
A Classi�cation of Multi�Database Languages

Markus Tresch �

IBM Almaden Research Center
��� Harry Road �K������	
San Jose
 CA �����
 USA
tresch�almadenibmcom

Marc H� Scholl

University of Ulm
Faculty of Computer Science
D � ����� Ulm
 Germany

scholl�informatikuni�ulmde

Techn� Report ������ Univ� of Ulm� Fac� of Computer Science� July 	���� A short version appeared in

Proc� �rd Int�l Conf� on Parallel and Distributed Information Systems �PDIS�� Austin� Texas� Sept� �		
�

Abstract

This paper de�nes a formal classi�cation of multi�database languages into �ve levels
of database integration with increasing degree of global control and decreasing degree
of local autonomy� First� the fundamental interoperability concepts and mechanisms
are identi�ed for each of these levels� Their consequences on local autonomy as well as
implementation draw�backs are discussed� Second� various multi�database languages
are classi�ed into these categories� In addition to our own language COOL� other
proposals are analyzed� including SQLNet� Multibase� Superviews� VODAK� Pegasus�
and OSQL�

Keywords� federated database systems� multi�databases languages� object algebra�
views� object uni�cation� object identity� autonomy�

� Introduction

Novel data�intensive information systems are characterized by cooperating �autonomous
and heterogeneous� database systems and therefore increasingly require openness of data�
base management systems �DBMSs� for a cooperation with other services� be they data
managers or other service providers� Hence� the area of interoperable multi�database sys�
tems �MDBSs� has attracted a lot of recent attention� both in research and practice� Prac�
tical solutions of today typically consist of several DBMSs that are loosely integrated via
data extraction � data conversion � data upload cycles� This requires extensive and error�
prone application programming� yet guarantees only a minimum of data consistency� The
challenge for future cooperative systems is to provide �exible and scalable mechanisms to
support system�controlled interaction among di	erent data management systems�
A wide variety of problems need to be solved in order to make MDBS work� including

such diverse issues as MDBS transaction management� data model transformation� schema
integration� MDBS query languages and optimization� and data and application migration�
This paper concentrates on MDBS language aspects for integration of data �schema and

�Work done while at Faculty of Computer Science� University of Ulm� Germany�

instance level� from di	erent component databases� We emphasize on homogeneous multi�
databases� that is� we separate the issue of data model transformation from the rest� and
assume that all schemas have already been transformed into a uniform data model�
Multi�databases systems are built up of several component database systems �CDBS�

managing local component databases DB�� DB�� � � �� and a federation dictionary FD man�
aged by the MDBS itself �cf� Figure
�� The purpose of an MDBS is to support global
operations �queries and updates� on objects stored in di	erent CDBSs consistently� At the
same time� CDBSs should continue autonomous processing of local operations�

component
database 2

component
database 1

DB1 DB2

federation
dictionary

FD

 CDBS2 CDBS1

export schema 1

local schema component schema 1 component schema 2

export schema 2

local queries and updates local queries and updates

external schema

 MDBS

global queries and updates

global (federated) schema

Figure
� Schemas and Operations in Multi�Database Systems

Following the reference architecture of �SL��� the structure of each DBi is given by a
component schema and the structure of the multi�database is given by the global �federated�
schema� which is an integration of �parts of� component schemas� The FD contains �meta�
information about the distribution and integration of schemas�

The contribution of this paper is a classi�cation of MDBS languages into �ve di	er�
ent integration levels ranging from very loosely coupled multi�database systems �Level ���
through three levels of federated DBMSs �Levels I�III�� to fully integrated� distributed
DBMSs �Level IV�� We are most interested in the three intermediate levels I�III� These
are separated by the way how local objects in CDBSs that represent �the same� real world
entity can be identi�ed and tied together in the MDBS� These levels of database integration
are also a measure for the degree of autonomy that component systems have to give up as
the price for closer cooperation� We clearly point out what the bene�ts and consequences
of a particular MDBS integration level w�r�t� local autonomy and global control is�

�

The classi�cation is presented using our own database language� COOL�� where all
constructs are given sound and formal semantics� However� the classi�cation is data
model�language independent and we categorize other� related MDBS proposals accord�
ingly by mapping some of the constructs proposed to their COOL� counterparts�
This paper is organized as follows� In the next section� we review the basic interop�

erability mechanisms� In Section � we de�ne the classi�cation into �ve levels of MDBS
integration� Section � uses this as a platform to compare and classify various current
MDBS language proposals� We conclude with a summary and outlook on future work in
Section ��

� Basic Database Interoperability Mechanism

Stepwise database integration is the idea that previously isolated DBMSs �populated with
local objects and running local applications� are starting to cooperate with other systems
very loosely �e�g� by global transactions�� Later� global schemas �e�g� views� are de�ned�
such that systems are getting more tightly coupled� until they might eventually be com�
pletely integrated� In this section� we de�ne �same�functions� �SST��� a basic abstraction
mechanism� to which object and schema level integration can be reduced�

Object Identi�cation� In an MDBS� entity objects �objects of the real world� are to
be distinguished from proxy objects �their approximation in one database� �Ken
�� One
particular entity object can be represented by multiple proxy objects in di	erent component
databases� and therefore� the fundamental assumption of object�oriented systems �every
real world object corresponds to exactly one database object� is no longer true�

More formally� due to local design autonomy� the OID domains of di	erent CDBSs are
pairwise disjoint� such that no two proxy objects from di	erent CDBSs can be the same
�identical�� This leads to the following �rst de�nition of global object identity�

De�nition �� �Global object identity � preliminary� The global object identity ��gl� of
multi�database objects o�� o� is de�ned as

�gl � object � object� bool

o� �gl o� �� �i � objecti�o��� objecti�o�� � o� �i o� �

The notion objecti�o� is to be read as a type predicate� it is true� i	 o is an instance of
type objecti� i�e�� is an object of component database DBi�

One main task of database integration is to identify and unify proxy objects of di	erent
CDBSs� if they represent the same entity object�

Object Integration� Let oi and oj be two proxy objects from di	erent CDBSs� repre�
senting the same �real world� entity object� Object integration requires a mechanism to
logically unify oi and oj � such that the MDBS treats them as one single object in global
queries and updates� As we already know� OIDs are not adequate to globally identify
objects� since they are internal object representations within one CDBS� Entity objects
can only be globally identi�ed by characterizing values ��value identi�ability� �Bee��� a
generalization of identi�cation keys from relational systems��

�

One approach would be to generate new� global proxies in an MDBS and somehow link
them to the local proxies via translation tables maintained in the federation dictionary� We
formalize this by special functions with special semantics ��the same��� de�ning a global
MDBS integrity constraint� which is known to the global query and update operations�
Such partial� injective� single�valued functions are called samei�j �

de�ne function samei�j � objecti � objectj

same�functions are inter�database functions with domain objecti in database DBi and
range objectj in database DBj � and returning for a given DBi�proxy object the �same�
DBj �proxy object �if any�� Having same�functions� the de�nition of global object identity
must be reconsidered�

De�nition �� �Global object identity � revised� The global object identity ��gl� of
multi�database objects o�� o� is de�ned as

�gl � object� object� bool

o� �gl o� �� ��i � objecti�o�� � objecti�o��� o� �i o��
� ��samei�j � objecti � objectj �

objecti�o�� � objectj�o�� � o� �j samei�j�o��� �

From now on� two objects are the same� if they stem from the same CDBS and are
identical in it� or if they have been de�ned �by the user�DBA� to be the same using same�
functions�

Schema Integration� The goal of schema integration is to �nd out what the common
�structural� parts in the local schemas are and to de�ne correspondences among them� In
contrast to �BLN��� SPD��� our matter of concern is not to �nd another schema integra�
tion methodology for resolving structural and semantic con�icts� Rather we are interested
in identifying �and later classifying� the necessary basic abstraction mechanisms for ele�
mentary database integration�
All CDBSs contain a meta database� that is� a database with objects representing the

application schema� Every schema element is represented by a schema object in the CDBS
meta database� Of course� the concrete structure of a CDBS meta database depends on
the particular data model� In COOL� for example� objects of the meta database repre�
sent persistent variables� types� classes� and functions� However� the conceptual idea of
representing the schema itself by objects remains unchanged for any data model�
Once CDBS meta databases are available� the same technology as discussed in the

previous paragraph can be used to de�ne correspondences between schemas of di	erent
CDBSs� As for �ordinary� object integration� we use same�functions for schema integration�
but now applied on schema objects of the meta database� representing variables� types�
classes or functions�

Integrating for example attributes �functions� birthdate from DBi and dateofbirth from
DBj � we de�ne a same�function between those objects of the CDBS meta database� rep�

�

resenting these two functions� After that� the multi�database language treats these two
integrated attributes as if they where one single global attribute��

same�functions are to be understood as the basic� data model independent abstraction
mechanism for object and schema integration� used within this paper� Schema integration
methodologies�strategies� as proposed e�g� in �BLN��� SPD��� can be implemented� using
same�functions as base technology �cf� Section ��� Instead of same�functions� one may
alternatively think of global query expressions or relations �tables� mapping between objects
from di	erent CDBSs� Concrete implementation alternatives for such same�functions for
di	erent data models are discussed in the next section�

� Five Levels of Multi�Database Integration

We now formalize the idea of stepwise database integration� We de�ne a classi�cation of
MDBS languages into �ve levels of database integration with increasing degrees of global
control and decreasing degrees of local autonomy �cf� Figure ��� This classi�cation re�nes
�SL�� that distinguishs between losely and tightly coupled database systems only�

Level � Level I Level II Level III Level IV

� � � �

Multi� FDBS Virtual Real Distributed
Databases Composition FDBS FDBS Databases

Integration Integration

Figure �� Stepwise Integration of Multi�Database Systems

At the leftmost end� level � integration represents non�integrated MDBSs�� This is the
weakest form of database coupling� where component systems are completely independent
of each other �fully autonomous�� Neither objects� nor schemas are integrated� Level �
is a kind of ad hoc data �integration�� Global transaction management allows to process
objects from di	erent CDBSs within one global transaction� however� each individual query
or update statement works on only one CDBS�

At the rightmost end� level IV represents fully integrated �maybe physically distributed�
databases� Either� there exists only one single global DBMS� or participating component
systems completely lost their local autonomy� Though objects might be physically dis�
tributed� these systems have one single logical database schema� Distribution is logically
transparent� the system is fully integrated�

�Notice that� �� the signatures of schema elements to be uni�ed must be compatible� that is� they must
have same names and structures� �� unifying schema elements my cause value con�icts� that is� two attributes
e�g� may be uni�ed though they have di	erent local values� The discussion of these issues is out of the scope
of this paper� we refer to
SST��� ST���

�The term �multi�database system� is overloaded� �rst� it is the general notion for multiple cooperative
database systems� and second� it means in our classi�cation non�integrated databases�

�

In between these two extremes� levels I� II� and III describe federated database systems
�FDBS�� They are the most interesting architectures� because on the one hand� their objects
and schemas are subject to some global control� and on the other hand� participating CDBSs
have retained some local autonomy� In the sequel� we therefore focus on these levels� that is�
on federated object database systems� Besides a general� informal discussion of each level�
we use the COOL� multi�database language �SLT
� SLR��� to illustrate the possibilities
of a particular level� giving concrete examples� However� we emphasize that the conceptual
idea is not bound to that data model� but can be transferred to other approaches� as we
will see later in Section ��

��� Level I� Composition

Intgration level I is called schema composition� It is the elementary process to combine
multiple CDBSs DBi into one composite schema GDB� It is therefore the foundation
for establishing a federated database system� Schema composition places only minimal
requirements on the degree of integration between participating systems� It basically just
imports the names of all schema elements from CDBSs and makes them globally available�
without establishing any connection between composite systems�

Furthermore� composition combines the type and class systems of the local databases�
As an anchor� basic data types of component systems are assumed to be identical�� This
ensures that at least values of elementary data types can be compared between component
systems� Based on that� local object type and class hierarchies of the CDBSs are put
together � in a so far trivial way � by de�ning a new global top type� being the common
supertype of all local root types� and a new global top class� being the common superclass
of all local root classes��

In COOL� for example� names of persistent variables� functions� types� classes� and
views are made globally available� A global hierarchy of object types is created with a
new top type object�GDB� of wich all top types of the CDBSs �object�DBi� are made
direct subtypes� COOL� has a type lattice� therefore� a new bottom type bottom�GDB

is made common subtype of all local bottom types� Similar� a global class hierarchy is
established� with the top element Objects�GDB as common superclass to all local top
classes Objects�DBi �SST��� For all other data models� the e	ect will be similar�

Example �� Consider a university environment� where data about students are stored in
multiple databases� a library database LibDB� a student database StudDB� and an em�
ployee database EmplDB� The following COOL� statements compose these three CDBSs
into one global schema UnivDB�

de�ne database UnivDB
import LibDB� StudDB� EmplDB

end�

A graphical representation of the composition is given in Figure �� �

�That is� the internal representations of integer� string� boolean are identical� or alternatively� an equiv�
alence preserving transformation exists�

�In the sequel� we use the naming convention that schema components are su�xed by ��� and the name
of the local schema� For example� class Books in LibDB has as globally unique name �Books�LibDB��

�

nametitle
name
bdate

name
bdate

StudDB

Books Customers Students Employees
author address faculty dept

 Objects
@StudDB

 Objects
@EmplDB

LibDB Objects
@LibDB

lent

UnivDB Objects
@UnivDB

 EmplDB

Figure �� Composition of LibDB� StudDB� and EmplDB

Schema composition creates a global meta schema as well� This is the meta schema of
GDB and has exactly the same structure as the meta schema of each DBi� It contains
global meta types and meta classes� being direct supertypes�superclasses of their local
counterparts�

For the COOL� system used here� the meta schema of eachDBi contains meta types and
meta classes representing persistent variables� functions� types� classes� and views� Though
the concrete meta schema depends on the used data model� the idea of a composite meta
schema remains unchanged for any other approach�
Once two �or more� schemas are composite� queries can be formulated that involve

multiple CDBSs� Recall composition UnivDB from Example
� Since composition made
basic data types and name spaces globally available� comparing names of customers �from
LibDB� with names of students �from StudDB� is legal� Hence� the following valid select
query selects those customers being students as well�

select�� 	� select�name�c� � name�s���s � Students���c � Customers�

Unfortunately� the possibilities of inter�database queries are very limited up to now� E�g��
the following more elegant solution of the same query is not allowed�

select�c
 Students��c � Customers�

Since objects of class Students are of type �student� and the type of c is �customer�
and the two types �student� and �customer� are not �yet� related� the selection predicate
c
 Students would be rejected by the MDBS type checker�
The extend query operator de�nes new functions� derived by a query expression� This

possibility can be used to establish connections between CDBSs� Suppose� we want to
store� together with each employee �of EmplDB� the books �of LibDB�� that she�he lent�
The following query de�nes the desired new function� called lbooks�

extend�lbooks �� select�name�e� � name�lent�b����b � Books���e � Employees�

The new function lbooks is an inter�objectbase function� linking employees from EmplDB
with books at LibDB�

�

Schema composition �integration level I� is not yet �real database integration�� in partic�
ular� no same�functions exist� As a consequence� no two objects can be the same �identical��
unless they originate from the same DBi and are identical in DBi� Furthermore� type and
class systems are integrated only at the very top level�

��� Level II� Virtual Integration

Integration level II is called virtual integration and forms the next encreased degree of data�
base cooperation� It is based on the idea that views �derived�computed classes� external
schemas �SLT
� TS��� can be used to build a uniform� virtual interface over multiple
databases� This step follows naturally from the previous discussion on querying composite
schemas� At level II� we are able to de�ne views� spanning multiple CDBSs and there�
fore de�ning persistent links between component systems and�or combining classes from
di	erent systems�

In contrast to schema composition �Level I�� a federation dictionary �FD� is required
at level II to store global information� However� since cooperation is restricted to virtual
integration� the federation dictionary contains meta data� that is� instance�independent
information only� e�g�� de�nitions of multi�database views �i�e� queries�� Instance�dependent
information� like e�g� object identi�ers �OIDs� or object values� must not yet be stored in
the federation dictionary at this level� This forms the main restriction of integration level
II and prevents from more tight cooperation of CDBSs�
In COOL� for example� the above extend query can be used to de�ne a view�

de�ne view Employees�

as extend�lbooks �� select�name�e� � name�lent�b����b � Books���e � Employees�

Inter�database link lbooks from EmplDB to LibDB is now made persistent� and the de�nition
of the link �the query� is stored in the global FD�

At integration level II� proxy objects from di	erent CDBSs that represent the same real
world entity can be uni�ed� As a prerequisite� for any two component databases DBi and
DBj � it is required that instances of which shall be uni�ed� we are given a query expression
that determines� for a given DBi�object� what the corresponding DBj �object is �if any��
This resembles the requirement for value identi�ability �Bee��� the proxies in the other
CDBS can be characterized in an instance independent way by a query�
In COOL� for example� same�functions �cf� De�nition �� can be used directly in order

to unify proxy objects� At level II� derived same�functions fromDBi toDBj are possible by
using extend views� similar to the above lbooks example� The query expression de�ning
a derived same�function is obviously application dependent and can� in general� not be
derived automatically�

Example �� To state that objects of class Students�StudDB are identical with objects
of class Employees�EmplDB� if they have identical names� for example� a same�function is
de�ned by the following view�

de�ne view Students�

as extend�sameStudDB�EmplDB �� pick�select�name�e� � name�s���e � Employees���
�s � Students�

�

Notice that the pick operator does a set collapse� returning the object from a singleton�
It returns unde�ned if the set if empty� and raises a run�time exception if the set contains
more than one object� �

After unifying proxy objects in di	erent CDBSs� we now focus on schema integration�
that is� to record correspondances among common parts in the local schemas� Recall
that schema composition �Level I� constructs a global meta schema as well� De�ning
correspondences between schemas of di	erent CDBSs� uses the fact that every schema
element is represented by a schema object in the meta database �cf� Section ���

In COOL�� functions are for example uni�ed by de�ning a same�function from meta
type function�DBi to meta type function�DBj �

�

Example �� To unify functions name�StudDB and name�EmplDB� the following same�
function is de�ned on the composite meta schema of UnivDB�

de�ne view Functions��StudDB

as extend�sameStudDB�EmplDB ��
pick�select�fname�f � � �name� � fname�g� � �name��

�g � Functions�EmplDB���
�f � Functions�StudDB�

Notice� that fname�f� is a meta function� returning the name of a function� represented by
meta object f � �

Now� all prerequisites for virtual CDBS integration are de�ned� we showed �i� how to
unify �same� objects over multiple systems� �ii� how to integrate schemas by uni�cation of
meta objects� and �iii� how to create multi�database views�

Example �� Local schemas are composite by importing LibDB� StudDB� and EmplDB�
Then� class Students is extended with a same�function� and meta class Functions�StudDB is
extended to integrate name�StudDB and name�EmplDB properties� Finally� view Persons
de�nes a union over the extended classes Students��StudDB and Employees�EmplDB�
spanning multiple CDBSs �see Figure ���

define schema UnivDB as

import LibDB� StudDB� EmplDB�
de�ne view Students��StudDB as extend ���� 		 see Example

de�ne view Functions��StudDB as extend ���� 		 see Example �
de�ne view Persons as Students��StudDB union Employees�EmplDB�

end�

The extent of view Persons is the union of the base class objects� However� if there would
be a customer object and a student object� having equal names� they are de�ned through
the same�function to represent the same real world object� and will therefore appear only
once in the union view� The type of a union view is the intersection of the base class
functions� Since types of Students� and Employees are disjoint� except for uni�ed functions

�Remember� not only the uni�cation of functions� but of any meta object� representing variables� types�
classes� or views� is possible�

name�StudDB and name�EmplDB� there is one single function� name� applicable to these
objects� �

StudDB

Employees

 Objects
@StudDB

 Objects
@EmplDB

UnivDB

Books Customers

LibDB

Students

Persons
EmplDB

 Objects
@UnivDB

Objects
@LibDB

same
(StudDB,EmplDB)

name

Figure �� Virtual Integration of LibDB� StudDB� and EmplDB

��� Level III� Real Integration

Level III is called real integration and forms the next encreased degree of database co�
operation without the need of completely giving up local CDBS autonomy� At level II�
CDBSs are highly autonomous� since integration is restricted to views only� and therefore�
the global FD stores meta information �instance�independent data� e�g� view de�nitions�
only� As a consequence� there are several disadvantages of level II integration� For exam�
ple� functions with domain and range type at di	erent CDBSs �cf� same�functions�� have
only been allowed� if they are derived from a query expression� Stored inter�database
functions have not been possible� because they would require to store instance�dependent
information in the global FD� Furthermore� e�g� variables of a supertype of types of multiple
CDBSs are not allowed at level II� since they can store objects of multiple databases�

Level III removes this limitation� In contrast to level II integration� the use of the
FD is enhanced to store instance�dependent information �e�g� object values� OIDs� as well�
This does not say that all objects from CDBSs are copied into the FD� However� if needed�
values�OIDs of local objects are stored in the FD� As a consequence� CDBSs are loosing
further autonomy� since they must inform the multi�DBMS upon local database updates
�e�g� object deletion�� in order to insure that copies of values�OIDs of local objects are
changed�deleted in the FD as well �cf� keeping multiple representations consistent��

In general� schema augmentation at integration level III is not any more limited to
views� In COOL� for example� stored inter�database functions are now allowed�

Example �� Consider again multi�database UnivDB� An inter�database function
favourite book from StudDB to LibDB can be de�ned� which is not derived by a query�
but stored explicitely and needs therefore the enhanced FD to store its values�

de�ne function favourite book � student�StudDB � book�LibDB

�

A special case of that are stored same�functions� like e�g��

de�ne function sameLibDB�StudDB � customer�LibDB � student�StudDB

Assume variable c� holding a customer object from LibDB and s� holding a student object
from StudDB� We can now directly assign �set� these objects as being the same�

de�ne var c � customer�LibDB�
de�ne var s � student�StudDB�
set�sameLibDB�StudDB �� s��c�

Notice� that we really get advanced possibilities� since we do not need to know a query to
retrieve same objects from other CDBSs� This was not possible at level II� �

Additional global schema augmentation possibilities of level III are� �i� to de�ne global
object types� that are subtypes of di	erent CDBSs and therefore contain functions from
multiple CDBSs� �ii� classes that are subclasses from di	erent CDBSs� and �iii� variables
that can hold objects from multiple CDBSs as values� Notice that these global schema
elements are only visible to the FDBS and are not known to a local CDBS�

Once CDBSs are really integrated� not only multi�database queries respecting the global
object identity are available� but general updates� spanning multiple CDBSs are possible
as well� Such updates are again data model�language dependent�
In COOL� for example� there is a generic update operation gain�t��o�� adding object

type t to object o�� As long as type t and object o stem from the same database� the
gain operation works as in one centralized database� However� if o and t are from di	erent
databases� the semantics becomes unclear� since an object can usually not get a type from
an other database� Let DBi be the database� where object o is stored and DBj be the
database� where type t is de�ned� One possible realization of the gain operation for multi�
databases might work as follows�

IF i � j THEN

gain�t��o� �� perform update locally within DBi �� DBj�
ELSE

o� � samei�j�o� �� �nd the same�object of o in DBj

IF o� � unde�ned THEN �� if there is no same object o� of o in DBj

o� �� new�objectj ���� �� create a new object o� in DBj

set�samei�j �� o���o�� �� assign o� to be the same object of o in DBj

END

gain�t��o�� �� perform update on object o� locally within DBj

END

This realization maps the multi�database gain operation to a sequence of operations�
each of which can be executed within one single CDBS� This would not have been possible
at integration level II� since an object o� of DBj is assigned �set� to be the same object as

�Other generic updates are removing a type of DBj from an object of DBi� adding�removing an object
of DBi to�from a class of DBj� setting an object of DBi as a value of a function or variable of DBj�
creating�deleting objects stored in multiple databases� and migrating objects from DBi into DBj�

o of DBi� and needs therefore the facility of stored same�functions� that are only possible
at level III or higher�

It is important to understand� that the above global gain operation cannot be imple�
mented� using derived �Level II� same�functions� To be even more general� although the
above realization of gain is just one possible way of how to do it� we argue� that there is
no other realization of such an operation in any other language� that can be done� using
virtual� level II concepts exclusively�

��� Summary

Table
 gives a comparison of the main characteristics of integration levels � to IV� At
level �� CDBSs are not integrated at all and therefore� full local autonomy is provided�
The only possibility for operations �queries and updates�� involving multiple CDBSs� are
global �multi�database� transactions� At level I� CDBS schemas are composite and schema
names are known globally� Local autonomy is now restricted� since local schema changes
must be acknowledged by the multi�database management system� Global �however very
limited� generic query and update operations are allowed� spanning multiple CDBSs� At
level II� CDBSs are virtually integrated� using e�g� multi�database views� Uni�cation of
component objects and schemas is possible� Hence� global query and update operations
are much more meaningful� A federation dictionary is available� storing however instance�
independent information only� At level III� advanced real integration of CDBSs is available�
Augmentation of the global multi�database schema is not limited to derived views� CDBSs
are loosing further local autonomy� since copies of local CDBS object data�OIDs are stored
in the FD� The design of a language with global query and update operations without any
limitations is now possible� At level IV� CDBSs are fully integrated� such that distribution
is logically not visible at all�

Table
� Five Levels of Multi�Database Integration

Multi�DBS Federated DBS Distr� DBS

Level � Level I Level II Level III Level IV

logical schemas schemas schemas schemas schemas
schema not composite virtually really completely

integration integrated integrated integrated integrated
proxy� fully derived stored one set
objekt disjoint same� same� of objects

uni�cation sets of objects functions functions only

global query global restricted queries updates as in
and update transactions global using global using global central
operations operations object identity object identity DBS
federation not used for used for not
dictionary necessary instance�independent instance�dependent available

�FD� information only information too

�

� Classi�cation of Interoperability Mechanisms

The above interoperability platform might serve as a guideline while designing new multi�
database languages or systems� In this section� we concentrate on a second utility� the
classi�cation and comparison of related multi�database approaches�
For this purpose� we selected a couple of �well known� multi�database languages

�SQL�Net� Multibase� Superviews� VODAK� Pegasus� and O�SQL� and identi�ed their
main interoperability mechanisms� i�e� static �schema� and dynamic �operational�language�
ones� According to that� these languages are classi�ed into level I� II� or III� in order to
show that our classi�cation is helpful understanding and comparing related systems�

��� connect�to�Statement of Oracle SQL�Net and INGRES	Star

Many relational database system products do o	er the possibility to manage a distrib�
uted database� Using special software packages� like e�g� Oracle SQL�Net �SQL�� or IN�
GRES�Star �Ing
�� they allow for the de�nition of connections between multiple database
systems� making distribution of data more transparent�

After establishing connections to multiple databases� for example by a CONNECT TO

�database� statement� queries like the following can be written� joining tables from di	er�
ent component databases ��table� AT �database���

CONNECT TO BibDB� AngDB�

SELECT Books�title� Employees�name

FROM Book AT BibDB� Employees AT AngDB

WHERE Employees�name � Books�lent�

The above join predicate �Employees�name � Books�lent� is only allowed to compare
between basic data types �here� character string�� As we stated in Section ��
� this follows
directly from that only basic data types of di	erent CDBSs are uni�ed� Therefore� the
above connect�to�statement is equivalent to schema composition and hence to integration
level I�

��� Multi�Database Views in Multibase and Superviews

Multibase �LR��� and Superviews �Mot��� are two MDBSs� providing a uniform retrieval
interfaces �no updates� on top of multiple database systems� using global views� Thus�
both approaches correspond to integration level II�
Multibase integrates pre�existing databases via view mappings� building global entity

types out of local attributes� Queries must be given� describing how global entities and
their values are derived from local entities� One may� for example� de�ne that two entities
with equal key value globally appear only once �cf� proxy object integration��

Superviews describes virtual integration using a set of integration operations �meet�
join� fold� rename� combine� connect� aggregate� telescope� add� delete�� It does
not provide a general view mechanism based on a query language� Thus� together with
each integration operation� a transformation of global queries into queries of local classes
is de�ned�

Since Superviews is a level II system� some integration operations are restricted in
use� Consider e�g� the operation add� augmenting the global schema with a new attribute�

�

While this is a level III mechanism in general �cf� Section ����� Superviews allows only for
adding attributes with constant values� which is� in contrast� possible at integration level
II� because it compares to extent views� de�ning a new function with constant value�

��� Generalizations of VODAK

VODAK �Sch��� NS��� integrates databases via generalizations over classes of mul�
tiple CDBSs� To support di	erent semantic relationships between CDBS ob�
jects and attributes� multiple kinds of generalizations are identi�ed and enumer�
ated �data�type�generalization� identical�generalization� role�generalization�
history�generalization� category�generalization�� All of these special purpose gen�
eralizations are equivalent to virtual integration and therefore to cooperaion level II� Con�
sider for example the following VODAK role�generalization�

class TAXPAYING�EMPL

role�generalization�of	

UNIV�EMPL� COMP�EMPL

object correspondence rules	

UNIV�EMPL�SS
 � COMP�EMPL�ID

attributes	

BORNON

identical	

UNIV�EMPL��BIRTHDATE

COMP�EMPL��BIRTHDATE

end TAXPAYING�EMPL

To show� that this generalization is a level II mechanism� we sketch its reduction to �de�
rived� same�functions and a union view� First� a derived same�function from CompEmpl c

to UnivEmpl u is de�ned� unifying objects with ss��u� � id��c��

de�ne view UnivEmpl�

as extend�same �� pick�select�ss��u� � id��c���c � ComEmpl�DB
 ���
�u � UnivEmpl�DB� ��

Second� functions birthdate�DB
 and birthdate�DB� are uni�ed using a same�function
on the meta database�

de�ne view Functions�

as extend�same �� pick�select�fname�f � � �birthdate� � fname�g� � �birthdate��
�g � Functions�DB
 ���

�f � Functions�DB� �

Finally� classes are integrated by a union view TaxpayingEmpl� which is now equivalent
to the above VODAK generalization�

de�ne view TaxpayingEmpl as UnivEmpl� union CompEmpl

In COOL�� we require that functions to be uni�ed have identical names� wich is not
necessary in VODAK� However� renaming parts of a schema �e�g� functions� can be done
at level II �see Section ��� below��

�

��� uni�er� and image�Functions in Pegasus

Pegasus �ASD�
� AAD��� internally describes type and object integration using two
system functions� unier�t� de�nes for each CDBS type t exactly one uni�ed type of the
global �federated� schema� image�o� returns for each local object o at most one uni�ed
global object� The constraint o instance of t � image�o� instance of unier�t� must
always hold� The default assumption is unier�t� � t and image�o� � o and can be over�
riden by the DBA�user by de�ning global inter�database types� The following statement�
for example� integrates three local types NStud� EStud�WStud from di	erent CDBSs into
one global type Student �HOSQL syntax �AAD�����

CREATE TYPE Student

ADD UNDERLYING TYPES NStud� WStud� EStud

UNDER Student

�WStud�Image�x� AS SELECT s FOREACH Student s WHERE ssn�s� � ssn�x��

�EStud�Image AS STORED�

Corresponding unier and image functions are created automatically by the system�
For each underlying type� unier is set to Student� e�g� unier�NStud� � Student� For
NStud objects� image is the default mapping image�o� � o� For WStud� it is a derived
mapping� given by a HOSQL SELECT expression�
So far� these are level II mechanisms� However� for EStud the image function is a stored

function� that is� image�o� is unde�ned until an instance of Student is assigned explicitely�
As we know� this is a real extension� since it needs for an advanced federation dictionary
storing instance�dependent information and requires therefore integration level III� The
Pegasus federation dictionary must store e�g� tables� containing mappings between local
and global OIDs and the local CDBS must allow to store their objects in foreign systems�
It is interesting to notify� that Pegasus is mainly a level II �virtual� system �derived

unier and image functions�� except of some very few mechanisms� like e�g� stored image
functions� that are of level III�

��
 merge�Operation in O�SQL

O�SQL �Lit�� is a comprehensive multi�database language� providing e�g� types and func�
tions spanning multiple databases� Such MDBS types and functions can be derived from
an O�SQL query expression� resulting therefore in a level II intergration� Whether stored
inter�database functions and types augmenting the global schema are allowed as well� is un�
clear from the available paper� However� such possibilities are serious language extensions�
resulting in interation level III and further loss of local CDBS autonomy�
In O�SQL� proxy objects can be uni�ed by a merge operation� The following �rst

expression� uni�es objects o
 and o�� The second expression describes a kind of object�
unifying join� unifying employees and students with equal ss��

merge 	o� 	o��

select merge�ss
�e� e s� for each Empl e Stud s where ss
�e� � ss
�s��

In both cases� a global table of �same� objects must be allocated in the FD� For the �rst
expression� this table holds OIDs o
 and o�� For the second select�expression� this table

�

stores the result of the query� i�e� the corresponding OIDs� Notice� that the semantics
of the select operation is not that of a derived same�function� but the result is stored
�materialized��

The merge operation is a level III mechanism� Whether O�SQL is mainly a level II or
III system is unclear� due to the lack of precise� formal de�nition of the language is not
avaliable�

��� Discussion � Information Capacity

We presented interoperability mechanisms of some selected multi�database languages� as
summarized in Table �� We say� that a language is called �of level n�� if it contains at least
one mechanism of level n and none of level n
� Of course� the enumeration of languages
was not complete� We considered those systems� focusing in object and schema issues�
Other approaches� discussing for example mainly MDBS transactions� architectures� or
data model heterogeneity are not taken into account yet�

Table �� Selected Interoperability Mechanisms of Integration Levels I � III

Level Concepts and Mechanisms

I schema composition in COOL� �Sect� ����
connect to�statement of Oracle SQL�Net
SQL��� INGRES�Star
Ing��

II MDBS�views in COOL� �Sect� ����� Superviews
Mot��� Multibase
LR��
derived same�functions in COOL� �Sect� ����
generalizations in VODAK
Sch��� NS��
uni�er�functions and derived image�functions in Pegasus
ASD���� AAD���

III stored same�functions in COOL� �Sect� ����
update operations of COOL�
SLR���
stored image�functions in Pegasus
ASD���� AAD���
merge�operation in O�SQL
Lit��

One may ask� whether there isn!t a general notion on how to �nd out� what kind of
mechanism is of what particular integration level� In other words� What do all languages
of one level have in common" It shows� that the key to answer this question is change of
information capacity �Hul��� MIR���

De�nition �� �Information Capacity� Let S be a given database schema� The infor�
mation capacity DBS is the set of all potential states� a database can take with schema S�

The capacity of a database is therefore given by its schema� Hence� changing the schema
of a database may directly have an impact on its capacity� We say� a schema change is
capacity preserving �CP� � augmenting �CA�� if it does preserve � augment the information
capacity of the database �ST���
For multi�databases� the global information capacity is given by the composite �global�

federated� schema� reached by schema composition at integration level I� Any further data�
base �schema or object� cooperation mechanism may now change this global information
capacity�

�

Proposition� An interoperability mechanism is of level II� i� it preserves �CP� the
information capacity of the global �composite� database�

Any kind of adding derived �virtual� information� like MDBS views e�g� in COOL��
Superviews� and Multibase� generalization of VODAK� derived same�functions of COOL��
and derived unier� and image�functions of Pegasus� are CP mechanisms and therefore of
level II� Furthermore� adding attributes with constant values �cf� Section ����� as well as
renaming schema elements �cf� Section ���� is CP�

Proposition� An interoperability mechanism is of level III� i� it augments �CA� the
information capacity of the global �composite� database�

Any kind of adding stored and not any more derived information is CA and therefore
of level III� Adding stored same�functions of COOL�� stored image�functions of Pegasus�
and the merge�operation of O�SQL are examples of CA schema changes� Finally� most
of the generic update operations of COOL� �e�g� gain� are level III operations as well�
because they de�ne implicitely new functions� and therefore augment the global information
capacity as well�

� Conclusion and Outlook

The contribution of this paper is a formal classi�cation of multi�database languages into �ve
levels with increasing strength of database integration� Level � represents non�integrated�
fully autonomous CDBSs� Level I allows for schema composition� Level II is called virtual
CDBS integration� Level III is characterized by real CDBS integration� and at level IV�
CDBSs are �nally completely integrated� The utility of this classi�cation is twofold�

� A designer of a new multi�database language is able to understand� what kind of
concepts and mechanisms he is allowed to include into his language� in order to build
a multi�database system of a particular� desired integration level� As a consequence�
local CDBS autonomy and the possibilities for designing global query and update
operations are well known�

�� Any multi�database language �e�g� SQL�Net� Multibase� Superviews� VODAK� Pe�
gasus� O�SQL� COOL�� ���� may be classi�ed into level I to IV according to the
implemented concepts and mechanisms� This is very helpful to understand related
work and to compare systems among each other� We argued for example� that Pe�
gasus and O�SQL are mainly systems of integration level II �virtual integration��
however� they include some very few concepts� making them �nally level III systems
�real integration��

Future work will include more MDBS languages� as well as the consideration of data
model heterogeneity and transaction mechanisms� Whereas we think� that transaction
mechanisms are orthogonal to the presented classi�cation� it might be interesting to inves�
tigate� what kind of data model transformation mechanisms are possible at a particular
integration level�

�

References

�AAD��� R� Ahmed� J� Albert� W� Du� W� Kent� W�A� Litwin� and M��C� Shan� An
overview of Pegasus� In Proc� �rd Int�l Workshop on Research Issues on Data
Engineering� Interoperability in Multidatabase Systems �RIDE�IMS�� Vienna�
Austria� April
�� IEEE Computer Society Press�

�ASD�
� R� Ahmed� P� De Smedt� W� Du� W� Kent� M�A� Ketabchi� W�A� Litwin�
A� Ra�i� and M��C� Shan� The Pegasus heterogeneous multidatabase system�
IEEE Computer� ���
��� December

�

�Bee�� C� Beeri� Some thoughts on the future evolution of object�oriented database
concepts� In Proc� GI�Fachtagung Datenbanksysteme in B�uro� Technik und Wis�
senschaft �BTW�� Braunschweig� Germany� March
�� Springer� Informatik
aktuell�

�BLN��� C� Batini� M� Lenzerini� and S�B� Navathe� A comparative analysis of method�
ologies for database schema integration� ACM Computing Surveys�
����� De�
cember
���

�Hul��� R� Hull� Relative information capacity of simple relational database schemata�
SIAM Journal of Computing�
�����
���

�Ing
� Ingres Corp� INGRES	Star User�s Guide� Release ���� December

�

�Ken
� W� Kent� The breakdown of the information model in multi�database systems�
ACM SIGMOD Record� ������

�

�Lit�� W� Litwin� O�SQL� a language for multidatabase interoperability� In Proc� IFIP
DS�� Semantics of Interoperable Database Systems� Lorne� Australia� November

��

�LR��� T� Landers and R�L� Rosenberg� An overview of multibase� In Proc�
nd Int�l
Symp� on Distributed Data Bases� Berlin� Germany� September
��� North�
Holland�

�MIR�� R�J� Miller� Y�E� Ioannidis� and R� Ramakrishnan� The use of information
capacity in schema integration and translation� In Proc� ��th Int�l Conf� on
Very Large Data Bases �VLDB�� Dublin� Irland� August
��

�Mot��� A� Motro� Superviews� virtual integration of multiple databases� IEEE Trans�
on Software Engineering�
����� July
���

�NS��� E�J� Neuhold and M� Schre�� Dynamic derivation of personalized views� In Proc�
��th Int�l Conf� on Very Large Data Bases �VLDB�� Los Angeles� California�
September
��� Morgan Kaufmann�

�Sch��� M� Schre�� Object�oriented database integration� PhD thesis� Technical Univer�
sity of Vienna� June
���

�

�SL�� A�P� Sheth and J�A� Larson� Federated database systems for managing distrib�
uted� heterogeneuos� and autonomous databases� ACM Computing Surveys�
������ September
��

�SLR��� M�H� Scholl� C� Laasch� C� Rich� H��J� Schek� and M� Tresch� The COCOON
object model� Technical Report
�� ETH Z#urich� Dept� of Computer Science�
December
��

�SLT
� M�H� Scholl� C� Laasch� and M� Tresch� Updatable views in object�oriented
databases� In C� Delobel� M� Kifer� and Y� Masunaga� editors� Proc�
nd Int�l
Conf� on Deductive and Object�Oriented Databases �DOOD�� Munich� Germany�
December

� Springer� LNCS ����

�SPD�� S� Spaccapietra� C� Parent� and Y� Dupont� Model independent assertions for
integration of heterogeneous schemas� The VLDB Journal�
�
�� July
��

�SQL�� Oracle Corp� SQL�Net TCP	IP User�s Guide� Version ��
� November
��

�SST�� M�H� Scholl� H��J� Schek� and M� Tresch� Object algebra and views for multi�
objectbases� In M�T� #Ozsu� U� Dayal� and P� Valduriez� editors� Distributed Ob�
ject Management� Morgan Kaufmann Publishers� San Mateo� California�
��

�ST�� M� H� Scholl and M� Tresch� Evolution towards� in� and beyond object data�
bases� In K� von Luck and H� Marburger� editors� Management and Processing
of Complex Data Structures� Proc� �rd Workshop on Information Systems and
Articial Intelligence� Hamburg� Germany� February
�� Springer� LNCS ����

�TS�� M� Tresch and M�H� Scholl� Schema transformation processors for federated
objectbases� In Proc� �rd Int�l Symp� on Database Systems for Advanced Ap�
plications �DASFAA�� Taejon� Korea� April
��

Contents

� Introduction �

� Basic Database Interoperability Mechanism �

� Five Levels of Multi�Database Integration �

��
 Level I� Composition �
��� Level II� Virtual Integration �
��� Level III� Real Integration �
�
��� Summary �
�

	 Classi�cation of Interoperability Mechanisms ��

��
 connect�to�Statement of Oracle SQL�Net and INGRES�Star � � � � � � � � �
�
��� Multi�Database Views in Multibase and Superviews � � � � � � � � � � � � �
�
��� Generalizations of VODAK �
�
��� unier� and image�Functions in Pegasus �
�
��� merge�Operation in O�SQL �
�
��� Discussion � Information Capacity �
�

� Conclusion and Outlook �

��

