
Construction and Deduction Methods for the Formal

Development of Software

F� W� von Henke� A� Dold� H� Rue�� D� Schwier� M� Strecker
Abt� K�unstliche Intelligenz
Fakult�at f�ur Informatik

Universit�at Ulm
Oberer Eselsberg

D���	
� Ulm�Donau

June �
� ���

Abstract

In this paper we present an approach towards a framework based on the type theory ECC
�Extended Calculus of Constructions� in which speci�cations� programs and operators for
modular development by stepwise re�nement can be formally described and reasoned about�
We show that generic software development steps can be expressed as higher�order functions
and demonstrate that proofs about their asserted e�ects can be carried out in the underlying
logical calculus�

For transformations requiring syntactic manipulations of objects� a two�level system
comprising a Meta� and an Object�level is provided� and it is shown how transformations
can be formalized that faithfully represent operators on the object level�

� Introduction

Modern software engineering regards software development as an evolutionary process ���� ���
One view of this process is that� starting from abstract� high	level requirement speci
cations�
a series of re
nement or implementation steps is applied to successive levels of speci
cation�
eventually yielding a program as the
nal result of the process� In a more formal context� it
must be demonstrated for each step that the re
ned speci
cation or implementation satis
es
the properties postulated by the previous �higher level� speci
cation� Then the
nal program
will satisfy the initial requirements� provided suitable properties of compositionality of steps
hold�

Past experience has shown that formal veri
cation of software developments requires more
eort and higher costs than can be justi
ed in most situations� making traditional post mortem
veri
cation rather impractical� As an alternative� we may analyze the development process
further and identify certain steps that are applied repeatedly as re
nement patterns� If we
succeed in formalizing such patterns and verifying their properties� we may considerably reduce
the eort required for the formal veri
cation of the development process� In particular� it is
desirable to formalize a development pattern as an operator that transforms speci
cations into
new speci
cations and to prove that the result of applying the operator yields� for example�
a re
nement of the argument speci
cation� Accordingly� the demonstration of correctness for
each development step that is an instance of a formalized pattern has been reduced to showing
that the operator is applicable�

�

In this paper we present an approach towards a framework in which we can formally de	
scribe and reason about speci
cations� programs and development operators and apply the
method outlined above� Our approach is based on a type theory� the Extended Calculus of
Constructions �ECC� ���� ���� as the unifying logical foundation� Building on ECC� we de
ne
a speci
cation language� QED� roughly� it introduces syntactic constructs that are closer to the
style of algebraic speci
cations and more readable than the language of the �raw� logic� while
its semantics is grounded in the type theory� In essence� a speci
cation represents a type� and a
member of that type is a realization of that speci
cation� Obviously� such a notion of types as
speci
cations requires types to convey semantic information� as a consequence� demonstrating
that an object has a particular type� i�e� type checking� may involve verifying that it satis
es
the semantic properties of the type � which� in general� requires theorem proving�

The language is rich enough for expressing speci
cations� assertions about speci
cations�
and relations between speci
cations in a natural way� In particular� many generic development
steps can be expressed as higher	order functions� and proofs that they have the asserted ef	
fect can be carried out in the underlying logical calculus� a formalization of this kind will be
presented in Sect� �� It seems� however� that in many cases the formalization of development
patterns requires a direct description of how the text of a speci
cation has to be modi
ed� for
instance for optimizing transformations� thus� such patterns must be formalized as operators
on syntactic representations of speci
cations� Then the veri
cation that applying an operator
indeed establishes the asserted relationship between its source and target typically requires re	
lating the syntactic manipulation �i�e�� how the text of the source speci
cation is modi
ed to
yield the text of the target� to the semantic relationship between the meanings of those texts�
To facilitate this kind of reasoning a two	level formal system has to be provided� the syntax
of the object language is represented by data types of the meta	level� and a re�ection principle
serves to link syntactic structures to their meaning at the object level� In Sect� � we develop
such a two	level system for QED and show by means of a simple example how operators can
be formalized and reasoned about�

The remainder of the paper is organized as follows� Section � contains a brief description of
the type theory used� In Sect� � we introduce the speci
cation languageQED� Section � presents
the two main approaches to formalizing development steps� using higher	order functions� and
using meta	operators� for the latter approach the two	level formal system is developed� Section �
discusses aspects of the QED implementation� The
nal section contains a brief summary and
conclusions�

� Type�theoretic Foundation

The formal basis of our approach is the type theory Extended Calculus of Constructions �ECC�
���� ��� augmented by inductive types� We brie�y summarize those features of the type theory
that are needed in this paper�

ECC� like all advanced type theories� may be regarded as an extension of the �simply
typed� lambda calculus ��� by a more powerful type system� In our context� the most important
extensions are the addition of dependent types and type universes�

�	types �strong sum types� generalize Cartesian products� �x � A� B is the type of pairs
�a� b� such that a is a member of type A and b is in B �x �� a��� �	types �abstraction types�
generalize function types� Intuitively� �x � A� B is the type of dependent functions with domain
A and codomain B where B may depend on the element to which the function is applied�

�Capital letters and a� b denote terms of the term calculus of ECC� while x � y denote variables� N �x ��M �
denotes the substitution of a term M for all free occurrences of x in the term N �

�

A type universe is a type which has types as its members� ECC oers two kind of universes�
Prop and Typei � for natural numbers i � By the Curry	Howard principle of propositions�as�
types ��� ���� logical formulas are considered as the types of their proofs� They are included
in the universe Prop and data types reside in the universes Typei � Coquand and Huet ���
demonstrate how logical connectives ��� �� �� ��� logical quanti
cation ��� �� and Leibniz
equality �a � b� are coded� Strong sums and type universes in ECC prove to be useful for
encoding program speci
cations and abstract implementations between speci
cations� and for
modular development by stepwise re
nement �����

The treatment of rules and proofs is based on the notion of judgement� Typing judgements
are of the form � � M � A and express the fact that in context � term M is of type A� where
a context is de
ned as a
nite sequence of declarations x�A� Depending on the situation� a � A
may be interpreted as �a is of type A�� �a is a proof of formula A�� or �a meets speci
cation
A�� A term M is well�typed in context �� if � �M � A for some A� A type A is inhabited under
context � if and only if there exists a term M such that � �M � A is derivable� For a complete
presentation of typing rules and a notion of derivability of judgements see ����� ECC has many
good meta	theoretic properties� It obeys the Church	Rosser property� is strongly normalizable�
and type checking is decidable�

� Speci�cation in QED

In the following we extend the calculus ECC by constructs for representing units of the software
development process ����� The design of these constructs is in�uenced mainly by the PVS
speci
cation language ���� and Extended ML ����� The extensions to ECC are quite expressive
in the sense that most of the mathematical and computational concepts we wish to describe
can be formulated very directly and naturally� A more comprehensive informal introduction to
the QED language can be found in ����� while ���� provides a formal account of the rules for
the extended calculus�

Type constructors are introduced to form Cartesian products� �dependent� record types�
semantic subtypes� and speci
cations� All these constructs are special forms of strong sum
types in ECC� they are� however� handled dierently by the typing system and therefore require
special syntax� Cartesian products and record types are of the form A� � � � ��An and 	 x� �
A�� � � � � xn � An
 respectively� their elements are tuples �a�� � � � � an�� The common dot notation
denotes selection of record
elds�

A semantic subtype fx � A j Pg comprises those members of type A which satisfy predicate
P � Elements of the semantic subtype are denoted by a�p�� where a is a member of type A and p
is a proof term of type P �x �� a�� �This notation is possible because proofs can be expressed as
usual terms�� A distinctive feature of the typing system is a conversion mechanism that is able
to convert members of one type to members of a dierent type automatically� For example�
applying a function that requires a member of fx � N j Odd�x�g to the natural number � is
illegal� because � is not a member of the subtype� But if one can
nd a term p which is a
proof of Odd���� we may rewrite the application using ��p� instead of �� Since in general it is
not possible to
nd the required proofs automatically� proof obligations are generated� A proof
obligation is a placeholder for a term which will be
lled in later by the prover� These proof
obligations can be postponed because the type checker only requires type information�

A speci
cation consists� as usual� of a signature part and an axiom part� the signature part
normally corresponds to a dependent �	type� the axiom part is a collection of propositions
�elements of type Prop� that restrict the set of acceptable �models� of the signature� For
instance� the following speci
cation declares a type Setoid as consisting of a type T together
with a binary Boolean function eq on T that is restricted to be an equivalence relation�

�

Setoid �� spec

T � Type� eq � T � T � B

with

Ax � equivalence�eq�
end

Realizations of such speci
cations are structures that satisfy the axioms� For example� the
structure struc T �� B � eq �� eqB end is of type Setoid if the condition equivalence�eqB�
holds� Whenever a structure is type checked and no proof terms are given� proof obligations are
generated to
ll out any missing proofs� The proof obligations are derived from the speci
cation
by substituting terms from the structure into the axioms� In this example the obligation is
equivalence�eqB�� Let p be a proof of this proof obligation� then the structure above is converted
into�

struc T �� B � eq �� eqB end �p� � Setoid

The conversion mechanism is also used by the casting construct ���� of QED� A term M �� A
causes the typing system to check if M is a member of type A� If the type check fails� the
system tries to generate a term M � of type A from M by introducing proof obligations� This
feature is used to generate the proof obligations that are necessary to establish the correctness
of the development process� The following function� for example� realizes a re
nement map
with import speci
cations imp� and imp�� and the export speci
cation exp�

� �� � r� � imp�� r� � imp��
struc

� � �

end �� exp

Type casting of the function body produces proof obligations that intuitively state� if rea	
lization ri � i � �� �� ful
lls the axiom part of speci
cation impi then ��r�� r�� ful
lls the axioms
of exp�

The mechanisms to form inductive datatypes follow Ore�s extension of ECC ����� Polymor	
phic lists� for example� are de
ned by means of

List �� � T � Type� datatype X � Type� nil j cons � T �X

Note that the names of the constructors for inductive datatypes have to be introduced
explicitly �e�g� mkNil �� � T � Type� intro�List�T �� nil��� The case construct allows both
for structural induction over inductively de
ned datatypes and for the de
nition of functions by
means of �higher�order� primitive recursion� it can be seen as a variant of the concept of hom�
functionals ���� and exhibits the natural correspondence between the structure of a program
�or proof� and the data structure� For example� the function map on polymorphic lists�

map �� � T � S j Type� l � List�T �� f � List�T �� List�S��
case l of

nil � mkNil�S��
cons � � �t � l�� � T � List�T �� rec � List�S��

mkCons�f �t�� rec�
end

�The notation � T j Type� � � � is used to denote type parameters which usually are not provided explicitly�
i�e� are left implicit and deduced by type checking�

�

is completely speci
ed by describing its behavior for each of the constructors separately� In the
second case of the case construct� the function f applied to head element t is concatenated to
the result rec of the recursive call ofmap� Inductive datatypes representing Booleans �B�� natural
numbers �N� and polymorphic lists �List� together with appropriate operators are prede
ned�

The fix construct allows for de
ning recursive functions in a restricted form� mutual
recursion is not allowed� and functions must be proven to be total� Consider� for example� the
de
nition of the factorial function�

fix f � N� N�

� n � N� if isZero�n� then � else n � f �n �� end
measure � x � N� x

The measure 	function is a function with the same domain as f and� in this case� of range
type N� The de
nition generates the termination correctness condition

� n � N� isZero�n� �� true � n � �N n

using the standard ordering �N on N as default� This condition must be discharged to ensure
well	typedness of f � Measure functions can also be utilized in the obvious way to prove properties
about recursive functions by means of Noetherian induction�

� Formalizing Development Steps

In this section we present two approaches to formally representing and reasoning about software
development steps in QED�

� by higher	order functions�

� by meta	functions�

��� Representation of Steps by Higher�Order Functions

The formalization of transformations using higher	order patterns has been considered by several
researchers� In ����� for example� program transformations for recursion removal are expressed
as second	order patterns de
ned in the simply typed �	calculus ���� As opposed to this treatment
we use the powerful framework of QED and demonstrate that it is possible to formalize and
verify a �large� development step illustrated by a schematic algorithm global�search� Due to
space limitations� only the most essential features can be sketched� the rigorous mathematical
treatment and veri
cation is presented in ����

Global�search is a generalization of well	known search strategies such as backtracking and
depth��rst�search� see ���� for details� Starting from a requirement speci
cation an extension
of this speci
cation is needed which de
nes additional datatypes and operations to realize
the global	search algorithm� This extended structure is combined in a speci
cation called
global search theory� Based on this theory an abstract generic algorithm can be de
ned� In	
stantiating the abstract scheme with the speci
c problem structure together with a proof that
the structure ful
lls the axioms of global search theory su�ces to synthesize an algorithm rea	
lizing a constructive solution of the problem� Using this method� in ��� we derive a key�search
algorithm and show that its veri
cation is easily obtained by applying the correctness proof of
the transformation to the speci
c problem structure�

One starts with the following speci
cation�

Problemspec �� 	 D � Type�R � Type� I � D � Prop�O � D � R � Prop

�

global search theory �� � �D �R� I �O� � Problemspec�
spec

S � Type
J � D � S � Prop
init � D � S
satis�es � R � S � Prop
split � D � �S � S � Prop�
split � D � S � Set�S�
extract � R � S � Prop
extract � D � S � Set�R�

with

ax� � � x � D � I �x� � J �x � init�x���
ax� � � x � D � r � s � S � �I �x� � J �x � r� � split �x��r � s��� J �x � s��
ax� � � x � D � z � R� �I �x� � O�x � z ��� satis�es�z � init�x���
� � �

end

Figure �� De
nition of a global search theory

where D is the domain type� R the range type� I the input condition restricting D to legal
inputs and O the input!output relation� The problem is then formally described by�

req spec �� � �D �R� I �O� � Problemspec�
� x � D � I �x� � � S � Set�R�� � elem � R�

��elem � S� � true� � O�x � elem��

req spec is a function which takes a �	tuple �a member of type Problemspec� as input and
provides a proposition which states that there exists a set which contains all solutions elem for
which O�x � elem� holds� The schematic algorithm de
ned below realizes a constructive proof
of this proposition�

A global search theory is a parameterized speci
cation with a member of Problemspec as
parameter� The basic idea of global	search is to represent and manipulate sets of candidate
solutions� Starting from an initial set containing all solutions� a global	search algorithm re	
peatedly extracts solutions� splits sets into subsets until no sets remain to be split� Sets are
represented implicitly by descriptors and a predicate satis�es determines when a candidate
solution is in the set denoted by the descriptor� Furthermore� a predicate J describes legal de	
scriptors� The whole process can be regarded as a tree search procedure where nodes represent
sets implicitly described by the type S of set descriptors and arcs represent the split operation�
The theory is brie�y sketched in Fig���

The function Fgs �Fig��� de
nes the schematic algorithm which realizes the global search
procedure� It receives as input a realization of a global search theory and two additional func	
tions arbsplit and tcl � The result is then a function f which implements the search strategy for
the given global search theory� The function arbsplit takes a set s and provides an arbitrary
element of s and the remaining set� The function tcl is used for termination� It produces for
a given set of nodes in the search tree its �
nite� set of successors with respect to the split
relation� i�e� it calculates the transitive closure of split � This speci
es a
nite depth of the
search tree� One implicitly yields a
nite width by using the polymorphic type Set of
nite

�We suppose that the type Set�T 	 of
nite sets over a type T together with suitable operations is given�

�

Fgs �� � �D �R� I �O� � Problemspec� gs � global search theory��D �R� I �O���
arbsplit � � � � � tcl � � � � �
let

F Type �� 	 active � Set�gs �S�� solution � Set�R��
x � fD j Invar��D �R� I �O�� gs � active� solution� x�g

in

fix f � F Type � Set�R�� � �active� solution� x� � F Type�
if empty �active� then solution

else

let

�r �A�� �� arbsplit�active��
Newactive �� A� � gs �split�x � r��
Newsolution �� solution � gs �extract�x � r�

in

f �Newactive�Newsolution� x�
measure

� �active� solution� x� � F Type� card�tcl�active� solution� x��

Figure �� The schematic algorithm Global Search

sets� i�e� split produces for a given node the
nite set of its �direct� descendants� The resulting
function f is given by means of wellfounded recursion� To guarantee well	typedness of Fgs we
must supply a measure function� Here we use the cardinality of the transitive closure of the
active set of nodes which have to be considered� An invariant is used in the domain F Type of
f to ensure the following basic properties�

�� every node of the active set is a legal descriptor

�� all elements of the set solution ful
ll the condition O

�� for two arbitrary nodes s�� s� of the active set� s� is not a successor of s� w� r� t the split
relation�

The concept of semantic subtypes is an adequate tool to represent invariants of functions�
To establish the correctness of the de
ned development step one has to show that for an

arbitrary problem speci
cation and global search theory the instantiated function f is indeed
a constructive solution� i�e� f calculates the set of all elements of the range type R which
satisfy the condition O � The initial parameters for f are init�x� for active and �R for solution�
The soundness theorem is given in Fig��� Additionally� to ensure type correctness some type
correctness conditions are generated� The
rst one states that the measure function applied
to the parameters of the recursive call yields a smaller value than the function called with the
actual parameters� Furthermore� the parameter of the recursive call and the initial parameters
must satisfy the invariant of f � All proof obligations have successfully been discharged using
the �interactive� higher	order Gentzen prover of the PVS speci
cation system ���� ����

The techniques outlined above can readily be used to formalize many generic development
steps including �large� transformations such as divide�and�conquer � dynamic programming and
those investigated by the Munich CIP group ���� ����

�

Soundness Theorem ��
� �D �R� I �O� � Problemspec� gs � global search theory��D �R� I �O���
arbsplit � � � � � tcl � � � � � x � fD j I �x�g� y � R�

let

F inst �� Fgs��D �R� I �O�� gs � arbsplit � tcl��
init set �� insert�gs �init�x���gs�S��
init sol �� �R�

sol set �� F inst�init set � init sol � x�
in

�y � sol set � true� � O�x � y�

Figure �� Soundness Theorem of Global Search

��� Meta�Operators

Many typical development steps are not representable with the language constructs introduced
in Sect� �� Consider� for example� the simple task of replacing a certain axiom Pi in a speci
ca	
tion text by another axiom Q � If Q implies Pi then one can construct a re
nement map from
the modi
ed speci
cation to the original one� More precisely� let � be the current context�
abbreviate x� � A�� � � � � xn � An by x �A� and de
ne a speci
cation

sp� �� spec x �A with p� � P�� � � � � pi � Pi � � � � � pm � Pm end

that is well	typed in �� Furthermore� assume that the judgement ��x � A � p � Q � Pi is
derivable�� It is our task to construct a realization of sp� relative to a realization of speci
cation

sp� �� spec x �A with p� � P�� � � � � q � Q � � � � � pm � Pm end

A re
nement map from speci
cation sp� to speci
cation sp� is constructed as

� �� � r � sp��
struc x� �� r �x�� � � � � xn �� r �xn end �r �p�� � � � � p�r �q�� � � � � r �pm �

and the type introduction rule for structures immediately yields�

� � � � sp� � sp�

A transformation of this kind which takes a speci
cation sp�� a formula Q � and an index i
and results in a new speci
cation sp� by replacing the i 	th axiom in sp� by Q needs both access
to internal structure in order to manipulate syntactical text and the correctness of this forma	
lization involves reasoning about derivability of judgements� i� e� meta	reasoning� Furthermore�
this development step deals with a term Q that is not necessarily well	typed in the current
context � but only in ��x �A�

In the following we describe a meta architecture that allows one to express such development
steps and transformations by means of functions on representations of programs �proofs� and
speci
cation texts� These functions are called meta functions and are amenable to formal
treatment� e�g� one can state and prove characteristic properties about them�

Historically� meta architectures were
rst formalized and investigated by logicians� where
the pioneering work has been carried out by G"odel ����� From a more application oriented

�Note that Q need not be well�typed in context � if some xi occurs free in Q�

�

view� meta level architectures have been used extensively in the realm of mechanical theorem
proving ��� �� ��� �#�� since in many cases it is quite straightforward to construct a proof by
means of syntactic analysis of the problem at hand ���� ��� Here� the important issue is how
meta programming and meta reasoning can be used to represent software development steps
together with expressing a certain semantics of these steps�

In a
rst step one encodes syntactic categories and the proof theory of QED within itself
following the approach of G"odel� This encoding constitutes the meta level� On this encoding
one can write �almost� arbitrary functions and express relations like �x is a free variable in M �
or �the result of substituting the term N for all free occurrences of the variable x in M yields
L�� A particularly important predicate is the derivability predicate expressing the relation
that �M is of type A in context ��� These features allow to encode development steps �proof
steps� by meta functions� and to express and prove �semantic� relations between arguments
and results� The adequacy and faithfulness of the encoding yield re�ection principles that allow
one to exchange results between the meta level and the object level in a sound way�

Due to lack of space we can merely present a fragmentary sketch of the architecture� One

rst represents syntactical categories of the object language syntax by means of the induc	
tive datatype AbsTrm� The elements of this data type can be seen as abstract syntax of
terms� This abstract syntax does not necessarily represent well	typed terms� Representati	
ons of speci
cations� for example� can be formed by means of the constructor mkSpec of type
List�Id � AbsTrm� � List�Id � AbsTrm� � AbsTrm� The
rst argument represents the si	
gnature� while the second one represents the axiom part� Id is just the type for identi
ers� It
is straightforward to introduce recognizers and selectors for each alternative in the datatype
AbsTrm� For speci
cations we have the recognizer isSpec and selectors specSig and specAxms �
Recognizer isSpec�M � yields true if and only if M represents a speci
cation� while specSig and
specAxms respectively select the �representations of the� signature and the axiom part� In the
following we also utilize the constructor mkStruc with corresponding selectors strucDefs and
strucPrfs �

Contexts are represented by elements of type Ctxt which is a list of �representations of� type
assignments x � A while judgements are represented by elements of Jdgmt �� Ctxt �AbsTrm�
AbsTrm� The data types AbsTrm� Ctxt � and Jdgmt are called representation types and elements
of them are meta terms�

A quoting mechanism ��� associates syntactic categories of the object level like terms�
contexts� and judgements with meta terms� for example�

� spec x� � A�� x� � A� with p� � P�� p� � P� end � ��
mkSpec�h� �x�� � �A�� �� � �x�� � �A�� �i� h� �p�� � �P�� �� � �p�� � �P�� �i�

Through the mapping ��� object	level constructs become available for discourse on the meta	
level�

It is a standard exercise to encode the term calculus� One de
nes functions occurs of type
AbsTrm � Var � B and substVar of type AbsTrm � Var � AbsTrm � AbsTrm by means of
higher�order primitive recursion such that occurs� �M � � �x � � reduces to true if and only if x
occurs free in M and substVar� �M � � �x � � �N � � reduces to �M �x �� N �� � Binary relations on
terms like syntactic equality �modulo alpha	convertibility� and convertibility can be coded in a
type	theoretic setting by closures of the appropriate binary relations� Likewise derivability of a
judgement � denoted by deriv���� is encoded as the least set �one	place predicate� closed under
the rules of the type calculus of QED� The following fact expresses adequacy and faithfulness
of this encoding of derivability

� � M � A is derivable if and only if there exists a term p such that � p �
deriv� ��� � �M � � �A� �

�

Obviously� a proof of this can neither be carried out on the object level nor on the meta level�
but is rather accomplished in the �informal� theory that allows one to reason about both of these
levels� The result above allows one to deduce from the derivability of � � M � A on the object
level the existence of a term of type deriv� ��� � �M � � �A� �� This transition from object level
to meta level is named re�ection upwards while the corresponding change from meta level to
object level is called re�ection downwards ����� These re�ection rules are admissible inferences�
and thus� in principle� dispensible� From a practical point of view� however� re�ection rules are
crucial since they allow to exchange results between object level and meta level as exempli
ed
in the following�

In the remaining we formalize the development step described in the beginning of this section
within our meta architecture and demonstrate how to apply meta functions and corresponding
correctness results� The meta function replaceAxInSpec replaces in �the representation of� a
speci
cation sp the �representation of the� i 	th axiom by �the representation of� another term
axm� where replace is the replacement on lists�

replaceAxInSpec ��
� sp � fAbsTrm j isSpec�sp� � trueg� i � Nat � axm � AbsTrm�

mkSpec�specSig�sp�� replace�specAxms�sp�� i � axm��

It simply replaces the i 	th element in the list of axiom representations with the argument axm�
The following predicate states that the resulting �representation of a� speci
cation is indeed a
re
nement of the argument �representation of a� speci
cation

� ctxt � Ctxt � sp � fAbsTrm j isSpec�sp� � trueg� i � Nat � axm�M � AbsTrm�

deriv�append�ctxt � specSig�sp���M �mkImpl�axm� nth�i � specAxms�sp����
� let Res �� replaceAxInSpec�sp� i � axm��

N �� mkLambda�� �r � �Res��
mkStruc�strucDefs�mkRef � �r � ���

replace�strucPrfs�mkRef � �r � ��� i �
mkApp�M �mkProj �mkRef � �r � �� i�����

in deriv�ctxt �N �mkImpl�Res � sp�� �

where mkImpl� �A� � �B � � is the representation of A � B � and the term N is� despite the
ugliness of abstract syntax� a mere formalization of the re
nement term constructed in the
beginning of this �meta� exposition� The functions append and nth denote concatenation of
lists and selection of the n	th element from a list� respectively� The proof of this correct	
ness result is straightforward and a direct formalization of the informal exposition above� call
the corresponding proof correctprf � This proof and the re�ection principles can be utilized to
construct a re
nement map between the speci
cation sp and the result of the transformation
replaceAxInSpec�

Let�s go back to our running example and apply replaceAxInSpec together with its cor	
responding correctness result� Again we assume a certain context � and a speci
cation sp�
Furthermore� let �Q� be the representation of a certain axiom and i be a
xed natural num	
ber� In order to apply correctprf one has to construct an element �M � such that

deriv�append� ��� � specSig� �sp� ���
�M � �mkImpl� �Q� � nth�i � specAxms� �sp� ����

holds� This construction can� of course� be completely done within the meta level� In many
situations� however� it is more appropriate to prove the corresponding problem in the object
level� i�e� one has to
nd a term M such that M � Q � Pi is derivable in context ��x �A� The

�#

resulting judgement is re�ected upwards yielding a proof p of the predicate above� A simple
instantiation of correctprf gives�

� correctprf � ��� � �sp� � i � �Q� � �M � � p�
� let Res �� replaceAxInSpec� �sp� � i � �Q� �� N �� � � �

in deriv� ��� �N �mkImpl�Res � �sp� ��

This judgement�
nally� is re�ected down to the object level in order to get the result that
the resulting speci
cation Res indeed is a re
nement of the argument speci
cation� Moreover�
downward re�ection explicitly constructs the object	level re
nement map�

The two	level framework as depicted above has been utilized� for example� for formal con	
structions of a lexical scanner ��� and a symbol table ��#�� A particularly interesting meta
function in the latter case study involves the partial implementation of a function in a spe	
ci
ction� This meta function takes a speci
cation sp�� a function f declared in sp�� and a
realization fimp of f by means of other entities declared in sp� and delivers a new speci
cation
sp� in which the declaration of f is deleted from the signature part and all formulas where f
occurs free are removed from the axiom part� This simpli
ed speci
cation sp� is amenable to
further re
nement�

As demonstrated above� we are able to formalize conclusions about the object calculus by
means of a meta architecture� This allows one to encode formal development steps once and
for ever � applications of such steps are instances of some meta level argument� while� in the
case of pure object level reasoning� one has to do the same kind of tedious development over
and over for each instance of a given problem� Software development systems incorporating a
meta architecture allow users of such systems to add new development �proof� steps only in a
sound way� The importance of such features lies in the fact that it is unrealistic to incorporate
each conceivable development step in a general�purpose development system ����� Finally note
that� in our approach� meta functions and meta properties are essentially the same as object
functions and object properties� they only dier in the data types they are operating on� Thus�
encoding� speci
cation� and proof methods apply for both object and meta level entities�

� Some Notes on the experimental QED Implementation

An interactive support system for experiments with QED has been developed� The system
implements a parser� type checker and pretty printer for the QED language� The heart of the
system is the type checker� It is mainly built around an evaluation function for pre�terms � A
pre	term is a syntactically correct term that may be ill	typed� The evaluation function takes a
pre	term and a set of de
nitions and� if possible� converts the pre	term to a well	typed term�
see also Sect� ��

In ECC all types belong to exactly one type universe� However� in most cases the speci
c
universe to which a term belongs is irrelevant� For this reason the system oers the possibility
to use the anonymous universe Type instead of Typei for a given level i � The system tries then
to exactly determine the universe level i by maintaining a set of inequalities and checking for
consistency �����

Parametric polymorphism is handled by uni
cation� Although higher	order uni
cation is
undecidable most problems which arise in practice from type checking polymorphic functions
can be solved correctly by the implemented uni
cation algorithm� This result is obtained by
coding the universe polymorphism� reductions� alpha convertibility and other features into the
uni
cation algorithm�

In an interactive top	down program development process it is desirable to type check speci	

cations and their realizations before the whole development is complete� To achive this goal�

��

incomplete terms containing placeholders together with suitable type information may be used�
Later in the development process these placeholders will be replaced by members of the appro	
priate type� This feature� together with a re
nement editor� provides for a re
nement process
similar to the one described for Extended ML ���� �#��

� Conclusions and Future Work

In this paper we have presented an approach to formal speci
cation and software development
based on type theory� We have discussed the logical basis and illustrated the elementary princip	
les by means of simple examples� Our experience gained so far with the approach supports our
hypothesis that speci
cation based on type theory is a viable alternative to the more common
algebraic speci
cations and that many� if not most� interesting operations on� and relationships
among� development units can be dealt with by a combination of object	level and meta	level
formalization�

The work described here is part of an ongoing investigation into formal methods for software
development and eort to develop a suitable framework� Speci
cally� we plan to develop a basic
set of generic algorithms and meta	operators representing development steps� with the long	term
goal of compiling some sort of reusable �knowledge base� of programming techniques� and to
test whether this approach can be made practical by attacking non	trivial software problems�

References

��� L� Aiello and R�W� Weyhrauch� Using meta	theoretic reasoning to do algebra� In W� Bibel
and R� Kowalksi� editors� �th Conference on Automated Deduction� pages ����� Springer
Verlag� ���#�

��� S�F� Allen� R�L� Constable� D�J� Howe� and W�E� Aitken� The semantics of re�ected proof�
In Proc� �th Annual IEEE Symposium on Logic in Computer Science� pages ����#�� IEEE
CS Press� ���#�

��� R�S� Boyer and J�S� Moore� Metafunctions� proving them correct and using them e�ciently
as new proof procedures� In R�S� Boyer and J�S� Moore� editors� The Correctness Problem
in Computer Science� chapter �� Academic Press� �����

��� M� Broy and P� Pepper� Programming as a Formal Activity� IEEE Transactions on
Software Engineering� SE	�����#���� �����

��� A� Church� A formulation of the simple theory of types� Journal of Symbolic Logic� ��������
���#�

��� T� Coquand and G� Huet� Constructions� a Higher	Order Proof System for Mechanizing
Mathematics� In B� Buchberger� editor� EUROCAL	
�� European Conference on Computer
Algebra� Lecture Notes in Computer Science �#�� pages �������� Springer	Verlag� �����

��� H�B� Curry and R� Feys� Combinatory Logic� volume �� North Holland Publishing Com	
pany� �����

��� A� Dold� A Constructive Program Development Methodology 	 exempli
ed by the case	
study LEX� Korso paper� Universit"at Ulm� �����

��� A� Dold� Formalisierung schematischer Algorithmen� Technical report� Abt� KI� Universit"at
Ulm� �����

��

��#� A� Dold and D� Schwier� Formal construction of a symbol table� Korso paper� Universit"at
Ulm� �����

���� B� Krieg	Br"uckner et al� System architecture framework for KORSO� In M� Broy and
S� J"ahnichen� editors� KORSO� Correct Software by Formal Methods� Springer	Verlag�
LNCS ������� Erscheint im Laufe des Jahres�

���� M� Wirsing et al� A Methodology for the Development of Correct Software� In M� Broy
and S� J"ahnichen� editors� KORSO� Correct Software by Formal Methods� Springer	Verlag�
LNCS ������� Erscheint im Laufe des Jahres�

���� F� Giunchiglia and A� Smaill� Re�ection in Constructive and Non	Constructive Automated
Reasoning� In Meta�Programming in Logic Programming� chapter �� pages ������#� The
MIT Press� �����

���� K� G"odel� "Uber formal unentscheidbare S"atze der Principia Mathematica und verwandter
Systeme� I� Monatsh� Math� Phys�� ����������� �����

���� CIP System Group� The Munich Project CIP � Volume II� Lecture Notes in Computer
Science ���� Springer	Verlag� �����

���� R� Harper and R� Pollack� Type checking� universal polymorphism� and type ambiguity in
the Calculus of Constructions� In TAPSOFT	
�� volume II� Lecture Notes in Computer
Science� pages ��#����� Springer	Verlag� �����

���� W�A� Howard� The Formulae	as	Types Notion of Construction� In J� Hindley and J� Seldin�
editors� To H�B� Curry� Essays on Combinatory Logic� Lambda Calculus and Formalism�
Academic Press� ���#�

���� D�J� Howe� Computational metatheory in Nuprl� In Proc� �th International Conference on
Automated Deduction� pages �������� Springer	Verlag Lecture Notes in Computer Science
��#� �����

���� G� Huet and B� Lang� Proving and applying program transformations expressed with
second	order	patterns� Acta Informatica� ��������� �����

��#� T�B� Knoblock and R�L� Constable� Formalized metareasoning in type theory� In Procee�
dings of LICS� pages �������� IEEE� ����� Also available as technical report TR ��	����
Department of Computer Science� Cornell University�

���� Z� Luo� An Extended Calculus of Constructions� Technical Report CST	��	�#� University
of Edinburgh� July ���#�

���� Z� Luo� A Higher	Order Calculus and Theory Abstraction� Information and Computation�
�#��#������ �����

���� Z� Luo� Program Speci
cation and Data Re
nement in Type Theory� In S� Abramsky and
T�S�E� Maibaum� editors� TAPSOFT	�� volume I� Lecture Notes in Computer Science
���� pages �������� Springer	Verlag� �����

���� Ch�E� Ore� The extended calculus of constructions �ECC� with inductive types� Informa�
tion and Computation� ����������� �����

��

���� S� Owre� J� M� Rushby� and N� Shankar� PVS� A prototype veri
cation system� In Deepak
Kapur� editor� th International Conference on Automated Deduction �CADE�� volume
�#� of Lecture Notes in Arti�cial Intelligence� pages �������� Saratoga� NY� ����� Springer	
Verlag�

���� H�A� Partsch� Speci�cation and Transformation of Programs� Springer	Verlag� ���#�

���� H� Rue$� Report on the speci
cation language qed� Korso working paper� Universit"at
Ulm� �����

���� J�M� Rushby S� Owre� N� Shankar� The PVS Speci�cation Language� Computer Science
Lab� SRI International� Menlo Park CA ��#��� March �����

���� D� Sannella and A� Tarlecki� Toward formal development of ML programs� foundations
and methodology� In Proc� TAPSOFT
�� Barcelona� number ��� in LNCS� pages ��������
Springer� �����

��#� D� Sannella and A� Tarlecki� Toward formal development of programs from algebraic
speci
cations� model	theoretic foundations� In Proc� Intl� Colloq� on Automata� Languages
and Programming� Vienna� number ��� in LNCS� pages �������� Springer� �����

���� D� Schwier� Type checking the speci
cation language qed� Korso working paper� Univer	
sit"at Ulm� �����

���� D� R� Smith� Structure and design of global search algorithms� Technical Report
KES�U������� Kestrel Institute� Palo Alto� CA� �����

���� F� W� von Henke� An algebraic approach to data types� program veri
cation� and program
synthesis� In Mathematical Foundations of Computer Science� Proceedings� Springer	Verlag
Lecture Notes in Computer Science ��� �����

���� R� W� Weyhrauch� Prolegomena to a Theory of Mechanized Formal Reasoning� Arti�cial
Intelligence� ������������#� ���#�

��

