
On average polynomial time�

R� Schuler

Theoretische Informatik� Universit�at Ulm� D����	� Ulm� Germany

email� rsc�informatik�uni�ulm�de

Keywords� computational complexity� average�case analysis�

Abstract

One important reason to consider average case complexity is whether all� or

at least some signi�cant part of NP can be solved e�ciently on average for all

reasonable distributions� Let PP�comp be the class of problems� which are solvable in

average polynomial�time for every polynomial�time computable input distribution�

Following the framework of Levin 	
� �� the above question can now be formulated

as� Is NP included in PP�comp
 In this paper� it is shown that PP�comp contains P

as a proper subset� Thus� even if P �� NP� it is still possible that NP � PP�comp�

As a further step it is shown that PP�comp is di�erent from NP� Therefore� either

NP is not solvable e�ciently on average� or �since PP�comp � E� E �� NP and hence

NP is a proper subset of Exp�

� Introduction

Recently� �average�case complexity� has received considerable attention by researchers

in several �elds of computer science� Even if a problem is not 	or may not be
 solvable

e�ciently in the worst�case� it may be solvable e�ciently on average� Indeed� several

results have been obtained that show even simple algorithms work well on average 	see

e�g� �
� ��
� However� most of these results are about concrete problems� and not so

much has been done for a more general study of average�case complexity� In particular�

the following general question is important� Is every NP set decidable in polynomial

time on average�

�This work was supported by the Deutsche Forschungsgemeinschaft� Grant Scho ������	

�



Levin ��� �� established a reasonable framework for discussing the above question

formally� In this paper� we follow his framework�

When discussing average�case polynomial�time computability� one should be careful

about the de�nition of �polynomial on average�� because a natural but naive one is

not appropriate for several reasons 	see Gurevich ��� for a detailed discussion
� Levin�s

de�nition for polynomial on average is robust and still natural�

In each concrete case� it may be reasonable to �x an input distribution� In a general

discussion� however� we should not assume any �xed distribution� On the other hand�

it may not be so realistic to discuss polynomial�time computability considering any

input distribution� In this setting average�case complexity equals worst�case complexity

���� ��� Levin proposed to consider polynomial�time computable distributions 	in short�

P�computable distributions
 as �realistic� distributions�

Thus� in Levin�s framework� the above questions is formally stated as follows� Is it the

case that for every NP set L and every P�computable distribution �� L is polynomial�

time decidable on average 	in Levin�s sense
 when the input is given under ��

In ����� Schuler and Yamakami de�ned a class PP�comp� This is the class of sets that are

decidable in polynomial�time on average under any P�computable distribution� Using

this notation� the above question can be restated as follows� Does NP � PP�comp hold�

Thus� in order to study this general question it would be helpful to know the structure

of the class PP�comp�

In this paper we prove the following properties of PP�comp�

�� P � PP�comp � E

�� NP �� PP�comp

The �rst result 	i�e� P � PP�comp
 means that �average polynomial�time computa�

bility under P�computable distributions� is an essential generalization of �worst�case

polynomial�time computability�� Thus� even if P �� NP� we may still have some hope

that NP � PP�comp� even if this implies NE�E ���� The second result means that either

NP � PP�comp� or PP�comp � NP 	or both
� Notice that the former is the negative answer

to our original question� and the latter implies that E �� NP and hence NP � Exp�

� Preliminaries

In the following let �� � �� � ��� �� be a density function� � be the corresponding

�



distribution� where �	x
 �
P

y�x �
�	y
� and ��n	x
 � ��	x
�

P
jyj�n �

�	y
 be the con�

ditional probability of an input x of length n� Given a set X� ��	X
 is de�ned as

��	X
 �
P

x�X ��	x
� � is a standard distribution� if for some constants k and c�

��	x
 � 	c�jxjk
��jxj� A �nite string d�d� � � � dm� i�e� an output of a transducer� is

identi�ed with the number d� � ��� � d� � ��� � � � �� dm � ��m � ��� ���

A distribution � is polynomial 	exponential
 time computable if there exists a trans�

ducer T such that for all x and all i� jT 	x� �i
��	x
j � ��i and T is polynomial 	expo�

nential
 in i and jxj ���� Let P�comp 	E�comp
 be the class of polynomial 	exponential


time computable distribution functions ���� E denotes the class of sets computable in

exponential time� i�e� in time �cn� for some constant c � ��

A transducer approximates a distribution �� i� jT 	x
��	x
j � ��jxj� In the following

we require that there exists an enumeration T�� T�� � � � of transducers which approximate

the distributions in P�comp and the k�th Transducer is computable in time nk� For

completeness we include a construction here�

Let S�� S�� � � � be an enumeration of all transducers such that Sk is nk���c time boun�

ded� for a constant c determined below� Then Tk is given by the procedure below� On

input x� the procedure checks that Sk is monotone increasing on �i� i � jxj� Then it

checks that within length jxj Sk is� in a certain way� monotone increasing� This is done

by dividing the remaining set 	starting with �jxj
 in a left and a right half� and checking

that the values of Sk on the boundaries of the parts are increasing 	from lexicographi�

cally smaller strings to larger strings
� This testing continues on the set containing the

input string� If a test fails� the procedure outputs the value of Sk for the smaller string�

Thus if at some point a test fails then T �
k	x
 � ��

input x� jxj � n

for i � � to n do

if Sk	�i��� i
 � Sk	�i� i
 then output Sk	�i��� i


if Sk	�n��� n� �
 � Sk	�n� n
 then output Sk	�n��� n� �


let y � �

for i � � to n do

if Sk	y��
n�i� n
 � Sk	y��

n�i� n
 � Sk	y��
n�i� n
 � Sk	y��

n�i� n


does not hold then output Sk	y��n�i� n


if y� is a pre�x of x then y � y� else y � y�

output Sk	x� n


If Sk indeed computes a distribution then all consistency tests are valid and the pro�

�



cedure outputs Sk	x� n
� On the other hand the procedure ensures that the output is

non decreasing and smaller than �� The time needed to compute Tk	x
 is bounded by

d � n � nk���c� for some constant d� and hence less than nk� for c � d� Again� for every

transducer T in the enumeration� let T � denote the corresponding density function� That

is for all x let T �	x
 � T 	x
 � T 	x�
� where x� is the predecessor of x�

In the context of average case complexity a problem is always a pair� a decision

problem together with a distribution function� For example the class DistNP ��� ��

contains all pairs 	D��
� where D � NP and � is a polynomial�time computable distri�

bution function� Thus� another way to pose our motivating question is whether all or

part of DistNP can be solved e�ciently on the average�

A �rst intuitive de�nition of polynomial on the average could require that the expected

value of a function is bounded by a polynomial� i�e��

�k	n �
X
jxj�n

��n	x
 � f	x
 � O	nk
� 	�


This de�nition has the disadvantage that there exist functions f and distributions �

such that f is average polynomial with respect to � but f� is not� One easily veri�ed

example is

f	x
 �

��
�

�n� if x � �n

jxj� otherwise
and ��n	x
 � ��n�

This anomaly 	and others
 is solved by the following de�nition� 	One other problem

is� that even if a problem is solvable in polynomial�time on average with some oracle�

which is itself in P� then a procedure combining both algorithms is not necessarily in

average polynomial time
� For a detailed discussion see e�g� ����

De�nition ��� ��� �� A function f � �� � R� is polynomial on average with respect to

a distribution � �polynomial on ��average	 if �� � � such that

X
x���

��	x
 �
f	x
�

jxj
	
�

Note that if a function satis�es equation 	�
 then it is also polynomial time on average�

The class of problems solvable in average polynomial time is denoted by AP� In general�

for a set of distribution functions F let AP	F
 denote the set of decision problems 	D��


such that � � F and there exists a Turing machine M such that L	M
 � D and M is

polynomial time on � average�






� E�ciently solvable on the average extends P

If a decision problem D is in P� then a problem 	D��
 is in AP	F
 for every set of

distribution functions F which contains �� On the other hand� one might expect that

for speci�c classes F � if a problem 	D��
 is in AP	F 
 for all density functions � � F �

then D is in P� To make the idea precise we use the following notion introduced in �����

De�nition ��� Let F be a class of distribution functions� then PF � is the class of

languages D such that 	D��
 � AP	F
 for every � � F 


This de�nition allows to compare classes of problems� de�ned in terms of average�case

complexity� directly with 	well studied
 worst�case complexity classes�

As was observed in ���� if 	A��
 � AP and � is a standard distribution� then A � E�

and hence� PP�comp is contained in E� Therefore P � PP�comp � E� In ���� it was proved

that PE�comp � P� This follows from the existence of polynomial�time complexity cores

computable in E� But for the class PP�comp we can prove the following strict inclusions�

which show that PP�comp is properly located between P and E� In some sense� one

can conclude that PP�comp enlarges the class of problems which can be solved e�ciently�

Note� that this is di�erent to probabilistic classes like BPP� where it is still open whether

BPP really extends P�

Theorem ���

P � PP�comp � E�

Proof� To prove that E �� PP�comp let A be a Tally set in E which is not in P� Let

� be a distribution where �	�n
 � c�n� and � otherwise� Then � is in P�comp� And

for every Turing machine M � with L	M
 � A� and for every constant � � � there exist

in�nitely many n such that timeM 	�n
 � n��� and therefore�

X
x

��	x
 �
	timeM 	x

�

jxj
�

�X
i��

c

n�i
�
n�i
ni

�
�

This shows that the set A is not in PP�comp�

To see that there are sets A in PP�comp which are not in P� note that for every

distribution for every length n there are more than �n � �n
�
strings with probability

smaller than ��n
�
� for every 
 	 �� The idea 	to de�ne A
 is to select strings which

have low probability for every distribution in P�comp� These strings can then be used

to diagonalize against P�

�



Let M��M�� � � � be an enumeration of the polynomial�time bounded Turing machines

such that the i�th machine runs in time ni� Then P � fL	Mi
 j i � �g� Similarly

let T�� T�� � � � be the above given enumeration of transducers which approximate the

distributions in P�comp� That is� Tk is computable in time nk� and for every � �P�comp

there is some Tk such that for all x� j��	x
 � T �
k	x
j � ��jxj� For every n and y� jyj 	 n

let X � fz j jzj � n and y is a pre�x of zg� Then j��	X
 � T �
k	X
j � � � ��n� since

T �
k	X
 � Tk	y�n�jyj
 � Tk	y�n�jyj
� and T �

k	X
 can be computed in time O	nk
� Now

consider the following procedure which de�nes a set A�

input x� jxj � n

y � ��

Phase I

for l � � to logn do

repeat log� n times

let L � fz j jzj � n and y� is a pre�x of zg�

R � fz j jzj � n and y� is a pre�x of zg�

	�
 if T �
l 	L
 	 T �

l 	R
 then y � y� else y � y��

if y is not a pre�x of x then reject�

Phase II

repeat n� log� n times

let L � fz j jzj � n and y� is a pre�x of zg�

R � fz j jzj � n and y� is a pre�x of zg�

if maxi�logn	T �
i 	L

 	 maxi�logn	T �

i 	R

 then y � y� else y � y��

if y is not a pre�x of x then reject�

Phase III

simulate Mn��� on input x and

if Mn��� accepts then reject else accept�

To see that A is in PP�comp and not in P� we prove the following claims�

Claim � For every n there exists one x of length n that is used to diagonalize against

Mn��� � i
e
 that passes Phase I and Phase II


Claim � 	A��
 is computable in polynomial time on � average� for every � �P�comp


Proof of Claim �� The loop in Phase I is started with y � �� i�e� L � R � �n� In

each pass of the loop in line 	�
� the computation continues either on strings in L or in

�



R 	which are of the same size
 by selecting y� or y� resp� as pre�x� The computation

stops if x is not in the selected set L or R resp� Thus� after log� n iterations in Phase I�

the computation continues on at least �n�log
� n strings�

Phase II is basically a pre�x search� that� in n� log� n iterations� selects exactly one

string which has the string y� jyj � log� n� computed in Phase I as pre�x� Note that

for the string selected here it holds that T �
i 	x
 � ��n

�
� for all i � log n� To see that this

is true observe that in every iteration 	of Phase II
 the computation continues on L�

if for some Tl� T �
l 	R
 is larger than every T �

i 	L
� i � log n� Otherwise the computation

continues on R� Thus after logn iterations the maximal value of any Ti � i � logn� on

the remaining set is divided by two� Therefore after n � log� n iterations it holds that

T �
i 	y
 	 ���n�log

� n	� logn 	 ��n
�
�

Proof of Claim �� Let X
�X�� � � � �Xlogn be the subsets of �n such that Xk is the

set that remains after the kth transducer Tk is considered in Phase I� Then� for all i � k

it holds that T �
k	Xi
 � �� log� n � n� logn� To see this let l � k in Phase I� Then Tk is

considered� and in the repeat loop the computation continues either on the set L or on

the set R� whichever has the smaller probability� In the beginning T �
k	Xk��
 is smaller

than T �
k	�

n
 � �� and in each iteration the value is divided by two� This gives after log�

iterations the desired result�

Now let � be any distribution in P�comp� Since � � P�comp� there exists a k such

that Tk approximates �� i�e� j��	x
 � T �
k	x
j � ��n� Then for every set X considered as

L or R in the above procedure it holds that j��	X
 � T �
k	X
j � � � ��n� 	This error is

small enough and will be ignored in the following estimation
� Let timejA	x
 denote the

time spend on input x to compute the for loop in Phase I the jth time� Then timejA	x


is in O	log� n � nj
 and hence� for all n � �k�

	j � k � ��	Xj
 � ��	�n
 and 	j � k � ��	Xj
 � n� logn�
kX

j��

timejA	x
 � O	n��k
 and
lognX
j�k

timejA	x
 � O	n��logn
�

Phase II is computed only on strings in Xlogn� Since the loop is executed n�log� n times

and each time for all Ti� i � logn� it can be done in time O	logn � nlogn
 	 O	n��logn
�

The diagonalization in Phase III against a machine Mn��� 	which runs in time nn
���

�

�n
��� logn
 can be done in time O	�n

�

� Hence� we get the following estimation of the

�



average computation time f � choosing � 	 ��	� � k
�

X
x���

��	x
 �
f	x
�

jxj
�
X
n

��	�n
 �
n����k	

n
�
X
n

n� logn � n����logn	 �

X
n

n� logn � n����logn	 � ��n
�

� ��n
�

� c�

�

Actually we proved that the set A� de�ned above� cannot be deceided by any �n
���

time bounded machine� and that the only string of length n used for diagonalization

can be generated in time nO�logn	�

� Average polynomial time is di�erent from NP

Let A be any language� Then L	A
 � f�n j �x� jxj � n and x � Ag is called the test

language of A� A class C contains all its test languages if for every A � C the test

language L	A
 is also in C� In this section it is shown that PP�comp does not contain all

its test languages and is therfore not equal to NP�

Lemma ��� There exists a set A in PP�comp such that L	A
 is not in PP�comp


Proof� Let A be a set in PP�comp � P� as de�ned in the proof of Theorem ���� Then

A has the following property� for each length n� A contains at most one string which

can be generated in time nO�logn	� These strings are used to diagonalize against all sets

computable in time �n
���
� Therefore A is not in DTIME	�n

�

� � 	 
���

Assume that PP�comp contains all its test languages� Then the test language L	A
 is

also in PP�comp� Since L	A
 is tally� there exists a polynomial�time bounded machineM

which computes L	A
� Then� A can be decided as follows�

On input x� verify if �jxj � L	M
 and if x is the string used for diagonalization in the

construction of A� If both is true then x is accepted� otherwise x is rejected�

This implies that A is in DTIME	nO�logn	
� a contradiction to the choice of A� �

Since for all sets A � NP the test languages L	A
 are also in NP� we immediately get

the following theorem�

Theorem ��� PP�comp �� NP


�



Theorem 
�� has an interesting consequence� If the set A constructed in Theorem 
��

is in NP� then P � NP� However� if A is not in NP� then E � NP and hence NP � Exp�

Acknowledgments� The author would like to thank Osamu Watanabe for pointing

out an error in the proof of Theorem ��� in an earlier version and for helpful comments�

References

��� S� Ben�David� B� Chor� O� Goldreich� and M� Luby� On the theory of average case

complexity� Journal of Computer and System Science� 

��������� �����

��� Y� Gurevich� Complete and incomplete randomized NP problems� Proc
 ��th IEEE

Symposium on Foundations of Computer Science� �������� �����

��� Y� Gurevich� Average case complexity� Journal of Computer and System Sciences�


�	�
��
������ �����

�
� D�S� Johnson� The NP�completeness column� An ongoing guide� Journal of Algo�

rithms� ����
����� ���
�

��� E� Koutsoupias and C�H� Papadimitriou� On the greedy algorithm for satis�ability�

Information Processing Letters� 
�������� �����

��� K�I� Ko and H� Friedman� Computational complexity of real functions� Theoretical

Computer Science� ����������� �����

��� L� Levin� Problems� complete in �average� instance� Proc
 �
th ACM Symposium

on Theory of Computing� 
��� ���
�

��� L� Levin� Average case complete problems� SIAM Journal on Computing� �������

���� �����

��� P�B� Milterson� The complexity of malign measures� SIAM Journal on Computing�

��	�
��
������ �����

���� M� Li and P�M�B� Vitanyi� Average case complexity under the universal distribution

equals worst�case complexity� Information Processing Letters� 
���
���
�� �����

���� R� Schuler and T� Yamakami� Structural average case complexity� Proc
 ��th

Foundations of Software Technology and Theoretical Computer Science� ��������

�����

�


