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Abstract

Most of the current proposals for new data models support the construction of

heterogeneous sets. One of the major challenges for such data models is to provide

strong typing in the presence of heterogenity. Therefore the inclusion of as much as

possible information concerning legal structural variants is needed. We argue that

the shape of some part of a heterogeneous scheme is often determined by the

contents of some other part of the scheme. This relationship can be formalized by a

certain type of integrity constraint we have called attribute dependency. Attribute

dependencies combine the expressive power of general sums with a notation that

fits into relational models. We show that attribute dependencies can be used,

besides their application in type and integrity checking, to incorporate record

subtyping into a relational model. Moreover, the notion of attribute dependency

yields a stronger assertion than the traditional record subtyping rule as it considers

some refinements to be caused by others.

To examine the differences between attribute dependencies and traditional record

subtyping and to be able to predict how attribute dependencies behave under

transformations like query language operations we develop an axiom system for their

derivation and prove it to be sound and complete. We further investigate the

interaction between functional and attribute dependencies and examine an extended

axiom system capturing both forms of dependencies.



1  Introduction

The relational model as defined by Codd [Codd70] forms the base of most

contemporary data models. It constructs a database as a set of relations, a relation

being defined over a set of attributes called its scheme. The instance of a relation is

a set of tuples where each tuple is a mapping from the scheme attributes to values of

given (atomic) domains.

The constraint of homogeneity, i.e. the fact that all tuples of a relation are defined

over the same set of attributes, does often not meet the intuition of a relation as a

container of related entities. Take an address (e.g. of a person's record) as a simple

example. Each address comprises a zip code and a town. The town-local part of the

address may be either a post-office box number or a street and, if it is a street, it is

sometimes followed by a house number, sometimes not. This little example already

exhibits many facets: ZipCode and Town are unconditioned or homogeneous

components as they are always present. The town-local part is a disjoint union of

PostOfficeBoxNumber and Street while Street may be accompanied by the optional

attribute HouseNumber.

Another form of attribute relationship can be motivated by the "electronic part" of an

address which is composed of a telephone number, a FAX number, and an

electronic mail address. At least one of these three attributes should be present to

constitute an electronic address, but two or all three of the attributes are allowed too.

This non-disjoint union is another relationship type between attributes, and many

other forms of relationships can be found in addition.

The relationships mentioned above are based on the pure existence of attributes.

I.e. from the sole existence/absence of a certain attribute we draw conclusions about

the existence or absence of other attributes. In addition to these existence-based

attribute relationships there occur value-based attribute relationships which take the

influence of values (in some attributes) on the existence of (other) attributes into

account.
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Take an employee entity possessing the attributes salary and job-type as an

example. In addition,

- if the value of job-type is 'secretary' then the attributes  typing-speed  and  foreign-

languages  are present.

- if the job-type is 'software engineer' the employee is further described by the

products  he is in charge of and the  programming languages  he knows.

- if the job-type is 'salesman', he possesses a  sales commission  and also the

products  he is in charge of1.

Another example is that the existence of a maiden name is determined by the

appropriate values in the attributes  sex  and  marital status.

The overall aim of the model of flexible relations is to bridge the gap between

semantic data models and operational data models. Therefore it captures the

attribute relationships described above, yet it utilizes a minimum of (generic)

constructs to preserve the elegance of the relational model.

The paper is focussing on value-based attribute relationships. We will introduce a

notation we have called attribute dependencies that enables us to model these

relationships as integrity constraints. We will motivate their usage, particularly their

ability to model a strong notion of subtyping. Besides their employment in record

subtyping and their connection to semantic type constructs, the benefit of attribute

dependencies in type and integrity checking and in host language coupling is

discussed. The formal behaviour of attribute dependencies will be described by a

sound and complete axiom system for their derivation.

The rest of the paper is structured as follows: Section 2 introduces some basic

notations of the model of flexibe relations needed as an environment in which

attribute dependencies are to be integrated. The different purposes which attribute

dependencies serve in our model, including subtyping, are discussed in section 3. In

section 4 an axiom system for the derivation of attribute dependencies is developed

and shown to be sound and complete. In addition, an extended axiom system

capturing both functional and attribute dependencies is developed. Section 5

compares our approach to related ones, while section 6 concludes with a summary

and an outlook.

                                                       
1 Note that we mix attributes with atomic values (like salary) and attributes with composed values

(like products) as this distinction is not subject of our discussion.
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2  Attribute Dependencies

2.1  Basic notations of the model of flexible relations

The elegance of the relational model is mainly due to the fact that it gets along with a

single type constructor. To preserve this elegance as much as possible, we looked

for an extended type constructor enabling us to describe the various variant (and

also non-variant) structures in a single, generic fashion. It is obvious that specifying a

scheme as a set of attributes, as the relational model does, is not expressive enough

to model arbitrary attribute relationships. To achieve this goal we enhanced the

scheme notation in the following way: a scheme is now composed of a set of

attributes accompanied by a cardinality constraint in the form of two integer values

determining how many components of the set have at least to be taken and how

many components of the set are allowed at most. If we describe this construct as a

three-tuple

< at-least value, at-most value, set of attributes >

then the various constructs introduced in section 1 can be expressed in the following

way2

- a traditional relational scheme with attributes  A1 , ... , An  is denoted by

< n, n, { A1 , ... , An } > , i.e. at least  n  and at most  n (and therefore exactly  n) of

the attributes have to be present.

- a disjoint union of attributes  A1 , ... , An  is modeled by  < 1, 1, { A1 , ... , An } >

telling that exactly one of the attributes may appear.

- a non-disjoint union of attributes  A1 , ... , An  is described by  < 1, n, { A1 , ... , An }

>, i.e. the electronic address of section 1 is expressed by  < 1, 3, { telephone-

number, FAX-number, email-address } >.

The above notation is not completely satisfying yet: a union might appear as only a

part of a scheme, the variants in a union do not need to be single attributes but can

be relational schemes, variants again, and so on. Therefore we have to extend our

notation allowing the set components to be either single attributes or again three-

tuples of our notation. This final version of a flexible scheme is presented by a more

abstract example.

                                                       
2 Let as usual be  the universe of attributes, A, B ... and Ai be single attributes, and V, ... , Z be

attribute sets. Let XY denote the union of the attribute sets X and Y and treat attributes as singleton
attribute sets when sets of attributes are expected.
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Example 1  An application demanding tuples with attributes A and B

(unconditioned), either attribute C or D (i.e. a disjoint variant between C and D)

and "some" of  E, F and G (a non-disjoint union of  E, F and G) yields the

following flexible scheme  FS

FS  =  < 4, 4, { A, B, < 1, 1, { C, D } > , < 1, 3, { E, F, G } > } >

�

A flexible scheme is a very compact notation. For the purpose of a basic

understanding one can unfold a flexible scheme yielding the allowed attribute

combinations. As this unfolding can be interpreted as building the disjunctive normal

form of a flexible scheme FS, we will refer to it as  dnf(FS). Forming the DNF of the

scheme of example 1  yields3

dnf(FS) =  { ABCE, ABDE, ABCF, ABDF, ABCG, ABDG, ABCEF, ABDEF, ABCEG,

ABDEG, ABCFG, ABDFG, ABCEFG, ABDEFG }

Now it is easy to define the domain of a flexible scheme. If  Tup(X)  denotes the set

of tuples for a given attribute set  X , then  dom(FS) = Tup
dnf

(X)
X  (FS)∈� . A flexible

relation  FR  can then be defined as a two-tuple  FR = < FS, inst >  with

scheme(FR) = FS  being a flexible scheme and  inst(FR) = inst  being the instance of
the relation, a finite set of tuples satisfying  inst(FR) ⊂ dom(scheme(FR)). As a

flexible scheme does not uniquely determine the shape of its tuples we assume the

existence of a function  attr(t)  yielding the attribute set  X , tuple  t  is defined on
(of course  attr(t) ∈ dnf(FS),  if  t ∈ dom(FS)).

2.2  Definition of attribute dependencies

Up to now a flexible scheme considers existential relationships of attributes and

determines thus the basic shape of tuples and instances. Value-based constraints

are not yet taken into account, a flexible scheme is therefore, following the notation

of [PDGV89], a primitive scheme and a flexible relation only a possible relation

(instance). The examples in section 1 have shown that flexible relations demand,

besides the known types of constraints, a certain class of constraints concerning the

                                                       
3 Note that this unfolded version of a flexible scheme corresponds to the "set of objects" idea of Ed

Sciore [Scio80] (see also [Maie83,chapter 12]). The little example above should suffice as a
motivation to find a compact description for variant schemes.
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variant structure of tuples. Referring to the job-type-example of section 1 we may say

that the value of the attribute  job-type  determines the existence of the attributes in

Y = { typing-speed, foreign-languages, products, programming-languages, sales-

commission } in the way that

t(job-type) = 'secretary'  →  attr(t) ∩ Y = { typing-speed, foreign-languages }

t(job-type) = 'software engineer' → attr(t) ∩ Y = { products, programming-languages }

t(job-type) = 'salesman'  →  attr(t) ∩ Y = { products, sales-commission }

To prepare the formal definition of an attribute dependency consider the following

points. While in the example above there is only one determining attribute (job-type),

in general there may be several ones (take  sex  and  marital-status  determining the

existence of a maiden name). Therefore we should say that the contents in the

attribute set  X  determines which attributes in the attribute set  Y  exist. This general

assertion can be refined by considering the legal variants explicitely. Each variant
consists of an attribute set  Yi ⊆ Y  (i=1..n, n being the number of variants) and is

determined by a set of values  Vi  ⊆  Tup(X)  with the obvious meaning that the

attribute set  Yi  occurs in a tuple  t  whenever  t[X]  ∈ Vi. When there is no  Vi  such

that  t[X]  ∈ Vi  then it is intuitive to demand that tuple  t  does not possess any

attribute of  Y. Considering this we obtain the definition of an attribute dependency 4

Definition 2.1  "explicit attribute dependency"

An explicit attribute dependency  EAD  has the syntactical form

EAD  =  < X  exp.attr⎯ →⎯⎯⎯  Y , { V1 exp.attr⎯ →⎯⎯⎯  Y1 , ... , Vn exp.attr⎯ →⎯⎯⎯  Yn } >

where X  ⊂   , Vi  ⊆  Tup(X) (i = 1 .. n),

Y   ⊂   , Yi  ⊆  Y (i = 1 .. n),

i ≠ j   →  Vi  ∩  Vj  =  ∅  (i,j = 1 .. n)

A flexible relation FR is said to satisfy the explicit attribute dependency EAD if

∀t  ∈  inst(FR)  : X ⊆ attr(t)  → ( ( ∃i : t[X]  ∈ Vi )   →   attr(t) ∩ Y  =  Yi  )

∧  X ⊆ attr(t)  → ( ( ∀i : t[X]  ∉ Vi )  →   attr(t) ∩ Y  =  ∅ )

�

                                                       
4 In section 4 we will use a slightly modified definition. To distinguish both we call the following

definition an explicit attribute dependency .
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Example 2  The job-type-example is formulated in the EAD-notation by

< {job-type} exp.attr⎯ →⎯⎯⎯  {typing-speed,foreign-languages,products,programming-languages,sales-commission} ,

  { < job-type : 'secretary' >  exp.attr⎯ →⎯⎯⎯   { typing-speed, foreign-languages } ,

    < job-type : 'software engineer' >  exp.attr⎯ →⎯⎯⎯   { products, programming-languages } ,

    < job-type : 'salesman' >  exp.attr⎯ →⎯⎯⎯   { products, sales-commission }   }

>

�

3  Usage of attribute dependencies

There are two main streams motivating the use of attribute dependencies. The first

one is to integrate semantic type constructs into an operational data model, thus

bridging the gap between semantic and operational data models. The second reason

is to show that attribute dependencies may be used to incorporate subtyping into a

relational data model. Here we will go even further and we are going to stress the

point that the traditional subtyping rule does not manage causal relationships

between type parts correctly.

3.1  Mapping of entity-relationship concepts onto flexible relations

Specialization is one of the enhanced entity relationship concepts [ElNa89, chapter

15]. A specialization that is encoded in the entity itself is called a predicate defined

specialization. If one replaces the predicate pi of the i-th specialization by its

extension Vi 5, i.e. Vi = { v | pi(v) is true }, then an attribute dependency is a one-to-

one mapping of a predicate defined specialization. ER models further divide

specialization into disjoint versus overlapping subclasses and total versus partial

subclasses. This classification can be inferred from attribute dependencies as well:
the variants of an attribute dependency are disjoint if  Yi  ∩  Yj  = ∅  (i≠j)  and they

are total if  ii=1..n
V�  = Tup(X). The benefit of mapping these ER constructs onto the

model of flexible relations is that they can now be exploited operationally.

                                                       
5 The meaning of Vi is explained in definition 2.1 .
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The most important operational use of attribute dependencies is their application in

type-checking, which is a central point of our model. Flexible schemes do serve this

purpose already better than relational schemes as existential attribute relationships

are already captured by them6. However, value-based dependencies cannot be type-

checked by flexible schemes. For example, there is no way to construct a flexible

scheme which would reject the tuple

< .. jobtype : 'salesman', typing-speed : high, foreign-languages : { french, russian } >

as { ... , jobtype, typing-speed, foreign-languages }  is a valid attribute combination.

The fact that  jobtype = 'salesman'  requires different attributes to be present has to

be formulated with the attribute dependency of example 2.

Type checking based on attribute dependencies is initiated during insertion, update7,

and data retrieval. In the context of retrieval two tasks have to be acomplished: A

precise type has to be given to the query result and redundant type guard operations

have to be eliminated 8.

3.2  Semantic preserving subtyping through attribute dependencies

At first glance a predicate defined specialization can as well be described by the

traditional record subtyping rule (see [CaWe85] among many others)

i i

1 1 n n m m 1 1 n n

t u

a t a t a t a u a u

   (i =1..n)

  :   ,  ...  ,   :   ,  ...  ,   :       :   ,  ...  ,   :   

≤

≤

                                                       
6 The type-checking of explicit attribute dependencies can be demonstrated with the flexible scheme

of example 1: Although the occuring attributes are { A, B, C, D, E, F, G } , the tuple < A:a, B:b, C:c,
D:d, E:e, F:f, G:g > would be rejected as attributes C and D exclude each other.

7 While there are no further type-related consequences when the salary of an employee is updated,
the change of his jobtype causes a type change, too.

8 When dealing with heterogeneous sets, type guards check for the presence of attributes. The
presence or absence of the concerned attributes may be inferred if the determining attributes of an
attribute dependency are involved in a selection formula (jobtype == 'salesman'). In this case the
type guard would be redundant. In addition, the type of the query result may be restricted to the type
of those variants satisfying the selection formula.
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Let us first show that this inclusion rule can be expressed with an attribute

dependency. Therefore, consider a flexible scheme FS with  attr(FS) = W  and let

EAD  =  < X  exp.attr⎯ →⎯⎯⎯  Y , { V1 exp.attr⎯ →⎯⎯⎯  Y1 , ... , Vn exp.attr⎯ →⎯⎯⎯  Yn } >

be an attribute dependency for FS. Then the corresponding supertype contains the

attributes  W - Y  and the domain of  X  consists of  Tup(X), i.e. the domain of  X  is

unrestricted in the supertype. Further we can derive from EAD that there are  n
subtypes possessing the attributes  ( W - Y ) ∪ Yi, having the domain of  X  restricted

to Vi (i=1..n). We may therefore say that attribute dependencies incorporate record

subtyping into a relation-based model 9.

Now, what is the benefit of using attribute dependencies instead of the traditional

subtyping rule? This rule is obviously sufficient to state that secretary, software

engineer and salesman type are subtypes of a more general employee type (see

figure 3.1 below)

employee_type  = < salary : float, jobtype : { 'secretary', 'software engineer', 'salesman' } >

secretary_type   = < salary : float, jobtype : { 'secretary' }, typing-speed : ... , foreign-languages : ... >

softw_eng_type = < salary : float, jobtype : {'software engineer' }, products : .. , programming-languages : .. >

salesman_type  = < salary : float, jobtype : {'salesman' }, products : ... , sales-commission : ... >

Fig. 3.1  Employee type and its predicate defined subtypes

Note that for each of the three subtypes there are two type changes causing the

subtype relation: The domain of  jobtype  is restricted and some attributes are added

to the subtypes. These simultaneous type changes are considered to be purely

accidental by the record subtyping rule. The type

< salary : float >

is therefore treated as a valid supertype of the subtypes presented above, although

the connection between the determining attribute  jobtype  and the subtypes is

destroyed. To prevent this from happening or at least to notify the loss of this

connection, it is necessary to treat these type changes as causal related, like

attribute dependencies do.

                                                       
9 Although we do not talk about methods in this paper, it is easy to see that a behaviourally object

oriented system could be put upon our model and utilize the described subtype relationship.
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3.3  Further usage of attribute dependencies

A last usage, which shall only be sketched here, is that attribute dependencies are

an encoding of general sums (see [MacQ86] as an entry point) to make this type

construct fit into a relational model. This equivalence can be exploited when

embedding of flexible relations into programming language is discussed. It can be

shown that a flexible scheme can be translated into an appropriate programming

language type (e.g. a variant record in PASCAL) if each existential attribute

relationship is accompanied by an attribute dependency. If necessary, this can be

obtained by introducing artificial attribute dependencies with artificial determining

attributes.

The applications discussed in this section pose different requirements on attribute

dependencies. In some cases, like insertion, whole tuples of a flexible relation are

considered. Here, it is sufficient to apply the attribute dependencies specified in the

scheme. But most applications, like update, retrieval or programming language

embedding, are referring only to parts of a tuple or to tuples which may even have

been transformed by (query language) operations. Therefore it is also necessary to

know how attribute dependencies behave under transformations. This question is

also the central point when attribute dependencies are exploited for (semantic

preserving) subtyping. Facing the transformation problem differently, we have to

examine which valid attribute dependencies may be derived from given ones. To

answer this question we will develop an axiom system for the implication of attribute

dependencies. This is done in the next section.

4  An axiom system for attribute dependencies

Before we define the axiom system we slightly modify the definition of an attribute

dependency. This is only done for the sake of readability and to better illustrate the

similarity to other forms of dependencies, but does not change the intention.

From definition 2.1 we can derive that, given an explicit attribute dependency

< X  exp.attr⎯ →⎯⎯⎯  Y ... >, whenever two tuples t1, t2 agree on X, then they possess the

same subset of Y as attributes. Therefore we can find another definition for attribute

dependencies which serves better for the purpose of finding an appropriate axiom

system.
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Definition 4.1  "attribute dependency"

Let X, Y  ⊂  . A flexible relation FR is said to satisfy the attribute dependency

X  attr⎯ →⎯⎯   Y   if  ∀t1, t2  ∈  inst(FR)

X ⊆ attr(t1)  ∧  X ⊆ attr(t2)  ∧  t1[X]  =  t2[X]   →   attr(t1) ∩ Y  =  attr(t2) ∩ Y

�

The axiom system    that manages attribute dependencies consists of the following

four rules:

(A1) X  attr⎯ →⎯⎯   YZ  :-  X  attr⎯ →⎯⎯   Y (projectivity)

(A2) { X  attr⎯ →⎯⎯   Y , X  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   YZ (additivity)
(A3) ∅  :-  X  attr⎯ →⎯⎯   Y   if  Y  ⊆  X (reflexivity)

(A4) X  attr⎯ →⎯⎯   Y  :-  XZ  attr⎯ →⎯⎯   Y (left augmentation)

A remarkable point about this rule system is that transitivity is not valid for attribute

dependencies. This stems from the fact that we do not draw any conclusion about

the contents of the determined attributes. Nevertheless other rules, like the

augmentation  ( X  attr⎯ →⎯⎯   Y  :-  XZ  attr⎯ →⎯⎯   YZ )  or the right augmentation

( X  attr⎯ →⎯⎯   Y  :-  X  attr⎯ →⎯⎯   XY )  are valid, too. The following theorem tells us that
they can be derived from  and that their inclusion would therefore not enhance the

power of the axiom system10.

Theorem 4.1    is a sound, complete and non-redundant system of axioms for the

implication of attribute dependencies.

�

                                                       
10 The proofs of all theorems are presented in the appendix.
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Note that all rules could have been defined for explicit attribute dependencies as

well. For example, the additivity rule would be

{ < X  exp.attr⎯ →⎯⎯⎯   Y , { V11  exp.attr⎯ →⎯⎯⎯   Y11 , ... , V1n  exp.attr⎯ →⎯⎯⎯   Y1n  } > ,

  < X  exp.attr⎯ →⎯⎯⎯   Z , { V21  exp.attr⎯ →⎯⎯⎯   Z21 , ... , V2m  exp.attr⎯ →⎯⎯⎯   Z2m } > }  :-
< X  exp.attr⎯ →⎯⎯⎯   YZ , { V11 ∩ V21 exp.attr⎯ →⎯⎯⎯  Y11Z21 , ... , V1n ∩ V2m exp.attr⎯ →⎯⎯⎯  Y1nZ2m  } >

This lengthy definition hampers of course the readability, thus making the

abbreviated definition of attribute dependencies more favorable for our purpose.

Nevertheless we stress again that the presented axiom system works for explicit

attribute dependencies as well.

Example 3  Suppose a query containing a selection with the formula "salary > 5000

AND jobtype = 'secretary' "  followed by a type guard checking for the presence

of the attribute typing-speed. The redundancy of the type guard can be shown

by the following derivation based on the explicit attribute dependency defined in

example 2  (recapitulated below) :

< {job-type} exp.attr⎯ →⎯⎯⎯  {typing-speed,foreign-languages,products,programming-languages,sales-commission} ,

  { < job-type : 'secretary' >  exp.attr⎯ →⎯⎯⎯   { typing-speed, foreign-languages } ,

    < job-type : 'software engineer' >  exp.attr⎯ →⎯⎯⎯   { products, programming-languages } ,

    < job-type : 'salesman' >  exp.attr⎯ →⎯⎯⎯   { products, sales-commission }   }

>

Projecting the right side of the given EAD onto  { typing-speed }  yields  (cf. rule (A1))

< job-type exp.attr⎯ →⎯⎯⎯  typing-speed ,  { < job-type : 'secretary' >  exp.attr⎯ →⎯⎯⎯   typing-speed  }  >

Augmenting the left side of this EAD with the attribute  salary  yields  (cf. rule (A4))

< { job-type, salary }  exp.attr⎯ →⎯⎯⎯   typing-speed , { < job-type : 'secretary' , salary : s >  exp.attr⎯ →⎯⎯⎯   typing-speed }  >

where  s  is an arbitrary value of dom(salary). We may conclude that the presence of

the attribute  typing-speed  can be deduced from the selection formula and that the

type guard is therefore redundant.

�
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4.2  An extended axiom system capturing functional and attribute

dependencies

There are several reasons why one should regard functional dependencies together

with attribute dependencies. The first and most practical reason origins from the

discussion how to embed flexible relations into programming languages. Take

PASCAL as an example: Although its variant record type resembles attribute

dependencies, there are some syntactic restrictions that have to be obeyed. One of

them is that only a single attribute may appear as determinant of a variant record.

Suppose now an attribute dependency  X  attr⎯ →⎯⎯   Y  with  X  consisting of at least

two attributes. There is an intuitive way to circumvent the aforementioned syntactic

restriction: Introduce an artificial attribute  A , replace  X  attr⎯ →⎯⎯   Y  by  A  attr⎯ →⎯⎯   Y

and make the value of  A  dependent on the value of  X , i.e. extend the constraints

by  X  func⎯ →⎯⎯   A. The validity of this and other replacements may be verified by the

aid of a rule system combining functional and attribute dependencies.

From the more theoretical point of view it is interesting to consider the interaction
between both forms of dependencies. Especially, there are two of the rules in  that

are not derivable due to the (intended) weak consequence of an attribute

dependency. Namely, X does not only determine the existence of  Y  if  Y  is a

subset of  X (see reflexivity rule (A3) above), but also its value (see reflexivity rule

(F1) below). A combined axiom system will therefore not only show the connections
between both forms of dependencies but will also uncover those rules of  that are

really non-redundant.

We, therefore, adapt the notion of functional dependencies to fit into the model of

flexible relations. The adaption simply consists of the adding of a type guard
"X ⊆ attr(t)", as the access of values must be preceded by such a type guard in our

model. The axiom system, consisting of the reflexivity rule, the transitivity rule, and

the augmentation rule (see (F1), (F2) and (F3) below), is borrowed from

[Ullm88,p.384ff]. Its soundness, completeness and non-redundancy is not affected

by the adaption of the definition to our model.
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Definition 4.2  "functional dependency (adapted to flexible relations)"

Let X,Y  ⊂  . A flexible relation FR is said to satisfy the functional dependency

X  func⎯ →⎯⎯   Y  if  ∀t1, t2  ∈  inst(FR)

X ⊆ attr(t1)  ∧  X ⊆ attr(t2)  ∧  t1[X]  =  t2[X]   →
Y ⊆ attr(t1)   ∧  Y ⊆ attr(t2)  ∧  t1[Y]   =  t2[Y]

�

The combined axiom system    for functional and attribute dependencies consists

of the following seven rules:

(AF1) X  func⎯ →⎯⎯   Y  :-  X  attr⎯ →⎯⎯   Y (subsumption)

(AF2) { X  func⎯ →⎯⎯   Y , Y  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   Z (combined transitivity)

(A1) X  attr⎯ →⎯⎯   YZ  :-  X  attr⎯ →⎯⎯   Y (projectivity)

(A2) { X  attr⎯ →⎯⎯   Y , X  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   YZ (additivity)
(F1) ∅  :-  X  func⎯ →⎯⎯   Y   if  Y  ⊆  X (reflexivity)

(F2) X  func⎯ →⎯⎯   Y  :-  XZ  func⎯ →⎯⎯   YZ (augmentation)

(F3) { X  func⎯ →⎯⎯   Y , Y  func⎯ →⎯⎯   Z }  :-  X  func⎯ →⎯⎯   Z (transitivity)

Theorem 4.2   is a sound, complete and non-redundant system of rules for the

implication of functional and attribute dependencies.

�

Referring to the motivation for this combined rule system, one can see that the

pragmatic "work-around" for PASCAL's variant record type is valid (see the
combined transitivity rule (AF2)). Secondly, we could save two rules still needed in  

to produce a complete axiom system. The removed rules are

(A3) ∅  :-  X  attr⎯ →⎯⎯   Y   if  Y  ⊆  X (reflexivity)

(A4) X  attr⎯ →⎯⎯   Y  :-  XZ  attr⎯ →⎯⎯   Y (left augmentation)

The derivation sequences are the following: Applying the subsumption rule (AF1) to

the reflexivity rule (F1) yields rule (A3). To derive (A4) we use  XZ  func⎯ →⎯⎯   X

(reflexivity rule (F1)) and  X  attr⎯ →⎯⎯   Y (given), and apply the combined transitivity

rule (AF2) to both, yielding rule (A4).
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4.3 Attribute dependencies versus record subtyping - the impact of

transformations

At the end of this section we want to discuss the differences and similarities of

attribute dependencies and traditional record subtyping. To do so, we sketch, with

the aid of the developed axiom system, how transformations affect attribute

dependencies. As the formal description of the algebra for the model of flexible

relations is beyond the scope of this paper, we will rely upon well-known algebraic

operator, providing the intuitive meaning in our model, too.

The most remarkable difference between record subtyping and attribute

dependencies shows the project operator. While record subtyping tells us that any

projection yields a valid supertype [ScSc90], two cases have to be discriminated for

attribute dependencies: Suppose that a flexible relation is to be projected onto the

attribute set  X. As there is no rule telling us that an attribute dependency may hold if

attributes at its left side are omitted, all  V  attr⎯ →⎯⎯   W  with  V /⊆  X  are invalidated. If
on the other hand  V ⊆ X  then the projection rule tells us that  V  attr⎯ →⎯⎯   W ∩ X

holds in the projection.

The two notions of subtyping perform similar when the result "enlarges" the input

relation(s). This holds e.g. for the extension operator and the cartesian product. The

behaviour of attribute dependencies under algebraic transformations can be

summarized as follows:

Theorem 4.3 Let ads(FR) be the set of attribute dependencies that hold in the

flexible relation FR. The following rules describe the propagation of attribute

dependencies:
(1) ads(FR1 x FR2) =  ads(FR1)  ∪  ads(FR2)

(2) ads( πX (FR) ) =  { V  attr⎯ →⎯⎯   W ∩ X  |  V  attr⎯ →⎯⎯   W  ∈  ads(FR)  ∧  V ⊆ X  }

(3) ads( σF (FR) ) =  ads(FR)

(4) ads(FR1 ∪ FR2) =  ∅
(5) ads(FR1 - FR2) =  ads(FR1)

�

The theorem shows that besides the projection the union operator causes a

problem, too. First of all note that without appropriate precautions no dependency at

all holds in the result of a union, as one cannot decide from which input relation the

tuples do come from. To make dependencies hold, one has to tag both input

relations before performing the union. The tagging can be realized with the extension
operator εA:a (FR), which extends each tuple of  FR  by attribute  A  with value 'a'.
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The left augmentation rule allows us to replace any  X  attr⎯ →⎯⎯   Y  occuring in one of

the input relations by  AX  attr⎯ →⎯⎯   Y  in its extended counterpart. The extended

attribute dependencies now remain valid in the result relation, i.e. we obtain
(6) ads( ( εA:a1 (FR1) )  ∪  ( εA:a2 (FR2) ) )  =

{ AX attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  ∧  X attr⎯ →⎯⎯  Y  ∈  ads(FR2)  }

(7) ads( ( εA1:a1 (εA2:unique() (FR1)) )  ∪  ( εA1:unique() (εA2:a2 (FR2)) ) )  =
{ A1X attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  }  ∪  { A2X attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR2)  }

5  Related work

The concept of subtyping is present in any object-oriented data model [AtBa89]. To

obey the desirable closure property, these data models should discuss how the

subtype relation is affected by algebraic tranformations. This has been done e.g. for

the COCOON model in [ScSc90] and for the ENCORE model in [ShZd90].

Differences to our notion of record subtyping have been discussed in section 3.2, the

comparison of the behaviour under transformations is contained in section 4.3.

From the viewpoint of data dependencies, several attempts have been made to

consider value-oriented dependencies in the presence of null values ([Vass80],

[Lien79]), but considering a merely existential consequence without any value-

oriented assertion seems to be a novelty in the context of an operational data model.

In [ElNa89] predicate defined specializations are used for the decomposition of an

entity subtree (an entity type with its subclasses) into several relations. As variant

structures are naturally incorporated in our model, there is no need to decompose a

flexible relation along an attribute dependency. However, in the context of the

traditional relational model decomposition along an attribute dependency is

reasonable. In this case our formal treatment of attribute dependencies enables us

to verify the correctness and losslessness of the decomposition strategies described

in  [ElNa89, chapter 15.2.1].

An approach which pursuits the idea of [ElNa89] to decompose an entity subtree into

a master relation and depending relations containing the variant information is the

"multirelation" model of Ahad and Basu [AhBa91]. They improve the decomposition

by keeping track of the connection between the master relation and the depending

relations so that the restoration of the complete information can be automated. The

recording of the connection between master and depending relation is done via so-

called "image attributes", attributes possessing relation names as their domain.

Image attributes can be regarded as a special case of an attribute dependency using

a single artificial attribute as determinant, this approach is therefore completely

covered by our results.
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6  Summary and outlook

In this paper we have motivated attribute dependencies as constraints naturally

arising when variant structures are considered. It turned out that they can be used to

incorporate record subtyping in a relational model, yielding an even stronger notion

of subtyping, as attribute dependencies consider causal connections between type

refinements. In addition we could show that the several forms of specialization

arising in (enhanced) entity relationship models can be one-to-one mapped onto

attribute dependencies, with the benefit that they can be operationally employed in

type and integrity checking.

Our approach to model these features as a dependency allowed us develop an

axiom system for their derivation. The axiom system has been shown to be sound,

non-redundant and complete, which enables us to precisely predict the effect of

arbitrary transformations (like query language operations) on attribute dependencies.

Furthermore the connection between attribute and functional dependencies has

been discussed and an extended axiom system capturing both forms of

dependencies has been evaluated.

Although attribute dependencies were regarded in the context of the model of flexible

relations they are rather loosely tied to particularities of this model (see section 2).

Thus there seem to be no major problems to integrate attribute dependencies into

other data models supporting variant structures or appropriate null values.

In this paper the connection between attribute dependencies and subtyping has

been shown. However, the second axiom system presented here, capturing both

functional and attribute dependencies, has been motivated differently (see section

4.2). Additional work should be put on the question if this combined rule system can

be exploited to put further semantics into the subtype relationship.
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Appendix

Theorem 4.1  Let    be the following system of axioms:

(A1) X  attr⎯ →⎯⎯   YZ  :-  X  attr⎯ →⎯⎯   Y (projectivity)
(A2) { X  attr⎯ →⎯⎯   Y , X  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   YZ (additivity)
(A3) ∅  :-  X  attr⎯ →⎯⎯   Y   if  Y  ⊆  X (reflexivity)
(A4) X  attr⎯ →⎯⎯   Y  :-  XZ  attr⎯ →⎯⎯   Y (left augmentation)

  is a sound, complete and non-redundant system of axioms for the implication of
attribute dependencies.

Proof.

Soundness: Let FR be a flexible relation. Let  t1, t2  be two arbitrary tuples of
inst(FR)  satisfying the premise of the attribute dependency implication, i.e.
X ⊆ attr(t1), X ⊆ attr(t2), and  t1[X]  =  t2[X].

(A1)  FR  satisfies  X  attr⎯ →⎯⎯   YZ, so we know that  attr(t1) ∩ ( Y ∪ Z )  =  attr(t2) ∩
( Y ∪ Z ). Intersecting with  Y  at both sides results in  attr(t1) ∩ ( Y ∪ Z ) ∩ Y  =
attr(t2) ∩ ( Y ∪ Z ) ∩ Y. This equation can be reduced to  attr(t1) ∩ Y  =  attr(t2) ∩ Y,
which is the desired consequence.

(A2)  As  FR  satisfies  X  attr⎯ →⎯⎯   Y, we know that  attr(t1) ∩ Y = attr(t2) ∩ Y. Due to
X  attr⎯ →⎯⎯   Z, we know that  attr(t1) ∩ Z = attr(t2) ∩ Z. By building the union of the two
equations, we get  ( attr(t1) ∩ Y ) ∪ ( attr(t1) ∩ Z )  =  ( attr(t2) ∩ Y ) ∪ ( attr(t2) ∩ Z ).
Applying the distribution law yields  attr(t1) ∩ ( Y ∪ Z )  =  attr(t2) ∩ ( Y ∪ Z ), hence
X  attr⎯ →⎯⎯   YZ  holds.

(A3)  The premise of an attribute dependency assures that  attr(t1) ∩ X = attr(t2) ∩ X
and therefore, for each subset Y of X, attr(t1) ∩ Y = attr(t2) ∩ Y.

(A4)  Let t1, t2 be two arbitrary tuples of inst(FR) with XZ ⊆ attr(t1), XZ ⊆ attr(t2), and

t1[XZ]  =  t2[XZ]. It is obvious that we can infer   X ⊆ attr(t1), X ⊆ attr(t2), and  t1[X]  =
t2[X] from this. As  X  attr⎯ →⎯⎯   Y  holds in FR, and the premise is satisfied, we can
conclude that  attr(t1) ∩ Y = attr(t2) ∩ Y.
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Completeness: To start we define  X+
attr  to be the closure of X (with respect to

AD) as the set of attributes A such that  X  attr⎯ →⎯⎯   A can be deduced from the
dependency set  AD  by the axioms in  . Now  X  attr⎯ →⎯⎯   Y  holds if and only if

Y ⊆ X+
attr. To prove this, we simply note that the addition rule and the projection rule

hold for attribute dependencies as well as for functional dependencies, so we can
rely upon the analogous proof for functional dependencies (cf. [Ullm88,p.386]).

Now let  AD-  be the set of all attribute dependencies that cannot be derived from
AD  by the axioms in . To prove the completeness, for each  X  attr⎯ →⎯⎯   Y  in  AD-

we have to find a flexible relation FR  that satisfies all dependencies in  AD+, but not
X  attr⎯ →⎯⎯   Y. Again we refer to the analogous proof for functional dependencies and
construct a two-tuple (flexible) relation with the following specification

attr(t1) = 
∀A ∈   : t1(A) = 1
attr(t2) = X+

attr
∀A ∈ X  : t2(A) = 1
∀A ∈ X+

attr - X  : t2(A) = 0

This relation can be visualized as follows (with  ////  symbolizing non-existent
attributes)

 1 1 ... 1 

 1 1 ... 1 

 1  1 ...   1 

 0 0 ... 0 

 1 1 ... 1 

 / / / / / / /  

attributes of  X attributes of  X  - X attributes of   - X 
 

attr
+

attr
+

� �� �� � �� �� � �� ��

We have to show that  X  attr⎯ →⎯⎯   Y  is not satisfied by this flexible relation. Y cannot
be a subset of  X+

attr, otherwise it would have been inferred by the closure property.
So there is at least one attribute  A ∈ Y  lying in   - X+

attr. By construction  t1
possesses A, but t2 does not. So  attr(t1) ∩ Y ≠ attr(t2) ∩ Y, although  t1[X] = t2[X]
holds, i.e.  X  attr⎯ →⎯⎯   Y  is not satisfied.
In addition we have to show that  FR  is a legal relation, i.e. that all dependencies in
AD+  are satisfied. Let  W  attr⎯ →⎯⎯   Z  ∈ AD+. If  W /⊆   X, then  t1  and  t2  disagree on

W, and the dependency is trivially satisfied by  FR. Let on the other hand  W ⊆ X.
Then we can apply the left augmentation rule yielding  X  attr⎯ →⎯⎯   Z. The closure
property now tells us that  Z ⊆ X+

attr, and therefore  attr(t1) ∩ Z =  attr(t2) ∩ Z. Hence
W  attr⎯ →⎯⎯   Z  is satisfied by  FR. That is, the axioms are complete.
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There is still a little problem with this rather close analogy to the completeness proof
for functional dependencies. In the conventional relational model there is exactly one
scheme corresponding to a given attribute set . In contrast, in the model of flexible
relations any set of subsets of    is a valid (flexible) scheme. Therefore if we regard
a concrete flexible scheme FS the relation constructed above might not be a valid
instance of  FS.
If we take a concrete flexible scheme FS into account we have to add two further
rules to our axiom system. The first rule utilizes the fact that from an unsatisfiable
premise we can derive anything. The unsatisfiable premise in our case is a set  X  of
attributes such that no valid attribute set in  dnf(FS)  contains  X  as a subset.

(A5) ∅  :-  X  attr⎯ →⎯⎯   Y   if  X,Y  ⊆  , ∀V ∈ dnf(FS) : X /⊆  V

The second rule will tell us that we cannot disprove a dependency in case of an
existential relationship between the attribute sets. Suppose for example that the
attributes A1 and A2 exclude each other. To disprove  A1  attr⎯ →⎯⎯   A2  we would have
to construct two tuples, both possessing  A1 (with the same value) and one of them
containing  A2 , while the other tuple must not possess A2 , contradicting the
exclusion assumption. The same arguments apply if A1 and A2 appear only pairwise.
This perception results in the rule that the existential implication  "the occurence of
the attribute set  X  determines a single subset of  Y"  is a valid attribute dependency.

Let  W ∈ dnf(FS) such that  X ⊆ W. Define  Z  as  Z = W ∩ Y.  Then

(A6) ∅  :-  X  attr⎯ →⎯⎯   Y   if  X,Y  ⊆  , ∀V ∈ dnf(FS) : X ⊆ V → V ∩ Y = Z

The soundness of the two additional rules is informally discussed above and can
easily be verified. Note that every attribute dependency stemming from rule (A5) or
(A6) can be inferred from a given flexible scheme FS.

Given these two rules we can show the completeness relative to a given flexible
scheme  FS  as follows. Let  X  attr⎯ →⎯⎯   Y  ∈ AD-. Now we can assume that there are

at least two valid attribute sets V1 and V2  in  dnf(FS)  such that  X ⊆ V1,  X ⊆ V2,
and  Y ∩ V1 ≠ Y ∩ V2. Otherwise either rule (A5) or (A6) would apply and then
X  attr⎯ →⎯⎯   Y  ∈ AD+. Now we can construct a flexible relation  FR  with two tuples  t1
and  t2  as follows.

attr(t1) = V1
∀A ∈ V1  : t1(A) = 1
attr(t2) = V2
∀A ∈ X  : t2(A) = 1
∀A ∈ V2 - X  : t2(A) = 0

Now  FR  is a valid instance of the given scheme  FS  and, by applying the same
arguments as for the simple construction,  X  attr⎯ →⎯⎯   Y  is not satisfied by  FR, but
any  W  attr⎯ →⎯⎯   Z  ∈ AD+. That is, the extended axiom system is complete for any
given flexible scheme  FS.
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Non-redundancy:  To show the non-redundancy we drop successively one of the
four axioms, choose a set  AD  of attribute dependencies and compute  AD+

remaining ,
the set of all dependencies which can be derived from the remaining three axioms.
Then we show that  AD+

remaining  does not contain a dependency which can be
drawn from the axiom being regarded.

(A1) Let  A, B, C ∈ . Choose  AD =  { A  attr⎯ →⎯⎯   BC }. AD+
A2,A3,A4  can be

computed by starting with the initial dependency set  AD  and by adding
dependencies, which are derived by applying any of the rules (A2), (A3) or (A4) to
members of the set, until no more dependencies can be derived. We obtain
AD+

A2,A3,A4  =  { X  attr⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪
   { AX  attr⎯ →⎯⎯   BCY |  X  ⊆  , Y  ⊆  AX }

In particular,  A  attr⎯ →⎯⎯   B  is not contained in  AD+
A2,A3,A4 , but can be derived with

rule (A1). Therefore, rule (A1) is not superfluous in  .

(A2) Let  A, B, C ∈ . Choose  AD =  { A  attr⎯ →⎯⎯   B,  A  attr⎯ →⎯⎯   C }.

AD+
A1,A3,A4  =     { X  attr⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }   ∪   { AX  attr⎯ →⎯⎯   B |  X  ⊆    }   ∪

      { AX  attr⎯ →⎯⎯   C |  X  ⊆    }
One can see that  A  attr⎯ →⎯⎯   BC  cannot be derived from  AD+

A1,A3,A4 , but from
rule (A2). We can conclude that rule (A2) is not implied by the others.

(A3) Without any given dependency (AD = ∅), nothing can be derived from the
rules (A1), (A2) or (A4), i.e.  AD+

A1,A2,A4  =  ∅. From (A3) we can infer  { X  attr⎯ →⎯⎯   Y |

X  ⊆  , Y  ⊆  X }  independent of the given AD, take  ∅  attr⎯ →⎯⎯   ∅  as an example.
As this attribute dependency is not contained in  AD+

A1,A2,A4 , rule (A3) is non-
redundant in  .

(A4) Let  A, B, C ∈ . Choose  AD = { A  attr⎯ →⎯⎯   B }.

AD+
A1,A2,A3  =  { X  attr⎯ →⎯⎯   Y |    X  ⊆  , Y  ⊆  X }  ∪  { A  attr⎯ →⎯⎯   B,  A  attr⎯ →⎯⎯   AB }

In particular,  AC  attr⎯ →⎯⎯   B  is not contained in  AD+
A1,A2,A3 , but can be deduced

from rule (A4). Therefore, rule (A4) is not superfluous in  .
�
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Theorem 4.2  Let  be the following system of axioms:

(AF1) X  func⎯ →⎯⎯   Y  :-  X  attr⎯ →⎯⎯   Y (subsumption)
(AF2) { X  func⎯ →⎯⎯   Y , Y  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   Z (combined transitivity)
(A1) X  attr⎯ →⎯⎯   YZ  :-  X  attr⎯ →⎯⎯   Y (projectivity)
(A2) { X  attr⎯ →⎯⎯   Y , X  attr⎯ →⎯⎯   Z }  :-  X  attr⎯ →⎯⎯   YZ (additivity)
(F1) ∅  :-  X  func⎯ →⎯⎯   Y   if  Y  ⊆  X (reflexivity)
(F2) X  func⎯ →⎯⎯   Y  :-  XZ  func⎯ →⎯⎯   YZ (augmentation)
(F3) { X  func⎯ →⎯⎯   Y , Y  func⎯ →⎯⎯   Z }  :-  X  func⎯ →⎯⎯   Z (transitivity)

 is a sound, complete and non-redundant system of axioms for the implication of
functional and attribute dependencies.

Proof.

Soundness: Let  FR  be a flexible relation. Let  t1, t2  be two arbitrary tuples of
inst(FR)  with  X ⊆ attr(t1), X ⊆ attr(t2), and  t1[X]  =  t2[X].

The soundness of (A1), (A2), (F1), (F2) and (F3) has already been shown.

(AF1)   FR  satisfies  X  func⎯ →⎯⎯   Y and the premise is given for  t1 and t2. The
consequence of the functional dependency implies attr(t1) ∩ Y = attr(t2) ∩ Y, which is
the desired result.

(AF2)  As  FR  satisfies  X  func⎯ →⎯⎯   Y, we know that  Y ⊆ attr(t1), Y ⊆ attr(t2),
and  t1[Y]  =  t2[Y]. From this and  Y  attr⎯ →⎯⎯   Z  we can conclude that  attr(t1) ∩ Z =
attr(t2) ∩ Z.

Completeness: In the proof of the completeness of the axiom system  (see proof of
theorem 4.1) we introduced X+

attr , the closure of attribute dependencies for the
attribute set  X.  X+

func , the closure of functional dependencies for  X  is known from
literature [Ullm88,p.386]. The relationship between both closures is that  X+

attr ⊇
X+

func  as any functional dependency implies an attribute dependency (see the
subsumption rule (AF1)) but the converse does not necessarily hold.
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To show the completeness we construct again for any  X      ⎯ →⎯   Y  ∈  AF-  a two-
tuple (flexible) relation  FR  with the following specification (the construction does not
depend on if we regard   X  attr⎯ →⎯⎯   Y  ∈  AF-   or   X  func⎯ →⎯⎯   Y  ∈  AF-)

attr(t1) = 
∀A ∈   : t1(A) = 1
attr(t2) = X+

attr
∀A ∈ X+

func  : t2(A) = 1
∀A ∈ X+

attr - X+
func  : t2(A) = 0

This relation can be visualized as follows (with  ////  symbolizing non-existent
attributes)

 1 1 ...  1 

 1 1 ...  1 

 1  1 ...   1 

 0 0 ...  0 

 1 1 ...  1 

 / / / / / / /  

attributes of  X attributes of  X  - X attributes of   - Xfunc
+

attr
+

func
+

attr
+

� �� �� � �� �� � �� ��

Suppose we have to show that  X  attr⎯ →⎯⎯   Y  is not satisfied by this flexible relation.
By reflexivity,  X  ⊆ X+

func  , so  by construction  t1[X] = t2[X].  Y  cannot be a subset
of  X+

attr , otherwise it would have been inferred by the closure property. Therefore
we can find an attribute  A ∈ Y  lying in   - X+

attr. By construction  t1 possesses A,
but t2 does not. So  attr(t1) ∩ Y ≠ attr(t2) ∩ Y, i.e.  X  attr⎯ →⎯⎯   Y  is not satisfied.
Suppose at the other hand that we have to show that  X  func⎯ →⎯⎯   Y  is not satisfied by
this relation. By the closure property  Y  cannot be a subset of  X+

func , so by
construction either  Y /⊆  attr(t2)  or at least  t1[Y] ≠ t2[Y]. In any case  X  func⎯ →⎯⎯   Y  is
not satisfied11.
In addition we have to show that  FR  is a legal relation, i.e. that all dependencies in
AF+  are satisfied. Let  W  func⎯ →⎯⎯   Z  ∈ AF+. If  W /⊆   X+

func , then  t1  and  t2
disagree on W, and the dependency is trivially satisfied by  FR. Let on the other
hand  W ⊆ X+

func. Then by the closure property  X  func⎯ →⎯⎯   W  and by transitivity     X
func⎯ →⎯⎯   Z. Using the closure property again we get  Z ⊆ X+

func  and now, by
construction,  t1[Z] = t2[Z]. Hence  W  func⎯ →⎯⎯   Z  is satisfied by  FR.
Take now  W  attr⎯ →⎯⎯   Z  ∈ AF+. Again, if  W /⊆   X+

func , then the dependency is

trivially satisfied by  FR. Assume on the other hand  W ⊆ X+
func. From the functional

closure property we can infer that  X  func⎯ →⎯⎯   W. Now the combined transitivity
applies12 and yields that  X  attr⎯ →⎯⎯   Z  holds. The attribute closure property asserts
that  Z ⊆ X+

attr  and, by construction,  attr(t1) ∩ Z = attr(t2) ∩ Z. Hence  W  attr⎯ →⎯⎯   Z
is satisfied by  FR.

The extension to take a concrete flexible scheme into account is a direct analogy to
the proof of Theorem 4.1 and is therefore omitted.

                                                       

11 Note that  when  Y ⊆ X+
attr  and  Y /⊆  X+

func  then  X  
attr⎯ →⎯⎯   Y  still holds although

X  
func⎯ →⎯⎯   Y  does not.

12 Note that every rule of the axiom system has been employed now in this proof, validating again the
ingenuity of the rule system.
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Non-redundancy:  To show the non-redundancy we drop successively one of the
seven axioms, choose a set  AF  of attribute and functional dependencies and
compute  AF+

remaining , the set of all dependencies which can be derived from the
remaining six axioms. Then we show that  AF+

remaining does not contain a
dependency which can be drawn from the axiom being regarded.

The non-redundancy of (F1), (F2) and (F3) is obvious as, taken alone they are non-
redundant (cf. [PDGV89,p.67f]), and none of the other rules have functional
dependencies as their consequence.

(A1) Let  A, B, C ∈ . Choose  AF =  { A  attr⎯ →⎯⎯   BC }. AF+
A2,F1,F2,F3,AF1,AF2  can be

computed by starting with the initial dependency set  AF  and by adding
dependencies, which are derived by applying any of the rules (A2), (F1), (F2), (F3),
(AF1) or (AF2) to members of the set, until no more dependencies can be derived.
We obtain
AF+

A2,F1,F2,F3,AF1,AF2  =  { X  func⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪
{ X  attr⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪  { AX  attr⎯ →⎯⎯   BCY |  X  ⊆  , Y  ⊆  AX }

In particular,  A  attr⎯ →⎯⎯   B  is not contained in  AF+
A2,F1,F2,F3,AF1,AF2, but can be

derived with rule (A1). Therefore, rule (A1) is not superfluous in  .

(A2) Let  A, B, C ∈ . Choose  AF =  { A  attr⎯ →⎯⎯   B, A  attr⎯ →⎯⎯   C }.

AF+
A1,F1,F2,F3,AF1,AF2  =  { X  func⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪  { X  attr⎯ →⎯⎯   Y |  X  ⊆  ,

Y  ⊆  X }  ∪  { AX  attr⎯ →⎯⎯   B |  X  ⊆    }  ∪  { AX  attr⎯ →⎯⎯   C |  X  ⊆    }
One can see that  A  attr⎯ →⎯⎯   BC  cannot be derived from  AF+

A1,F1,F2,F3,AF1,AF2 , but
from rule (A2). We can conclude that rule (A2) is not implied by the others.

(AF1) Let  A, B ∈ . Choose  AF =  { A  func⎯ →⎯⎯   B }.

AF+
A1,A2,F1,F2,F3,AF2  =  { X  func⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪  { AX  func⎯ →⎯⎯   BY |  X  ⊆

, Y  ⊆  X }  ∪  { AX  func⎯ →⎯⎯   ABY |  X  ⊆  , Y  ⊆  X }
From  (AF1)  we can infer  A  attr⎯ →⎯⎯   B. As this attribute dependency is not contained
in  AF+

A1,A2,F1,F2,F3,AF2 , rule (AF1) is non-redundant in  .

(AF2) Let  A, B, C ∈ . Choose  AF =  { A  func⎯ →⎯⎯   B, B  attr⎯ →⎯⎯   C }.

AF+
A1,A2,F1,F2,F3,AF1  =  { X  func⎯ →⎯⎯   Y |  X  ⊆  , Y  ⊆  X }  ∪  { X  attr⎯ →⎯⎯   Y |  X  ⊆  ,

Y  ⊆  X }  ∪  { AX  func⎯ →⎯⎯   BY |  X  ⊆  , Y  ⊆  AX }  ∪
{ AX  attr⎯ →⎯⎯   BY |  X  ⊆  ,  Y  ⊆  AX }  ∪  { B  attr⎯ →⎯⎯   X |  X  ⊆  BC }

In particular,  A  attr⎯ →⎯⎯   C  is not contained in  AF+
A1,A2,F1,F2,F3,AF1 , but can be

deduced from rule (AF2). Therefore, rule (AF2) is not superfluous in  .
�
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Theorem 4.3 Let ads(FR) be the set of attribute dependencies that hold in the

flexible relation FR. The following rules describe the propagation of attribute

dependencies:
(1) ads(FR1 x FR2) =  ads(FR1)  ∪  ads(FR2)

(2) ads( πX (FR) ) =  { V  attr⎯ →⎯⎯   W ∩ X  |  V  attr⎯ →⎯⎯   W  ∈  ads(FR)  ∧  V ⊆ X  }

(3) ads( σF (FR) ) =  ads(FR)

(4) ads(FR1 ∪ FR2) =  ∅
(5) ads(FR1 - FR2) =  ads(FR1)
(6) ads( ( εA:a1 (FR1) )  ∪  ( εA:a2 (FR2) ) )  =

{ AX attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  ∧  X attr⎯ →⎯⎯  Y  ∈  ads(FR2)  }

(7) ads( ( εA1:a1 (εA2:unique() (FR1)) )  ∪  ( εA1:unique() (εA2:a2 (FR2)) ) )  =

{ A1X attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  }  ∪  { A2X attr⎯ →⎯⎯  Y |  X  attr⎯ →⎯⎯   Y  ∈  ads(FR2)  }

Proof.

(1) As usual we demand for the cartesian product that  attr(FR1)  ∩  attr(FR2)  =  ∅
and that  πattr(FR1)

 (FR1 x FR2)  =  FR1.  W.l.o.g. let  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1).
Let  t1,t2  ∈  inst(FR1 x FR2)  fulfill the premise of  X  attr⎯ →⎯⎯   Y, i.e.

X ⊆ attr(t1)  ∧  X ⊆ attr(t2)  ∧  t1[X]  =  t2[X]. Let  t1'  =  t1[attr(FR1)]  and
t2'  =  t2[attr(FR1)].
As  X ⊆ attr(FR1)  we derive that  X ⊆ attr(t1')  ∧  X ⊆ attr(t2')  ∧  t1'[X]  =  t2'[X].
Due to  πattr(FR1)

 (FR1 x FR2)  =  FR1 we know that  t1',t2'  ∈  inst(FR1)  and
therefore the consequence of  X  attr⎯ →⎯⎯   Y  holds, i.e.  attr(t1') ∩ Y = attr(t2') ∩ Y.

As  Y ⊆ attr(FR1)  we conclude that  attr(t1) ∩ Y = attr(t2) ∩ Y, i.e.  X  attr⎯ →⎯⎯   Y
holds in  FR1 x FR2.

(2) Let  V  attr⎯ →⎯⎯   W  ∈  ads(FR)  and  V  /⊆   X. Now we can always construct two
tuples t1,t2  such that  t1[V]  ≠  t2[V]  but  t1[X]  =  t2[X], i.e. their projections onto
X  coincide. But as the tuples disagreed on  V  we must not conclude a
dependency although  t1[X]  =  t2[X]  and therefore  V  attr⎯ →⎯⎯   W  cannot be
preserved in the projection.
Suppose on the other hand that  V  ⊆  X. Now  t1[V]  ≠  t2[V]  implies  t1[X]  ≠
t2[X], i.e. no "false drops" may be generated. Considering that only the attributes
inside  X  are preserved we conclude that  V  attr⎯ →⎯⎯   W ∩ X  holds in  πX (FR).

(3) As inst( σF (FR) )  ⊆  inst(FR), the result is obvious13.

                                                       
13 Note that if one treats the selection as potentially type modifying like our algebra does (consider    

σjob-type = 'salesman' (employee) ), then some of the attribute dependencies may become trivial.
Nevertheless, they cannot become wrong.
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(4) No attribute dependency may hold in a union as one cannot decide from which
input relation the tuples do come from. An attribute dependency that holds in one
of the input relations may always be violated by tuples of the other relation. Now
suppose that  X  attr⎯ →⎯⎯   Y  holds in both input relations. Let  t11,t12  ∈  inst(FR1)
and  t21,t22  ∈  inst(FR2)  and  t11[X]  =  t12[X]  =  t21[X]  =  t22[X]. Let further
attr(t11) ∩ Y = attr(t12) ∩ Y  ≠  attr(t21) ∩ Y = attr(t22) ∩ Y. The construction is
valid, i.e.  X  attr⎯ →⎯⎯   Y  is satisfied in both input relations, but it does not hold in
the union.  We conclude that no attribute dependency holds in a union.

(5) As inst(FR1 - FR2)  ⊆  inst(FR1), the result is obvious. Attribute dependencies
that hold in FR2 must not be omitted due to the non-monotonicity of the minus
operator.

(6) Let  t1,t2 ∈  inst( (εA:a1 (FR1)) ∪ (εA:a2 (FR2)) )  fulfill the premise of  AX  attr⎯ →⎯⎯   Y,

i.e.  AX ⊆ attr(t1)  ∧  AX ⊆ attr(t2)  ∧  t1[AX]  =  t2[AX]. Let  t1'  =  t1[attr(FR1)]  and
t2'  =  t2[attr(FR1)].
W.l.o.g. suppose that  t1(A)  =  t2(A)  =  a1  and  a1  ≠  a2, from which we may
derive that  t1',t2'  ∈  inst(FR1). As  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  and  t1',t2'  fulfill its
premise, we know that  attr(t1') ∩ Y = attr(t2') ∩ Y. As  A  ∉  Y  we conclude that
attr(t1) ∩ Y = attr(t2) ∩ Y, i.e.  AX  attr⎯ →⎯⎯   Y  holds in  (εA:a1 (FR1)) ∪ (εA:a2 (FR2)).

(7) Let  t1,t2 ∈ inst( (εA1:a1 (εA2:unique() (FR1))) ∪ (εA1:unique() (εA2:a2 (FR2))) )  fulfill the

premise of  A1X  attr⎯ →⎯⎯   Y, i.e.  A1X ⊆ attr(t1) ∧ A1X ⊆ attr(t2) ∧ t1[A1X]  =  t2[A1X].
Let  t1'  =  t1[attr(FR1)]  and  t2'  =  t2[attr(FR1)]. As each tuple of  FR2  was
extended with a unique value in attribute  A1  we know that  t1',t2'  ∈  inst(FR1).
As  X  attr⎯ →⎯⎯   Y  ∈  ads(FR1)  and  t1',t2'  fulfill its premise, we know that  attr(t1') 
∩ Y = attr(t2') ∩ Y. As  A1,A2  ∉  Y  we conclude that  attr(t1) ∩ Y = attr(t2) ∩ Y,
i.e.  A1X  attr⎯ →⎯⎯   Y  holds in  (εA1:a1 (εA2:unique() (FR1))) ∪ (εA1:unique() (εA2:a2
(FR2))). The same arguments apply to the attribute dependencies of FR2.

�
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