
New Collapse Consequences of NP Having
Small Circuits

Johannes KÖBLER

Abteilung Theoretische Informatik
Universität Ulm
Oberer Eselsberg

89069 Ulm, Germany
koebler@informatik.uni-ulm.de

Osamu WATANABE ∗

Department of Computer Science
Tokyo Institute of Technology
Meguro-ku Ookayama 1-12-1

Tokyo 152, JAPAN
watanabe@cs.titech.ac.jp

Abstract

We show that if a self-reducible set has polynomial-size circuits, then it is low
for the probabilistic class ZPP(NP). As a consequence we get a deeper collapse
of the polynomial-time hierarchy PH to ZPP(NP) under the assumption that
NP has polynomial-size circuits. This improves on the well-known result of
Karp, Lipton, and Sipser [KL80] stating a collapse of PH to its second level
ΣP

2 under the same assumption.
As a further consequence, we derive new collapse consequences under the

assumption that complexity classes like UP, FewP, and C=P have polynomial-
size circuits.

Finally, we investigate the circuit-size complexity of several language classes.
In particular, we show that for every fixed polynomial s, there is a set in
ZPP(NP) which does not have O(s(n))-size circuits.

1 Introduction

The question whether intractable sets can be efficiently decided by non-uniform
models of computation has motivated much work in structural complexity theory.
In research from the early 1980’s to the present, a variety of results has been
obtained showing that this is impossible under plausible assumptions (see, e.g., the
survey [HOW92]). A typical model for non-uniform computations are (families of)
circuits. In the notation of Karp and Lipton [KL80], sets decidable by polynomial-
size circuits are precisely the sets in P/poly, i.e., they are decidable in polynomial
time with the help of a polynomial length bounded advice function [Pi79].

∗The second author is supported in part by Grant in Aid for Scientific Research of the Ministry
of Education, Science and Culture of Japan under Grant-in-Aid for Research (C) 06680308 (1994).
Part of his work has been done while he was visiting Universität Ulm (supported in part by the
guest scientific program of Universität Ulm).

1

Karp and Lipton (together with Sipser) [KL80] proved that no NP-complete
set has polynomial size circuits (in symbols NP 6⊆ P/poly) unless the polynomial
time hierarchy collapses to its second level. The proof given in [KL80] exploits a
certain kind of self-reducibility of the well-known NP complete problem SAT. More
generally, it is shown in [BBS86a, BBS86b] that every (Turing) self-reducible set in
P/poly is low for the second level ΣP

2 of the polynomial time hierarchy. Intuitively
speaking, a set is low for a relativizable complexity class if it gives no additional
power when used as an oracle for that class.

In this paper, we show that every self-reducible set in P/poly is also low for the
probabilistic class ZPP(NP). Since for every oracle A, ΣP

2 (A) = ∃ · ZPP(NP(A)),
lowness for ZPP(NP) implies lowness for ΣP

2 . As a consequence of our lowness
result we get a deeper collapse of the polynomial-time hierarchy to ZPP(NP) under
the assumption that NP has polynomial-size circuits. At least in some relativized
world, the new collapse level is quite close to optimal: there is an oracle relative to
which NP is contained in P/poly but PH does not collapse to P(NP) [He86, Wi85].
Our proof heavily uses the universal hashing technique [CW79, Si83] and builds on
ideas from [Ang88, Ga92, Kö94]. A central notion used for the design of a zero error
probabilistic algorithm is the concept of half-collisions introduced in the paper.

Based on our lowness result, we obtain new collapse consequences under the
assumption that complexity classes like NP, UP, FewP, and C=P have polynomial-
size circuits. We further obtain new relativizable collapses for the case that ModmP,
PSPACE, or EXP have polynomial-size circuits.

Very recently, Bshouty, Cleve, Kannan, and Tamon [BCKT94] building on a
result from [JVV86] have shown that the class of all circuits is exactly learnable
in (randomized) expected polynomial time with equivalence queries and the aid
of an NP oracle. This immediately implies that every set A in P/poly has an
advice function in FZPP(NP(A)). More precisely, since the circuit produced by
the probabilistic learning algorithm of [BCKT94] depends on the outcome of the
coin flips, the FZPP(NP(A)) transducer T computes a multi-valued advice function,
i.e., on input 0n, T accepts with probability at least 1/2, and on every accepting
path, T outputs some circuit that correctly decides all instances of length n w.r.t. A.
Using the technique in [BCKT94] we are able to show that every self-reducible set A
in P/poly has an advice function in FZPP(NP); thus providing an alternative way
to deduce the ZPP(NP) lowness of all self-reducible sets in P/poly. However, since
our main interest is in the collapse consequences of intractable problems having
polynomial-size circuits we prefer to give a self-contained proof of the lowness result.

As a further application, we derive new circuit-size lower bounds. In particular,
we show by relativizing proof techniques that for every fixed polynomial s, there
is a set in ZPP(NP) which does not have O(s(n))-size circuits. This improves
on the result of Kannan [Kan82] that for every polynomial s, the class ΣP

2 ∩ ΠP
2

contains such a set. It further follows that in every relativized world, there exist sets
in the class ZPEXP(NP) that do not have polynomial-size circuits. We mention
that prior to the work of the present paper it has been shown by non-relativizing

2

techniques that the subclass MAexp∩co-MAexp of ZPEXP(NP) contains non P/poly
sets [Bu94, Th94].

The paper is organized as follows. Section 2 introduces notation and defines the
self-reducibility used in the paper. In Section 3, we prove the ZPP(NP) lowness of
all self-reducible sets in P/poly. In Section 4, we state the collapse consequences,
and in Section 5, we derive the new circuit-size lower bounds.

2 Preliminaries and notation

All languages are over the binary alphabet Σ = {0, 1}. The length of a string x ∈ Σ∗

is denoted by |x|. Σ≤n (Σ<n) is the set of all strings of length at most n (resp.,
of length smaller than n). For a language A, A=n = A ∩ Σn and A≤n = A ∩ Σ≤n.
The cardinality of a finite set A is denoted by |A|. The characteristic function of
A is defined as A(x) = 1 if x ∈ A, and A(x) = 0, otherwise. For a class C of sets,
co-C denotes the class {Σ∗ − A | A ∈ C}. To encode pairs (or tuples) of strings
we use a standard polynomial-time computable pairing function denoted by 〈·, ·〉
whose inverses are also computable in polynomial time. Where intent is clear we
write f(x1, . . . , xk) in place of f(〈x1, . . . , xk〉). N denotes the set of non-negative
integers. Throughout the paper, the base of log is 2.

The textbooks [BDG, BC93, KST93, Pa94, Sch86] can be consulted for the stan-
dard notations used in the paper and for basic results in complexity theory. For
definitions of probabilistic complexity classes like ZPP see also [Gi77].

An NP machine M is a polynomial-time nondeterministic Turing machine. Each
computation path of M on some input x either accepts, rejects, or outputs “?”. M
accepts x if on input x, M has at least one accepting path, otherwise M rejects x.
M strongly accepts (strongly rejects) x [Lo82] if

• at least one computation path on input x is accepting (resp., rejecting) and

• there are no rejecting (resp., accepting) computation paths on input x.

In this case, the computation of M on input x is called a strong computation. An
NP machine that performs a strong computation on every input is called a strong
NP machine. It is well known that exactly the sets in NP ∩ co-NP can be accepted
by a strong NP machine [Lo82].

Next we define the kind of self-reducibility that we use in this paper.

Definition 2.1 Let ≻ be an irreflexive and transitive order relation on Σ∗. A
sequence x0, x1, . . . , xk of strings is called a ≻-chain (of length k) from x0 to xk if
x0 ≻ x1 ≻ · · · ≻ xk. Relation ≻ is called length checkable if there is a polynomial
q such that

1. for all x, y ∈ Σ∗, x ≻ y implies |y| ≤ q(|x|),

2. the language {〈x, y, k〉 | there is a ≻-chain of length k from x to y} is in NP.

3

Definition 2.2 A set A is self-reducible, if there is a polynomial-time oracle ma-
chine M and a length checkable order relation ≻ such that A = L(M, A) and on
any input x, M queries the oracle only about strings y ≺ x.

It is straightforward to check that the polynomially related self-reducible sets
introduced by Ko [Ko83] as well as the length-decreasing and word-decreasing self-
reducible sets of Balcázar [Ba90] are self-reducible in our sense. Furthermore, it
is well-known that complexity classes like NP, ΣP

k , ΠP
k , k ≥ 1, PP, C=P, ModmP,

m ≥ 2, PSPACE, and EXP have many-one complete self-reducible sets (see, for
example, [BDG, Ba90, OL93]).

Karp and Lipton [KL80] introduced the notion of advice functions in order to
characterize non-uniform complexity classes. A function h : N → Σ∗ is called a
polynomial-length function if for some polynomial p and for all n ≥ 0, |h(n)| = p(n).
For a class C of sets, let C/poly be the class of sets A such that there is a set I ∈ C
and a polynomial-length function h such that

∀n, ∀x ∈ Σ≤n [x ∈ A ⇔ 〈x, h(n)〉 ∈ I].

Function h is called an advice function for A, and I is the corresponding interpreter
set.

In this paper, we will heavily make use of the “hashing technique”, which has
been very fruitful in complexity theory. Here we review some notations and facts
about hash families. We also extend the notion of “collision” and introduce the
concept of a “half collision” which is central to our proof technique.

Sipser [Si83] used universal hashing, originally invented by Carter and Wegman
[CW79], to decide (probabilistically) whether a finite set X is large or small. A
linear hash function h from Σm to Σk is given by a Boolean (k, m)-matrix (aij) and
maps any string x = x1 . . . xm to some string y = y1 . . . yk, where yi is the inner
product ai · x =

∑m
j=1 aijxj (mod 2) of the i-th row ai and x.

Let x ∈ Σm, Y ⊆ Σm, and let h be a linear hash function from Σm to Σk. We
say that x has a collision on Y w.r.t. h if there exists a string y ∈ Y , different
from x, such that h(x) = h(y). In general, for any X ⊆ Σm, and any family
H = {h1, . . . , hl} of linear hash functions from Σm to Σk, X has a collision on Y
w.r.t. H (Collision(X, Y, H) for short) if there is some x ∈ X that has a collision
on Y w.r.t. any hi in H. That is,

Collision(X, Y, H) ⇔ ∃x ∈ X ∃ y1, . . . , yl ∈ Y : x 6∈ {y1, . . . yl}

and for all i = 1, . . . , l : hi(x) = hi(yi).

If X has a collision on itself w.r.t. H, we simply say that X has a collision w.r.t.
H. Next we extend the notion of “collision” in the following way. For any X and Y
⊆ Σm, and any family H = {h1, . . . , hl} of linear hash functions, we say that X has
a half-collision on Y w.r.t. H (Half -Collision(X, Y, H) for short) if there is some

4

x ∈ X that has a collision on Y w.r.t. at least ⌈l/2⌉ many of the hash functions hi

in H. That is,

Half -Collision(X, Y, H) ⇔ ∃x ∈ X ∃ y1, . . . , yl ∈ Y : x 6∈ {y1, . . . yl}

and |{i | 1 ≤ i ≤ l, hi(x) = hi(yi)}| ≥ ⌈l/2⌉.

An important relationship between collisions and half-collisions is the following one:
If X has a collision w.r.t. H on Y = Y1 ∪ Y2, then X must have a half-collision
w.r.t. H either on Y1 or on Y2.

Note that the predicates Collision(X, Y, H) and Half -Collision(X, Y, H) can be
decided in NP provided that membership in the sets X and Y can be tested
in NP. More precisely, the sets {〈v, H〉 | Collision(Xv, Yv, H)} and {〈v, H〉 |
Half -Collision(Xv, Yv, H)} are in NP, if the sets Xv and Yv are succinctly represen-
ted in such a way that the languages {〈x, v〉 | x ∈ Xv} and {〈y, v〉 | y ∈ Yv} are in
NP.

We denote the set of all families H = {h1, . . . , hl} of l linear hash functions
from Σm to Σk by H(l, m, k). The following theorem is proved by a pigeon-hole
argument. It says that every sufficiently large set must have a collision w.r.t. any
hash family.

Theorem 2.3 [Si83] For any hash family H ∈ H(l, m, k) and any set X ⊆ Σm of
cardinality |X | > l · 2k, X must have a collision w.r.t. H.

On the other hand, we get from the next theorem (called Coding Lemma in
[Si83]) an upper bound on the collision probability for sufficiently small sets.

Theorem 2.4 [Si83] Let X ⊆ Σm be a set of cardinality at most 2k−1. If we choose
a hash family H uniformly random from H(k, m, k), then the probability that X has
a collision w.r.t. H is at most 1/2.

We will also make use of the following extension of Theorem 2.4 which can be
proved along the same lines.

Theorem 2.5 Let X ⊆ Σm be a set of cardinality at most 2k−s. If we choose a
hash family H uniformly random from H(l, m, k), then the probability that X has
a collision w.r.t. H is at most 2k−s(l+1).

By combining Theorem 2.3 and Theorem 2.5, a rough estimation for the cardina-
lity of a nonempty set X ⊆ Σm can be obtained with high probability: choose n ≥ 0
and for every k = 1, . . . , m, randomly guess a hash family Hk from H(n + k, m, k);
let kmax ≥ 0 be the maximum k ≤ m such that for all i ≤ k, X has a collision w.r.t.
Hi; then we have that |X | ≤ (n + kmax + 1)2kmax+1, and with probability at least
1 − 2−n−1, |X | > 2kmax−1.

Gavaldà extended Sipser’s Coding Lemma (Theorem 2.4) to the case of a collec-
tion C of exponentially many sets. He proved that the probability that a random

5

hash family consisting of k(n+1) many functions simultaneously hashes a collection
of 2n many sets is at least 1/2. The following theorem (letting s = 1 and l = n+k)
shows that already n + k many hash functions suffice.

Theorem 2.6 Let C be a collection of at most 2n subsets of Σm, each of which
has cardinality at most 2k−s. If we choose a hash family H uniformly random from
H(l, m, k), then the probability that some X ∈ C has a collision w.r.t. H is at most
2n+k−s(l+1).

Proof By Theorem 2.5, we have that for every fixed X ∈ C, the probability that
it has a collision w.r.t. a randomly chosen hash family H ∈ H(l, m, k) is at most
2k−s(l+1). Hence, the probability that there exists such a set X ∈ C is at most
2n+k−s(l+1).

For the case of half-collisions we have the following probability bound.

Theorem 2.7 Let X ⊆ Σm and let C be a collection of at most 2n subsets of
Σm, each of which has cardinality at most 2k−s−2. If we choose a hash family H
uniformly random from H(l, m, k), then the probability that X has a half-collision
on some Y ∈ C w.r.t. H is at most |X | · 2n−sl/2.

Proof For every fixed Y ∈ C and every fixed x ∈ X , the probability that x has a
collision on Y w.r.t. a randomly chosen h is at most 2−s−2. Hence, the probability
that x has a collision on Y w.r.t. at least half of the functions in a randomly chosen
hash family H ∈ H(l, m, k) is at most

l
∑

i=⌈l/2⌉

(

l

i

)

(2−s−2)i(1 − 2−s−2)l−i ≤ 2−(s+2)l/2
l
∑

i=⌈l/2⌉

(

l

i

)

≤ 2l−(s+2)l/2 = 2−sl/2.

That is, the probability that x has a half-collision on Y w.r.t. a randomly chosen
hash family H is bounded by 2−sl/2. Hence, the probability that there exists an
Y ∈ C and an x ∈ X such that x has a half-collision on Y w.r.t. H is at most
|X | · 2n−sl/2.

3 Lowness of self-reducible sets in P/poly

In this section, we show that every self-reducible set A in (NP ∩ co-NP)/poly is low
for ZPP(NP). Let IA be an interpreter set and hA be an advice function for A. We
construct a probabilistic algorithm TA and an NP oracle LA having the following
properties:

a) The expected running time of T LA
A is polynomially bounded.

6

b) On every computation path on input 0n, TLA
A outputs some information that

can be used to determine the membership of any x up to length n to A by
some strong NP computation (in the sense of [Lo82]).

Using these properties, we can prove the lowness of A for ZPP(NP) as follows:
In order to simulate any NP(A) computation, we first precompute the above men-
tioned information for A (up to some length) by T LA

A , and then by using this
information, we can simulate the NP(A) computation by some NP(NP ∩ co-NP)
computation. Note that the precomputation (performed by T LA

A) can be done
in ZPP(NP), and since NP(NP ∩ co-NP) = NP, the remaining computation
can be done in NP. Hence, NP(A) ⊆ ZPP(NP), which implies further that
ZPP(NP(A)) ⊆ ZPP(ZPP(NP)) (= ZPP(NP) [Za82]).

We will now make the term “information” precise. For this, we need some addi-
tional notation. Let Mself be a polynomial-time oracle machine, let ≻ be a length
checkable order relation, and let q be a polynomial witnessing the self-reducibility
of A. We assume that |hA(q(n))| = p(n) for some fixed polynomial p > 0. In the
following, we fix n and consider instances (to A) of length up to q(n) as well as
advice strings of length exactly p(n).

• A sample is (the encoding of) a set of pairs of the form 〈xi, A(xi)〉, where the
xi’s are instances.

• For any sample S = {〈x1, b1〉, . . . , 〈xk, bk〉}, let Consistent(S) be the set {w ∈
Σp(n) | ∀i (1 ≤ i ≤ k) : IA(xi, w) = bi} of all advice strings w that are
consistent with S.

• For any sample S and any instance x, let Accept(x, S) (resp., Reject(x, S))
be the set of all consistent advice strings that accept x (resp., reject x). That
is, Accept(x, S) = {w ∈ Consistent(S) | IA(x, w) = 1} and Reject(x, S) =
{w ∈ Consistent(S) | IA(x, w) = 0}.

• Let Correct(x, S) be the set {w ∈ Consistent(S) | IA(x, w) = A(x)} of con-
sistent advice strings that decide x correctly, and let Incorrect(x, S) be the
complementary set {w ∈ Consistent(S) | IA(x, w) 6= A(x)}.

Note that Accept(x, S) and Reject(x, S) form a partition of the set Consistent(S),
and that

x ∈ A ⇒ Correct(x, S) = Accept(x, S) and Incorrect(x, S) = Reject(x, S),

x 6∈ A ⇒ Correct(x, S) = Reject(x, S) and Incorrect(x, S) = Accept(x, S).

The above condition b) can now be precisely stated as follows:

b) On every computation path on input 0n, TLA
A outputs a pair (S, H) consi-

sting of a sample S and a hash family H ∈ H(q(n) + k, p(n), k), for some k,
1 ≤ k ≤ p(n), such that for all x up to length n, Consistent(S) has a half-
collision on Correct(x, S) w.r.t. H, but not on Incorrect(x, S).

7

input 0n

S := ∅
loop

for k = 1, . . . , p(n), choose Hk randomly from H(q(n) + k, p(n), k),
kmax := max{k | ∀i ≤ k, Consistent(S) has a collision w.r.t. Hi}
d := kmax − ⌊c log n⌋
if there exists an x ∈ Σ�n such that Consistent(S) has a half-collision
on Incorrect(x, S) w.r.t. Hd

then
use oracle LA to find such a string x and to determine A(x)
S := S ∪ {〈x, A(x)〉}

else exit(loop) end
end loop
output (S, Hd)

Figure 1: The probabilistic algorithm TA.

Once we have a pair (S, H) satisfying condition b), we can determine whether an
instance x of length up to n is in A by simply checking on which one of Accept(x, S)
or Reject(x, S), Consistent(x, S) has a half-collision w.r.t. H. Since condition b)
guarantees that the half-collision can always be found, this checking can be done
by a strong NP computation. Let us now prove our main lemma.

Lemma 3.1 For any self-reducible set A in (NP ∩ co-NP)/poly, there exist a pro-
babilistic transducer TA and an oracle LA in NP satisfying the above conditions a)
and b).

Proof We use the notation introduced so far. Further, we denote by Σ�n the set
{y | ∃x ∈ Σ≤n, x � y}. It is clear that Σ≤n ⊆ Σ�n ⊆ Σ≤q(n) (recall that q(n) is a
length bound on the queries occuring in the self-reducing tree produced by Mself

on any instance of length n). Let c be a fixed constant such that q(n)+ p(n)+ 1 ≤
2⌊c log n⌋−2 for all sufficiently large n. (Recall that p(n) is the advice length for the
set of all instances of length up to q(n).)

A description of TA is given in Figure 1. Starting with the empty sample, TA

enters the main loop. During each execution of the loop, TA first randomly guesses
a series of p(n) many hash families Hk ∈ H(q(n) + k, p(n), k), 1 ≤ k ≤ p(n). Then
TA computes the integer d = kmax − ⌊c log n⌋, where kmax is the maximum integer
k ∈ {0, . . . , p(n)} such that Consistent(S) has a collision w.r.t. all hash families
Hi, 1 ≤ i ≤ k. (As argued below, we can assume that d is positive.)

Note, in particular, that Consistent(S) has a collision w.r.t. Hd; thus, for every
instance x, Consistent(S) has a half-collision w.r.t. Hd on either Correct(x, S) or
Incorrect(x, S).

8

If there exists a string x ∈ Σ�n such that Consistent(S) has a half-collision on
Incorrect(x, S) w.r.t. Hd, then this string is added to the sample S, and TA reenters
the loop. We will describe below how TA uses the NP oracle LA to find such an x
(if it exists). Otherwise, the pair (S, Hd) has the desired properties as stated above,
and TA outputs the pair (S, Hd).
The intuition behind the choice of the value for d (depending on kmax) is as follows:

• d is still large enough to ensure that for a suitable polynomial t and for
a random hash family H ∈ H(q(n) + d, p(n), d), the probability is expo-
nentially small that Consistent(S) has a half-collision w.r.t. H on some set
Incorrect(x, S) of size smaller than c(S)/t(n).

• On the other hand, with high probability, d is so small that Consistent(S)
has a collision w.r.t. every hash family H ∈ H(q(n) + d, p(n), d). This is
important since in order to estimate the success probability of TA we have to
consider the conditional probability for Consistent(S) having a half-collision
on X given that Consistent(S) has a collision w.r.t. Hd.

A more precise analysis follows. Let S be a sample and let d be the correspon-
ding integer as determined by TA (i.e., d = kmax − ⌊c log n⌋, where kmax = p(n)
or Consistent(S) does not have a collision w.r.t. some hash family Hkmax+1 ∈
H(q(n) + kmax + 1, p(n), kmax + 1)). We first estimate the probability that w.r.t.
a uniformly at random chosen hash family H ∈ H(q(n) + d, p(n), d), Consistent(S)
has a half-collision on some set Incorrect(x, S) of relatively small size. Let C be the
collection of all sets X of the form Accept(x, S) or Reject(x, S) for some x ∈ Σ≤q(n)

such that |X | ≤ c(S)2−2⌊c log n⌋−5.

Claim 1 The probability of Consistent(S) having a half-collision on some X ∈ C
w.r.t. a uniformly at random chosen hash family H ∈ H(q(n) + d, p(n), d) is at
most 2−q(n)−1.

Proof of Claim 1. By a padding trick we can assume that c(S) is always larger than
24⌊c log n⌋. Since kmax = p(n) or Consistent(S) does not have a collision w.r.t. some
hash family Hkmax+1 ∈ H(q(n) + kmax + 1, p(n), kmax + 1), it follows by Theorem 2.3
that c(S) ≤ (q(n) + kmax + 1)2kmax+1 ≤ (q(n) + p(n) + 1)2d+⌊c log n⌋+1. Hence, we
have

24⌊c log n⌋ ≤ c(S) ≤ 2d+2⌊c log n⌋−1. (1)

Clearly, |C| ≤ 2q(n), and by (1), |X | ≤ c(S)2−2⌊c log n⌋−5 ≤ 2d−6 for every X ∈ C.
Thus, it follows from Theorem 2.7 that the probability of Consistent(S) having
a half-collision on some X ∈ C w.r.t. a uniformly at random chosen hash family
H ∈ H(q(n) + d, p(n), d) is at most

c(S) · 2q(n)−2(q(n)+d) ≤ 2−q(n)−d+2⌊c log n⌋

≤ 2−q(n)−1.

9

For the last step we used the lower bound d ≥ 2⌊c log n⌋ + 1 which follows from
inequality (1). 2 Proof of Claim 1.

Now consider an arbitrary execution of the main loop during which S is expanded
by some instance x. Since c(S∪{〈x, A(x)〉}) = c(S)−|Incorrect(x, S)|, the expected
number of loop iterations is polynomially bounded provided that there is some fixed
polynomial t such that |Incorrect(x, S)| ≤ c(S)/t(n) holds only with low probability.

Claim 2 There is a polynomial t such that in each execution of the main loop, with
probability at most 2−n an instance x with |Incorrect(x, S)| ≤ c(S)/t(n) is selected.

Proof of Claim 2. Observe that if 2kmax−1 ≥ c(S), then Consistent(S) must have a
collision w.r.t. Hk, where integer k is chosen such that 2k−2 < c(S) ≤ 2k−1. Thus
it follows by Theorem 2.5 that

Pr[2kmax−1 ≥ c(S)] ≤ 2−q(n)−1. (2)

Since q(n)+d+1 ≤ q(n)+p(n)+1 ≤ 2⌊c log n⌋−2, we have by the definition of d that

(q(n) + d + 1)2d+1 ≤ 2kmax−1. (3)

Putting (2) and (3) together, we get that

Pr[(q(n) + d + 1)2d+1 < c(S)] ≥ 1 − 2−q(n)−1. (4)

Let t(n) ≥ 22⌊c log n⌋+5. Then, by the way collection C is defined, |Incorrect(x, S)| can
only be smaller than c(S)/t(n) if Consistent(S) has a half-collision on some X ∈ C
w.r.t. Hd. To estimate the probability for this event, observe that, by (4), with
probability at least 1− 2−q(n)−1, (q(n)+d+1)2d+1 < c(S), implying (together with
Theorem 2.3) that Consistent(S) must have a collision w.r.t. any hash family in
H(q(n) + d, p(n), d). By Claim 1 it follows that in this case Consistent(S) has a half-
collision on some X ∈ C w.r.t. Hd with probability at most 2−q(n)−1. Hence, in each
execution of the main loop the total probability that |Incorrect(x, S)| ≤ c(S)/t(n)
is bounded by

Pr[(q(n) + d + 1)2d+1 ≥ c(S)] + Pr[(q(n) + d + 1)2d+1 < c(S)] · 2−q(n)−1 ≤ 2−n.

2 Proof of Claim 2.

We finally show how TA can find a string x ∈ Σ�n such that Consistent(S) has a
half-collision on Incorrect(x, S) w.r.t. Hd (if such an x exists). Define oracle LA as

10

follows:

LA = {〈0n, x, k, b, S, H〉 | there is a ≻-chain of length k from some string y ∈
Σ≤n to some string z ≤ x such that there is a computation path π of
Mself on input z fulfilling the following properties:

- if a query q is answered ‘yes’ (‘no’) then Consistent(S) has a half-
collision on Accept(q, S) (resp., Reject(q, S)) w.r.t. H,

- if π is accepting (rejecting) then Consistent(S)) has a half-collision
on Reject(z, S) (resp., Accept(z, S)) w.r.t. H,

- if b = 1 then π is accepting }.

If the tuple 〈0n, 1q(n), 0, 0, S, Hd〉 is not in TA, then it follows by the definition of
TA that w.r.t. Hd, Consistent(S) does not have a half-collision on any of the sets
Incorrect(x, S), x ∈ Σ�n.

Otherwise, by asking queries of the form 〈0n, 1q(n), i, 0, S, Hd〉, TA can compute by
binary search imax as the maximum value i ≤ 2q(n)+1 such that 〈0n, 1q(n), i, 0, S, Hd〉
is in LA (a similar idea is used in [LT91]). Knowing imax, TA can find the lexico-
graphically smallest string xmin such that 〈0n, xmin, imax, 0, S, Hd〉 is in LA. Since
for all q ≺ xmin, Consistent(S) does not have a half-collision on Incorrect(q, S)
w.r.t. Hd, it is easy to see that Consistent(S) must have a half-collision on
Incorrect(xmin, S) w.r.t. Hd. Finally, TA can determine A(xmin) by asking whe-
ther 〈0n, xmin, imax, 1, S, Hd〉 is in LA.

Theorem 3.2 Every self-reducible set A in the class (NP ∩ co-NP)/poly is low for
ZPP(NP).

Proof We first show that NP(A) ⊆ ZPP(NP). Let L be a set in NP(A), and let M
be a deterministic polynomial-time oracle machine such that for some polynomial
t,

L = {x | ∃y ∈ Σt(|x|) : 〈x, y〉 ∈ L(M, A)}.

Let s(n) be a polynomial bounding the length of all oracle queries of M on some
input 〈x, y〉 where x is of length n. Then L can be accepted by a probabilistic
oracle machine N using the following NP oracle O.

O = {〈x, S, H〉 | there is a y ∈ Σt(|x|) such that M on input 〈x, y〉 has an
accepting path π on which each query q is answered ‘yes’ (‘no’) only if
Consistent(S) has a half-collision on Accept(q, S) (resp., Reject(q, S))
w.r.t. H }.

Here is how NO accepts L. On input x, N first simulates TA on input 0s(|x|) to
compute a pair (S, Hd) as described above. Then N asks the query 〈x, S, Hd〉 to O
to find out whether x is in L.

11

This proves that NP(A) ⊆ ZPP(NP). Since ZPP(ZPP) = ZPP [Za82] via a proof
that relativizes, it follows that ZPP(NP(A)) is also contained in ZPP(NP), showing
that A is low for ZPP(NP).

4 Collapse consequences

As a direct consequence of Theorem 3.2 we get an improvement of Karp, Lipton,
and Sipser’s result [KL80] that NP is not contained in P/poly unless the polynomial-
time hierarchy collapses to ΣP

2 .

Corollary 4.1 If NP is contained in (NP ∩ co-NP)/poly then the polynomial-time
hierarchy collapses to ZPP(NP).

Proof It is well-known that the NP complete set SAT is self-reducible. Thus, under
the assumption that NP is contained in (NP ∩ co-NP)/poly, it follows that SAT is
low for ZPP(NP). In other words, ΣP

2 = NP(NP) ⊆ ZPP(NP(SAT)) ⊆ ZPP(NP),
implying the collapse of the polynomial-time hierarchy to ZPP(NP).

The collapse to ZPP(NP) in Corollary 4.1 is quite close to optimal, at least
in some relativized world [He86, Wi85]: there is an oracle relative to which NP is
contained in P/poly but the polynomial-time hierarchy does not collapse to P(NP).

In the rest of this section we report some other interesting collapses which can
be easily derived using (by now) standard techniques, and which have also been
pointed out independently by several researchers to the second author. First, it is
straightforward to check that Theorem 3.2 relativizes: For any oracle B, if A is a
self-reducible set in the class (NP(B) ∩ co-NP(B))/poly, then NP(A) is contained
in ZPP(NP(B)). Consequently, Theorem 3.2 generalizes to the following result.

Theorem 4.2 If A is a self-reducible set in the class (ΣP
k ∩ ΠP

k)/poly, then
NP(A) ⊆ ZPP(ΣP

k).

As a direct consequence of Theorem 4.2 we get an improvement of results in
[AFK89, Kä91] stating (for k = 1) that ΣP

k is not contained in (ΣP
k ∩ ΠP

k)/poly
unless the polynomial-time hierarchy collapses to ΣP

k+1.

Corollary 4.3 Let k ≥ 1. If ΣP
k is contained in (ΣP

k ∩ ΠP
k)/poly, then the

polynomial-time hierarchy collapses to ZPP(ΣP
k).

Proof Since ΣP
k contains complete self-reducible languages, the assumption that

ΣP
k is contained in (ΣP

k ∩ ΠP
k)/poly implies that ΣP

k+1 = NP(ΣP
k) ⊆ ZPP(ΣP

k).

A further consequence of Theorem 4.2 is the following improvement of a result due
to Yap [Yap83] stating that ΠP

k is not contained in ΣP
k /poly unless the polynomial-

time hierarchy collapses to ΣP
k+2.

12

Corollary 4.4 Let k ≥ 1. If ΠP
k ⊆ ΣP

k /poly, then PH collapses to ZPP(ΣP
k+1).

Proof The assumption that ΠP
k is contained in ΣP

k /poly implies that ΣP
k+1 is

contained in ΣP
k /poly ⊆ (ΣP

k+1 ∩ ΠP
k+1)/poly. Hence we can apply Corollary 4.3.

Corollary 4.5

i) For K ∈ {UP, FewP}, if K ⊆ (NP ∩ co-NP)/poly then K is low for ZPP(NP).

ii) For every k ≥ 1, if C=P ⊆ (ΣP
k ∩ ΠP

k)/poly then CH = ZPP(ΣP
k).

Proof

i) It is well-known that for every set A in UP (FewP), the left set of A [OW91] is
word-decreasing self-reducible and in UP (resp., FewP). Thus, under the as-
sumption that UP ⊆ (NP ∩ co-NP)/poly (resp., FewP ⊆ (NP ∩ co-NP)/poly)
it follows by Theorem 3.2 that the left set of A (and since A is polynomial-time
many-one reducible to its left set, also A) is low for ZPP(NP).

ii) First, since C=P has complete word-decreasing self-reducible languages
[OL93], C=P ⊆ (ΣP

k ∩ ΠP
k)/poly implies C=P ⊆ ZPP(ΣP

k) ⊆ PH. Se-
cond, since PH ⊆ BPP(C=P) [TO92, Ta93], C=P ⊆ (ΣP

k ∩ ΠP
k)/poly implies

PH ⊆ (ΣP
k ∩ ΠP

k)/poly and therefore PH collapses to ZPP(ΣP
k) by Corol-

lary 4.3. Finally, since CH = C=P ∪ C=P(C=P) ∪ . . . [To91], it follows that
C=P(PH) ⊆ BPP(C=P) [TO92] ⊆ PH, and thus we get inductively that
CH ⊆ PH (⊆ ZPP(ΣP

k)).

Under certain assumptions as, for example, ModmP ⊆ P/poly a collapse of PH
to the subclass MA ∩ co-MA of ZPP(NP) could be shown.

Theorem 4.6 [LFKN92, BFL91, BF91] For K ∈ {PP, ModmP, PSPACE, EXP},
if K ⊆ P/poly then K ⊆ MA.

However, in contrast to Theorem 4.6 which has been proved by non-relativizing
techniques, and therefore is not known to relativize, the proof of the following corol-
lary of Theorem 4.2 relativizes. Harry Buhrman pointed out that the unrelativized
version of Corollary 4.7 can also be derived from Theorem 4.6.

Corollary 4.7 For every k ≥ 1, and in every relativized world,

i) For m ≥ 2, if ModmP ⊆ (ΣP
k ∩ ΠP

k)/poly then ModmP ⊆ PH = ZPP(ΣP
k).

ii) If PSPACE ⊆ (ΣP
k ∩ ΠP

k)/poly then PSPACE = ZPP(ΣP
k).

iii) If EXP ⊆ (ΣP
k ∩ ΠP

k)/poly then EXP = ZPP(ΣP
k).

13

Proof

i) The proof is analogous to the one of part ii) of Corollary 4.5 using the fact
that ModmP has complete word-decreasing self-reducible languages [OL93],
and that PH ⊆ BPP(ModmP) [TO92, Ta93].

ii) is immediate from Theorem 4.2 since PSPACE has complete (length-
decreasing) self-reducible languages.

iii) is also immediate from Theorem 4.2 since EXP has complete (word-
decreasing) self-reducible languages [Ba90].

5 Circuit complexity

Kannan [Kan82] proved that for every fixed polynomial s, there is a set in ΣP
2 ∩ΠP

2

which does not have O(s(n))-size circuits. Using a padding argument, he obtained
the existence of sets in NEXP(NP) ∩ co-NEXP(NP) not having polynomial-size
circuits.

Theorem 5.1 [Kan82]

1. For every polynomial s, there is a set As in ΣP
2 ∩ΠP

2 not having O(s(n))-size
circuits.

2. For every increasing time-constructible super-polynomial function f(n), there
is a set Af in NTIME[f(n)](NP) ∩ co-NTIME[f(n)](NP) not having polyno-
mial size circuits.

As an application of our results in Section 3, we can improve Kannan’s results
in every relativized world from the class ΣP

2 ∩ ΠP
2 to ZPP(NP), and from the

class NTIME[f(n)](NP) ∩ co-NTIME[f(n)](NP) to ZPTIME[f(n)](NP), respec-
tively. Here ZPTIME[f(n)](NP) denotes the class of all sets that are accepted by
some probabilistic machine relative to some oracle set A ∈ NP, with zero error
probability and within expected running time O(f(n)).

Note that for all sets in the class P/poly, we may fix the interpreter set to some
appropriate one in P. Let Iuniv denote such a fixed interpreter set. Furthermore,
the class P/poly remains unchanged, if we relax the notion of an advice function
hA such that hA(n) has only to decide A=n correctly (instead of A≤n). That is, in
this section, any function hA is called an advice function for A (w.r.t. Iuniv), if for
every x, A(x) = Iuniv(x, hA(|x|)).

A sequence Cn, n ≥ 0, of circuits is called a circuit family for A, if for every
n ≥ 0, Cn has n input gates, and for all n-bit strings x1 · · ·xn, Cn(x1, . . . , xn) =
A(x1 · · ·xn). It is well-known (see, e.g., [BDG]) that Iuniv can be chosen in such
a way that advice length and circuit size (i.e., number of gates) are polynomially
related to each other. More precisely, we can assume that there is a polynomial p
such that the following holds for every set A.

14

• If h is an advice function for A w.r.t. Iuniv , then there exists a circuit family
Cn, n ≥ 0, for A of size |Cn| ≤ p(n + |h(n)|).

• If Cn, n ≥ 0, is a circuit family for A, then there exists an advice function h
for A w.r.t. Iuniv of length |h(n)| ≤ p(|Cn|).

Moreover, we can assume that for every polynomial-time interpreter set I there is
a constant cI such that if h is an advice function for A w.r.t. I, then there exists
an advice function h′ for A w.r.t. Iuniv of length |h′(n)| ≤ |h(n)| + cI for all n.

The following lemma is obtained by a direct diagonalization (cf. the correspon-
ding result in [Kan82]). A set S is called PC-printable (see [HY84]) if there is a
polynomial-time oracle transducer T and an oracle set A ∈ C such that on any
input 0n, TA outputs a list of all strings in S≤n.

Lemma 5.2 For every fixed polynomial s, there is a ∆P
3 -printable set As such that

every advice function h for As is of length |h(n)| ≥ s(n) for almost all n.

Proof For a given n, let x1, x2, . . . , x2n be the sequence of strings of length n,
enumerated in lexicographic order. Consider the two sets Have-Advice and Find -A
defined as follows.

〈n, a1 · · ·as(n)〉 ∈ Have-Advice ⇔

∃w ∈ Σ<s(n), ∀ i, 1 ≤ i ≤ min(s(n), 2n) : ai = Iuniv (xi, w),

〈n, a1 · · ·aj10s(n)−j〉 ∈ Find-A ⇔

∃ aj+1 · · ·as(n) : 〈n, a1 · · ·ajaj+1 · · ·as(n)〉 6∈ Have-Advice.

Note that for all n such that s(n) ≤ 2n, at least one pair of the form 〈n, a1 · · ·as(n)〉
is not contained in Have-Advice. That is, there is no advice of length smaller than
s(n) that accepts the strings x1, . . . , xs(n) according to a1, . . . , as(n). Let αn denote
the lexicographically smallest such pair. Then As is defined as follows: a string xi

of length n is in As if and only if 1 ≤ i ≤ s(n) ≤ 2n, and the ith bit of αn (i.e., ai)
is 1. Then clearly, for almost all n, A=n

s has no advice of length smaller than s(n).
Furthermore, Have-Advice is in NP and Find -A is in NP(NP). Note also that by
using Find -A as an oracle, αn is computable in polynomial time w.r.t. n. Hence,
As is P(NP(NP))-printable.

By a simple modification of Kannan’s proof that for every polynomial s, the
class ΣP

2 ∩ ΠP
2 contains a set which does not have O(s(n))-size circuits we obtain

the following corollary.

Corollary 5.3 For every fixed polynomial s, there is a set As in ZPP(NP) which
does not have O(s(n))-size circuits.

15

Proof If NP does not have polynomial-size circuits, then we can take As = SAT.
Otherwise, PH = ZPP(NP) by Corollary 4.1, and thus the theorem easily follows
from Lemma 5.2.

We remark that it has been observed by Harry Buhrman and independently
by Thomas Thierauf that Theorem 4.6 can be used to show that the class
MAexp ∩ co-MAexp contains non P/poly sets (see Corollary 5.4 below). Here,
MAexp denotes the exponential-time version of Babai’s class MA [BM88]. That

is, MAexp = MA[2nO(1)
], where a language L is in MA[f(n)], if there exists a set

B ∈ DTIME[O(n)] such that for all x of length n,

x ∈ L ⇒ ∃y, |y| = f(n) : Pr[〈x, y, z〉 ∈ B] > 2/3,

x 6∈ L ⇒ ∀y, |y| = f(n) : Pr[〈x, y, z〉 ∈ B] < 1/3,

and z is chosen uniformly random from Σf(n).

Corollary 5.4 [Bu94, Th94] MAexp ∩ co-MAexp contains sets that do not have
polynomial size circuits.

Proof If EXP does not have polynomial-size circuits, then any EXP complete
set is in MAexp ∩ co-MAexp but not in P/poly. Otherwise, PH = MA ∩ co-MA by
Theorem 4.6, and we can apply the well-known upward collapse technique (see,
for example, [Bo74]) to conclude that NEXP(NP) ∩ co-NEXP(NP) collapses to
MAexp ∩ co-MAexp. Now the corollary immediately follows by Theorem 5.1.

It was communicated to us by Harry Buhrman [Bu94] that for any increasing
time-constructible super-polynomial function f(n), Corollary 5.4 can be improved
from MAexp ∩ co-MAexp to MA[f(n)] ∩ co-MA[f(n)]. Both these results, however,
are proved by non-relativizing techniques, and therefore the following corollary is
incomparable to Corollary 5.4 as well as to its improvement.

Corollary 5.5 For every increasing time-constructible super-polynomial function
f(n), and in every relativized world, there is a set Af in ZPTIME[f(n)](NP) which
does not have polynomial-size circuits.

Proof If NP does not have polynomial-size circuits, then we can take Af = SAT.
Otherwise, PH = ZPP(NP) by Corollary 4.1, and thus it follows from Lemma 5.2
that there is a set A in ZPTIME[nk](NP) such that every advice function h for A is
of length |h(n)| ≥ n for almost all n. By the proof technique of Lemma 5.2,we can
assume that in all length n strings of A, 1’s only occur at the O(log n) rightmost
positions. Now consider the following set Af and interpreter set I:

Af = {x | 0⌊f(n)1/k⌋−nx ∈ A},

I = {〈y, w〉 | y = 0⌊f(n)1/k⌋−nx, 〈x, w〉 ∈ Iuniv}.

16

Clearly, Af is in ZPTIME[f(n)](NP) and I is in P. Furthermore, it follows for

every advice function hf for Af that for every y of the form 0⌊f(n)1/k⌋−nx, |x| = n,

y ∈ A ⇔ 〈y, hf(n)〉 ∈ I

⇔ 〈y, h′
f(n)〉 ∈ Iuniv

for a suitable advice function h′
f(n) of length |h′

f (n)| ≤ |hf (n)|+ cI . Thus, we have
for almost all n,

|hf(n)| ≥ |h′
f (n)| − cI ≥ |y| − cI = ⌊f(n)1/k⌋ − cI .

This shows that the length of hf is super-polynomial.

Corollary 5.6 In every relativized world, ZPEXP(NP) contains sets that do not
have polynomial-size circuits.

We notice that it is not possible to extend Corollary 5.6 by relativizing techniques
to the class EXP(NP), since there exist recursive oracles relative to which all sets
in EXP(NP) have polynomial size circuits [Wi85, He86].

6 Concluding remarks

An interesting question concerning complexity classes that are known to contain
non P/poly sets but possibly don’t have complete sets is whether an explicit non
P/poly set can be constructed in that class. For example, by Corollary 5.4 we know
that the class MAexp ∩ co-MAexp must contain sets that do not have polynomial-
size circuits. But we were not able to give a constructive proof of this fact. To our
knowledge, it is not even known whether the existence of a non P/poly set can be
constructively proved within the class NEXP(NP) ∩ co-NEXP(NP).

Acknowledgments

For helpful discussions and suggestions regarding this work we are very grateful to
H. Buhrman, R. Gavaldà, L. Hemaspaandra, M. Ogihara, U. Schöning, R. Schuler,
and T. Thierauf. We also thank H. Buhrman, L. Hemaspaandra, M. Ogihara, and
T. Thierauf for permitting us to include their observations in the paper.

References

[AFK89] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information
from an oracle. Journal of Computer and System Sciences 39 (1989) 21–30.

17

[Ang88] D. Angluin. Queries and concept learning. Machine Learning 2 (1988)
319–342.

[BF91] L. Babai, L. Fortnow. Arithmetization: A new method in structural
complexity. Computational Complexity 1 (1991) 41–66.

[BFL91] L. Babai, L. Fortnow, C. Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity 1 (1991) 1–40.

[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof
system and a hierarchy of complexity classes. Journal of Computer and System
Sciences 36 (1988) 254–276.

[Ba90] J.L. Balcázar. Self-reducibility. Journal of Computer and System Sci-
ences 41 (1990) 367–388.

[BBS86a] J.L. Balcázar, R. Book, and U. Schöning. Sparse sets, lowness
and highness. SIAM Journal on Computing 23 (1986) 679–688.

[BBS86b] J.L. Balcázar, R. Book, and U. Schöning. The polynomial-time
hierarchy and sparse oracles. Journal of the ACM 33(3) (1986) 603–617.

[BDG] J.L. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity Theory.
(Springer, Berlin, 1988 and 1990).

[Bo74] R. Book. Tally languages and complexity classes. Information and Control
26 (1974) 186–193.

[BCKT94] N.H. Bshouty, R. Cleve, S. Kannan, and C. Tamon. Oracles and
queries that are sufficient for exact learning. Proceedings 7th ACM Conference
on Computational Learning Theory (1994) 130–139.

[BC93] D.P. Bovet, P. Crescenzi. Introduction to the Theory of Complexity.
Prentice-Hall, 1993.

[Bu94] H. Buhrman, personal communication.

[CW79] J.L. Carter and M.N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences 18 (1979) 143–154.

[Ga92] R. Gavaldà. Bounding the complexity of advice functions. Proceedings
of the 7th Structure in Complexity Theory Conference (IEEE, New York, 1992)
249–254.

[Gi77] J. Gill. Computational complexity of probabilistic complexity classes.
SIAM Journal on Computing 6 (1977) 675–695.

18

[HY84] J. Hartmanis and Y. Yesha. Computation times of NP sets of different
densities. Theoretical Computer Science 34 (1984) 17–32.

[He86] H. Heller. On relativized exponential and probabilistic complexity classes.
Information and Control 71 (1986) 231–243.

[HOW92] L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are
sparse sets? Proceedings of the 7th Structure in Complexity Theory Conference
(IEEE, New York, 1992) 222–238.

[JVV86] M.R. Jerrum, L.G. Valiant, V.V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer Sci-
ence 43 (1986) 169–188.

[Kä91] J. Kämper. Non-uniform proof systems: A new framework to describe
non-uniform and probabilistic complexity classes. Theoretical Computer Science
85(2) (1991) 305-331.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control 55 (1982) 40–56.

[KL80] R.M. Karp and R.J. Lipton. Some connections between nonuniform
and uniform complexity classes. Proceedings 12th ACM Symposium Theory of
Computing (1980) 302–309.

[Ko83] K. Ko. On self-reducibility and weak p-selectivity. Journal of Computer
and System Sciences 26 (1983) 209–221.

[Kö94] J. Köbler. Locating P/poly optimally in the extended low hierarchy. To
appear in Theoretical Computer Science.

[KST93] J. Köbler, U. Schöning, J. Torán. The Graph Isomorphism Problem:
Its Structural Complexity. Birkhäuser, Boston, 1993.

[Lo82] T.J. Long. Strong nondeterministic polynomial-time reducibilities. Theo-
retical Computer Science 21 (1982) 1–25.

[LT91] A. Lozano and J. Torán. Self-reducible sets of small density. Mathe-
matical Systems Theory 24 (1991) 83–100.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, N. Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM 39(4) (1992) 859–868.

[OL93] M. Ogiwara and A. Lozano. On sparse hard sets for counting classes.
Theoretical Computer Science 112 (1993) 255–275.

19

[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-
table reducibility of NP sets to sparse sets. SIAM Journal on Computing 20(3)
(1991) 471–483.

[Pa94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pi79] N. Pippenger. On simultaneous resource bounds. Proceedings 20th Sym-
posium on Foundations of Computer Science (IEEE, New York, 1979) 307–311.

[Sch86] U. Schöning. Complexity and Structure. Lecture Notes in Computer Sci-
ence, Vol. 211 (Springer, Berlin, 1986).

[Si83] M. Sipser. A complexity theoretic approach to randomness. Proceedings
15th ACM Symposium Theory of Computing (1983) 330–335.

[Ta93] J. Tarui. Probabilistic polynomials, AC0 functions, and the polynomial-
time hierarchy. Theoretical Computer Science 113 (1993) 167–183.

[Th94] T. Thierauf, personal communication.

[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM Journal on Computing 21 (1992) 316–328.

[To91] J. Torán. Complexity classes defined by counting quantifiers. Journal of
the ACM 38 (1991) 753–774.

[Wi85] C. Wilson. Relativized circuit complexity. Journal of Computer and
System Sciences 31(2) (1985) 169–181.

[Yap83] C. Yap. Some consequences of non-uniform conditions on uniform classes.
Theoretical Computer Science 26 (1983) 287–300.

[Za82] S. Zachos. Robustness of probabilistic computational complexity classes
under definitional perturbations. Information and Control 54 (1982) 143–154.

20

