On average polynomial time*

R. Schuler
Theoretische Informatik, Universitat Ulm, D-89069 Ulm, Germany

email: rsc@informatik.uni-ulm.de

Keywords: computational complexity, average-case analysis.

Abstract

One important reason to consider average case complexity is whether all, or
at least some significant part of NP can be solved efficiently on average for all
reasonable distributions. Let Pp_comp be the class of problems, which are solvable in
average polynomial-time for every polynomial-time computable input distribution.
Following the framework of Levin [7, 8] the above question can now be formulated
as: Is NP included in Pp-comp? In this paper, it is shown that Pp_comp contains P
as a proper subset. Thus, even if P # NP, it is still possible that NP C Pp_comp-
As a further step it is shown that Pp_comp is different from NP. Therefore, either
NP is not solvable efficiently on average, or (since Pp_comp € E) E Z NP and hence
NP is a proper subset of Exp.

1 Introduction

Recently, “average-case complexity” has received considerable attention by researchers
in several fields of computer science. Even if a problem is not (or may not be) solvable
efficiently in the worst-case, it may be solvable efficiently on average. Indeed, several
results have been obtained that show even simple algorithms work well on average (see
e.g. [4, 5]). However, most of these results are about concrete problems, and not so
much has been done for a more general study of average-case complexity. In particular,
the following general question is important: Is every NP set decidable in polynomial

time on average?

*This work was supported by the Deutsche Forschungsgemeinschaft, Grant Scho 302/4-1

Levin [7, 8] established a reasonable framework for discussing the above question
formally. In this paper, we follow his framework.

When discussing average-case polynomial-time computability, one should be careful
about the definition of “polynomial on average”, because a natural but naive one is
not appropriate for several reasons (see Gurevich [3] for a detailed discussion). Levin’s
definition for polynomial on average is robust and still natural.

In each concrete case, it may be reasonable to fix an input distribution. In a general
discussion, however, we should not assume any fixed distribution. On the other hand,
it may not be so realistic to discuss polynomial-time computability considering any
input distribution. In this setting average-case complexity equals worst-case complexity
[10, 9]. Levin proposed to consider polynomial-time computable distributions (in short,
P-computable distributions) as “realistic” distributions.

Thus, in Levin’s framework, the above questions is formally stated as follows: Is it the
case that for every NP set L and every P-computable distribution p, L is polynomial-
time decidable on average (in Levin’s sense) when the input is given under px.

In [11], Schuler and Yamakami defined a class Pp_comp. This is the class of sets that are
decidable in polynomial-time on average under any P-computable distribution. Using
this notation, the above question can be restated as follows: Does NP C Pp_copp, hold?
Thus, in order to study this general question it would be helpful to know the structure
of the class Pp_comp-

In this paper we prove the following properties of Pp_comp.
1. PC Ppocomp S E
2. NP # Pp-comp

The first result (i.e. P € Pp_comp) means that “average polynomial-time computa-
bility under P-computable distributions” is an essential generalization of “worst-case
polynomial-time computability”. Thus, even if P # NP, we may still have some hope
that NP C Pp_comp, even if this implies NE=E [1]. The second result means that either
NP € Pp_comp, O Pp_comp & NP (or both). Notice that the former is the negative answer
to our original question, and the latter implies that E € NP and hence NP C Exp.

2 Preliminaries
In the following let u' : ¥* — [0,1] be a density function, g be the corresponding

2

distribution, where u(z) = X, o, ¢/(y), and w/ (z) = p'(2)/ X, =n '(y) be the con-
ditional probability of an input x of length n. Given a set X, p/(X) is defined as
(X)) = Yoex p(x). pis a standard distribution, if for some constants k and e
p(z) = (¢/|x|")271?l. A finite string didy---d,,, i.e. an output of a transducer, is
identified with the number d; - 27! +dy - 272 +--- + d,,, - 27™ € [0, 1].

A distribution p is polynomial (exponential) time computable if there exists a trans-
ducer T such that for all z and all 7: |T(x,1") — pu(z)| < 27" and T is polynomial (expo-
nential) in ¢ and |z| [6]. Let P-comp (E-comp) be the class of polynomial (exponential)
time computable distribution functions [2]. E denotes the class of sets computable in
exponential time, i.e. in time 2", for some constant ¢ > 0.

A transducer approximates a distribution u, iff |T(x) — u(x)| < 2711 In the following
we require that there exists an enumeration 71, 15, . . . of transducers which approximate
the distributions in P-comp and the k-th Transducer is computable in time n*. For
completeness we include a construction here.

Let 51, 55,... be an enumeration of all transducers such that 5 is nk_l/c time boun-
ded, for a constant ¢ determined below. Then T} is given by the procedure below. On
input z, the procedure checks that S is monotone increasing on 1°, 7 < |z|. Then it
checks that within length |z| Sy is, in a certain way, monotone increasing. This is done
by dividing the remaining set (starting with $I°) in a left and a right half, and checking
that the values of Sj on the boundaries of the parts are increasing (from lexicographi-
cally smaller strings to larger strings). This testing continues on the set containing the
input string. If a test fails, the procedure outputs the value of S} for the smaller string.
Thus if at some point a test fails then T}(xz) = 0.

input z, |z| =n
for:=1ton do
if S,(1714) > Si(1%,7) then output S,(1°71,7)
if Si(1""' n—1) > S¢(0",n) then output S(1"~*,n —1)
let y = A
for:=1ton do
if Sp(y00"~%, n) < Sp(y10"= n) < Si(y01"~" n) < Si(yl1"* n)
does not hold then output S;(y00"~* n)
if y1 is a prefix of x then y = y1 else y = y0
output Sj(z,n)

If S;. indeed computes a distribution then all consistency tests are valid and the pro-

cedure outputs Si(x,n). On the other hand the procedure ensures that the output is
non decreasing and smaller than 1. The time needed to compute Ti(x) is bounded by
d-n-n*"1/c, for some constant d, and hence less than n*, for ¢ > d. Again, for every
transducer T in the enumeration, let 7’ denote the corresponding density function. That
is for all @ let T"(x) = T(x) — T(x~), where &~ is the predecessor of .

In the context of average case complexity a problem is always a pair, a decision
problem together with a distribution function. For example the class DistNP [7, 1]
contains all pairs (D, i), where D € NP and y is a polynomial-time computable distri-
bution function. Thus, another way to pose our motivating question is whether all or
part of DistNP can be solved efficiently on the average.

A first intuitive definition of polynomial on the average could require that the expected

value of a function is bounded by a polynomial, i.e.:

Skvn Y w(e) - flx) < Ob). (1)
|z|=n
This definition has the disadvantage that there exist functions f and distributions p
such that f is average polynomial with respect to u but f? is not. One easily verified
example is

2 if & = ("
f(x)z{ =0 nd) =277,

|z|, otherwise

This anomaly (and others) is solved by the following definition. (One other problem
is, that even if a problem is solvable in polynomial-time on average with some oracle,
which is itself in P, then a procedure combining both algorithms is not necessarily in

average polynomial time). For a detailed discussion see e.g. [3].

Definition 2.1 [7, 8] A function f :X* — RY is polynomial on average with respect to
a distribution p (polynomial on p-average) if 36 > 0 such that

TEX* |$|

Note that if a function satisfies equation (1) then it is also polynomial time on average.
The class of problems solvable in average polynomial time is denoted by AP. In general,
for a set of distribution functions F let AP(F) denote the set of decision problems (D, p)
such that y € F and there exists a Turing machine M such that L(M) = D and M is

polynomial time on u average.

3 Efficiently solvable on the average extends P

If a decision problem D is in P, then a problem (D,) is in AP(F) for every set of
distribution functions F which contains p. On the other hand, one might expect that
for specific classes F, if a problem (D, u) is in AP(F) for all density functions p € F,

then D is in P. To make the idea precise we use the following notion introduced in [11].

Definition 3.1 Let F be a class of distribution functions, then P, is the class of
languages D such that (D, pu) € AP(F) for every u € F.

This definition allows to compare classes of problems, defined in terms of average-case
complexity, directly with (well studied) worst-case complexity classes.

As was observed in [11] if (A, p) € AP and p is a standard distribution, then A € E,
and hence, Pp_comp is contained in E. Therefore P C Pp_comp C E. In [11] it was proved
that Pp_comp = P. This follows from the existence of polynomial-time complexity cores
computable in E. But for the class Pp_¢omp we can prove the following strict inclusions,
which show that Pp_comp 1s properly located between P and E. In some sense, one
can conclude that Pp_comp enlarges the class of problems which can be solved efficiently.
Note, that this is different to probabilistic classes like BPP, where it is still open whether
BPP really extends P.

Theorem 3.2
P < Ppcomp & E.

Proof. To prove that E € Pp_comp let A be a Tally set in E which is not in P. Let
p be a distribution where 1(0") = ¢/n? and 0 otherwise. Then g is in P-comp. And
for every Turing machine M, with L(M) = A, and for every constant 6 > 0 there exist

infinitely many n such that timey(0") > n*?® and therefore:

c

ZM'(@'M 2_2 _

T |x nZ

This shows that the set A is not in Pp_comp.

To see that there are sets A in Pp comp which are not in P, note that for every
distribution for every length n there are more than 2" — 2"° strings with probability
smaller than 27, for every € < 1. The idea (to define A) is to select strings which
have low probability for every distribution in P-comp. These strings can then be used

to diagonalize against P.

Let Mj, M,, ... be an enumeration of the polynomial-time bounded Turing machines
such that the i-th machine runs in time n‘. Then P = {L(M;) | + > 0}. Similarly
let 11,75, ... be the above given enumeration of transducers which approximate the
distributions in P-comp. That is, T} is computable in time n*, and for every y €P-comp
there is some Ty such that for all a: |p/(x) — Tl(z)| < 27|, For every n and y, |y| < n
let X = {z | |z] = nand yis a prefix of z}. Then |¢'(X) — T)(X)] < 227", since
TUX) = Tp(y1™ Wy — Ty (y0"~ W), and T)(X) can be computed in time O(n*). Now

consider the following procedure which defines a set A.

input z, |z| =n
y= A\
Phase I
for [=1 to logn do
repeat log’n times
let L ={z]||z] =n and y0 is a prefix of z},
R={z]|z] =n and yl is a prefix of z},
(6) if T/(L) < T/(R) then y = y0 else y = y1.
if y is not a prefix of x then reject.
Phase IT
repeat n — log” n times
let L ={z]||z] =n and y0 is a prefix of z},
R={z]|z] =n and yl is a prefix of z},
if max;<iogn(T7(L)) < maxi<iogn(T/(R)) then y = y0 else y = y1.
if y is not a prefix of x then reject.
Phase IIT
simulate M, > on input « and

if M .. accepts then reject else accept.

To see that A 1s in Pp_¢omp and not in P, we prove the following claims.

Claim 1 For every n there exists one x of length n that is used to diagonalize against

M <2, v.e. that passes Phase I and Phase II.
Claim 2 (A, p) s computable in polynomial time on p average, for every p €P-comp.

Proof of Claim 1: The loop in Phase I is started with y = A, i.e. LUR = ¥". In

each pass of the loop in line (6), the computation continues either on strings in L or in

6

R (which are of the same size) by selecting y0 or yl resp. as prefix. The computation
stops if & is not in the selected set L or R resp. Thus, after log® n iterations in Phase I,
the computation continues on at least gn—log’ n strings.

Phase II is basically a prefix search, that, in n — log® n iterations, selects exactly one
string which has the string y, |y| = log’n, computed in Phase I as prefix. Note that
for the string selected here it holds that T/(z) < 27", for all + < logn. To see that this
is true observe that in every iteration (of Phase II) the computation continues on L,
if for some T, T/(R) is larger than every T/(L), ¢ < logn. Otherwise the computation
continues on R. Thus after log n iterations the maximal value of any 7; , : < logn, on
the remaining set is divided by two. Therefore after n — log® n iterations it holds that
T!(y) < 2~ (n=log”n)/logn o 9=n*,

Proof of Claim 2: Let Xy, Xq,..., Xjoy, be the subsets of X" such that Xj is the
set that remains after the kth transducer T}, is considered in Phase I. Then, for all : > %
it holds that T}(X;) < 9-log’n — p-logn Mg gee this let | = k in Phase I. Then T}, is
considered, and in the repeat loop the computation continues either on the set L or on
the set R, whichever has the smaller probability. In the beginning T} (Xj_1) is smaller
than T}(2") < 1, and in each iteration the value is divided by two. This gives after log?
iterations the desired result.

Now let 1 be any distribution in P-comp. Since p € P-comp, there exists a k such
that T}, approximates pu, i.e. |p/(x) — T/(x)| < 27". Then for every set X considered as
L or R in the above procedure it holds that |¢/(X) — T/ (X)| < 2-27". (This error is
small enough and will be ignored in the following estimation). Let time’;(z) denote the
time spend on input & to compute the for loop in Phase I the jth time. Then timeil(:zj)

is in O(log® n - n?) and hence, for all n > 2*:

Vi <k: M/(Xj) < MI(Zn) and Vj > k: /,L'(Xj) < plosm,

k] logn]
> timel(z) < O(n'**) and Y timelj(z) < O(n'T57).
7=1 1=k

Phase II is computed only on strings in Xjee,. Since the loop is executed n —log® n times
and each time for all T}, 7 < logn, it can be done in time O(logn - n'°¢") < O(n?*len).
The diagonalization in Phase III against a machine M, > (which runs in time n""? =

on/? g} can be done in time O(2"°). Hence, we get the following estimation of the

average computation time f, choosing 6 < 1/(2 4 k):

)

ZM,(J;)‘LM < Do p(E)-

+ n—logn . n5(1+logn) +
2T TR

n
Z n—logn . n5(2+logn) + 2—n€ . 25716 < ¢
n

a

Actually we proved that the set A, defined above, cannot be deceided by any on/?
time bounded machine, and that the only string of length n used for diagonalization

can be generated in time nOUogn)

4 Average polynomial time is different from NP

Let A be any language. Then L(A) = {0" | Ja,|x| = n and @ € A} is called the test
language of A. A class C contains all its test languages if for every A € C the test
language L(A) is also in C. In this section it is shown that Pp_comp does not contain all

its test languages and is therfore not equal to NP.
Lemma 4.1 There exists a set A in Pp_comp such that L(A) is not in Pp_comp.

Proof. Let A be a set in Pp_comp — P, as defined in the proof of Theorem 3.2. Then
A has the following property: for each length n, A contains at most one string which

O(logn)

can be generated in time n . These strings are used to diagonalize against all sets

computable in time 27/* Therefore A is not in DTIME(Z”(S), 6 <ef2.

Assume that Pp_comp contains all its test languages. Then the test language L(A) is
also in Pp_comp. Since L(A) is tally, there exists a polynomial-time bounded machine M
which computes L(A). Then, A can be decided as follows:

On input z, verify if 0l € L(M) and if « is the string used for diagonalization in the
construction of A. If both is true then x is accepted, otherwise x is rejected.

This implies that A4 is in DTIME(n®°¢™) a contradiction to the choice of A. O

Since for all sets A € NP the test languages L(A) are also in NP, we immediately get

the following theorem:

Theorem 4.2 Pp_comp # NP.

Theorem 4.2 has an interesting consequence. If the set A constructed in Theorem 4.1
is in NP, then P C NP. However, if A is not in NP, then E € NP and hence NP C Exp.
Acknowledgments. The author would like to thank Osamu Watanabe for pointing

out an error in the proof of Theorem 3.2 in an earlier version and for helpful comments.

References

1]

S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case
complexity, Journal of Computer and System Science, 44:193-219, 1992.

Y. Gurevich. Complete and incomplete randomized NP problems. Proc. 28th IEEE
Symposium on Foundations of Computer Science, 111-117, 1987.

Y. Gurevich. Average case complexity. Journal of Computer and System Sciences,

42(3):346-398, 1991.

D.S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algo-
rithms, 5:284-299, 1984.

E. Koutsoupias and C.H. Papadimitriou. On the greedy algorithm for satisfiability.
Information Processing Letters, 43:53-55, 1992.

K.I. Ko and H. Friedman. Computational complexity of real functions. Theoretical

Computer Science, 20:323-352, 1982.

L. Levin. Problems, complete in “average” instance. Proc. 16th ACM Symposium
on Theory of Computing, 465, 1984.

L. Levin. Average case complete problems. STAM Journal on Computing, 15:285—
286, 1986.

P.B. Milterson. The complexity of malign measures. STAM Journal on Computing,
22(1):147-156, 1993.

M. Li and P.M.B. Vitanyi. Average case complexity under the universal distribution
equals worst-case complexity. Information Processing Letters, 42:145-149, 1992.

R. Schuler and T. Yamakami. Structural average case complexity. Proc. 12th
Foundations of Software Technology and Theoretical Computer Science, 128-139,
1992.

