
consistency check and a particular occur check� The twin uni�cation machine uses two
runtime stacks� it is an extension of an e�cient leftmost outermost reduction machine
for macro tree transducers� The feasibility of the presented implementation technique
is proved by an implementation which has been developed on a SPARCstation SLC�
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� Introduction

The investigation of our paper shows an implementation technique which is expected to
contribute to an e�cient implementation of functional logic programming languages�

Consider� e�g�� the functional logic programming language BABEL �MR��� In Figure �
we show a BABEL	program which de�nes the predicate sublist and the function append�
sublist checks whether its �rst argument is a sublist of its second argument� and append
concatenates two lists in the usual way�

sublist�x� y	 
 if y 
 append�z�� append�x� z�		 then TRUE else FALSE

append�CONS�x�� x�	� y�	 
 CONS�x�� append�x�� y�		
append�NIL� y�	 
 y�

Figure �
 A functional logic program�

In computations of the predicate sublist� an equation like

ty � append�z�� append�tx� z��� ���

has to be solved� where ty and tx are the current values of the variables y and x� respec	
tively� More precisely� the computation machinery tries to �nd a substitution � such that
the �	instance of ��� is true in the equational theory �Eappend

which is induced by the set
Eappend� Eappend consists of the two equations for append� Clearly� this is nothing else but
the Eappend	uni�cation problem for the terms ty and append�z�� append�tx� z���� and the
computation machinery tries to compute an Eappend	uni�er �� i�e�� it tries to answer the
question whether ty and append�z�� append�tx� z��� are Eappend	uni�able� yes or no�

It is well known that the decidability of an E	uni�cation problem depends on the set
E of equations� If E is the empty set� then the E	uni�cation problem coincides with the
usual uni�cation problem of terms which is decidable �Rob���� If E is the set of Peano�s
axioms� then the E	uni�cation problem coincides with Hilbert�s tenth problem which was
shown to be undecidable �Mat����

Clearly� for an unconditional equational speci�cation of a function as� e�g�� append in
Figure �� the basic computation model is a term rewriting system� Figure  shows the
rewrite rules of the term rewriting system Rappend which is appropriate to compute values
of the function append�

append�CONS�x�� x�	� y�	 � CONS�x�� append�x�� y�		
append�NIL� y�	 � y�

Figure 
 Rewrite rules of the term rewriting system Rappend�

In the scope of this paper� we focus our attention to such E	uni�cation problems which
arise in functional logic programming languages and where the set E is induced by a term
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rewriting system R in the sense that E can be considered as the symmetric closure of R�
In this case� we denote E by ER� and we will talk about the ER	uni�cation problem�

Most of the approaches for trying to solve an ER	uni�cation problem are based on the
concept of narrowing �Lan���� Every approach refers to particular term rewriting systems
and to a particular narrowing relation� e�g��

� canonical term rewriting systems and narrowing �Fay��� Hul���

� canonical term rewriting systems and basic narrowing �Hul��� MH��

� left	linear� non	overlapping term rewriting systems and D	narrowing �You���

� canonical� uniform term rewriting systems and the leftmost outermost narrowing
strategy �Pad���

� totally	de�ned term rewriting systems and any innermost narrowing strategy �Fri���

� canonical� totally	de�ned� not strictly subuni�able term rewriting systems and any
narrowing strategy �Ech���

� canonical� totally	de�ned� not strictly subuni�able term rewriting systems and uni	
�cation	driven leftmost outermost narrowing �FV�b��

All these approaches have in common that they try to compute an ER	uni�er of two
terms t and s by starting from the term equ�t� s�� where equ is some new binary symbol
�in �Hul��� equ is denoted by H�� Usually� the computation is followed by or interleaved
with uni�cation steps�

Unfortunately� even for very simple term rewriting systems R� the ER	uni�cation pro	
blem is undecidable
 Post�s Correspondence Problems can be coded into term rewriting
systems which have the form of tree homomorphisms� Thus� even for very simple term
rewriting systems R� any deterministic algorithm A which tries to compute an ER	uni�er�
can only be partial in the sense that� for every two terms t and s as input� A behaves in
one of the following three ways


�� A terminates and computes an ER	uni�er of t and s�

� A terminates and answers that t and s are not ER	uni�able�

�� A does not terminate�

We will call such an algorithm a deterministic partial ER�uni�cation algorithm�

In this paper� we formalize a special deterministic partial ER	uni�cation algorithm
which is appropriate for computing ER	uni�ers� where R is taken from a class of parti	
cular term rewriting systems� called macro tree transducers� This special deterministic
partial ER	uni�cation algorithm is called deterministic uni�cation algorithm for macro
tree transducers� Moreover� we formalize an e�cient implementation of the deterministic
uni�cation algorithm for macro tree transducers� By using this e�cient implementation





technique� an implementation of a complete functional logic programming language might
hopefully also bene�t �cf� the discussion in Section ���

Our deterministic uni�cation algorithm for macro tree transducers is based on a depth	
�rst left	to	right traversal over the computation trees which are induced by the uni�cation	
driven leftmost outermost �for short
 ulo� narrowing relation �FV�b�� As usual� a com	
putation tree collects all possible computations which are induced by the underlying com	
putation relation �here
 the ulo narrowing relation� and which start from a particular
sentential form �here
 equ�t� s��� We note that� since our deterministic uni�cation algo	
rithm for macro tree transducers is based on a depth	�rst left	to	right traversal� we cannot
obtain a better behaviour with respect to termination
 it is possible that� in a computa	
tion tree� an in�nite branch occurs left from the �rst solution� then our algorithm cannot
terminate� We also note that a breadth	�rst left	to	right traversal behaves better� it is
even a semi decision procedure� However� it is unacceptably ine�cient�

In the rest of the introduction we explain the concept of macro tree transducer� the ulo
narrowing relation� and the implementation of the deterministic uni�cation algorithm for
macro tree transducers�

In functional logic programming languages� it can be observed that recursion often
occurs in the form of primitive recursion over some inductively de�ned data types like
lists or tree	structured objects �cf� �P�et��� for primitive recursive functions over natural
numbers� cf� �Hup��� Kla��� EV��� for primitive recursive functions over trees�� In this
paper we consider a subclass of the class PREC of primitive recursive functions over trees�
this subclass is computed by macro tree transducers �Eng��� CF�� EV��� EV���� From the
program schematic point of view� a macro tree transducer can be considered as a primitive
recursive program scheme with parameters� it allows for simultaneous function de�nitions
and for nesting of function calls in parameter positions in right hand sides of function
de�nitions� Since it does not allow function calls in the recursion argument positions� the
expressive power of macro tree transducers is rather restricted
 the composition closure
of macro tree transducers is tightly related to the second level of the LOOP	hierarchy �cf�
Lemma ��� of �EV�����

From the term rewriting system point of view� a macro tree transducer is constructor	
based �You���� canonical �i�e�� con�uent and noetherian�� left	linear� totally de�ned �Fri����
and not strictly subuni�able �Ech���� moreover� for every function symbol f and every
constructor symbol �� there exists exactly one rule the left hand side of which has the
form f���x�� � � � � xk�� y�� � � � � yn�� the right hand side is a term over constructors� variables
y�� � � � � yn� and recursive function calls� in such a function call� the �rst argument is a
variable x�� � � � � xk� The latter restriction implies a recursive descent over the �rst function
argument and thus� it guarantees termination� Figure  shows an example of a macro tree
transducer with two rewrite rules� it contains the function symbol append and constructors
CONS and NIL�

Now we discuss the ulo narrowing relation introduced in �FV�b�� This relation com	
bines leftmost outermost narrowing with a particular occur check and a local consistency
check between head constructor symbols� As usual� all possible derivations induced by
the ulo narrowing relation� can be collected in an ordered computation tree� called ulo
narrowing tree� As an immediate consequence of Theorem ��� of �FV�b� we will prove
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that the depth	�rst left	to	right traversal over such narrowing trees is a deterministic par	
tial ER	uni�cation algorithm� The ulo narrowing relation has the advantage that� often�
in�nite branches left to the leftmost ER	uni�er are cut o�� This pruning is caused by the
occur check� the local consistency check� and the fact that we use outermost narrowing� as
usual� an outermost strategy avoids possibly in�nite computations of deleted parameters
of a function call �in opposite to innermost strategies��

Finally� we turn to the discussion of the implementation� We implement the deter	
ministic uni�cation algorithm for macro tree transducers which is induced by depth	�rst
left	to	right traversals over ulo narrowing trees� on an abstract machine which is called the
twin uni�cation machine� This machine is an extension of the sdrs machine in �GFV����
the latter machine implements the leftmost outermost reduction relation of macro tree
transducers� The main component of the sdrs machine is a runtime stack which manages
the environments during the evaluation of a term t� t may contain function symbols and
constructors of the macro tree transducer�

The implementation of the deterministic uni�cation algorithm for macro tree transdu	
cers simulates the ulo narrowing relation� For this purpose� the sdrs machine is enriched by
a second runtime stack� Then each of the two terms t and s which should be ER	uni�ed�
is evaluated on one of the two runtime stacks� More precisely� t is evaluated on the left
runtime stack to a term hnf�t� in head normal form� i�e�� the root symbol of hnf�t� is
either a variable or a constructor� Then the control switches to the right runtime stack
which evaluates s into head normal form hnf�s�� too� Then� one of the following cases
occurs


� If the two roots are labeled by the same constructor� then the control switches back
to the left runtime stack and the computation continues with the evaluation of the
�rst subterm of hnf�t� into head normal form�

� If the two roots are labeled by di�erent constructors� then backtracking is initiated�

� If one of the two terms hnf�t� and hnf�s� is a variable� say� hnf�t� is a variable�
then the occur check is applied to hnf�s�� If it fails� then hnf�s� is evaluated to
normal form on the right runtime stack and hnf�t� is bound to this normal form of
hnf�s�� If the occur check succeeds� then backtracking is initiated�

In order to handle backtracking� choice points are pushed to the runtime stacks� for
the management of binding of variables� the twin uni�cation machine uses a graph which
results from the tree of the sdrs machine by sharing variables� and a trail with pointers to
graph nodes �cf� the implementation of PROLOG on the WAM in �War�����

An overview over the main ingredients of the paper and their connections is illustrated
in Figure �� It shall give the reader an orientation through the paper�

This paper is organized in seven sections� where the second section contains prelimina	
ries� In Section � we recall the de�nitions of macro tree transducer and the ulo narrowing
relation� Furthermore� we present the deterministic uni�cation algorithm for macro tree
transducers� In Section � we present a slight modi�cation of the implementation of the
leftmost outermost reduction relation for macro tree transducers on the sdrs machine in
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�GFV���� We have decided to deserve a complete section for the repetition of this reduction
machine� because it gives a good preparation for the implementation of the deterministic
uni�cation algorithm for macro tree transducers in Section �� In Section � we compare
the implementation of our machine on a SPARCstation SLC with the implementation
of the BABEL system �Win���� Finally� Section � contains some concluding remarks�
comparisons with related work� and it indicates further research topics�
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Figure �
 Illustration of the main ingredients of our approach�
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� Preliminaries

We recall and collect some notations� basic de�nitions� and terminology which will be used
in the rest of the paper� We have tried to be in accordance with the notations in �Hue���
and �DJ��� as much as possible�

��� General Notations

We denote the set of nonnegative integers by IN� The empty set is denoted by �� For
i� j � IN� �i� j� denotes the set fi� i� �� � � � � jg� thus �i� j� � � if i � j� If i � �� then we
write �j� instead of ��� j�� thus ��� � �� For a �nite set A� P�A� is the set of subsets of
A and card�A� denotes the cardinality of A� As usual for a set A� A� denotes the setS
n�INfa�a� � � �an j for every i � �n� 
 ai � Ag that is called the set of words over A�  

denotes the empty word� The i	th symbol of a word w is denoted by w�i��

��� Ranked Alphabets� Variables� and Terms

A pair �!� rank�� is called ranked alphabet� if ! is an alphabet and rank� 
 ! �� IN is
a total function� For f � !� rank��f� is called rank of f � The subset !�m� of ! consists
of all symbols of rank m �m � ��� Note that� for i �� j� !�i� and !�j� are disjoint� If
rank��a� � n� then we write a�n�� If the ranks of the symbols are clear from the context�
then we drop the function rank� from the denotation of the ranked alphabet �!� rank��
and simply write !�

Let V denote a �xed enumerable set of variables which is divided into three disjoint
sets X � fx�� x�� � � �g� Y � fy�� y�� � � �g� and FV � fz�� z�� � � �g of recursion variables�
parameter variables� and free variables� respectively�

Let ! be a ranked alphabet and let S be an arbitrary set� Then the set of terms over !
indexed by S� denoted by T h!i�S�� is de�ned inductively as follows
 �i� S	!��� 
 T h!i�S�
and �ii� for every f � !�k� with k � � and t�� � � � � tk � T h!i�S� 
 f�t�� � � � � tk� � T h!i�S��
The set T h!i���� denoted by T h!i� is called the set of ground terms over !�

For a term t � T h!i�V�� the set of occurrences of t� denoted by O�t�� is written in
Dewey�s notation� It is de�ned inductively on the structure of t as follows


�i� If t � V 	 !���� then O�t� � f g� and

�ii� if t � f�t�� � � � � tn� where f � !
�n� and n � �� and for every i � �n� 
 ti � T h!i�V��

then O�t� � f g 	
S
i��n�fiu j u � O�ti�g�

The pre�x order on O�t� is denoted by � and the lexicographical order on O�t� is deno	
ted by �lex� The re�exive closures of � and �lex are denoted by � and �lex� respectively�
Clearly� � 
 �lex� The minimal element with respect to �lex in a subset S of O�t� is
denoted by minlexS� For a term t � T h!i�V� and an occurrence u of t� t�u denotes the
subterm of t at occurrence u� and t�u� denotes the label of t at occurrence u� We use V�t�
to denote the set of variables occurring in t� Finally� we de�ne t�u � s� as the term t in
which we have replaced the subterm at occurrence u by the term s�
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��� Substitutions� Functions� and Congruences

A �V �!��substitution is an assignment � 
 V � T h!i�V�� where the set fx j ��x� �� x� x �
Vg is �nite� The set fx j ��x� �� xg is denoted by D��� and it is called the domain of �� If
D��� � fx�� � � � � xng� then � is represented by �x����x��� � � � � xn���xn��� If D��� � �� then
� is denoted by ��� We say that � is ground� if for every x � D��� 
 V���x�� � �� The
set

S
x�D���V���x�� is denoted by I��� and it is called the set of variables introduced by

�� The set of �V �!�	substitutions and the set of ground �V �!�	substitutions are denoted
by Sub�V �!� and gSub�V �!�� respectively� The composition of two �V �!�	substitutions �
and 	 is the �V �!�	substitution which is de�ned by 	���x�� for every x � V � It is denoted
by �  	�

If two functions f and g from A into B are di�erent only for a �nite number of elements
a�� � � � � an � A and if for every j � �n� 
 g�aj� � bj� then we denote g by f �a��b�� � � � � an�bn��
The set of all functions from A into B is denoted by �A � B�� A function f 
 A � B is
denoted by f�� if for every a � A 
 f�a� is unde�ned�

An equivalence relation � on T h!i�V� is called a congruence relation over T h!i�V��
if for every f � !�n� with n � � and� for every t�� s�� � � � � tn� sn � T h!i�V� with t� �
s�� � � � � tn � sn� the relation f�t�� � � � � tn� � f�s�� � � � � sn� holds�

��� E�Uni�cation

An equation over ! and V is a pair �t� s�� where t� s � T h!i�V�� As usual we denote
an equation �t� s� by t � s� In the rest of the paper� we let E denote a �nite set of
equations over ! and V � The E�equality� denoted by �E � is the �nest congruence relation
over T h!i�V� containing every pair �	�t�� 	�s��� where �t � s� � E and 	 is an arbitrary
�V �!�	substitution� If t �E s� then t and s are called E�equal �cf� �HO����� Two terms
t� s � T h!i�V� are called E�uni�able� if there exists a �V �!�	substitution � such that
��t� �E ��s��

A deterministic partial E�uni�cation algorithm is a deterministic algorithm which takes
as input a set E of equations and two terms t and s� and which behaves in one of the
following three ways


� It terminates and yields an E	uni�er of t and s�

� It terminates and answers that t and s are not E	uni�able�

� It does not terminate�

In Figure � we illustrate the behaviours of a deterministic partial E	uni�cation al	
gorithm� every pair �t� s� of terms occurs in exactly one of the three illustrated groups�
Roughly speaking� for two deterministic partial E	uni�cation algorithms A and B� we say
that A is better than B if the group in the middle� i�e�� the group of pairs for which the
algorithm does not terminate� is smaller for A than for B� Clearly� because of the undecida	
bility of the general E	uni�cation problem� there is no deterministic partial E	uni�cation
algorithm for which the group in the middle is empty for every set E of equations�

�



t and s are

E	uni�able

t and s are

E	uni�able or

not E	uni�able

t and s are

not E	uni�able

and

algorithm

terminates

and

algorithm

does not terminate

and

algorithm

terminates

Figure �
 Possible behaviours of a deterministic partial E	uni�cation algorithm�

The set f� j ��t� �E ��s�g is called the set of E�uni�ers of t and s� and it is denoted
by UE�t� s� �cf� �Sie����� Let V be a �nite subset of V � We de�ne the preorder �E �V � on
�V �!�	substitutions by � �E �� �V �� if there exists a �V �!�	substitution 	 such that for
every x � V 
 	���x�� �E ���x� �cf� �Sie�����

Let ! be divided into two disjoint sets F and "� let t� s � T h!i�V� and V � V�t�	V�s��
A �V �"�	substitution which is an E	uni�er of t and s� is called an �E�"��uni�er of t and
s� A set S of �V �"�	substitutions is a ground complete set of �E�"��uni�ers of t and s
away from V �Ech��� if the following three conditions hold


�� For every � � S
 D��� 
 V and I���� V � ��

� For every � � S
 � is an �E�"�	uni�er of t and s�

�� For every ground �E�"�	uni�er � of t and s� there is a 	 � S such that 	 �E � �V ��

��	 Term Rewriting Systems

A term rewriting system� denoted by R� is a pair �!� R�� where ! is a ranked alphabet and
R is a �nite set of rewrite rules of the form l � r such that l� r � T h!i�V� and V�r� 
 V�l�
�cf� �Hue����� For every term rewriting system R � �!� R�� the related set of equations�
denoted by ER� is the set fl � r j l� r � Rg �cf� �MH����

Let R � �!� R� be a term rewriting system and let t � T h!i�

� The set of redex interfaces for R and t� denoted by redI�R� t�� is the set

f�u� �� l� r� j u � O�t� with t�u �� V � � � Sub�V �!�� l� r � R with ��l� � t�ug�

� The set of redex occurrences for R and t� denoted by redO�R� t�� is the set

fu j �u� �� l� r� � redI�R� t�g�

�



� The reduction relation associated with R� denoted by ��R � is de�ned as follows

For every t� s � T h!i 
 t ��R s� if the following two conditions hold


�� There is a redex interface �u� �� l� r� � redI�R� t��

� s � t�u� ��r��� �

If R is clear from the context� then we write �� instead of ��R � We use the standard
notation ��� to denote the transitive	re�exive closure of ��� A term rewriting system
is canonical� if it is con�uent and noetherian �cf� �HO����� A term t is a normal form of
a term s� if s ���

R t and t is irreducible� i�e�� there does not exist any term t� such that
t ��R t�� A �V �!�	substitution � is in normal form if for every x � D���� the term ��x�
is irreducible�

Finally� we recall the de�nition of the leftmost outermost narrowing relation which will
be used in the de�nition of the uni�cation	driven leftmost outermost narrowing relation
in Subsection ���

Let R � �!� R� be a term rewriting system and let t � T h!i�V��

� The set of narrowing interfaces for R and t� denoted by narI�R� t�� is the set

f�u� �� l� r� 
� j u � O�t� with t�u �� V � l� r � R� 
 is a renaming of variables in l
such that V�
�l�� � V�t� � �� and � � Sub�V �!� is the most general uni�er of

�l� and t�ug�

� The set of narrowing occurrences for R and t� denoted by narO�R� t�� is the set

fu j �u� �� l� r� 
� � narI�R� t�g�

� The leftmost outermost narrowing occurrence for R and t� denoted by lo	narO�R� t��
is the narrowing occurrence minlexnarO�R� t��

� The set of leftmost outermost narrowing interfaces for R and t� denoted by lo	
narI�R� t�� is the set

f�u� �� l� r� 
� j �u� �� l� r� 
� � narI�R� t� and u � lo	narO�R� t�g�

� The leftmost outermost narrowing relation associated with R� denoted by
lo
�R� is

de�ned as follows
 for every t� s � T h!i�V� and 	� 	� � Sub�V �!�
 �t� 	� derives to

�s� 	�� by
lo
�R� denoted by �t� 	�

lo
�R �s� 	��� if the following three conditions hold


�� there is a leftmost outermost narrowing interface �u� �� l� r� 
� � lo	narI�R� t�

� s � ��t�u� 
�r���

�� 	� � 	  ��jV�t��

��



� The DeterministicUni�cation Algorithm for Macro Tree

Transducers

In this section we de�ne the deterministic uni�cation algorithm for macro tree transducers�
For this purpose� we recall the de�nition of macro tree transducers from �Eng��� CF�� and
introduce its leftmost outermost �for short
 lo� reduction relation� After that� we recall
the uni�cation	driven leftmost outermost narrowing relation �for short
 ulo narrowing
relation� and the ulo narrowing trees� Finally� we de�ne the deterministic uni�cation
algorithm for macro tree transducers which is shown to be a deterministic partial E	
uni�cation algorithm�

��� Macro Tree Transducer and LO Reduction Relation

We start this subsection by recalling the notion of macro tree transducer� For the sake
of better readability� we �rst de�ne the set of right hand sides of rewrite rules of a macro
tree transducer�

De�nition ��� Let F and " be ranked alphabets� For every f � F �n	�� with n � � and
� � "�m� with m � �� the set of �f� ���right hand sides� denoted by RHS�f� ��� is the
smallest set RHS which is de�ned inductively as follows


�i� For every i � �n�
 yi � RHS�

�ii� For every � � "�k� with k � � and for every ri � RHS with i � �k� 


��r�� � � � � rk� � RHS�

�iii� For every g � F �k	�� with k � �� i � �m�� and for every rj � RHS with j � �k� 


g�xi� r�� � � � � rk� � RHS�

The set of the right hand sides for F and "� denoted by RHS�F�"�� is the set

�
f�F���


RHS�f� ���

�

De�nition ��� A macro tree transducer is a term rewriting system �!� R�� where

� ! is partitioned into two disjoint sets F and "� where F and " are the sets of
function symbols and constructor symbols� respectively� moreover� F ��� � ��

� If l � r is in R� then l � f���x�� � � � � xm�� y�� � � � � yn� and r � RHS�f� �� for some
n � �� f � F �n	��� m � �� and � � "�m�� In this case� l� r is called �f� ��� rule�
Moreover� for every f � F and � � "� R contains exactly one �f� ��� rule� �

In the sequel� we will denote a macro tree transducer �!� R� with ! � F 	" by �F�"� R��

��



Remark ��� With every macro tree transducer M � �F�"� R�� a bijection � 
 R �
�card�R�� is associated that describes an enumeration of R� The function � is de�ned as
follows
 We suppose that there exist total orderings on F and "� i�e�� �f�� � � � � fn� for the
elements of F and ���� � � � � ��� for the elements of "� In this case� � maps the �fi� �j�	rule
to ��i� �� � card�"��� j� We write R as follows


ffi��j�x�� � � � � xrank��j��� y�� � � � � yrank�fi����� rji j j � �
�� i � �n�g�

�

To give an example� the set R� of rewrite rules of the macro tree transducer M� �
�F��"�� R�� is shown in Figure �� where we assume to have a ranked alphabet F� �
fsh���� mi���g of function symbols and a ranked alphabet "� � f����� ���g of constructors�
Intuitively� M� de�nes two functions shovel and mirror with arity  and �� respectively�
mirror re�ects terms over " at the vertical center line� and shovel accumulates in its
second argument the mirror	image of the second subterm of its �rst argument� If we con	
sider� e�g�� the term t� � ����� s��� s�� for some subterms s� and s�� then for an arbitrary
term t�� sh�t�� t�� derives to the term ��mi�s��� ��mi�s��� t����

sh�� y�� � y� ���
sh���x�� x��� y�� � sh�x�� ��mi�x��� y��� ��

mi�� �  ���
mi���x�� x��� � ��mi�x��� mi�x��� ���

Figure �
 Set of rewrite rules of the macro tree transducer M��

Remark ��� Every macro tree transducer M is a ctn	trs� i�e�� it is canonical �i�e�� con�u	
ent and noetherian� �FHVV���� constructor	based �You���� totally de�ned �i�e�� every nor	
mal form does not contain any function symbol� �EV���� and it is not strictly sub	uni�able
�Ech���� A term rewriting system is strictly sub	uni�able if there exist two rewrite rules
l � r and l� � r� such that �i� there exists an occurrence u � O�l� � O�l�� where l�u
and l��u are uni�able and their most general uni�er is neither a variable renaming nor the
empty substitution� and �ii� for every v � O�l� � O�l�� with v � u we have l�v� � l��v��
These conditions cannot be ful�lled by a macro tree transducer� because of the structure
of the rewrite rules� left hand sides� �

In the rest of the paper�M denotes an arbitrary� but �xed macro tree transducer �F�"� R��

The leftmost outermost reduction relation is a subset of the reduction relation �cf�
Section � which only allows reduction at the leftmost outermost redex occurrence�

De�nition ��� Let M � �F�"� R� be a macro tree transducer and let t � T hF 	"i�

� The leftmost outermost redex occurrence for M and t� denoted by lo	redO�M� t�� is
the redex occurrence minlexredO�M� t��

�



� The set of leftmost outermost redex interfaces for M and t� denoted by lo	redI�M� t��
is the set

f�u� �� l� r� j �u� �� l� r� � redI�M� t� and u � lo	redO�M� t�g�

� The leftmost outermost �for short� lo	 reduction relation associated with M � denoted

by
lo
��M � is de�ned as follows� For every t� s � T hF 	"i de�ne t

lo
��M s� if the

following two conditions hold


�� There is a leftmost outermost redex interface �u� �� l� r� � lo	redI�M� t��

� s � t�u� ��r�� �

Note that lo	redO�M� t� � redO�M� t� and that lo	redI�M� t� 
 redI�M� t�� We some	

times use indices for
lo
��M to indicate the lo redex occurrence or the applied rule� For

instance�
lo
��M�u�l�r denotes the reduction step in De�nition ���� Furthermore� we often

replace the applied rule by its number� A derivation by
lo
��M�

� where M� is the macro
tree transducer in Figure �� is illustrated in the following example�

Example ��	 Let M� be the macro tree transducer in Figure �� Consider the term
t � sh���� �� mi����

t
lo
��M������� sh�� ��mi��� mi����

lo
��M������� ��mi��� mi���

lo
��M������� ���mi���

lo
��M������� ��� �

Since there is no function call anymore� the term ��� � is the normal form of t� �

Note that� the reduction machine only accepts particular expressions as input� They are
de�ned at the beginning of Section ��

��� ULO Narrowing Relation

In �FV�b� we have introduced the uni�cation	driven leftmost outermost narrowing re	
lation �for short
 ulo narrowing relation�� We have shown that� for ctn	trs�s� the ulo
narrowing relation constitutes a universal uni�cation algorithm for the class of equational
theories which are induced by such term rewriting systems�

Roughly speaking� the ulo narrowing relation combines leftmost outermost narrowing
with a particular occur check and a local consistency check between head constructor
symbols� The local consistency check is based on additional rules called decomposition
rules� the original macro tree transducer M together with the decomposition rules form
the extension of M �

��



De�nition ��
 The extension of M� denoted by cM � is the triple � bF�"� bR�� where

� bF � F 	 fequg� where equ is a new binary symbol�

� bR contains the rules of R and additionally� for every � � "�k� with k � �� the
decomposition rule

equ���x�� � � � � xk�� ��xk	�� � � � � x�k��� ��equ�x�� xk	��� � � � � equ�xk� x�k���

�

The enumeration of the rules in bR is given by the bijection b� 
 bR � �card� bR�� such that
b�jR � �� where � is the bijection that induces the enumeration of R �cf� Remark ����� and
the decomposition rules are enumerated in any arbitrary order �which is irrelevant in the
sequel��

As an example� the set bR� of the extension cM� � � bF��"�� bR�� of the macro tree
transducer M�� where bF� � fsh���� mi���� equ���g and "� � f����� ���g� includes the rules
in Figure � and in Figure ��

equ�� � �  ���
equ���x�� x��� ��x�� x�� � ��equ�x�� x��� equ�x�� x�� ���

Figure �
 Decomposition rules of cM��

The derivation forms of the ulo narrowing relation are pairs �e� �� consisting of a term
e � T h bF 	"i�FV � and an �FV�"�	substitution �� We allow only variables of the set FV
in the derivation forms for preventing con�icts with variables occuring in the rewrite rules�

Intuitively� the ulo narrowing relation is de�ned as follows� If �e� �� is the current deri	
vation form� then the leftmost occurrence of equ in e is considered� we call this occurrence
the important occurrence in e and we denote it by impO�e�� Let e�impO�e� � equ�t�� t��
for some terms t� and t�� and let l� and l� be the labels of the roots of t� and t�� respectively�
Then we distinguish the following cases�

� If l� � l� � � � "� then the decomposition rule for � is applied�

� If l�� l� � " and l� �� l�� then the derivation is stopped without success�

� If l� � FV and l� � � � "� then the occur check for l� is applied to the �" 	
FV �	skeleton of t�� If it succeeds� then the derivation is stopped� otherwise� the
decomposition rule for � is applied�

The �" 	 FV ��skeleton of a term t is the set of all occurrences u � O�t� such that
there does not exist any pre�x v of u which is labeled by a function symbol�

� If l� � � � " and l� � FV � then the ulo narrowing relation behaves similarly to the
previous case�

��



� If l�� l� � FV and l� �� l�� then e�impO�e� and every occurrence of l� and l� in e are
replaced by a free variable zk which is not yet used�

� If l� � l� � zi � FV � then e�impO�e� is replaced by zi�

� If l� � F � then a leftmost outermost narrowing step is applied to t��

� If l� �� F and l� � F � then a leftmost outermost narrowing step is applied to t��

We refer the reader to �FV�b� for a detailled motivation of these requirements� Now we
recall the formal de�nitions of the involved notions and the ulo narrowing relation�

De�nition ��� Let e � T h bF 	"i�FV ��

� The important occurrence in e� denoted by impO�e�� is the occurrence

minlexfu � O�e� j e�u� � equg�

� e is in binding mode� if e�impO�e� � equ�zi� zj� and zi� zj � FV �

� The �" 	 FV ��skeleton of e is the set

fu � O�e� j for every v � O�e� with v � u 
 e�v� �� Fg�

� The occur check for e succeeds if e is not in binding mode and there is exactly one
i � �� such that e�impO�e�i� � zj � FV and there exists an occurrence u in the
�"	FV �	skeleton of e��impO�e���� i�� such that �e��impO�e���� i����u� � zj � �

De�nition ��� The uni�cation�driven leftmost outermost narrowing relation associated
with cM � denoted by

u
� bM � is de�ned as follows� For every e�� e� � T h bF 	"i�FV � and

	� 	� � Sub�FV�"� 
 �e�� 	�
u
� bM �e�� 	

�� if e��impO�e�� � equ�t�� t��� for some t�� t� �
T hF 	"i�FV � and one of the following four conditions holds


�� ��t�� �� t�� � � " and t�� � � t�� �� or ���t�� � � " and t�� � � FV � or �t�� � � FV

and t�� � � "�� and the occur check fails for e���� e��impO�e�� is uni�able with
the left hand side l of a decomposition rule l � r with the most general uni�er ��
e� � ��e��impO�e��� r��� and 	� � 	  ��jV�e����

� t�� �� t�� � � FV and

�a� t� �� t�� e� � ��e��impO�e��� zk��� and 	� � 	  ��
where � � �t��zk� t��zk� and k � minfi j zi � FV n�V�e�� 	 D�	�	 I�	��g or

�b� t� � t�� e� � e��impO�e��� t��� and 	� � 	�

�� t�� � � F � �t�� ���
lo
�M �t��� ��� e� � ��e��impO�e���� t����� and 	

� � 	  ��

�� t�� � �� F � t�� � � F � �t�� ���
lo
�M �t��� ��� e� � ��e��impO�e�� � t����� and 	

� �
	  �� �

��



If �e�� 	�
u
� bM �e�� 	

��� then we say that �e�� 	� derives to �e�� 	
�� by

u
� bM � We someti	

mes use indices for
u
� bM to indicate the important occurrence� the applied rule� or the

substitution� Furthermore� we often replace the applied rule by its number� In case  in
the previous de�nition we use bm as index to indicate that the current term is in binding
mode�

In fact� the ulo narrowing relation
u
� bM is correct with respect to �EM �"�	uni�cation

in the sense that� if �equ�t� s�� ��� derives to �e� �� by
u
� bM for some constructor term

e � T h"i�FV � and some �FV�"�	substitution �� then � is an �EM �"�	uni�er of t and s�
The next theorem shows this connection formally�

Theorem ��� �cf� Theorem ��� of �FV�b��
Let M � �F�"� R� be a macro tree transducer� t� s � T hF 	"i�FV �� and let V be the
�nite set V�t� 	 V�s�� If there exists a derivation


�equ�t� s�� ��� � �e�� ���
u
� bM �e�� ���

u
� bM �e�� ���

u
� bM � � �

u
� bM �en� �n��

where en � T h"i�FV �� then �njV is an �EM �"�	uni�er of t and s� �

In the following example we show a derivation by the ulo narrowing relation for the
extension cM� �cf� Figure � and � for the set of rules��

Example ����

�equ���z�� z��� ��mi���� z���� z���� ���
u
� bM����������

���equ�z�� mi���� z����� equ�z�� z���� ���
u
� bM����������

���equ�z�� ��mi�z��� mi����� equ�z�� z���� ���
u
� bM���������z����z��z���

�����equ�z� mi�z���� equ�z�� mi����� equ�z�� z���� �z����z� z����
u
� bM�����������z����

�����equ�z� �� equ�z�� mi����� equ�z�� z���� �z����z� z��� z����
u
� bM����������z����

������ equ�z�� mi����� equ�z�� z���� �z����� z��� z����
u
� bM������������

������ equ�z�� ��� equ�z�� z���� �z����� z��� z����
u
� bM����������z����

������ �� equ�z�� z���� �z����� �� z����
u
� bM����bm���

������ �� z��� �z����� �� z����

By Theorem ���� follows that� the substitution �z����� �� z��� is an �EM�
�"�	uni�er of

the sd	expressions ��z�� z�� and ��mi���� z���� z��� �

Note that� the twin uni�cation machine only accepts particular expressions as input� They
are de�ned at the beginning of Section ��

��



��� ULO Narrowing Trees

The ulo narrowing relation is nondeterministic� because at the important occurrence more
than one rule may be applicable� Consider� e�g�� the fourth derivation step in Example
����� here also rule ��� can be applied by using the substitution �z����z�� z���� Thus
usually� there exist more than one derivation by the ulo narrowing relation starting with
the same derivation form�

As usual� all derivations by the ulo narrowing relation starting with the same derivation
form �e� ��� can be collected into one tree� called the ulo narrowing tree for �e� ���� This
is similar to the collection of all SLD	resolutions for one goal g in the SLD	tree for g �cf�
�Llo�����

De�nition ���� Let M � �F�"� R� be a macro tree transducer and let t and s be terms
in T hF 	"i�FV �� The ulo narrowing tree for �equ�t� s�� ��� is the tree T which ful�lls
the following three conditions


�� The root of T is labeled by �equ�t� s�� ����

� Every node of T is labeled by a derivation form of a derivation by
u
� bM starting from

�equ�t� s�� ����

�� If a node nd is labeled by a derivation form �e�� �� and for every i � �m�n�� �e�� ��
derives to �ei� �i� by the i	th rule� then nd has n �m � � sons labeled by �ei� �i�
from left to right for i � �m�n�� �

In Figure � the ulo narrowing tree for the derivation form �equ�sh�z�� �� mi���z�� ���� ���
is shown� where the second components of the derivation forms �i�e�� the substitutions�
are omitted�

��� The Deterministic Uni�cation Algorithm

Now we de�ne an algorithm which is based on a depth	�rst left	to	right traversal over ulo
narrowing trees� we will prove that this algorithm is a deterministic partial EM 	uni�cation
algorithm �as de�ned in Section ����

De�nition ���� Let M � �F�"� R� be a macro tree transducer� The deterministic uni�
�cation algorithm for M is the following algorithm


INPUT terms t and s from T hF 	"i�FV ��

OUTPUT either of the following two outputs


� #t and s are �EM �"�	uni�able by �#

� #t and s are not �EM �"�	uni�able#

��



equ�sh�z�� ���mi���z�� ����
��������

equ���mi���z�� ����

equ��� ��mi����mi�z����

equ�sh�z�� ��mi�z��� ����mi���z� � ����

l
l
l
l
l
l
l
l
l
l
l
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��
equ���mi�z��� ���mi���z� � ����

L
L
L
L
L
L
LL
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�� A

A
AA

equ���mi�z��� ��� ��mi����mi�z����

��equ�mi�z���mi����� equ���mi�z����

��equ���mi�z���mi�z����mi����� equ���mi�z����
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 An ulo narrowing tree�
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PROCEDURE

�� Construct the ulo narrowing tree for �equ�t� s�� ����

� Perform a depth	�rst left	to	right traversal over this tree until one of the following
two situations occurs


�a� A node is reached which is labeled by �e� �� for some e � T h"i�FV �� Then
stop the algorithm and output
 #t and s are �EM �"�	uni�able by �jV # where
V � V�t�	 V�s��

�b� The root is reached from its rightmost son� Then stop the algorithm and output
#t and s are not �EM �"�	uni�able#�

END� �

To show that the deterministic uni�cation algorithm forM is really a deterministic partial
EM 	uni�cation algorithm� we have to recall the completeness result for

u
� bM � i�e�� the fact

that
u
� bM generates a ground complete set of �EM �"�	uni�ers�

Theorem ���� �cf� Theorem ��� of �FV�b��
Let M � �F�"� R� be a macro tree transducer� t� s � T hF 	"i�FV �� and let V be the
�nite set V�t�	V�s�� Let S be the set of all �FV�"�	substitutions � such that there exists
a derivation


�equ�t� s�� ��� � �e�� ���
u
� bM �e�� ���

u
� bM �e�� ���

u
� bM � � �

u
� bM �en� �n��

where en � T h"i�FV � and � � �njV � Then S is a ground complete set of �EM �"�	uni�ers
of t and s away from V � �

The next lemma closes the gap between EM 	uni�ers of t and s and �EM �"�	uni�ers of t
and s�

Lemma ���� LetM � �F�"� R� be a macro tree transducer and let t� s � T hF 	"i�FV ��

�� If � is an EM 	uni�er of t and s� then there exists an �EM �"�	uni�er of t and s�

� Every �EM �"�	uni�er of t and s is also an EM 	uni�er of t and s�

Proof� Statement  follows immediately from the de�nitions of EM 	uni�ers and �EM �"�	
uni�ers in Subsection ���

Statement � can be shown as follows
 Let � be an EM 	uni�er of t and s such that
for some z � FV � the image ��z� contains a function symbol� Since every macro tree
transducer is totally de�ned� the normal form of any ground instance of ��z� is an element
of T h"i� i�e�� it does not contain any function symbol� Now� let 	 be an arbitrary �FV�"�	
substitution such that for every z � FV � the term 	���z�� is ground� Then the �FV�"�	
substitution �� is an �EM �"�	uni�er of t and s where ���z� is the normal form of 	���z���

�
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We �nish this section by showing that the deterministic uni�cation algorithm for M is
really a deterministic partial EM 	uni�cation algorithm�

Theorem ���	 Let M � �F�"� R� be a macro tree transducer� The deterministic uni�	
cation algorithm for M is a deterministic partial EM 	uni�cation algorithm�

Proof� Let t� s � T hF 	"i�FV ��

� Assume that the deterministic uni�cation algorithm for M terminates on input t
and s and that it outputs $t and s are �EM �"�	uni�able by �#� Then� since every
path of the ulo narrowing tree corresponds to a derivation by

u
� bM and since this

derivation ends up with a term e in T h"i�FV �� it follows from Theorem ���� that �
is an �EM �"�	uni�er of t and s� Thus� by Lemma ���� ��� � is also an EM 	uni�er
of t and s�

� Now assume that the deterministic uni�cation algorithm for M terminates on input
t and s and that it outputs $t and s are not �EM �"�	uni�able#� Then the depth	�rst
left	to	right traversal has been �nished without �nding an �EM �"�	uni�er of t and
s� Since the ulo narrowing tree contains all possible derivations by

u
� bM � it follows

from Theorem ���� that there does not exist any �EM �"�	uni�er of t and s� Thus�
by Lemma ���� ���� t and s are not EM 	uni�able�

There is nothing to show in the case where the deterministic uni�cation algorithm for M
does not terminate� �

�



� Reduction Machine

The implementation of the deterministic uni�cation algorithm for macro tree transducers
�as de�ned in De�nition ����� is an extension of the implementation of the lo reduction
relation for macro tree transducers on a reduction machine in �GFV���� For a better
understanding of the former implementation which will be presented in Section �� we �rst
recall the latter implementation in a slightly modi�ed way�

The implementation of the lo reduction relation in �GFV��� only accepts ground syntax
directed expressions as input� these are terms over F and " in which the �rst argument of
a function call only contains constructors� i�e�� it does not contain any other function call�

De�nition ��� Let F and " be ranked alphabets� The set of ground syntax�directed
expressions �for short� gsd�expressions	 over F and "� denoted by gsdExp�F�"�� is the
smallest set gsdExp which is de�ned inductively as follows


�i� For every � � "�k� with k � � and for every ti � gsdExp with i � �k� 
 ��t�� � � � � tk� �
gsdExp�

�ii� For every f � F �n	�� with n � �� t � T h"i� and for every ti � gsdExp with i � �n� 

f�t� t�� � � � � tn� � gsdExp� �

For example� the term sh���� �� mi��� is a gsd	expression over F� and "�� whereas the
term sh�mi��� � is not a gsd	expression� because the �rst argument of the function call
of sh includes the function call of mi�

Observation ��� The set gsdExp�F�"� is closed under
lo
��M � i�e�� if t � gsdExp�F�"�

and t
lo
��M s� then s � gsdExp�F�"�� �

We start with the de�nition of the reduction machine by presenting its instantaneous
descriptions and its machine instructions� Then we present the compilation of rewrite
rules and gsd	expressions into code of the reduction machine� We always suppose that a
macro tree transducer M � �F�"� R� is given�

��� Instantaneous Descriptions of the Reduction Machine

In this subsection we introduce the instantaneous descriptions of the reduction machine�
An instantaneous description contains the following components� where PA and Adr are
sets of program addresses and graph addresses� respectively


� program store� It is a function ps 
 PA � InstrR� where PA � IN and the set
InstrR of the reduction machine�s instructions will be explained later�

The program store contains the translation of both� the rewrite rules and the gsd	
expression� into a program of the reduction machine� This component remains un	
changed during the evaluation of programs�

�



� instruction pointer� It is an element ip � PA�

The instruction pointer points to the program address of the instruction that has to
be executed next�

� tree� It is the function T 
 Adr� TNodes� where Adr � IN and the set TNodes of
tree nodes only contains constructor nodes of the form

hCON� �� a�� � � � � aki where � � �"	 f%g��k�� k � �� and for every i � �k� 
 ai � Adr�

A tree is necessary for the representation of the recursion arguments of the functions
occurring in the gsd	expression e� This representation is organized as follows� The
root is labeled by a new constructor % the rank of which is equal to the number of the
recursion arguments occurring in e� The subtrees represent the recursion arguments
from left to right� Every recursion argument is a tree over "�

The tree in Figure � is the representation of the recursion arguments of the gsd	
expression ��sh��mi���� ���� mi���� note that� three recursion arguments occur
in this gsd	expression�

� data stack� It is an element ds � DS� where DS � Adr��

The data stack is only used for the bottom	up creation of the tree�

� runtime stack� It is an element rs � RS� where RS � SYMB� and SYMB �
fF� Y g 	 PA 	 IN 	Adr�

The runtime stack is the central component of the machine� It is used to store the
environments of function calls and to manage the evaluation of parameters in the
correct environment� An environment of a function call is represented by an F�block
which has the following structure

F 
 ra 
 dl 
 recarg 
 a� 
 � � � 
 an

where

� F is a tag�

� ra � PA is the return address of the function call which has caused the existence
of this F 	block�

� dl � IN is the dynamic link to the top of the block beneath it�

� recarg � Adr is the pointer to the root of the recursion argument of the function
call�

� a�� � � � � an � PA are the program addresses of the parameters of the function
call�

For the evaluation of parameters� the runtime stack uses Y	blocks� A Y�block has
the following structure

Y 
 ra 
 sl

where





� Y is a tag�

� ra � PA is the return address at which the evaluation must be resumed after
the evaluation of the parameter which has caused the existence of this Y 	block�

� sl � IN is the static link to the top of the F 	block containing the environment
of the current environment�

� output tape� It is an element ot � OT � where OT � "��

The result of the computation is written to the output tape which is a write only
tape�

Since the program store remains unchanged during the evaluation� we will denote an
instantaneous description always by a tuple

�ip� T� ds� rs� ot�� IDR

where
IDR � PA � �Adr� TNodes��DS �RS �OT�

Both stacks� the runtime stack and the data stack� are assumed to grow to the left� Such
a stack st with m elements is written in the form st�� 
 � � � 
 st�m� If we want to exhibit a
�nite number k of top elements from the rest st� of the stack st� then we use the notation
st�� 
 � � � 
 st�k 
 st� for st�

An example of an instantaneous description of a reduction machine is shown in Figure
� in which also the program store is illustrated�

��� Machine Instructions of the Reduction Machine

In this subsection we introduce the instructions of the reduction machine and their seman	
tics �cf� Figures � and ���� The semantics of an instruction inst is a function CR �� inst �� 

IDR � IDR� We distinguish between control instructions which are responsible for the
evaluation of the gsd	expression� and tree instructions which build up the tree at the
beginning of the computation�

Control Instructions

� JMP n sets the instruction pointer to n�

� The JMR	instruction realizes the indexing in the reduction machine� Using the
instruction JMR��� 
m�� � � � � �� 
m��� the instruction pointer is set to the program
address which corresponds to the label of the root of the current recursion argument�
The pointer in the fourth square of the topmost block points to the root of the
recursion argument in the tree� Whenever JMR is applied� the topmost block is an
F 	block� because this instruction is only executed after a sequence which consists of
a CREATE	instruction followed by a JMP 	instruction�
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Figure �
 A reduction machine�

� CREATE�ra� j�m�� � � � � mn� increments the instruction pointer and pushes a new
F 	block on top of the runtime stack with the following components
 tag F � return
address ra� n� as dynamic link� a pointer to the j	th subterm of the current recur	
sion argument� and the addresses m�� � � � � mn as code addresses for the evaluation
of the parameters of the function call� Since the topmost block can be a Y 	block�
we need the auxiliary function env to calculate the current environment and then
to retrieve the current recursion argument� The function env 
 RS � IN yields the
position of the top in the F 	block which contains the current environment �cf� Figure
����

� The instruction EVAL i serves for the evaluation of the i	th parameter value of a
function call� A Y 	block is pushed on top of the stack� and the instruction pointer
is set to the program address for the computation of the parameter variable yi�
This address is found out by means of the function env� By means of the static
link� the Y 	block is connected to the F 	block which contains the environment of the
current environment� the static link is evaluated by means of the auxiliary function
next 
 RS � IN �cf� Figure ����
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CR �� JMP n �� �ip� T� ds� rs� ot	 

�n� T� ds� rs� ot	

CR �� JMR��� � m�� � � � � �� � m�	 �� �ip� T� ds� rs� ot	 

if rs�� 
 adr and T �adr	 
 hCON� �j� adr�� � � � � adrki where �j � ��k�

then �mj � T� ds� rs� ot	

CR �� CREATE�ra� j�m�� � � � �mn	 �� �ip� T� ds� rs� ot	 

if rs��env�rs	 � �	 
 adr� T �adr	 
 hCON� �� adr�� � � � � adrki� and j � �k�
then �ip � � T� ds� F � ra � n� � � adrj � m� � � � � � mn � rs� ot	

CR �� EV AL i �� �ip� T� ds� rs� ot	 

�rs��env�rs	 � � � i	� T� ds� Y � ip �  � next�rs	 � rs� ot	

CR �� RET �� �ip� T� ds� rs� ot	 

if rs 
 F � ra � n� � � adr � m� � � � � � mn � rs� or rs 
 Y � ra � sl � rs�

then �ra� T� ds� rs�� ot	

CR �� WRITE � �� �ip� T� ds� rs� ot	 

�ip� � T� ds� rs� ot�	

Figure �
 Control instructions of the reduction machine�

� The RET 	instruction deletes the topmost block on the runtime stack and it sets the
instruction pointer to the return address of this block�

� WRITE � appends the constructor � to the end of the output tape and increments
the instruction pointer�

env � RS � IN
env�rs	 
 if rs� 
 F then 

if rs� 
 Y then � � rs��

next � RS � IN
next�rs	 
 if rs� 
 F and rs��� � rs��	 
 F then � � rs��

if rs� 
 F and rs��� � rs��	 
 Y then � � rs�� � rs��� � rs��	
if rs� 
 Y and rs��� � rs��	 
 F then � � rs�� � next�rs��� � rs��	 � � � �	� 

new � �Adr� TNodes�� IN� Adr�

new�T� n	 
 if n 
 � then �
if n � � and adr�� � � � � adrn are the minimal addresses such that

T �adri	 is not de�ned then adr� � � � � � adrn

Figure ��
 Auxiliary functions env� next� and new�

Tree Instructions

� NODE��� n� creates a new node tadr in the tree with the label hCON� �� a�� � � � � ani�
where a�� � � � � an are tree addresses of the direct descendants of tadr� These n tree
addresses are taken from the data stack and they are replaced by the tree address
of the new node� For a tree T and a number n� the auxiliary function new yields n
graph addresses which are not yet used �cf� Figure ����
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CR �� NODE��� n	 �� �ip� T� ds� rs� ot	 

if ds 
 an � � � � � a� � ds�

then �ip � � T �tadr�hCON� �� a�� � � � � ani�� tadr � ds�� rs� ot	
where tadr 
 new�T� 	

CR �� NODE� �� �ip� T� ds� rs� ot	 

if ds 
 an � � � � � a�
then �ip � � T �tadr�hCON��� a�� � � � � ani���� F � � � � � tadr � rs� ot	
where tadr 
 new�T� 	

Figure ��
 Tree instructions of the reduction machine�

� By the NODE%	instruction� the tree addresses a�� � � � � an of all recursion arguments
in the given gsd	expression are connected to a tree the root of which is labeled by
hCON�%� a�� � � � � ani� Furthermore� the initial F 	block with return address � and
the pointer to the %	node is pushed on the runtime stack and the data stack becomes
empty�

State Transitions

The transitions of the machine are determined by the code ps that is generated by trans	
lating the rewrite rules of the macro tree transducer M and the gsd	expression e� The
machine execution starts with the instantaneous description

��� T�� � � �

where T� is assumed to be the empty tree�

The transition rule

�ip� T� ds� rs� ot� � CR �� ps�ip� �� �ip� T� ds� rs� ot�

is applied until one of the following conditions is true


� ip � � and rs �  �successful computation�


This indicates that the evaluation has been successful� The output tape contains
the result�

� �ps is not de�ned for ip� or �ip � � and rs ��  � �failure�


In this case a failure has occurred� This case is not possible for programs which
result from the translation of the rewrite rules of a macro tree transducer together
with a gsd	expression�

��� Compilation of Rewrite Rules and GSD�Expressions

In this subsection we present the compilation of the rewrite rules of the macro tree trans	
ducer M � �F�"� R� together with a gsd	expression e into code of the reduction machine�
We always suppose that F � ff�� � � � � frg and " � f��� � � � � ��g� Note that the rewrite
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rules of M are ordered by the enumeration � �cf� Remark ����� i�e�� there is the following
ordering of the rules in R


R � ffi��j�x�� � � � � xrank��j��� y�� � � � � yrank�fi����� rji j j � �
�� i � �r�g�

For the sake of simplicity� we always use tree	structured addresses in the generated
programs� Such an address is a string of nonnegative integers separated by dots� and it is
possible that an instruction is labeled by several �possibly none� tree	structured addresses�
Clearly� such addresses may now also appear as parameters of instructions� We assume
that a load program exists� which transforms a program with tree	structured addresses
into code with usual addresses as it is de�ned in the previous subsection�

In the description of the compilation schemes we use� for every i � IN� the following
metavariables
 ri � RHS�F�"�� e� ei � gsdExp�F�"�� t� ti � T h"i� and � �i are tree	
structured addresses�

For the set R of rewrite rules and any gsd	expression e� the function trans �cf� Figure ��
produces the code of the reduction machine which starts with a JMP r � �	instruction�
at program address r � � the code starts which is generated by the translation of e�
Furthermore� for every i � �r�� the rewrite rules of a function symbol fi are translated by
the function functrans where the code starts at address i� The translation of the rules
of fi is followed by a RET 	instruction which deletes the topmost block on the runtime
stack� This block is an F 	block which was pushed on the runtime stack at the beginning
of the function call�s evaluation�

trans�R� e	 


JMP r � �
 � functrans�ff���j�x�� � � � � xrank��j�	� y�� � � � � yrank�f����	 � rj� j j � ���g� 	 RET �

���
r � functrans�ffr��j�x�� � � � � xrank��j�	� y�� � � � � yrank�fr���	� rjr j j � ���g� r	 RET �
r �  � goaltrans�e� r � 	

Figure �
 Compilation scheme trans�

The code for fi which is produced by functrans �cf� Figure ���� starts with a JMR	
instruction� By this instruction� indexing is realized in the reduction machine� i�e�� if the
root of the current recursion argument is labeled by �j � then the machine jumps to the
code for the right hand side of the �fi� �j�	rule� This code is produced by the function
rhstrans�

The function rhstrans �cf� Figure ��� is de�ned inductively on the structure of the
right hand sides �cf� De�nition �����

� If the right hand side is a parameter variable yi� then an EVAL i	instruction is
produced�

� A right hand side the root of which is labeled by a constructor �j � is translated into
a WRITE �j	instruction which� recursively� is followed by the translations of its
subtrees�
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functrans�ffi��j�x�� � � � � xrank��j�	� y�� � � � � yrank�fi���	 � rji j j � ���g� i	 


JMR��� � i�� � � � � �� � i��	�
i� � rhstrans�r�i� i�	 JMP i���� 	�

���
i��� � 	 � rhstrans�r�����i� i���� 		 JMP i��� � 	�
i�� � rhstrans�r�i� i��	
i��� � 	 �

Figure ��
 Compilation scheme functrans�

� The code which is produced by the translation of a function call fi�xj � r�� � � � � rn��
starts with a CREATE	instruction which creates an F 	block on the runtime stack�
This F 	block contains a pointer to the j	th subtree of the current recursion argument�
and the addresses for the evaluation of the parameters r�� � � � � rn� The CREATE	
instruction is followed by a JMP i	instruction which jumps to the code for fi�
Furthermore� the code for r�� � � � � rn is produced by recursive calls of rhstrans which
are followed by a RET 	instruction� This instruction deletes the Y 	block which has
been pushed on the runtime stack at the beginning of the parameter�s evaluation�

rhstrans�yi� �	 
 EV AL i�

rhstrans��j�r�� � � � � rn	� �	 
 WRITE �j �
rhstrans�r�� ��	 � � �rhstrans�rn� ��n	

rhstrans�fi�xj � r�� � � � � rn	� �	 
 CREATE����n� 	� j� ��� � � �� ��n	�
JMP i�

�� � rhstrans�r�� ��	 RET �
���

��n � rhstrans�rn� ��n	 RET �
���n� 	 �

Figure ��
 Compilation scheme rhstrans�

For a gsd	expression e� the function goaltrans �cf� Figure ��� constructs the tree of
recursion arguments in e� This is realized by the function maketree and the NODE%	
instruction� Furthermore� goaltrans translates e into code of the reduction machine by
the function exptrans�

goaltrans�e� �	 
 maketree�e	
NODE��

�� � exptrans�e� � ��	
RET �

Figure ��
 Compilation scheme goaltrans�

The code for the creation of the tree is produced by the functions maketree and
makenodes �cf� Figure ���� If the root of the argument e of maketree is labeled by a
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constructor� then maketree is applied to the subtrees of e� If the root of e is labeled by
a function symbol� then makenodes is applied to the recursion argument of the function
call� i�e�� the �rst subtree of e� and maketree is applied to the other subtrees of e�

The function makenodes constructs the code for the bottom up	construction of the
recursion arguments�

maketree��j�e�� � � � � en		 
 maketree�e�	 � � �maketree�en	

maketree�fi�t� e�� � � � � en		 
 makenodes�t	 maketree�e�	 � � �maketree�en	

makenodes��j�t�� � � � � tn		 
 makenodes�t�	 � � �makenodes�tn	 NODE��� n	�

Figure ��
 Tree construction schemes maketree and makenodes�

The function exptrans �cf� Figure ��� is de�ned very similar to the function rhstrans�
It has one more parameter� the second one� which is responsible for choosing the correct
recursion argument� In this parameter� the function count is applied which counts the
number of function calls which are left to the current position in the gsd	expression �cf�
Figure ����

count � gsdExp�F��	� IN

count�e	 
 if e 
 �j�e�� � � � � en	 then
Pn

i�� count�ei	

if e 
 fi�t� e� � � � � en	 then  �
Pn

i�� count�ei	

Figure ��
 Auxiliary function count�

exptrans��i�e�� � � � � en	� j� �	 
 WRITE �i�
exptrans�e�� j� ��	
���

exptrans�en� j �
Pn��

k�� count�ek	� ��n	

exptrans�fi�t� e�� � � � � en	� j� �	 
 CREATE����n� 	� j� ��� � � � � ��n	�
JMP i�

�� � exptrans�e�� j � � ��	 RET �
���

��n � exptrans�en� j �  �
Pn��

k�� count�ek	� ��n	 RET �
���n� 	 �

Figure ��
 Compilation scheme exptrans�

In Figure �� the translation of the rewrite rules in R� �cf� Figure �� and the gsd	
expression e � sh���� �� mi��� is shown� The left column includes the JMP 	
instruction to the translation of e and the translation of the rewrite rules for sh� The
column in the middle includes the translation of the rules for mi and �nally� the right
column includes the translation of e� The computation of this program is the implemen	
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tation of the derivation by
lo
��M�

starting with e as it is shown in Example ���� The stop
instantaneous description is the tuple ��� T� � � �� where

T � T����hCON� i� �hCON� i� ��hCON� �� �� i� ��hCON� i� ��hCON�%� �� �i��

 � JMP ���
� � JMR�� � �� � � �	�
� � EV AL �
� � JMP ��
� � CREATE��� � �	�
� � JMP ��
� � WRITE ��
� � CREATE��� �	�
� � JMP ��
� � EV AL �
 � RET �
� � RET �

� � JMR�� � �� � � �	�
� � WRITE ��
� � JMP ��
� � WRITE ��
� � CREATE��� �	�
� � JMP ��
� � CREATE��� 	�
�� � JMP ��
� � RET �

�� � NODE��� �	�
�� � NODE��� �	�
�� � NODE��� �	�
�� � NODE��� �	�
�� � NODE��
�� � CREATE���� � ��	�
�� � JMP ��
�� � CREATE��� �	�
�� � JMP ��
� � RET �
�� � RET �

Figure ��
 Compilation of R� and e � sh���� �� mi����
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� Twin Uni�cation Machine

In this section we extend the implementation of the lo reduction relation to the implemen	
tation of the deterministic uni�cation algorithm for macro tree transducers of De�nition
����� Since the former implementation only accepts gsd	expressions �cf� De�nition ����
as input� the latter implementation also only accepts particular terms as input which
are called syntax�directed expressions� A gsd	expression generalizes to a syntax	directed
expression if variables of FV are allowed to occur as zero	ary symbols�

De�nition ��� The set of syntax�directed expressions �for short� sd�expressions	 over
F� "� and FV� denoted by sdExp�F�"� FV �� is the smallest set sdExp which is de�ned
inductively as follows


�i� FV 
 sdExp�

�ii� For every � � "�k� with k � � and for every ti � sdExp with i � �k� 
 ��t�� � � � � tk� �
sdExp�

�iii� For every f � F �n	�� with n � �� t � T h"i�FV �� and for every ti � sdExp with
i � �n� 
 f�t� t�� � � � � tn� � sdExp� �

For example� the term sh���z�� �� mi���z�� z���� is an sd	expression over F��"�� and FV �
whereas the term sh�mi��� z�� is not an sd	expression� because the �rst argument of the
function call of sh includes the function call of mi�

For extending the implementation of the lo reduction relation to the implementation of
the deterministic uni�cation algorithm for macro tree transducers� the reduction machine
is enriched by additional mechanisms for the handling of free variables in sd	expressions� for
backtracking� and for uni�cation� the resulting abstract machine is called twin uni�cation
machine�

The handling of free variables and the way of backtracking are performed in a rat	
her standard way� as� e�g�� in �Loo��� War���� Thus� the main contribution of the twin
uni�cation machine is the technique for handling uni�cation� For this purpose� the twin
uni�cation machine consists of two runtime stacks� Each of them is responsible for the
evaluation of one of the two sd	expressions e� and e� which should be E	uni�ed� Accor	
ding to the deterministic uni�cation algorithm for macro tree transducers� e� is evaluated
into head normal form on the left runtime stack� After that� the control of the machine
switches to the evaluation of e� into head normal form on the right runtime stack� Then
the head symbols are compared and the computation continues with the uni�cation of the
subtrees in the same way�

We start this section with the de�nition of the instantaneous descriptions of the twin
uni�cation machine� This de�nition serves as a base for the following explanations of the
additional mechanisms in Subsection �� and hence� it is presented �rst� In Subsection
���� we present the machine�s instructions and we �nish the section with the de�nition of
the compilation of rewrite rules and sd	expressions in Subsection ����
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	�� Instantaneous Descriptions of the Twin Uni�cation Machine

In this subsection we extend the instantaneous descriptions of the reduction machine and
we de�ne the instantaneous descriptions of the twin uni�cation machine� An instantaneous
description of the twin uni�cation machine contains the following components


� program store� It is a function ps 
 PA � InstrU � where PA � IN and the set
InstrU will be explained later�

The program store of the twin uni�cation machine di�ers from the program store of
the reduction machine only in the set InstrU which results from InstrR by modifying
some old instructions and by adding some new ones�

� instruction pointer� It is an element ip � PA�

The instruction pointer remains unchanged with respect to the reduction machine�

� runtime stack� It is an element rs � RS� where RS � SYMB� and SYMB �
fF� Y� C� CRg	 PA 	 Adr 	 IN�

In order to evaluate two sd	expressions e� and e�� the instantaneous descriptions
of the twin uni�cation machine contain two runtime stacks rs� and rs� At every
moment of the computation� exactly one runtime stack is active� Besides the F 	
blocks and Y 	blocks that manage the environments in the reduction machine� the
runtime stacks contain C	blocks and CR	blocks �choice	blocks and choice remote	
blocks� respectively� for the management of backtracking in the twin uni�cation
machine�

If a choice is performed� then a C	block is pushed to the active runtime stack and
a CR	block is pushed to the other runtime stack� These two blocks contain the
pieces of information that are necessary for backtracking� Furthermore� on top of
the nonactive runtime stack� there is a switch	block which contains the pieces of
information for switching from the active runtime stack to the nonactive one�

The structure of an F 	block is the same as in the reduction machine� But now the
dynamic link dl serves as saved environment pointer� i�e�� the block which dl points
to� is not necessarily the block below the F 	block�

A Y�block has the following structure

Y 
 ra 
 sep 
 sl

where the additional component sep � IN denotes the saved environment pointer
which points to the block that becomes the current environment after the deletion
of the Y 	block� Note that sep will be an absolute address in the runtime stack�
whereas dl denotes a relative address in analogy to the reduction machine�

A C�block has the following structure

C 
 sip 
 sbp 
 i 
 lop 
 lt 
 lds 
 e� 
 � � � 
 elds

where
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� C is a tag�

� sip � PA is the saved instruction pointer which points to the instruction in
the program at which the computation starts for the next alternative� This
instruction is always a JMR	instruction�

� sbp � PA is the saved backtrack pointer which points to the next choice point
below the current choice point�

� i � IN is the number of the alternative which is considered now�

� lop� lt� lds � IN are the lengths of the output pushdown� trail� and data stack�
respectively�

� e�� � � � � elds � Adr are saved elements of the data stack which must be saved
because of possible failures occuring in the uni�cation phase�

A CR�block has the following structure

CR 
 sip 
 sep 
 sbp

where

� CR is a tag�

� sip� sep� and sbp are the saved instruction pointer� environment pointer� and
backtrack pointer� respectively�

The switch�block has the same structure as the CR	block without the tag�

� graph� It is the function G 
 Adr � GNodes� where Adr � IN and GNodes contains�
in addition to the constructor nodes in TNodes of the reduction machine� variable
nodes of the form

hVAR� ai where a � Adr 	 f&g�

The graph component corresponds to the tree of the reduction machine� It can store
a term over " and FV �

The node hVAR� &i represents an unbound variable and hV AR� ai� where a � Adr�
embodies a variable that has been bound to the term whose graph representation
starts with address a�

Every variable in FV is represented by at most one variable node� Thus� if a variable
occurs more than once� then the tree becomes a graph by the mechanism of sharing�

� state� It is an element st � ST � where ST � f�� g� fu� n� eg�

The �rst component of st denotes the active runtime stack� The second component
is used during the uni�cation phase� It indicates the current phase
 u� n� and e

indicate that the machine is in the uni�cation phase� not in the uni�cation phase�
and at the end of the uni�cation phase� respectively�

� stack of substitutions� It is an element ss � SS� where SS � �Adr 	 f&g���

The stack of substitutions contains the graph addresses of the variables of the input
terms� In particular� if ss�i� � Adr� then ss�i� denotes the graph address of zi� It is
used for the representation of the substitutions which occur in the second component
of the derivation forms of

u
� bM �
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� trail� It is an element tr � TR� where TR � Adr��

The trail is a stack which contains the binding addresses of all free variables occurring
in the evaluation�

� environment pointer� It is an element ep � EP � where EP � IN�

The environment pointer points to the topmost square of the current environment�
It is needed� because there may be many blocks above the current environment which
contain pieces of information for backtracking�

� backtrack pointer� It is an element bp � BP � where BP � IN�

The backtrack pointer points to the topmost square of the current choice point�

� data stack� It is an element ds � DS� where DS � �Adr 	 IN���

The data stack is used during the construction of the graph in the same way as it
is used in the reduction machine� Furthermore� it is used in the uni�cation phase in
which natural numbers have to be remembered�

� output pushdown� It is an element op � OP � where OP � �" 	 FV ���

The output tape in the reduction machine becomes an output pushdown� because it
may be necessary to reset the tape partially in case of backtracking�

As in the reduction machine� the program store remains unchanged during the evalua	
tion and thus� we will drop it from the denotation of an instantaneous description� An
instantaneous description will be given by a tuple of the form

�ip� rs�� G� rs� st� ss� tr� ep� bp� ds� op�� IDU

where

IDU � PA �RS � �Adr� GNodes��RS � ST � SS � TR�EP �BP �DS �OP�

The stacks are assumed to grow to the left where a stack s with m elements is written
in the form s�� 
 � � � 
 s�m� We also use an enumeration of the squares in s from right to left
such that s�i� � s��m���i� for i � �m�� For l � r� we denote the part s�l� 
 s�l��� 
 � � � 
 s�r�
of s by st�l��r�� The number of elements of a stack s is denoted by length�s�� The output
pushdown and the trail grow to the right� In analogy to the stacks� we denote the part
p�l� 
 � � � 
 p�r� of p by p�l��r�� where r � l and p is a trail or an output pushdown� the
number of elements of p is denoted by length�p�� The two components of a state st are
denoted by st��� and st���

	�� From the Reduction Machine to the Twin Uni�cation Machine

Now we explain how the twin uni�cation machine uses its components to realize the
handling of free variables in sd	expressions� backtracking� and uni�cation�

Let e� and e� be two sd	expressions which should be E	uni�ed�

��



Graph Store� Twin Runtime Stack� and Switching

Since� on the one hand� free variables may occur more than once in e� and e� and� on the
other hand� they are represented only once� the tree of the reduction machine becomes a
graph� In the same way as in the reduction machine� the graph is constructed bottom	up by
using the data stack at the beginning of the uni�cation of e� and e�� Furthermore� for the
representation of free variables� the twin uni�cation machine uses a stack of substitutions
which points to the graph representations of the variables occurring in e� and e�� In the
trail the addresses of the graph representations of the variables are collected which are
introduced during the computation�

The twin uni�cation machine consists of two runtime stacks rs� and rs where rsi
is active during the evaluation of ei� The active runtime stack is indicated by the �rst
component of the state� In the implementation� e� is evaluated into head normal form�
i�e�� its root is labeled by a constructor or a free variable� Then the control switches to
the evaluation of e� until it is in head normal form� too�

Switching means that the active runtime stack becomes nonactive and the nonactive
runtime stack becomes active� Furthermore� before switching is executed� relevant parts
of the con�guration of the machine must be saved� For this purpose� there is always a
switch�block on top of the nonactive runtime stack� this switch	block contains the saved
instruction pointer� saved environment pointer� and saved backtrack pointer� These pieces
of information are needed for refreshing the con�guration during the following switch�

Indexing� Nondeterminism� and Backtracking

The indexing mechanism of the twin uni�cation machine is the same as in the reduc	
tion machine� Note that it is slightly di�erent from� e�g�� the one which is used in the
narrowing machine in �Loo���� where the di�erent equations for the same function are
checked sequentially starting from the �rst one� until a uni�able left hand side is found� In
particular� for deterministic computations� this is ine�cient� because it is clear from the
beginning which alternative has to be chosen� This disadvantage is omitted in the twin
uni�cation machine by starting the code which is produced for a function de�nition� with a
JMR ��� 
m�� � � � � �r 
mr�	instruction and by associating two di�erent meanings to this
instruction� In a deterministic computation� the JMR ��� 
 m�� � � � � �r 
 mr�	instruction
jumps immediately to the code of the appropriate alternative� i�e�� if the root of the current
recursion argument is labeled by �i� then the machine jumps to address mi at which the
code of the i	th right hand side starts�

In a nondeterministic computation� the JMR	instruction behaves di�erently� Recall
that the only kind of nondeterminism occurs if a function call is computed and the root of
its recursion argument is labeled by an unbound variable� In this case� an F 	block has been
pushed on the active runtime stack and its fourth component points to a hVAR� &i	node�
Then the JMR ��� 
m�� � � � � �r 
mr�	instruction resembles the usual indexing scheme of
the Warren abstract machine� It pushes a C	block and a CR	block to the active runtime
stack and nonactive runtime stack� respectively� which contain the information that is
needed for backtracking� Hence� there is always an F 	block immediately below a C	block�
Furthermore� the computation continues with the evaluation of the �rst alternative�
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If the computation of the twin uni�cation machine reaches an instantaneous description
which corresponds to a nonsuccessful leaf in the ulo narrowing tree� then backtracking is
executed by calling the backtrack	function �cf� Figure ��� This function restores the
components of the machine corresponding to the pieces of information in the topmost
C	 and CR	blocks in the two runtime stacks� Depending on the current instantaneous
description� we distinguish the following cases


backtrack � IDU � IDU

backtrack �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if bp 
 �
then ��� rs� G� rs�� st� ss� tr� ep� bp� ds� op	
if bp � �
then if st�� 
 

then if rs�bp��� 
 C � sip � sbp � i � lop � lt � lds � e� � � � � � elds � rs�

and rs���rs���	��� 
 CR � sip� � sep� � sbp� � rs��

then �sip� rs�� G�� rs��� st�� ss� tr�� ep�� bp� ds�� op�	
where rs� 
 rs�bp���

G� 
 undo�G� tr��lt� 	��length�tr	�	
rs�� 
 sip� � sep� � �rs���	 � rs���rs���	���
st� 
 �� touch�n��� lds		
tr� 
 tr���lt�
ep� 
 bp� �� lds
ds� 
 e� � � � � � elds
op� 
 op���lop�

if rs�bp��� 
 CR � sip � sep � sbp � rs�

and rs���rs���	��� 
 C � sip � sbp � i � lop � lt � lds � e� � � � � � elds � rs��

then �sip� rs�� G�� rs��� st�� ss� tr�� ep�� bp�� ds�� op�	
where rs� 
 sip � sep � bp � rs�bp���

G� 
 undo�G� tr��lt� 	��length�tr	�	
rs�� 
 rs���rs���	���
st� 
 ��� touch�n��� lds		
tr� 
 tr���lt�
ep� 
 �rs���	� �� lds
bp� 
 rs���
ds� 
 e� � � � � � elds
op� 
 op���lop�

if st�� 
 � then analogous

Figure �
 The function backtrack�

� If bp � �� then there is no choice block on the active runtime stack� Hence� there
is also no choice block on the other runtime stack� because C	 and CR	blocks are
created simultaneously� Thus� there is no alternative anymore� and the evaluation
stops without success�

� If bp � � and the block b of the active runtime stack which bp points to� is a C	block�
then there exists a CR	block b� on the nonactive runtime stack which corresponds
to b� The position of b� is stored in the third square of the switch	block on top of the
nonactive runtime stack� The function backtrack deletes every square of the active
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runtime stack above b and every square of the nonactive runtime stack above b��
Note that there is no need for having stored an environment pointer in b� because
there is always an F 	block beneath b� Hence� the environment pointer is set to this
F 	block by decrementing the backtrack pointer by the length of b� Furthermore�
the trail and the output pushdown are cut down to their old lengths lt and lop�
respectively� which are saved in b� the bindings saved right from position lt in the
trail� are dissolved by undo� the saved instruction pointer sip is loaded into the
instruction pointer� the data stack is set to the elements stored in b� and the state
is restored where its �rst component is not changed and the second component is
yielded by the function touch �cf� Figure �� Since the environment pointer and the
instruction pointer of the nonactive runtime stack are changed� their values in the
switch block must be modi�ed with the pieces of information in the CR	block�

� If bp � � and the block b of the active runtime stack which bp points to� is a CR	
block� then the nonactive runtime stack is responsible for the wrong choice� thus� an
implicit switch must be executed by backtracking� For this purpose� a switch	block
is pushed to the active runtime stack and the nonactive runtime stack becomes the
active one� The de�nition of backtrack is symmetric to the previous case where
the backtrack pointer and the saved backtrack pointer in the switch	block on the
nonactive runtime stack exchange their roles�

Uni�cation and Occur Check

If e� as well as e� are in head normal form� i�e�� if the labels l� and l� of the roots of e�
and e�� respectively� are both in " 	 FV � then a decomposition step is implemented �cf�
De�nition ��� �� or ��� The computation in this phase is almost directed by the output
pushdown� the data stack� and the state� Note that the second component of the state
indicates whether the machine is in the uni�cation phase �i�e�� st�� � u�� it is not unifying
�i�e�� st�� � n�� or it is at the end of a uni�cation phase �i�e�� st�� � e��

In particular� if li is a constructor� then it is written to the output pushdown if i � ��
or it is compared with the last symbol of the output pushdown if i � � This is realized by
a UNIFY CONSTR	instruction which replaces the WRITE	instruction of the reduction
machine� In a program of the twin uni�cation machine� a UNIFY CONSTR	instruction
is always followed by a SWITCH	instruction which� depending on the current state�
executes a conditional switch�

In the other case� i�e�� li is a free variable zi� the sequence

LOAD i� UNIFY V AR� SWITCH �

is executed� where LOAD i pushes the graph address of zi�s representation on the data
stack� and the semantics of UNIFY V AR and SWITCH depend on zi�s binding
 If zi has
been bound before� then its binding which is represented by the graph� is compared with
the term which is produced on the other runtime stack� If zi has not been bound before�
it will be bound to the term which is produced on the other runtime stack� According
to the decomposition rules� this comparing or binding is performed node by node depth	
�rst left	to	right� Clearly� since the two terms which have to be compared or bound�
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are only evaluated into head normal form� this comparison forces further evaluations of
the subterms into head normal form� These evaluations are controlled by the data stack
which pairwisely stores the addresses of the subterms� and the state which indicates the
uni�cation phase and which further indicates whether the SWITCH	instruction has to
perform a switch to the other runtime stack� yes or no�

The transition from one state to the next one is computed by the auxiliary function
touch �cf� Figure �� It depends on the old state and the data stack� In Figure � all
possible transitions between the states are summarized as a �nite automaton� where we
have dropped the transitions which stem from backtracking�
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Figure �
 Finite automaton for state changes�

The automaton has the states ��� n�� ��� u�� �� n�� �� u�� ��� e�� and �� e�� We have
numbered each transition to explain in which case this transition is executed� The initial
state is ��� n�� because we start with the left runtime stack and currently� no variable is
uni�ed�

�� The machine starts with the state ��� n� �i�e�� runtime stack rs� is active and it is in
nonuni�cation mode� and it stays in this state until a SWITCH	instruction occurs�

� If a SWITCH	instruction is executed and the data stack is empty� then runtime
stack rs becomes active and the state of the machine is changed to �� n��

�� The computation continues on the runtime stack rs until a SWITCH	instruction
is executed�

�� This transition is executed if a SWITCH	instruction is executed and the data stack
is empty� Preceeding to the SWITCH	instruction� there is either a UNIFY V AR	
instruction which has uni�ed a variable with � where the rank of � is �� or there is a
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UNIFY CONSTR	instruction which has compared the topmost output pushdown
symbol ��

�� If a SWITCH	instruction is executed and the data stack is not empty� then the
SWITCH	instruction is a part of the sequence LOAD i�UNIFY VAR�SWITCH �
Then the machine switches from rs� to rs and it changes to uni�cation mode�

�� On the data stack� there are the graph addresses of the elements which have to be
uni�ed� The uni�cation phase continues until the data stack is empty� Note that in
this state �� u�� a SWITCH	instruction has no e�ect�

�� If the data stack is emptied �this can happen either by a UNIFY CONSTR	 or the
UNIFY VAR	instruction�� then the state is changed to �� e��

�� At the end of the uni�cation phase� we have to ensure that runtime stack rs� conti	
nues with the evaluation of the machine code according to the ulo narrowing relation�
In this case� the SWITCH	instruction changes from both states �� e� and ��� e� to
��� n��

Transitions �� ��� and �� are dual to transitions �� �� and �� respectively�

Note that Figure � is not symmetric� because the initial state has to be restored after
a uni�cation phase by transition ��

During the uni�cation of an expression e and a free variable z� the auxiliary� boolean
function check performs the occur check on the �" 	 FV �	skeleton of e �cf� De�nition
����� This check is realized by comparing the graph addresses of z and the addresses of
the �" 	 FV �	skeleton of e which are stored on the data stack� For further explanations
confer the explanations of the uni�cation instructions in the following subsection�

	�� Machine Instructions of the Twin Uni�cation Machine

In this subsection we introduce the instructions of the twin uni�cation machine and their
semantics� The semantics of an instruction inst is a function

CU �� inst �� 
 IDU � IDU �

Auxiliary Functions

In the de�nition of the semantics of the twin uni�cation machine�s instructions� we need
the following auxiliary functions which are de�ned in Figure �

� For a runtime stack rs� the function env yields the F 	block which includes the
current environment�

� For a runtime stack rs� the function next yields the F 	block which includes the
environment of the current environment�
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env � RS � IN
env�rs	 
 if rs� 
 F then 

if rs� 
 Y then � � rs��

next � RS � IN
next�rs	 
 if rs� 
 F and rs��� � rs��	 
 F then � � rs��

if rs� 
 F and rs��� � rs��	 
 Y then � � rs�� � rs��� � rs��	
if rs� 
 Y and rs��� � rs��	 
 F then � � rs�� � next�rs��� � rs��	���	� 

sel � Adr � IN� �Adr� GNode�� Adr
sel�adr� j�G	 
 if G�adr	 
 hCON� �� a�� � � � � aki and j � �k� then aj

new � �Adr� GNodes�� IN � P�Adr	
new�G�n	 
 if n 
 � then �

if n � � and adr�� � � � � adrn are the minimal addresses such that�
for every i � �n�� G�adri	 is not de�ned then fadr�� � � � � adrng

undo � �Adr� GNodes�� Adr� � �Adr� GNodes�
undo�G� list	 
 if list 
 � then G

if list 
 adr � rest then undo�G�adr�hVAR� �i�� rest	

deref � Adr � �Adr� GNodes�� Adr
deref�adr�G	 
 if G�adr	 
 hCON� �� a�� � � � � aki then adr

if G�adr	 
 hV AR� �i then adr
if G�adr	 
 hV AR� adr�i then deref�adr�� G	

touch � fn� ug �Adr� � IN� fn� u� eg
touch�x� list� k	 
 if x 
 n and list 
 � and k 
 � then n

if x 
 u and list 
 � and k 
 � then e
otherwise u

check � Adr � Adr� �Adr� GNodes�� ftrue� falseg
check�a�� a�� G	 
 if a� 
 a� then true

if a� �
 a� then
if G�a�	 
 hCON� �� b�� � � � � bki then false �

W
i��k� check�a�� bi� G	

if G�a�	 
 hV AR� b�i then check�a�� b�� G	
if G�a�	 
 hV AR� �i then false

Figure 
 Auxiliary functions�

� For a graph address adr� a natural number j� and a graph G� the function sel yields
the graph address of the j	th son of G�adr� if it exists�

� For a graph G and a natural number n� the function new yields n new graph ad	
dresses� i�e�� addresses for which G is not yet de�ned�

� For a graph G and a list of graph addresses list� the function undo yields the graph
which results from overwriting every node in G the address of which occurs in list�
by hVAR� &i� This function is used in the de�nition of the function backtrack where
list is always instantiated by a part of the trail�

� For a graph address adr and a graph G� the function deref yields the address which
points to the root of the binding of G�adr��
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� For a tag x � fn� ug� a list list� and a natural number k� the function touch yields the
new uni�cation state� In the de�nition of the instruction semantics� list is always
instantiated by the data stack�

� The boolean function check realizes the occur check in the twin uni�cation machine�
It checks whether the variable which is represented in the graph at address a�� occurs
in the �" 	 FV �	skeleton of the term the root of which is addressed by a��

Jump and Switch Instructions �cf� Figure ���

� JMP m only sets the instruction pointer on m�

� As in the reduction machine the indexing mechanism is realized by the JMR	
instruction� Furthermore� after backtracking� the JMR	instruction initiates the
computation of the next alternative� The JMR	instruction is only executed in two
situations
 either after an F 	block has been created on the active runtime stack
or after backtracking has been performed� i�e�� the topmost block is a C	block� In
the de�nition of the semantics of the JMR	instruction� there are the following four
cases


�� If the topmost block of the active runtime stack is an F 	block and the root of its
recursion argument is labeled by constructor �i� then JMR ��� 
 m�� � � � � �r 

mr� sets the instruction pointer on mi� Recall that� in the reduction machine�
JMR has only this semantics�

� If the topmost block of the active runtime stack is an F 	block and its recur	
sion argument is an unbound variable� then a C	block is pushed to the active
runtime stack� a CR	block is pushed to the nonactive runtime stack� and the in	
stantaneous description is prepared for evaluating the �rst alternative� Since it
is possible that a choice point is created during the uni�cation phase� there can
be elements on the data stack which have to be saved in the C	block� because
we have to be able to restore the instantaneous description after backtracking
is performed�

�� If the topmost block of the active runtime stack is a C	block and the entry k
of this C	block which indicates the alternative that has been computed at the
time being� is smaller than the number r of alternatives� then JMR initiates
the instantaneous description for the computation of alternative k � ��

�� If k � r� then the computation of the last alternative is �nished and back	
tracking is started�

� Depending on the second component of the state� the SWITCH	instruction executes
a conditional switch from the active runtime stack to the nonactive one� In the
uni�cation phase �i�e�� if st�� � u� no switch is performed� If a switch is performed�
then a switch	block is pushed to the active runtime stack� the former switch	block is
deleted on the other runtime stack� and the other runtime stack becomes the active
one� We distinguish four cases


��



�� st � ��� n�� i�e�� we are either not in the uni�cation phase� or we are at the
beginning of a uni�cation phase in the sense that the �rst two instructions of
the sequence LOAD i�UNIFY V AR�SWITCH have been executed already�
In the �rst case �i�e�� the machine is not in the uni�cation phase which is
indicated by an empty data stack� a switch is executed in order to cause rs to
evaluate an output symbol which is compared with the topmost symbol of the
output pushdown� In the second case �i�e�� the machine is at the beginning of the
uni�cation phase which is indicated by a nonempty data stack� the component
st�� has to be changed to u �which is taken care of by the function touch��
moreover� a switch is executed in order to unify a variable corresponding to the
address on the data stack with the term which is evaluated by rs�

� st � �� n�
 the instruction semantics is de�ned analogous to the previous case
and rs� becomes the active runtime stack�

�� st�� � u� i�e�� the machine is unifying a variable� A switch is not executed�
Only the instruction pointer is incremented�

�� st�� � e� i�e�� the uni�cation phase is �nished� We have to ensure that rs�
continues the evaluation� Hence� the machine switches only if rs is active�
The component st�� is set to n�

Runtime Stack Instructions �cf� Figure ���

The runtime stack instructions have an in�uence only on the active runtime stack� Fur	
thermore� in the de�nition of the instruction semantics� we must distinguish whether the
environment pointer ep points to the topmost block� yes or no� In the former case� the
instruction semantics are almost the same as in the reduction machine� In the latter case�
the part of the runtime stack from the bottom to the square ep points to� is important for
the de�nition of the instruction semantics� Since the dynamic link of an F 	block serves
as saved environment pointer and not any longer as link to the bottom of the F 	block� a
parameter j is added to the RET 	instruction which indicates how many squares have to
be deleted from the runtime stack� In the case that RET j deletes a Y 	block� j is equal
��

� CREATE �ra� j�m�� � � � � mn� creates a new F 	block on top of the active runtime
stack almost in the same way as it is done in the reduction machine� The only
di�erence is that the dynamic link serves as saved environment pointer�

� EVAL i sets the instruction pointer to the i	th parameter address in the block
which contains the current environment� Furthermore� it pushes a Y 	block to the
active runtime stack which contains the saved environment pointer as additional
component�

� RET j sets the instruction pointer to the return address of the block b the environ	
ment pointer points to� and it sets the environment pointer to the saved environment
pointer of b� Furthermore� b is deleted only if it is the topmost block� i�e�� ep � bp�

�



Uni�cation Instructions �cf� Figures �� and �	�

� In the twin uni�cation machine� theWRITE �	instruction of the reduction machine
is renamed to UNIFY CONSTR ��� k�� where k is the rank of �� because it is used
for uni�cation� writing� and comparing� Its instruction semantics depends on the
current state� where we distinguish the following cases


�� st � ��� n�� i�e�� the �rst runtime stack is active and we are not in the uni�cation
phase� Then � is written on top of the output pushdown and the instruction
pointer is incremented�

� st � �� n�� then we check whether the symbol on top of the output pushdown is
equal � or not� In the former case� only the instruction pointer is incremented�
whereas in the latter case� backtracking is initiated�

�� st�� � u� i�e�� a term the root of which is labeled by �� has to be uni�ed with
the term represented by the graph address gadr� which is retrieved from the
top of the data stack� If the graph node at gadr is labeled by hV AR� &i� then
the corresponding free variable zi is bound to ��zj� � � � � zk�� where zj � � � � � zk are
new variables� and the uni�cation phase continues� If the graph node at gadr� is
labeled by �� then the subterms have to be uni�ed� For this purpose� the graph
addresses of the subterms are pushed on the data stack and the uni�cation
phase continues� If the graph node at gadr� is labeled by a constructor which
is di�erent from �� then backtracking is initiated�

As mentioned before� the UNIFY CONSTR ��� k�	instruction is always followed
by a SWITCH	instruction which switches from the active runtime stack to the
nonactive runtime stack in cases � and � Note that the case st�� � e does not
occur�

� In the translation of a macro tree transducer and two sd	expressions� the LOAD i	
instruction is always followed by a UNIFY V AR	instruction� Hence� it would be
possible to glue LOAD i and UNIFY VAR together and to deal with one instruction
UNIFY VAR i� instead� But� since the semantics of this instruction would be to
complex� we prefer to have two instructions�

�� If the machine is not in the uni�cation phase� then LOAD i prepares the
machine to unify the variable zi with constructors or other variables evaluated
by the other runtime stack� For this purpose� it pushes the graph address of
zi on top of the data stack� where a new graph address is chosen if zi was not
used before� i�e�� ss�i� �&�

� Otherwise� the topmost square of the data stack includes the graph address
which should be uni�ed with zi� LOAD i pushes the graph address of zi on
top of the data stack together with the number � which indicates that there is
one pair of terms which shall be uni�ed� the terms are represented by the two
topmost addresses on the data stack� Furthermore� LOAD i writes zi to the
output pushdown�
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� A UNIFY V AR	instruction always follows a LOAD i	instruction which has stored
at least the graph address of zi on top of the data stack� The instruction semantics of
UNIFY VAR is de�ned recursively in the sense that in some cases of its de�nition�
the instruction pointer is not changed� i�e�� the same instruction is executed again
in the next computation step� The de�nition of the instruction semantics depends
on the current state� We distinguish the following cases


�� If the machine is not in the uni�cation phase and rs� is active� i�e�� st � ��� n��
then only the instruction pointer is incremented which forces a switch to rs
by the SWITCH	instruction in the next computation step�

� If the machine is not in the uni�cation phase and rs is active� i�e�� st �
�� n�� then rs� has already written an output symbol � on top of the output
pushdown� the variable which we are unifying at the moment� must be bound
to �� We compare � with the label of the graph node the address adr� of
which can be retrieved from the top element of the data stack� If G�adr�� is
an unbound V AR	node� then it is replaced by a �	node and on the data stack�
adr� is replaced by the addresses of the sons of the �	node� If G�adr�� is a
�	node� then only adr� is replaced by the addresses of the sons of the �	node
on the data stack� In the last possible case� i�e�� G�adr�� is a �	node and � �� ��
backtracking is initiated�

�� If the machine is in the uni�cation phase� i�e�� st�� � u� then the topmost
symbol on the data stack is a natural number j which indicates the number of
pairs on the data stack which shall be compared and uni�ed�
If j � �� then there is at least one pair of addresses on the data stack the
dereferenced addresses of which are adr�� and adr��� In this case the instruc	
tion pointer is not incremented until j � �� i�e�� the uni�cation is �nished� If
adr�� � adr��� then they are popped from the data stack and j is decremented�
Otherwise� we distinguish the following cases


�a� One of the two graph addresses adr�i points to a VAR	node� the other one
adr�j points to a �	node� and the occur check fails� In this case� the V AR	
node is bound to the �	node� the two addresses are popped from the data
stack� and j is decremented�

�b� Both graph addresses point to a �	node� Then the subgraphs must be
compared� For this purpose� the two addresses are popped from the data
stack� the addresses of the subgraphs are pushed pairwise on the data stack�
and the number on top of the data stack becomes j���k� where k denotes
the rank of ��

�c� Both graph addresses point to a V AR	node� Then� the two V AR	nodes
are bound to a new unbound V AR	node� the two addresses are popped
from the data stack� and j is decremented �cf� De�nition ��� ��a���

�d� If the occur check succeeds in Case �a�� or if the comparison fails in Case
�b�� then backtracking is initiated�

If j � �� then the comparison phase on the data stack is �nished� Hence� j
is popped from the data stack and the instruction pointer is incremented to
continue the evaluation�
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Graph Instructions and Initialization �cf� Figure �
�

In the reduction machine� the trees for the representations of the recursion arguments are
created by NODE��� n�	instructions and they are connected by a NODE%	instruction
which also initializes the other components of an instantaneous description�

In the twin uni�cation machine� the NODE��� n�	instruction has the same semantics�
The NODE%	instruction only connects the representations of the recursion arguments�
The initialization is realized by the INIT ca	instruction� Furthermore� there exists one
more graph instruction VAR i which creates the representation of the free variable zi�

� By the NODE%	instruction the graph addresses of all n recursion arguments are
connected to a graph the root of which is labeled by hCON�%� a�� � � � � ani�

� The INIT ca	instruction creates the initial F	block with return address � and the
pointer to the %	node on both runtime stacks� Furthermore� it creates the initial
switch	block on rs with the start address ca of the second sd	expression� the saved
environment pointer �� and the saved backtrack pointer �� The state is set to ��� n��
The environment pointer and the backtrack pointer are set to � and �� respectively�
and the data stack becomes empty�

� VAR i creates a new node hV AR� &i at a graph address gadr for the representation
of zi� if ss�i� �&� i�e�� this is the leftmost occurrence of zi in a recursion argument of
the two sd	expressions which should be uni�ed� Furthermore� gadr is pushed to the
data stack�

State Transitions

The transitions of the machine are determined by the code that is generated for the
rewrite rules of the macro tree transducer M and two sd	expressions e� and e�� The
machine execution starts with the instantaneous description

��� � G�� � ��� n�� & 
 � � � 
&� �z �
k times

� � �� �� � �

where G� and k are assumed to be the empty graph and the number of variables occurring
in e� and e�� respectively�

The transition rule

�ip� rs�� G� rs� st� ss� tr� ep� bp� ds� op� � CU �� ps�ip� �� �ip� rs�� G� rs� st� ss� tr� ep� bp� ds� op�

is applied until one of the following conditions is true�

� ip � � and ep � � and st � �� n� �uni�able�


The second runtime stack is the active one and ep � �� i�e�� the RET �	instruction
after the translation of e� has been executed� This indicates that the evaluation has
been successful� The result of the computation is the label �e� �� of the leftmost
successful leaf in the ulo narrowing tree� where the output pushdown includes e �
T h"i�FV � and the �EM �"�	uni�er � is represented by the stack of substitutions
and the graph�
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� ip � � and �ep �� � or st �� �� n�� �not uni�able�


If the second condition in the conjunction holds� then ip has been set to � by the
backtrack	function� because there is no possible alternative� Hence� the traversal
through the ulo narrowing tree is �nished without �nding a solution� i�e�� e� and e�
are not uni�able�

� ps is not de�ned for ip �syntax error�


This case only occurs for programs which are not the result of the translation of a
macro tree transducer and two sd	expressions�

As mentioned before� there may occur in�nite computations� because there may be in�nite
branches in the ulo narrowing tree which are left to the leftmost solution�
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CU �� JMP m �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

�m� rs� G� rs�� st� ss� tr� ep� bp� ds� op	

CU �� JMR ��� � m�� � � � � �r � mr	 �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st�� 
 
then if rs 
 F � ra � dl � gadr � rs� and gadr� 
 deref�gadr�G	

then if G�gadr�	 
 hCONS� �i� a�� � � � � ani
then �mi� rs� G� rs�� st� ss� tr� ep� bp� ds� op	
if G�gadr�	 
 hV AR� �i and ds 
 e� � � � � � em and rs� 
 ip� � ep� � bp� � rs��

then �m�� rs�� G�� rs��� st� ss� tr � gadr�� ep� ep� � �m� ds� op	
where rs� 
 C � ip � bp �  � length�op	 � length�tr	 � m � e� � � � � � em � rs

G� 
 G�gadr��hCON� ��� a�� � � � � ani� a��hV AR� �i� � � � � an�hV AR� �i�
where fa�� � � � � ang 
 new�G�n	

rs�� 
 ip� � ep� � max�ep�� bp�	 � � � CR � rs�
if rs 
 C � sip � sbp � k � lop � lt � lds � e� � � � � � elds � rs�

and gadr 
 rs�ep� �� and gadr� 
 deref�gadr�G	
then if k 	 r

then �mk��� rs
�� G�� rs�� st� ss� tr � gadr�� ep� bp� ds� op	

where rs� 
 C � sip � sbp � k �  � lop � lt � lds � e� � � � � � elds � rs�

G� 
 G�gadr��hCON� �k��� a�� � � � � ani� a��hV AR� �i� � � � � an�hV AR� �i�
where fa�� � � � � ang 
 new�G�n	

if k 	 r
then if rs� 
 ip� � ep� � bp� � CR � rs��

then backtrack�ip� rs�� G� rs��� st� ss� tr� ep� sbp� ds� op	
if st�� 
 � then analogous

CU �� SWITCH �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st��� 
 n
then if st�� 
 

then if rs� 
 sip � sep � sbp � rs��

then �sip� rs�� G� rs��� ��� touch�n� ds� �		� ss� tr� sep� sbp� ds� op	
where rs� 
 ip �  � ep � bp � rs

if st�� 
 �
then if rs 
 sip � sep � sbp � rs�

then �sip� rs�� G� rs��� �� touch�n� ds� �		� ss� tr� sep� sbp� ds� op	
where rs�� 
 ip �  � ep � bp � rs�

if st��� 
 u
then �ip� � rs� G� rs�� st� ss� tr� ep� bp� ds� op	
if st��� 
 e
then if st�� 
 

then �ip � � rs� G� rs�� �� n	� ss� tr� ep� bp� ds� op	
then if st�� 
 �

then if rs 
 sip � sep � sbp � rs�

then �sip� rs�� G� rs��� �� n	� ss� tr� sep� sbp� ds� op	
where rs�� 
 ip �  � ep � bp � rs�

Figure �
 Jump and switch instructions of the twin uni�cation machine�

��



CU �� CREATE �ra� j�m�� � � � �mn	 �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st�� 
 
then if bp � ep

then �ip � � rs�� G� rs�� st� ss� tr� bp� n� �� bp� ds� op	
where rs� 
 F � ra � bp� ep� �n� �	 � gadr � m� � � � � � mn � rs

gadr 
 sel�rs��env�rs�ep���	 � � � bp� ep	� j� G	
if bp 	 ep
then �ip � � rs�� G� rs�� st� ss� tr� ep� n� �� bp� ds� op	
where rs� 
 F � ra � �n � �	 � gadr � m� � � � � � mn � rs

gadr 
 sel�rs��env�rs	 � �	� j� G	
if st�� 
 � then analogous

CU �� EV AL i �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st�� 
 
then if bp � ep

then �ip�� rs�� G� rs�� st� ss� tr� bp� �� bp� ds� op	
where ip� 
 rs��bp� ep � env�rs�ep���	 � � � i	

rs� 
 Y � ip�  � ep � next�rs�ep���	� bp� ep � rs
if bp 	 ep
then �ip�� rs�� G� rs�� st� ss� tr� ep� �� bp� ds� op	
where ip� 
 rs��env�rs	 � � � i	

rs� 
 Y � ip�  � ep � next�rs	 � rs
if st�� 
 � then analogous

CU �� RET j �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st�� 
 
then if bp � ep

then if rs�ep� 
 F
then �rs��bp� ep� �	� rs� G� rs�� st� ss� tr� ep�� bp� ds� op	
where ep� 
 ep � �� rs��bp� ep� �	
if rs�ep� 
 Y
then �rs��bp� ep� �	� rs� G� rs�� st� ss� tr� rs��bp� ep� �	� bp� ds� op	

if bp 	 ep
then if rs 
 F � ra � dl � e� � � � � � ej�� � rs�

then �ra� rs�� G� rs�� st� ss� tr� ep� �� dl� bp� ds� op	
if rs 
 Y � ra � sep � sl � rs�

then �ra� rs�� G� rs�� st� ss� tr� sep� bp� ds� op	
if st�� 
 � then analogous

Figure �
 Runtime stack instructions of the twin uni�cation machine�
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CU �� UNIFY CONSTR ��� k	 �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st��� 
 n
then if st�� 
 

then �ip � � rs� G� rs�� st� ss� tr� ep� bp� ds� op�	
if st�� 
 �
then if op 
 op��

then �ip � � rs� G� rs�� st� ss� tr� ep� bp� ds� op	
if op 
 op�
 and 
 �
 �
then backtrack�ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	

if st��� 
 u
then if ds 
 gadr � ds� and gadr� 
 deref�gadr�G	

then if G�gadr�	 
 hV AR� �i
then �ip � � rs� G�� rs�� st�� ss� tr � gadr�� ep� bp� ds�� op�	
where G� 
 G�gadr��hCON� �� a�� � � � � aki� a��hV AR� �i� � � � � ak�hV AR� �i�

where fa�� � � � � akg 
 new�G� k	
st� 
 �st��� touch�u� ds�� k		
ds� 
 a� � � � � � ak � ds�

if G�gadr�	 
 hCON� �� a�� � � � � aki
then �ip � � rs� G� rs�� st�� ss� tr� ep� bp� ds�� op�	
where st� 
 �st��� touch�u� ds�� k		

ds� 
 a� � � � � � ak � ds
�

if G�gadr�	 
 hCON� 
� a�� � � � � ali and � �
 

then backtrack�ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	

CU �� LOAD i �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st��� 
 n
then if ss�i� 
�

then �ip � � rs� G�� rs�� st� ss�i�gadr�� tr� ep� bp� gadr � ds� op	
where fgadrg 
 new�G� 	

G� 
 G�gadr�hV AR� �i�
if ss�i� 
 gadr
then �ip� � rs� G� rs�� st� ss� tr� ep� bp� deref�gadr�G	 � ds� op	

if st��� 
 u and ds 
 gadr� � ds
�

then if ss�i� 
�
then �ip � � rs� G�� rs�� st� ss�i�gadr��� tr� ep� bp� � gadr� � ds� opzi	
where fgadr�g 
 new�G� 	

G� 
 G�gadr��hV AR� �i�
if ss�i� 
 gadr
then �ip � � rs� G� rs�� st� ss� tr� ep� bp�  � deref�gadr�G	 � ds� opzi	

Figure �
 Uni�cation instructions of the twin uni�cation machine�
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CU �� UNIFY V AR �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if st��� 
 n
then if st�� 
 

then �ip � � rs� G� rs�� st� ss� tr� ep� bp� ds� op	
if st�� 
 � and ds 
 adr � ds� and adr� 
 deref�adr�G	 and op 
 op��
then if G�adr�	 
 hV AR� �i

then �ip � � rs� G�� rs�� st� ss� tr � adr�� ep� bp� ds�� op	
where G� 
 G�adr��hCON� �� a�� � � � � aki� a��hV AR� �i� � � � � ak�hV AR� �i�

where fa�� � � � � akg 
 new�G� k	
ds� 
 a� � � � � � ak � ds�

if G�adr�	 
 hCON� �� a�� � � � � aki
then �ip � � rs� G� rs�� st� ss� tr� ep� bp� ds�� op	
where ds� 
 a� � � � � � ak � ds

�

if G�adr�	 
 hCON� 
� a�� � � � � aki and 
 �
 �
then backtrack�ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	

if st��� 
 u and ds 
 j � ds�

then if j � � and ds 
 j � adr� � adr� � eds and for every i � ��� � adr�i 
 deref�adri� G	
then if adr�� 
 adr��

then �ip� rs� G� rs�� st� ss� tr� ep� bp� j�  � eds� op	
if adr�� �
 adr��
then if G�adr��	 
 hV AR� �i and G�adr��	 
 hCON� �� a�� � � � � aki

and check�adr��� adr
�
�� G	 
 false

then �ip� rs� G�� rs�� st� ss� tr � adr��� ep� bp� j �  � eds� op	
where G� 
 G�adr���hV AR� adr

�
�i�

if G�adr��	 
 hCON� �� a�� � � � � aki and G�adr��	 
 hV AR� �i
and check�adr��� adr

�

�� G	 
 false

then �ip� rs� G�� rs�� st� ss� tr � adr��� ep� bp� j �  � eds� op	
where G� 
 G�adr���hV AR� adr

�
�i�

if G�adr��	 
 hCON� �� a�� � � � � aki and G�adr��	 
 hCON� �� b�� � � � � bki
then �ip� rs� G� rs�� st� ss� tr� ep� bp� ds�� op	

where ds� 
 j �  � k � a� � b� � � � � � ak � bk � eds
if G�adr��	 
 hV AR� �i and G�adr��	 
 hV AR� �i

then �ip� rs� G�� rs�� st� ss� tr � adr�� � adr
�

�� ep� bp� j �  � eds� op	
where G� 
 G�adr���hV AR� nadri� adr

�
��hV AR� nadri�

where fnadrg 
 new�G� 	
otherwise backtrack�ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	

if j 
 �
then �ip � � rs� G� rs�� �st��� touch�u�ds�� �		� ss� tr� ep� bp� ds�� op	

Figure �
 UNIFYVAR	instruction of the twin uni�cation machine�
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CU �� NODE��� n	 �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if ds 
 an � � � � � a� � ds�

then �ip� � rs� G�gadr�hCON� �� a�� � � � � ani�� rs�� st� ss� tr� ep� bp� gadr � ds�� op	
where fgadrg 
 new�G� 	

CU �� NODE� �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if ds 
 an � � � � � a�
then �ip� � rs� G�gadr�hCON��� a�� � � � � ani�� rs�� st� ss� tr� ep� bp� gadr� op	
where fgadrg 
 new�G� 	

CU �� INIT ca �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if ds 
 gadr
then �ip� � F � � � � � gadr�G� ca � � � � � F � � � � � gadr� �� n	� ss� tr� �� ���� op	

CU �� V AR i �� �ip� rs� G� rs�� st� ss� tr� ep� bp� ds� op	 

if ss�i� 
�
then �ip� � rs� G�gadr�hVAR� �i�� rs�� st� ss�i�gadr�� tr� ep� bp� gadr � ds� op	
where fgadrg 
 new�G� 	
if ss�i� 
 gadr
then �ip� � rs� G� rs�� st� ss� tr� ep� bp� gadr � ds� op	

Figure �
 Graph instructions and initialization of the twin uni�cation machine�
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	�� Compilation of Rewrite Rules and SD�Expressions

In this subsection we present the compilation of the rewrite rules of the macro tree trans	
ducer M � �F�"� R� together with two sd	expressions e� and e�� into code of the twin
uni�cation machine� The compilation is very close to the compilation into code of the
reduction machine �cf� Subsection ����� Hence� we only give explanations of the di�e	
rences to the compilation in Subsection ���� however� in the �gures we show the complete
translation�

In the description of the compilation schemes� we use� for every i � IN� the following
metavariables
 ri � RHS�F�"�� e� ei � sdExp�F�"� FV �� t� ti � T h"i�FV �� and � �i

are tree	structured addresses�

The compilation scheme trans �cf� Figure �� results from the one in Figure � by
adding to every RET 	instruction a parameter which is the number of parameter variables
of the corresponding translated function� Furthermore� the gsd	expression e is replaced
by the two sd	expressions e� and e��

trans�R� e�� e�	 


JMP r � �
 � functrans�ff���j�x�� � � � � xrank��j�	� y�� � � � � yn�

	 � rj� j j � ���g� 	 RET n��
���

r � functrans�ffr��j�x�� � � � � xrank��j�	� y�� � � � � ynr
	 � rjr j j � ���g� r	 RET nr �

r �  � goaltrans�e�� e�� r � 	

Figure �
 Compilation scheme trans�

The compilation scheme functrans �cf� Figure �� does not di�er from the one in
Figure ���

functrans�ffi��j�x�� � � � � xrank��j�	� y�� � � � � yni
	 � rji j j � ���g� i	 


JMR��� � i�� � � � � �� � i��	�
i� � rhstrans�r�i� i�	 JMP i���� 	�

���
i��� � 	 � rhstrans�r�����i� i���� 		 JMP i��� � 	�
i�� � rhstrans�r�i� i��	
i��� � 	 �

Figure �
 Compilation scheme functrans�

The compilation scheme rhstrans �cf� Figure ��� results from the one in Figure �� by
replacing everyWRITE �j 	instruction by a UNIFY CONSTR ��j � rank��j��	instruction
which is followed by a SWITCH	instruction� Furthermore� the parameter � is added to
every RET 	instruction�

For two sd	expressions e� and e�� the function goaltrans �cf� Figure �� constructs the
graphs of recursion arguments in e� and e�� it connects them by the NODE%	instruction�
and it produces the initial con�guration by the INIT 	instruction� Furthermore� goaltrans

�



rhstrans��j�r�� � � � � rn	� �	 
 UNIFY CONSTR ��j� rank��j		�SWITCH�
rhstrans�r�� ��	 � � �rhstrans�rn� ��n	

rhstrans�yi� �	 
 EV AL i�

rhstrans�fi�xj � r�� � � � � rn	� �	 
 CREATE����n� 	� j� ��� � � �� ��n	�
JMP i�

�� � rhstrans�r�� ��	 RET ��
���

��n � rhstrans�rn� ��n	 RET ��
���n� 	 �

Figure ��
 Compilation scheme rhstrans�

translates e� and e� into code of the twin uni�cation machine by the function exptrans�
It works in a similar way as the translation scheme in Figure �� and it uses the function
count the modi�cation of which is described in Figure ���

count � sdExp�F��� FV 	 � IN

count�e	 
 if e 
 �j�e�� � � � � en	 then
Pn

i�� count�ei	

if e 
 fi�t� e� � � � � en	 then  �
Pn

i�� count�ei	

if e 
 zi then �

Figure ��
 Auxiliary function count�

goaltrans�e�� e�� �	 
 makegraph�e�	 makegraph�e�	
NODE�� INIT ����

�� � exptrans�e�� � ��	 SWITCH� RET ��
��� � exptrans�e�� count�e�	 � � ���	 RET ��

Figure �
 Compilation scheme goaltrans�

The compilation scheme maketree in Figure �� is replaced by the compilation scheme
makegraph �cf� Figure ��� which is de�ned in the same way� but there occurs one additional
case� i�e�� the occurrence of a free variable zi� In this case� makegraph does not produce
any code� whereas makenodes produces a V AR i	instruction�

The compilation scheme exptrans �cf� Figure ��� results from the one in Figure �� by
replacing everyWRITE �i	instruction by a UNIFY CONSTR ��i� rank��i��	instruction
which is followed by a SWITCH	instruction� Furthermore� the parameter � is added to
every RET 	instruction� The occurrence of a variable zi is translated into the code sequence
LOAD i�UNIFY V AR�SWITCH �

In Figure �� the translation of the rules in R� �cf� Figure �� and the two sd	expressions
e� � sh�z�� � and e� � mi���z�� �� is shown� where we abbreviate UNIFY CONSTR by
UNIFY CON � The left column includes the JMP �	instruction to the translation of e�
and the translation of the rules for sh� The column in the middle includes the translation
of the rules for mi and �nally� the right column includes the translation of e� and e��

��



makegraph��j�e�� � � � � en		 
 makegraph�e�	 � � �makegraph�en	

makegraph�fi�t� e�� � � � � en		 
 makenodes�t	 makegraph�e�	 � � �makegraph�en	

makegraph�zi	 
 �

makenodes��j�t�� � � � � tn		 
 makenodes�t�	 � � �makenodes�tn	 NODE��j� rank��j		�

makenodes�zi	 
 V AR i�

Figure ��
 Tree construction schemes makegraph and makenodes�

exptrans��i�e�� � � � � en	� j� �	 
 UNIFY CONSTR ��i� rank��i		�SWITCH�
exptrans�e�� j� ��	
���

exptrans�en� j �
Pn��

k�� count�ek	� ��n	

exptrans�fi�t� e�� � � � � en	� j� �	 
 CREATE����n� 	� j� ��� � � � � ��n	�
JMP i�

�� � exptrans�e�� j � � ��	 RET ��
���

��n � exptrans�en� j �  �
Pn��

k�� count�ek	� ��n	 RET ��
���n� 	 �

exptrans�zi� j� �	 
 LOAD i� UNIFY V AR� SWITCH�

Figure ��
 Compilation scheme exptrans�

The computation of this program describes the implementation of a depth	�rst left	to	
right traversal over the ulo narrowing tree in Figure ��
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 � JMP ���
� � JMR�� � �� � � �	�
� � EV AL �
� � JMP ��
� � CREATE��� � �	�
� � JMP ��
� � UNIFY CON ��� �	�
� � SWITCH�
� � CREATE�� �	�
� � JMP ��
 � EV AL �
� � RET ��
� � RET �

� � JMR�� � �� � � �	�
� � UNIFY CON ��� �	�
� � SWITCH�
� � JMP ���
� � UNIFY CON ��� �	�
� � SWITCH�
�� � CREATE���� �	�
� � JMP ��
�� � CREATE���� 	�
�� � JMP ��
�� � RET ��

�� � V AR �
�� � V AR ��
�� � NODE ��� �	�
�� � NODE ��� �	�
�� � NODE ��
�� � INIT ���
� � CREATE���� � ��	�
�� � JMP ��
�� � UNIFY CON ��� �	�
�� � SWITCH�
�� � RET ��
�� � SWITCH�
�� � RET ��
�� � CREATE���� �	�
�� � JMP ��
�� � RET ��

Figure ��
 Compilation of R� and the sd	expressions sh�z�� � and mi���z�� ���
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� Comparison with the BABEL System

In order to give an impression of the e�ciency of the twin uni�cation machine� we compare
its implementation with the implementation of the BABEL system �Loo��� Win���� both
implementations are written in the programming language C and they run on a SPARC	
station SLC� We have chosen the BABEL system for a comparison� because we intend to
incorporate the implementation of our deterministic uni�cation algorithm for macro tree
transducers into the implementation of BABEL �cf� Section ���

In the BABEL system the equality is de�ned by prede�ned rules which are similar to
the decomposition rules in the present paper� For the evaluation of function calls� the
user can decide whether he uses an eager narrowing strategy or a lazy narrowing strategy�
However� the prede�ned rules for the equality are handled di�erently� the BABEL system
evaluates an equation t � s as follows


� It derives t by the chosen narrowing strategy until it is in normal form� i�e�� an
element of T h"i�FV ��

� It derives s by the chosen narrowing strategy until it is in normal form� i�e�� an
element of T h"i�FV ��

� It tries to unify the two normal forms by applying the rules for the equality�

Since the BABEL system does not apply decomposition rules during the evaluation of
t and s� it is possible that it does not �nd solutions which are computed by the twin
uni�cation machine� Consider� e�g�� the following two pairs of sd	expressions


� t � sh���� �� � and s � mi���z�� ��z�� ���

Here� t and s are not EM�
	uni�able� This result is yielded by the twin uni�cation

machine� whereas the BABEL system behaves as follows
 In the eager evaluation
mode and in the lazy evaluation mode� the BABEL system does not terminate�
because it evaluates both terms in normal forms which are not uni�able and there
do exist in�nitely many such normal forms�

� t � mi���z�� z��� and s � sh������ �� �� �

The substitution � � �z����� �� z��� is the only EM�
	uni�er of t and s� The twin

uni�cation machine exactly yields this substitution and stops with the answer that
there does not exist any other solution� The BABEL system behaves as follows

In the eager evaluation mode and in the lazy evaluation mode� the BABEL system
yields the substitution �� and it does not terminate if the user asks for other solutions
because of the same reasons as in the previous example�

Hence� with respect to the terminology which we have introduced in the discussion about
Figure � in Subsection ��� our deterministic uni�cation algorithm for macro tree trans	
ducers is better than the deterministic E	uni�cation algorithm which is inherent in the
implementation of the BABEL system�

��



Besides these di�erences with respect to the behaviours of the implementations� there
are also di�erences with respect to the runtimes in the case where both implementations
behave in the same way� In Figure �� we document the runtimes of the BABEL system
for every of the two possible narrowing strategies and the runtimes of the twin uni�cation
machine for the uni�cation of the following four pairs of sd	expressions


�� t� � sh������ �� ������mi�������� �� �� ��� and s� � z�


Actually� this EM�
	uni�cation is a reduction in disguise� It can simply be performed

by the BABEL system by evaluating t�� Depending on the structure of the goals
of the twin uni�cation machine� it starts with the goal equ�t�� s��� where s� is a
variable z�� Surely� in the twin uni�cation machine� there is an overhead when it is
merely used as a reduction machine� i�e�� switching after every evaluation into head
normal form of t� and binding of z�� which is not performed in the BABEL system�
Nevertheless� the overhead is extremly low which can be shown by comparing the
runtimes in Figure ���

� t� � sh������ �� ������mi�������� �� �� ��� and
s� � ��z�� ��z�� ��� ��z�� z�����


This is an example where t� is a gsd	expression and s� is an sd	expression without
function calls� Hence� the derivation is deterministic �i�e�� there is never a choice
point on a runtime stack� and decomposition steps are applied� The good perfor	
mance of the twin uni�cation machine is due to the used indexing scheme �cf� the
paragraph #Jump and Switch Instructions# in Subsection �����

�� t� � mi�z�� and s� � sh�z�� �


This is an example for which there exist in�nitely many solutions� The runtimes in
Figure �� are the runtimes for �nding the �rst solution �z����

�� t � exp����������������������������� � and s � z�


The rewrite rules of the set of rewrite rules Rexp of the macro tree transducerMexp �
�fexp���g� f����� ���g� Rexp� which computes an exponential function are shown in
Figure ���

exp�� y�� � ��y��

exp���x��� y�� � exp�x�� exp�x�� y���

Figure ��
 Rewrite rules of the macro tree transducer Mexp�

This is an example where the BABEL system with eager narrowing strategy is fa	
ster than the twin uni�cation machine� Since there are a lot of function calls in
parameter positions which must be evaluated all� it is clear that an implementation
of an innermost strategy which evaluates function calls in parameter positions more
e�ciently� is faster than an implementation of an outermost strategy�

��



uni�able BABEL Twin Uni�cation Machine
terms eager narrowing lazy narrowing

�t�� s�� ���� sec ���� sec � ���� sec

�t�� s�� ���� sec ���� sec � ���� sec

�t�� s�� ���� sec ��� sec � ���� sec

�t� s� ���� sec �� sec ���� sec

Figure ��
 Runtimes of the BABEL system and the twin uni�cation machine�
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� Conclusion and Related Work

In this paper we have presented an e�cient implementation of the deterministic uni�ca	
tion algorithm for macro tree transducers� This implementation is an extension of the
implementation of the leftmost outermost reduction relation for macro tree transducers in
�GFV���� The deterministic uni�cation algorithm for macro tree transducers is induced
by a combination of leftmost outermost narrowing and interleaving decomposition rules�
The main point of the presented implementation is an e�cient implementation of the
decomposition rules�

Up to now� the only existing implementation of ulo narrowing has been presented in
�Fa'���� This implementation is an extension of the implementation of leftmost outermost
reduction on a checking	tree nested	stack transducer in �FV�a�� But� since this imple	
mentation is nondeterministic� it is not very interesting from the more practical point of
view�

In existing approaches of the implementation of narrowing� decomposition rules are not
implemented explicitely� In �Han��� the consistency check of constructors is realized by
the rejection rule which is applied during innermost basic narrowing� In BABEL �MR��
decomposition rules are prede�ned rules which are added to every BABEL program� In
implementations of BABEL �KLMR��� MKLR��� Loo��� decomposition rules are imple	
mented like rules of the implemented BABEL program� Hence� neither the occur check�
nor the binding mode is implemented� Clearly� this omission can lead to in�nite computa	
tions� The only check which is realized in these implementations� is the local consistency
check� But� the combination of this check with an eager narrowing strategy is not very
e�ectful� because the local consistency check is only applied when a possibly in�nite nar	
rowing derivation is �nished� Thus� the local consistency check interleaves only narrowing
derivations in implementations of lazy narrowing if the decomposition rules are implemen	
ted in the same way as program rules� But� this has not been done in the implementation
of the BABEL system �Win���� Furthermore� in �HLW�� LLR��� MKM	��� it has been
pointed out how di�cult it is to implement lazy narrowing in the case of a full functio	
nal logic programming language �in opposite to the implementation of ulo narrowing for
macro tree transducers in the present paper�� This problem is also be con�rmed by the
comparison in the previous section�

In our further research� we will integrate the presented implementation in the imple	
mentation of particular BABEL programs� where the guards have the form e� � e� for
two sd	expressions e� and e�� and the functions which occur in guards� are described by
macro tree transducers� We hope that this integration will increase the e�ciency of the
implementation of BABEL� Furthermore� we will investigate the extension of the presented
implementation for the class of primitive recursive tree functions�
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