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Abstract

We investigate the complexity of honest provers in interactive proof systems� This
corresponds precisely to the complexity of oracles helping the computation of robust
probabilistic oracle machines� We obtain upper bounds for languages in FewEXP and
for sparse sets in NP� Further� interactive protocols with provers that are reducible to
sets of low information content are considered� Speci�cally� if the veri�er communicates
only with provers in P�poly� then the accepted language is low for �p

�
� In the case that

the provers are polynomial�time reducible to log��sparse sets or to sets in strong�P�log
then the protocol can be simulated by the veri�er even without the help of provers� As
a consequence we obtain new collapse results under the assumption that intractable
sets reduce to sets with low information content�

� Introduction and overview of results

Two extensions of the concept of NP �as the class of languages with e�cient proofs of
membership �Coo����	 namely the class IP of languages that have single prover interactive
proof protocols and the class MIP of languages with multi
prover interactive proof protocols
�formal de�nitions are given in the next section�	 have been shown to characterize the
complexity classes PSPACE and NEXP respectively �Sh�	 BFL����
In the interactive proof system model of computation �GMR��� one or more provers try

to convince a probabilistic polynomial time veri�er that a given input is a member of the
considered language� The protocol has the following behavior� if an input is in the language
then there are prover�s� that convince the veri�er to accept with high probability� On the
other hand	 if the input is not in the language then no set of provers can convince the
veri�er with more than negligible probability� Arthur Merlin games	 introduced in �Bab���	
are special cases of single
prover interactive proof systems in which the random choices of
the veri�er �called Arthur� are public and therefore visible to Merlin	 the prover� In �Bab���
it is shown that for any constant k	 a k
round interaction AM�k� can be substituted by a
two round protocol AM � AM��� and that AM is contained in �p

� the second level of the
polynomial time hierarchy� Here AM�k� denotes a k round interaction of messages between
Arthur and Merlin	 where the �rst message is from Arthur� The class MA of languages
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accepted by a two round protocol starting with a message from Merlin is an apparently
smaller class than AM�

It turned out that the apparently restricted Arthur Merlin games model is as powerful
as the general interactive proof systems� In fact any interactive proof system can be
simulated by an Arthur Merlin game �GS��	 BM��� with only a constant increase in the
number of rounds� In general the notation AM is used to denote single
prover interactive
proof systems with a constant number of interaction	 whereas IP is used if there is no
restriction� Following the advances made in �LFKN���	 it was �nally shown in �Sh�� that
PSPACE � IP� Subsequently	 it was shown that multi
prover interactive proof systems can
accept all of NEXP �BFL���� Intuitively	 the multi
prover model is more powerful since
the veri�er can use one prover to check that the answers of another prover do not depend
on previous queries made to him� This is made precise in the proof of Babai et al� �of
the above mentioned result� where it is shown that a polynomial number of provers can
be substituted by two provers� One prover answers all the queries of the original protocol	
and the second is only used to verify that the answers do not depend on the history of
interaction�

An interesting issue that arises in interactive proof systems � which is also the main
concern of this paper � is bounding the complexity of the honest prover�s� that make the
veri�er accept a given language� For example	 it is known ��Fe��	 Sh��� that each language
in PSPACE has an IP protocol with prover of complexity PSPACE� The result of Lund
et al� �LFKN��� implies that PPP has IP protocols with prover complexity PP� Similarly	
EXP has MIP protocols of prover complexity EXP �BFL����
Let IP�C� and MIP�C� denote respectively the class of languages with prover complexity

bounded by FP�C� �i�e�	 the class of functions computable by polynomial
time bounded
transducers with access to an oracle from the class C�� In this notation we summarize some
of the known results on upper bounds for prover complexity�

Theorem ���

�� �Fe��	 Sh�� PSPACE � IP�PSPACE��

�� �LFKN��� PPP � IP�PP��

�� �BF��� �P � IP��P��

�� �BFL��� NEXP � MIP�EXPNP��

�� �BFL��� EXP � MIP�EXP��

A surprising application of Theorem ��� to classical structural complexity is the follo

wing corollary�

Corollary ��� �LFKN��	 BFL��� For K � fPP�PSPACE�EXPg� if K � P�poly then
K � MA�

The above result improves previously known collapses to �p
� under the same assumption	

obtained by Meyer	 Karp	 and Lipton �KL��� This is particularly interesting since it is
known that the collapse of PH to �p

� under the assumption NP � P�poly �KL�� cannot be
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improved to �
p
� with relativizable proof methods �Hel���	 and the LFKN protocol is known

to be not relativizable �FS��	 FRS����
The crux of the proof of Corollary ��� is as follows� if K is contained in P�poly	 then by

Theorem ���	 every language in K has an MIP protocol in which the provers are polynomial
size circuits� This protocol can be simulated by an MA protocol where Merlin simply sends
the circuits for the provers to Arthur in the �rst round �LFKN��	 BFL����

We observe that the MA protocol in the above proof
sketch can be seen as a single prover
protocol with prover complexity in P�poly� Thus we can identify the classes MIP�P�poly�
and IP�P�poly� of interactive proof systems in which the provers are polynomial size circuits�
MIP�P�poly� � IP�P�poly� � MA�
On the other hand	 in the case of NEXP the NEXP � MIP�EXPNP� characterization

does not appear to directly imply any signi�cant collapse of NEXP under the assumption
NEXP � P�poly� It is due to the very high upper bound on the prover complexity� A
related result has been proved by Buhrman and Homer �BH��� who showed that under a
stronger assumption EXPNP � P�poly it holds that EXPNP � �p

��
An important motivation of the present paper is to explore further applications of

characterizations of complexity classes using interactive proof systems	 in order to derive
new collapse consequences assuming that the considered class has polynomial size circuits�

We note that in Babai et al� �BFL��� it is an open question as to whether the upper
bound of EXPNP for the prover complexity for NEXP can be improved� The reason for
the apparently weak upper bound is that all provers must have access to the same tableau
of an accepting NEXP computation� To wit	 the high prover complexity is the cost of
disambiguating down to one consistent NEXP computation�

As a �rst step	 we show that FewEXP languages �accepted by NEXP machines that
have at most exponentially many accepting paths� are contained in MIP�NPFewEXP��

Theorem ��� FewEXP � MIP�NPFewEXP��

It is to be noted that NPFewEXP is a substantially smaller class of provers than EXPNP�
Indeed	 since NPFewEXP is known to be contained in PNEXP �Hem���	 it follows that
FewEXP � MIP�NEXP�� As a consequence of Theorem ��� we can extend Corollary ��� to
the class K � FewEXP�

Corollary ��� If FewEXP � P�poly	 then FewEXP � MA � MIP�P�poly��

As observed by Sch�oning �Sch���	 there is a close relationship between the complexity of
provers in interactive proof systems and the complexity of oracles helping the computation
of robust oracle machines� A machine M is called robust if L�M� �� � L�M�B� for all
oracles B	 and an oracle A �one
sided� helps the computation of M if M with oracle
A runs in polynomial time on all inputs x � �� �resp�	 x � L�M� ���� The notion of
helping by robust deterministic oracle machines was introduced by Sch�oning �Sch��� and
was extended to one
sided helping by Ko �Ko���� In a sense	 the notion of helping by robust
machines was a forerunner to the concept of interactive proof systems� Indeed	 it follows
from the probabilistic oracle machine characterization of MIP in �FRS��� that the class
MIP�C� coincides with the class BPP��help�C� of languages accepted by probabilistic robust
machines with the one
sided help of an oracle from C� With this interpretation	 Theorem ���
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shows that NPFewEXP oracles are able to give one
sided help to the computation of languages
in FewEXP� On the other hand	 the inclusion MIP�P�poly� � MA can be interpreted as
stating that oracles in P�poly cannot help the computation of languages outside MA�
An interesting open question is whether P�poly provers are useful at all	 i�e�	 whether

MIP�P�poly� contains sets that are not in BPP� As follows from the next theorem settling
this question is likely to be very hard since a negative answer would imply that all sparse
NP sets are already in BPP	 which in turn implies that NE is contained in BPE known to
be false in relativized worlds�

Theorem ��� All sparse NP sets are contained in P��help�P�poly��

In �Ko��� it is shown that every set A accepted by a robust deterministic oracle machine
with the one
sided help of an oracle from P�poly	 i�e�	 A � P��help�P�poly�	 is low for �

p
��

Since P��help�P�poly� � MIP�P�poly�	 the following theorem extends both the above

mentioned result of Ko and the lowness of BPP for �p

� �Sip��	 ZH��	 Sch����

Theorem ��� MIP�P�poly� is low for �p
��

Considering MIP protocols with provers reducible to sets of very low information content
�e�g� to sets in strong
P�log or to log�
sparse sets� we show that such provers cannot help
the veri�er to accept languages outside of BPP�

Theorem ���	 Let A be a log�
sparse set and let B be a set in strong
P�log� Then
MIP�A� � MIP�B� � BPP�

These results extend the work of Ko �Ko��� showing that every log�
sparse set A and
every set B in strong
P�log are no
�
helpers	 i�e�	 P��help�A� � P��help�B� � P� While
Theorem ��� is its parallel	 the fact that the veri�er is probabilistic introduces new dif

�culties in the case of log�
sparse sets which are handled in the proof� Theorem ��� has
again certain collapse consequences�

Corollary ���� Let A be a log�
sparse set or a set in strong
P�log�

�� NP � BPPA implies PH � BPP�

�� For any class K � fPP�PSPACE�EXPg	 K � BPPA implies K � BPP�

� Preliminaries

In this section we give preliminary de�nitions and notation used in the paper� We �x the
alphabet for languages as � � f� �g� For a set A � ��	 A�n �A�n� denotes the set of
all strings in A of length n �up to length n	 respectively�� The cardinality of a set A is
denoted by jAj� The length of a string x � �� is also denoted jxj	 by abuse of notation�
Since always lower case is used to denote strings and upper case is used for sets	 there is
no ambiguity� A set S is called sparse if jS�nj is bounded above by a polynomial�
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To encode pairs �or tuples� of strings we use a standard polynomial
time computable
pairing function denoted by h�� �i whose inverses are also computable in polynomial time�

Following standard notation �BDG�	 we denote the complexity classes DTIME��n
O���
�

�NTIME��n
O���
�� of languages accepted by �non�deterministic Turing machines in time

�poly by EXP �resp� NEXP�� The corresponding �linear time bounded classes are denoted
by E and NE�

De
nition ��� A language L is in FewEXP if there are polynomials p and q such that
there is a nondeterministic machine M accepting A in time �p�n� with the property that on
any input of size n M has at most �q�n� accepting paths�

The class FewEXP is just the FewP analogue for nondeterministic exponential time�

De
nition ��� �KL�� A set L is in P�poly if there exists a set B � P� a polynomial q�
and a sequence �an�n�� of strings such that janj � q�n�� and L�n � fx � �n j hx� ani � Bg�

It is well
known that P�poly coincides with the class of languages which can be reco

gnized by a non
uniform family of polynomial
size circuits�

The de�nition of multiprover interactive proof systems �rst appeared in Ben
Or et al�
�BGKW��� and Babai et al� �BFL����

De
nition ��� Let p be a polynomial and V be a probabilistic polynomial time machine�
There is a multiprover interactive �i�e� MIP	 protocol for a language L� if for every n there
are provers P�� � � � � Pk� k � p�n�� such that for every x � �n


x � L � Prob�P�� � � � � Pk make V accept � � ����

x 	� L � 
P �
�� � � � � P

�
k � Prob�P

�
�� � � � � P

�
k make V accept � � ����

where the set of provers P�� � � � � Pk are machines of unlimited computational power which
share the input tape with V � and V shares a separate communication tape with each prover
Pi�

The class of languages accepted by an MIP protocol is denoted MIP and the class of
languages with an IP protocol �where k � � in the above de�nition� is denoted IP� We
denote by MIP�C� and IP�C� the respective language classes where the prover complexity is
bounded by FP�C��
We shall also use in this paper Sch�oning�s notion of robust probabilistic machines �Sch���

which coincides with the probabilistic oracle machine characterization of MIP in �FRS����
The notion of robust deterministic machines was earlier introduced by Sch�oning in the
deterministic setting �Sch��� and is further studied in �Ko����

De
nition ��� �Sch��	 Ko��� A language L is in P��help�A�� if there exist a deterministic
oracle Turing machineM and a polynomial p such that the following robustness and helping
properties hold


� for every oracle B� L�M�B� � L� �robustness	

� for all inputs x � L� MA�x� halts in p�jxj� steps� �one�sided�helping	
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P��help�C� denotes the class of languages L such that L � P��help�A� for some set A � C�

De
nition ��� �FRS��	 Sch��� A language L is in BPP��help�A�� if there exists a pro�
babilistic polynomial time oracle Turing machine M such that the following probabilistic
helping and robustness properties hold


� for all inputs x � L� Prob�MA�x� � �� � ���� �one�sided�helping	

� for all inputs x 	� L and all oracles B� Prob�MB�x� � �� � ���� �robustness	

For other standard de�nitions used in the paper we refer the reader to a standard book on
structural complexity theory �BDG��

The next theorem states that BPP��help exactly characterizes MIP	 where the comple

xity of the helping oracle corresponds to the prover complexity in the MIP model�

Theorem ��� �FRS��� For all sets A
 BPP��help�A� � MIP�A��

The following proposition shows that	 interestingly	 for any complexity class C	 both
C and BPPC have the same helping power� Moreover	 the classes IP and MIP are closed
under application of the BP operator�

Proposition ��� For every class C


�� BP � IP�C� � IP�BPPC � � IP�C��

�� BP �MIP�C� � MIP�BPPC� � MIP�C��

Lozano and Tor�an �LT��� proved that if A and A have both MIP protocols with provers
in FPA then A � P�poly implies that A is low for MA� By a technical extension of their
proof	 we get the following theorem�

Theorem ��� MIP�P�poly�  co
MIP�P�poly� is low for MIP�P�poly��

Corollary �� If co
NP � MIP�P�poly�� then PH � MIP�P�poly��

Proof� Assume that co
NP � MIP�P�poly�� Since NP is contained in P��help�NP�
�Ko��� and since MIP�P�poly� � P�poly it follows that NP � P��help�NP� � MIP�NP� �
MIP�P�poly�� By Theorem ���	 this implies the collapse of PH to MIP�P�poly��

An interesting open question is whether co
NP is contained in MIP�PH�� A positive
answer would imply that the assumption of Corollary ��� could be weakened to NP �
P�poly� The best known upper bound for the prover complexity in the case of co
NP
languages is �P	 i�e�	 co
NP � MIP��P�� Since co
NP � BP � �P �VaVa��	 To��� this
follows by combining the result of Babai and Fortnow �BF���	 that �P � IP��P� with the
above Proposition ���� Moreover	 together with the result of Lund et al� �LFKN��� that
PPP � IP�PP�	 we get the following corollary�

Corollary ���	

�� IP��P� � MIP��P� � BPP�P�
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�� IP�PP� � MIP�PP� � BPPPP�

As shown in �LT���	 the graph isomorphism problem GI is low for MA if it is contained
in P�poly� This follows from the result of Lozano and Tor�an mentioned above and the
fact �GMW��	 Schn��� that GI and its complement are both contained in IP�GI�� Using
Theorem ��� we get the following improvement�

Corollary ���� If GI is contained in P�poly then GI is low for MIP�P�poly��

Finally	 we observe that MIP�GI� � IP�GI�� In general	 if both L and L have an IP�L�
protocol	 then every MIP�L� protocol can be simulated by an IP�L� protocol in the following
way� substitute every query to one of the provers by ��� a query to the single prover and	
depending on the answer	 ��� a simulation of the IP protocol of either L or of L to verify
that the answer of the prover is correct�

Theorem ���� If L and L are in IP�L�� then MIP�L� � IP�L��

Notice that the assumption of the above theorem implies that L is checkable in the
sense of �BK��� �meaning that L and L are in MIP�L���

� Few exponential time computations and MIP protocols

Although it is known that MIP � NEXP �BFL���	 it is open whether provers of complexity
NEXP are su�cient� Following the proof of MIP � NEXP it appears that all the honest
provers must have access to the same tableau of an NEXP machine� For the cost of
disambiguating down to one consistent tableau	 the provers need EXPNP computational
power	 so that the provers can compute bit by bit a lexicographically �rst tableau for the
NEXP language being veri�ed �BFL����
In this section we prove as the main result that if we have a FewEXP language A

then the complexity of honest provers in the MIP protocol of Babai et al� �BFL��� can be
bounded by NPFewEXP� In the proof we use the notion of branch points�

De
nition ��� Let T be the computation tree of a nondeterministic Turing machine M

on some input x� A node t in T is called a branch point if there are accepting computations
along both descendants of t�

The idea for the provers to access a consistent tableau is as follows� Every accepting
computation w on some input x � L�M� is uniquely determined by the nondeterministic
choices at the branch points� In fact	 it su�ces to know the levels of the branch points
together with the nondeterministic choices� Therefore every accepting path going through k
branch points at levels i�� � � � � ik can be succinctly described by the list hi�� � � � � ik� b�� � � � � bki
where bj is the nondeterministic choice at level ij � This idea is made precise by the following
lemma�

Lemma ��� For every FewEXP machine M � there exists a function f computable in
FP�NPFewEXP� which for every x � L�M� computes a tuple hi�� � � � � ik� b�� � � � � bki� such
that there exists exactly one accepting path of M on input x that has bit bj at position ij�
for j � �� � � � � k�
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Proof� For x � L�M�	 we de�ne f�x� as the lexicographically smallest string
hi�� � � � � ik� b�� � � � � bki such that there is exactly one accepting path of M on input x which
branches at level ij according to bit bj 	 for j � �� � � � � k� �For x 	� L�M�	 we let f�x�
unde�ned��

Since the number of accepting paths on input x � L�M� is at most �p�jxj�	 for some
polynomial p	 there exists an accepting path w � w�w� � � �wr that goes through at most
p�jxj� many branch points� Let i�� � � � � ik be the respective levels of the branch points on
w� Then the tuple hi�� � � � � ik� wi�� � � � � wiki is of polynomial length in jxj	 and uniquely
describes w� This shows that the length of f�x� is polynomially bounded in jxj� To show
that f is in FP�NPFewEXP�	 consider the language B de�ned as

B � fhx� i�� � � � � ik� b�� � � � � bki j k � p�jxj� and there exists exactly one accep

ting path of M on input x that has bit bj at level ij 	 for j � �� � � � � kg�

Using the fact that M is a FewEXP machine	 it is immediate that B � PFewEXP� Thus	
for an input string x	 f�x� can be computed by pre�x search by querying an appropriate
pre�x version of the language B which is in NPFewEXP�

Lemma ��� Let M be a FewEXP machine� Then for every x � L�M�� an accepting path
of M on input x can be computed in exponential time with a FewEXP oracle� where all
oracle queries are of length polynomial in jxj�

Proof� Consider the function f in Lemma ���� For every x � L�M�	 f�x� is a tuple that
uniquely identi�es one accepting computation path of M on input x� Once the value of
f�x� is computed every bit of the path can be determined by a single query of polynomial
length to the FewEXP language

T � fhx� i�� � � � � ik� b�� � � � � bk� i�� bi�i j k � p�jxj� and there is an accepting
path for M�x� with bits b�� � � � � bk at levels i�� � � � � ik	 and with the bit
at level i� as bi�g�

Since f is in FP�NPFewEXP� it is computable in exponential time with a FewEXP oracle	
where all queries are of polynomial length�

Theorem ��� FewEXP � MIP�NPFewEXP��

Proof� The proof uses the fact shown in �BFL��� that any NEXP language B has a
multiprover protocol with prover complexity bounded by EXP provided that for a given
input x � B all honest provers have access to the same tableau of an accepting computation
of the underlying NEXP machine on input x� Let A be a language in FewEXP accepted by a
FewEXP machineM � By Lemma ���	 the honest provers can compute the description f�x�
of an accepting path wx in polynomial time by asking a suitable NP

FewEXP oracle� Having
computed f�x� they can generate the same answers as the honest provers in the BFL

protocol in polynomial time by feeding a suitable FewEXP oracle F with the description
f�x� as part of the queries� The FewEXP machine accepting F uses the description f�x�
to guess the corresponding accepting path of M on input x and then simulates the honest
provers of the BFL
protocol�
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Corollary ���

�� If FewEXP � EXP�poly� then FewEXP � EXP�

�� If FewEXP � P�poly� then FewEXP � MA � MIP�P�poly��

Proof� By Lemma ���	 an accepting path of a FewEXP machine M can be computed
in EXPFewEXP where all queries are of polynomial length� Thus	 if FewEXP � EXP�poly	
then an accepting path can be found �and veri�ed� in EXP	 by cycling through all advice
strings of polynomial length� This proofs ��

If FewEXP � P�poly	 then	 by part �	 FewEXP � EXP and hence it follows by
Corollary ��� �BFL��� that FewEXP � MA � MIP�P�poly��

Using the following proposition	 containment of any of the classes PP	 PSPACE	 EXP	
and FewEXP in MA �or MIP�P�poly�� actually implies lowness of the class for MA �re

spectively MIP�P�poly���

Proposition ��� For every class K containing co
NP� if K is contained in MA �or
MIP�P�poly�	 then K is also low for MA �respectively MIP�P�poly�	�

Proof� Assume that K � MA� Since co
NP � AM implies PH � AM �BHZ��� and since
co
NP � MA implies �p

� � MA it follows that MA
K � MAMA � PH � MA�

If K � MIP�P�poly� the lowness of K for MIP�P�poly� follows from Corollary ��� by a
similar argument as above�

� MIP protocols with small circuits as provers

As already mentioned in the introduction	 this section is motivated by Corollary ���	 which
gives a collapse of any class K � fPSPACE�PP�EXPg to MA under the assumption that
K � P�poly� In fact	 the collapse is actually to the possibly smaller class MIP�P�poly��
Naturally one is led to investigate the complexity of this new class MIP�P�poly�� We recall
the following proposition�

Proposition ��� BPP � MIP�P�poly� � P�poly�

Next we give an argument showing that it is unlikely that MIP�P�poly� coincides with
BPP�

Theorem ��� All sparse sets in NP are contained in P��help�P�poly��

Proof� Let S be a sparse set in NP� Then we can construct a deterministic robust machine
M that uses the oracle to perform a pre�x search for a witness of the given input x� If a
witness is found then M accepts� Otherwise M starts an exhaustive search� It is easy to
see that there exists an oracle in P�poly helping the computation ofM on all inputs x � S�

Since P��help�P�poly� is contained in MIP�P�poly�	 the existence of sparse sets in
NP n BPP implies that BPP is a proper subclass of MIP�P�poly�� Using the well
known
downward separation technique of Book �Bo��� we get the following corollary�
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Corollary ��� MIP�P�poly� is not contained in BPP unless NE is a subclass of BPE�

Next we show that MIP�P�poly� is actually low for �p
�� This extends the lowness for �

p
�

of P��help�P�poly� �Ko��� and of BPP �Sip��	 ZH��	 Sch���� The proof is by an application
of universal hash functions�

A linear hash function h from �p to �m is given by a Boolean �m� p�
matrix �aij� and
maps any string x � x� � � �xp � �

p to some string y � y� � � � ym where yi �
Lp

j���aij � xj��
A family H � fh�� � � � � hsg of linear hash functions from �p to �m is said to hash a set
X � �p if every x � X can be mapped to �m by some hash function hk � H which avoids
collisions between x and other strings in X �


 x � X � k �� � k � s� 
 y � X � x 	� y � hk�x� 	� hk�y��

We state the actual form of the hashing lemmas required before we proceed to the proof
of Theorem ���� The �rst two of these lemmas are from Sipser �Sip���� The third is from
Gavald�a �Gav��� and extends Sipser�s second lemma to exponentially many sets�

Lemma ��� Let A � �p such that there exists a hash family H � fh�� � � � � hsg � �p � �k

that hashes A� Then A � s � �k�

Lemma ��� Let A � �p such that jAj � �k��� Then there exists a hash family H �
fh�� � � � � hkg � �

p � �k that hashes A�

Lemma ��� Let A�� A�� � � � � A�l � �
p such that jAij � �

k�� for every i� � � i � �l� Then
there exists a hash family H � fh�� � � � � hk�l���g � �

p � �k that hashes each Ai�

Theorem ��� MIP�P�poly� is low for �
p
��

Proof� Let A � MIP�P�poly�� Then	 by de�nition	 there is a multiprover interactive
protocol �we can assume that it is a two
prover protocol �BFL����� Since A � MIP�P�poly�	
the honest provers for A are in FP�poly and hence there is a polynomial p such that for
every lengthm	 there is a corresponding advice string cm � �p�m� encoding the polynomial

size circuits for both provers at length m�
We say that V �y� w� c� accepts if on input y the provers corresponding to the circuits

encoded by c make V accept on path w� Then	 the above protocol can be rewritten after
amplifying the error probability as

y � A � Prob�V �y� w� cjyj� accepts� � �� �
�jyj�

y 	� A � 
c � �p�jyj� � Prob�V �y� w� c� accepts� � ��jyj�

where w is chosen uniformly at random from �s�jyj� for a suitable polynomial s�
For each instance y and each c let Acc�y� c� �Rej�y� c�� denote the set of w � �s�jyj�

such that V �y� w� c� accepts �respectively	 rejects�� Then we have for all y of length m	

� if y � A then for the correct advice cm	 jRej�y� cm�j � �s�m��m	

� if y 	� A then for any advice c	 jAcc�y� c�j � �s�m��m�

�



Let k�m� � s�m��m � and l�m� � m p�m�� We say that an advice string c of length
p�m� and a hash family H � fh�� � � � � hk�m��l�m����g � �

s�m� � �k�m� are good for length
m if the following co
NP predicate holds�

For all y � �m and c� � �p�m� � H hashes Rej�y� c� or Acc�y� c���

Claim � For m large enough it holds that for every collection of �m�p�m� many sets of car�
dinality at most �s�m��m there exists a hash family H � fh�� � � � � hk�m��l�m����g � �

s�m� �

�k�m� that simultaneously hashes all sets in the collection� but no such hash family can hash
a set of cardinality �s�m� � �s�m��m�

Proof of Claim �� The �rst part follows immediately from Lemma ���� To prove the second
part	 assume to the contrary that there exist arbitrary large m such that some hash family
H � fh�� � � � � hk�m��l�m����g � �

s�m� � �k�m� hashes a set of cardinality �s�m� � �s�m��m�
By Lemma ���	 it follows that

�s�m� � �s�m��m � k�m��l�m� ���k�m� � k�m��l�m� ���s�m��m��

implying that �m � � � �k�m��l�m�  �� for arbitrary large m! a contradiction�
� Proof of Claim ��

Thus	 for every length m there exists a good pair c	 H 	 and for every such pair it holds
that for all y of length m	 H hashes Acc�y� c� i" y 	� A i" H does not hash Rej�y� c�� As
a consequence there is a nondeterministic polynomial time Turing machine M �	 that on
input hy� c�Hi	 where c	 H are good for length jyj	 strongly �in the sense of �Lo���� decides
membership of y in A�

input hy� c�Hi!

guess w�w� � �s�jy�j!
if w�w� witness that H does not hash Acc�y� c� then accept!
if w�w� witness that H does not hash Rej�y� c� then reject!
halt in #don�t know$ state�

Now	 let M be a �p
� oracle machine with oracle A accepting some language L� We

describe an equivalent �p
� machine M

�� for L� We �rst note that on input x the size of the
queries thatMA asks is bounded above by r�jxj� for some polynomial r� Now	 our strategy
to simulate MA�x� by a �p

� computation is as follows�

First the new machineM ���x� guesses the correct advice strings cm for all lengths
up to r�jxj� with which the provers can be replaced� Then it guesses polynomial
size hash families Hm	 � � m � r�jxj�	 and veri�es that all the pairs cm� Hm

are good� Then machine M ���x� simulates MA�x� using the pairs cm� Hm to
answer oracle queries y of length m	 by simulating the strong computation of
the machine M � on input hy� cm� Hmi�

��



This completes the proof�

Now we show that sets of very low information content are powerless as provers� This
extends the work of Ko in �Ko��� where he proved that certain oracles do not help the
computation of deterministic robust oracle Turing machines� In particular he showed that
oracles in LOG
INF do not help deterministic robust oracle machines where LOG
INF is
a class that contains all log�
sparse sets and all sets in strong
P�log�

De
nition ��� �Ko���

�� A set A is in strong
P�log if there exist a set B � P and a constant c such that for all n
there exists a string w� jwj � c logn such that for all x� jxj � n
 x � A� hx� wi � B�

�� A language L is in log�
sparse if there exists a constant k such that for all n it holds
that jL  fx j n � jxj � �ngj � k�

The class strong
P�log �which is a restriction of P�log in that there exists one advice of
length �O�logn�� for all strings of length up to n rather than for all strings of length exactly
n� is closed under Turing reductions� We show that if the provers are restricted to be Turing
reducible to strong
P�log or to log�
sparse	 then the accepted languages are in BPP� The
proof idea is to cycle through all oracle answer sequences which can possibly be generated by
oracles of this type� Since the veri�er is probabilistic	 we �rst �x the random choices of the
computation �after amplifying the probability�� In the case of oracles in strong
P�log the
simulating veri�er accepts if an oracle answer sequence leading to an accepting computation
is found� However in the case of log�
sparse oracles the number of oracles that contribute
to the acceptance probability of the input string could be exponentially large� Thus	 in
order to avoid that strings not in the language are accepted	 the simulating veri�er has
to perform an additional test verifying that the induced oracle indeed leads to acceptance
with high probability�

Theorem �� MIP�strong
P�log� � BPP�

Proof� The basic idea is to cycle through all possible advice strings to �nd a helping
oracle� Assume L � BPP��help�A� for a strong
P�log set A and a BPP��help machine M
whose running time is bounded by some polynomial p and which has an exponentially small
error probability � � ��n� Let B � P and c be a constant witnessing that A � strong
P�log�
Now consider the following procedure�

input x	 jxj � n

guess randomly random steps for a computation of M
for all w	 jwj � c log p�n�
simulate the computation of M where every oracle query z is answered
according to hz� wi � B�
if M accepts then accept

reject

��



Intuitively speaking	 the above procedure considers only polynomially many oracles	 and
at least one will be the helping oracle A� Therefore	 if x � L	 the probability that the
procedure accepts is larger than � � � � ���� If x 	� L this probability is smaller than
�c logp�n��� � � � ���	 for n large enough�

Theorem ���	 Let A be a log�
sparse set� then MIP�A� � BPP�

Proof� Assume L � BPP��help�A�	 for some log
�
sparse set A and a BPP��help machine

ML which is time bounded by some polynomial p and has an exponentially small error
probability �� For every n	 let ��p�n� be divided into � parts� A �rst part contains all strings
of length smaller than log log n	 and the second part all strings x	 log log n � jxj � p�n��
Then the �rst part contains at most logn many elements and the number of strings in
the other part that are in A is bounded by some constant k� Now consider the following
machineM �for v � v� � � �vm	 vy denotes the bit vi where y is the ith string in lexicographic
order��

input x	 jxj � n
guess randomly random steps for a computation of ML

for all v	 jvj � log n
for all w	 jwj � p�n� and jfi j wi � �gj � k
simulate ML and use the pair v� w to answer the oracle queries� if
y is the i
th query and jyj � log logn answer yes i" vy � �� If
jyj � log logn then answer yes i" wi � �� Let fy� � � �yqg be the
positive queries�
if ML accepts then
guess randomly �k�� additional computations of ML and accept
if at least one of the �k�� computations accepts where the set Y �
fy� � � � yqg� fy j jyj � log logn and vy � �g is used as oracle�

reject

Assume x � L	 jxj � n� Then the probability that ML accepts x with oracle A is
larger than ���� We show that M accepts with probability larger than ���  ���� The
accepting computations ofML can be divided into d � �k sets Si	 depending on the positive
queries of length at least log logn and smaller than p�n�� Let pi be the probability that a
randomly guessed path is in the set Si and let I � fi j pi � ����d�g� If we consider only
sets Si where i � I 	 then the probability that a path is not in Si is smaller than �� ����d��
Therefore the probability that all �k�� � � ��d paths guessed byM are not in Si	 is smaller
than ���� Since

P
i�I pi � ���	 the sum of the probabilities that the �rst computation

is in the same set Si as at least one of the additional �k�� computations is larger thanP
i�I�����pi � ����������� ���  ����
Now assume that x 	� L	 then the probability that ML accepts x is smaller than � for

every oracle� Therefore the probability that for any �xed set Y one of the �k�� randomly
guessed computation paths accepts is smaller than �� ��� ���

k��
� Since for every initially

guessed computation ofML �in the above procedure� we sum up the probability �to accept�
of n � k � nk strings vw	 we get that for every such initial computation the probability is
smaller than n � k � nk��� ��� ���

k��
� � ���	 for n large enough�

��



Corollary ���� Let A be a log��sparse set or a set in strong
P�log�

�� NP � BPPA implies PH � BPP�

�� Let K � fPP�PSPACE�EXPg� then K � BPPA implies K � BPP�
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