Towards Average-Case Complexity Analysis of

NP Optimization Problems*

Rawner SCHULER Osamu WATANABE
Abteilung Theoretische Informatik Department of Computer Science
Universitat Ulm Tokyo Institute of Technology
Oberer Eselsberg Meguro-ku Ookayama 1-12-1
D 89069 Ulm, Germany Tokyo 152, JAPAN
schuler@informatik.uni-ulm.de watanabe@Qcs.titech.ac.jp
ABSTRACT

For the worst-case complexity measure, if P = NP, then P = OptP, i.e., all NP
optimization problems are polynomial-time solvable. On the other hand, it is not
clear whether a similar relation holds when considering average-case complexity. We
investigate the relationship between the complexity of NP decision problems and that
of NP optimization problems under polynomial-time computable distributions, and
study what makes them (seemingly) different. It is shown that the difference between

PNP

PNF_samplable and -samplable distributions is crucial.

1. Introduction

Recently, “average-case complexity” has received considerable attention by researchers
in several fields of computer science. Even a problem is not (or may not be) solvable
efficiently in the worst-case, it may be solvable efficiently on average. Indeed, several
results have been obtained that show even simple algorithms work well on average (see,
e.g., [Joh84]). On the other hand, most of those results are about concrete problems, and
not so much has been done for more general study of average-case complexity, though
there are many interesting open questions in this area. In this paper, we consider one
of such open questions, and improve our knowledge towards this question.

We consider the following question: Suppose every NP problem is polynomial time

*The part of this work has been done while the second author was visiting Universitat Ulm and
supported in part by the guest scientific program of Universitat Ulm. The second author 1s supported in
part by Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan
under Grant-in-Aid for Research (C) 06680308 (1994).

solvable on average. Does this mean that every NP optimization problem is also po-
lynomial time solvable on average? Here “NP problem” is a decision problem for an
NP set. On the other hand, “NP optimization problem” is a problem of finding opti-
mal solutions for a problem with a polynomial-time computable cost function. Krentel
[Kre88] defined the class OptP for the class of NP optimization problems. Thus, the
question is whether P = NP on average implies P = OptP on average. (Since OptP is
the class of functions, “P = OptP” should be written as “PF = OptP”. In this paper,
however, we will use P to denote both language and function classes.)

For discussing average-case complexity, one should be careful about input distri-
butions and distribution classes. It may not be so realistic to discuss polynomial-time
computability considering any input distribution. Levin [Lev86], who established a fra-
mework for average-case complexity theory, proposed to consider only “polynomial-time
computable distribution (in short, P-computable distribution)” as input distributions.
Later more generalized notion, i.e., “polynomial-time samplable distribution (in short,
P-samplable distribution)”, has been proposed [BCGL92|. We essentially follow Levin’s
framework, and regard P-computable distributions (or P-samplable distributions) as
realistic input distributions. Thus, by “P = NP on average” we mean that for every NP
problem and every P-computable distribution, the problem is solvable in polynomial-
time on average when an input instance is given under the distribution. (In this intro-

” to mean “P = NP on

duction, we will use, e.g., “P =, NP (under P-comp. dist.)
average for any P-computable distribution.”)

For the worst-case complexity measure, we have P = NP — P = OptP. This
is from the following reason: Every NP optimization problem A is polynomial-time
solvable by some algorithm) by using some NP set X as an oracle. But since P =
NP, we can replace oracle X with some polynomial-time machine M for X. Thus, Q¥
solves X in polynomial-time. This simple argument does not work, however, in the
average-case complexity. Even if X is solvable by M in polynomial-time on average
under any P-computable distribution, this does not mean that Q™ runs in polynomial-
time on average under every P-computable distribution. This is because queries to
X may occur under a very strange distribution, for which no algorithm solves X in
polynomial-time on average. Thus, it is not clear that the relation P =,,. NP (under
P-comp. dist.) = P =, OptP (under P-comp. dist.) holds; or, it may not hold at
all. In this paper, we study what makes this relation difficult.

We consider two approaches. First, we investigate how much we need to enlarge
a distribution class D so that the following implication holds: P =, NP (under D,
dist.) = P =, OptP (under P-comp. dist.). Secondly, we consider for which class D;

can we prove the following implication: P =, NP (under P-comp. dist.) = P =,
NP (under D, dist.). Obviously, if D; C Ds,, then we have an affirmative answer to our

question. While we have been unable to achieve this, we can prove the following results.

(1) If P =, NP under every PN _samplable distribution, then P =,,. OptP under
every P-computable distribution. Furthermore, the converse relation holds. That
is, the assumption is indeed necessary for showing P =, OptP (under P-comp.
dist.).

(2) If P =, NP under every P-computable distribution, then P =, NP under every

PNP_samplable distribution.

Thus, we now know that the difference between PNP-samplable and PNY-samplable
distributions is crucial for our question. Motivated by this, we also study how strong

PNP_samplable distributions are, and obtain the following result.

(3) Every #P-computable distribution can be approximated within constant factor by

some PNF-samplable distribution.

Thus, from this and the above result (2), we can show that #P-computable distribu-
tions are not stronger than P-computable distributions for discussing the average-case
polynomial-time computability of NP.

Impagliazzo and Levin [IL90] made an important observation on different classes
of distributions. They showed that if P =, NP (under P-comp. dist.), then it indeed
holds that P =, NP (under P-samplable dist.). For obtaining the above results (1)
and (2), we extend their technique and prove that if P =, NP (under P-comp. dist.),
then P =, NP even for any “average” P-samplable distribution. For showing (3), we

use another property of hash functions.

2. Preliminaries

In this paper, we follow the standard definitions and notations in computational com-
plexity theory (see, e.g., [BDG88, BDGI1]).

Throughout this paper, we fix our alphabet to ¥ = {0,1}, and by a string we mean
an element of ¥*. For any string z, let |z| denote the length of x. For any n > 0 and
any set L of strings, let LS" and L™ be the set of strings in L of length < n and of
length n respectively. We use || L|| to denote the cardinality of L. Let N denote the
set of nonnegative integers. Usually, we assume the binary encoding of N on X*, but
sometimes numbers are encoded in a tally form, i.e., as a string in 0*. For any n € N,

let m denote 0.

We use a standard one-to-one pairing function from ¥* x ¥* to X* that is computable
and invertible in polynomial-time. For inputs = and y, we denote the output of the
pairing function by (x,y); this notation is extended to denote any n tuple. We also use
a polynomial-time computable pairing function, say, (n,x,y), such that for every n > 0
and for all (z,y) in some finite set D,,, (n,x,y), is of the same length, which is uniquely
determined by n. (We assume that (n,x,y), is undefined for (x,y) ¢ D,.) It is not so
hard to define such pairing functions by using standard padding technique. We often
omit specifying D, when it is clear from the context.

For any random event «, let Pr,{ ®(«) } be the probability ®(«) holds. For example,
for any randomized machine M, Pry{®} is the probability that ® holds when M
executes following its internal coin tosses; Procp{ ®(x) } is the probability that ® holds
when @ is chosen from U randomly. The latter one is also written as Pr{ ®(x) |2 € U }.

For our computation model, we use randomized (oracle) Turing machines. We say

that a machine M accepts a language L if for all x € 3%,

r €L = Pry{M accepts x }
r ¢ L = Pry{M accepts x}

2/3, and

>
< 1/3.

Similarly, for any (multi-valued) function f, we say that f is computed by M if for
every x, the probability that M (x) computes f(x) is greater than 2/3. Note that for
any decision problem and any single-valued function evaluation problem, we can easily
reduce the error probability by executing a machine several times and then taking their
majority. Also even for evaluating a multi-valued function, if it is easy to verify the
correctness of a given answer, then we can easily reduce the error probability.

Throughout this paper, we use this randomized polynomial-time computability in-
stead of the deterministic one. Thus, by “f is polynomial-time computable”, we pre-
cisely mean that f is polynomial-time computable by some randomized machine. Note
that for a randomized machine M and any input z, the running time of M on = may
differ depending on the random sequence that M uses. The running time of M on =
(written as timeps(x)) is formally defined as an expected running time of M on x over
all random sequences of M.

Optimization problems we consider are specified by polynomial-time computable
functions. For a polynomial-time computable function cost: ¥* x ¥* — N, and a
polynomial p, the NP optimization problem specified by cost and p is to compute the

following function opt-val:

opt-val(z) = y € D=7 such that cost(x,y) = opt(z),

where opt(z) = max{cost(z,y’) | vy € LD}, Notice that opt-val is multi-valued in
general. OptP is the class of functions like opt-val. (In order to keep similarity with
“NP search problem”, we modified the original definition of OptP [Kre88], where OptP
is defined as the class of functions like opt. It is, however, easy to show that the above
class OptP is a generalization of the original class, and they are essentially the same for
discussing polynomial-time computability.)

For a given NP set L, an NP search problem for L is to search, for a given instance
x in L, some witness for « € L. More formally, for a polynomial-time computable
predicate R on ¥* x ¥*, and a polynomial p, the NP search problem specified by R and

p 1s to compute a value of the following function search:

search(z) = y € S=PU7D such that R(z,y) holds.

Notice again that search may be multi-valued in general. Let SearchP denote the class

of functions like search.

Preliminaries for Average-Case Complexity Theory

A probability function pon U is a total function from U to [0, 1] such that 3, o p(2)
= 1. We use A to denote the uniform probability function on ¥, where r will be
specified in each context.

Throughout this paper, only length-wise input distributions are considered. That
is, for each n > 0, we consider probability function p,, on X" (hence, 3 cxn pin(2) = 1),
and discuss average-case complexity assuming that each instance ¢ € X" appears with
probability p,(x). Thus, formally speaking, an input distribution (or, distribution in
short) is specified as a family {1, },>0 of such length-wise probability functions y,. In
this paper, however, we denote an input distribution by a single function such as p, and

for each @ € ¥", we use u(x) to denote p,(x).

Definition 2.1. (P¢-computable distribution, P¢-computable distribution)

For any complexity class C and any input distribution pu, p is a P¢-computable distri-
bution if its cumulative distribution p* is computed by some polynomial-time bounded
randomized oracle Turing machine M relative to some oracle set X € C. The notion of
“P¢-computable distribution” is defined similarly by considering oracle Turing machines
that ask queries only nonadaptively.

Remark. We are using the randomized polynomial-time computability for the
“polynomial-time computability” notion. Furthermore, we are using length-wise proba-
bility, and the cumulative distribution i of y1 is defined by p*(z) = X0, pesn A w<p 1(2'),

where < is the standard lexicographic order on ¥*. Thus, the above definition is not

S

equivalent to the original one in [Lev86]. Nevertheless, the following argument does not
change even if the above notion is defined by using the deterministic polynomial-time
computability. In this case, it is easy to show that our definition is equivalent to the

original one as long as the probability for each length is polynomial-time computable.

Definition 2.2. (P“-samplable distribution, P -samplable distribution)
For any complexity class C and any input distribution p, u is a P°-samplable distribution
if there exist a polynomial-time bounded randomized oracle Turing machine G, which

is called a generator, and some set X € C such that for each = (let n = |z|),
w(z) = Prg{ GX(W) yields z }.

The notion of “P¢-samplable distribution” is defined similarly by considering oracle

Turing machines that ask queries only nonadaptively.

We define distribution classes. For any complexity class C, let P¢-comp denote
the classes of distributions that are P°-computable. Let P¢-samp (resp., P¢-samp)
denote the class of P¢-samplable (resp., P¢,-samplable) distributions. Though we defined
notions in a general way, we will mainly consider distribution classes P-comp, P-samp,
PNP_samp, and PN-samp.

Note that by these definitions, the values of probability functions are always (binary)
rational numbers. Thus, these definitions are weaker than the original ones [Lev86,
BCGL92] that allow real numbers for probability. Nevertheless, it is shown [Gur9l,
Lemma 1.6] that we lose no generality by this restriction for discussing polynomial-time
computability.

Levin [Lev86] gave a general and robust definition to the notion of “polynomial-time
solvable on average”. Levin’s definition uses distributions on ¥*; on the other hand, we
are using length-wise input distributions in order to make our discussion more intuitive.
Thus, we modify Levin’s definition to a length-wise version, which is more intuitive but

less robust. The following definition for “polynomial on p-average” was suggested by

Gurevich [Gur91].

Definition 2.3. (Polynomial on u-average)
A function f is polynomaial on p-average if there exist constants ¢,d > 0 such that for
alln >0,

L/
> {70 <

zEXT n

For showing “polynomial on u-average”, the following simple characterizations are

useful.

Proposition 2.4. Let f be any function from ¥* to N, and p be any input distribution.
Then f is polynomial on p-average if there exist polynomials p and ¢ and a constant
d > 0 that satisfy the following for all n > 0:

£)L/d
Zf()

TEXT q(n)

pz) < p(n).

Remark. The proposition is provable by using an argument similar to the proof of

[Gur9l, Lemma 1.5].

Proposition 2.5. Let f and ¢ be any functions from ¥* to N and from N to N respec-
tively, and let ¢ be any input distribution. For any & > 1, assume that f is polynomial

in ¢(n)* on p-average; that is, for some constants ¢,d > 0 and for all n > 0, we have

L/
Z ft((n))k Iu(x) < e

zEXT

Then for any set X C ¥* such that (X NY¥") < 1/t(n) for all n > 0, f is polynomial
on p-average on X; or more specifically, for all n > 0 and X’ C ¥" such that u(X') <
1/t(n), we have

Zf 1/(2dk) (l‘) < c4 1.

reX!

Proof. We split the sum depending on the value of f(z)'/ (%),

(1) Let S be the set of all x € X’ with f(x)"/?%) <#(n). Then

€S €S zE

n

(2) Let T be the set of all x € X’ with f(x)/%) > ¢(n), i.e f(x)"/?) > ¢(n)*. Then

nYe . fx 1/(2dk)
Zf 1/(2dk) (l‘) — Zt() f() M(l')

et 1/(24) 1/(5k) He)
D

zeT
d

We say that a machine M runs in polynomial-time on p-average if its (expected)
running time timey; is polynomial on p-average. It is shown [Gur91, Proposition 1.1]

that the above definition is equivalent to Levin’s original one for distributions satisfying a

7

certain natural condition. Furthermore, all the arguments in this paper can be modified
for Levin’s definition. Thus, we will lose no generality by using this definition.

For our notion of “average polynomial-time”, we will use the above definition in this
paper. Nevertheless, we should also note that there are weaker (but still natural and
robust) ways to define this notion. The following is one such example, which has been

used in the study of cryptographic one-way functions.

Definition 2.6. (Almost polynomial under 1)
A function f is almost polynomaial under p if there exist integer k such that for all ¢ > 0

and for almost all n > 0,

wle eS| fa) <nb) > 1- -

nC
The reducibility notion often helps us to discuss the implication of complexity as-

sumptions such as P = NP. Here we use the following reducibility from [BCGL92].

Definition 2.7. (Random reduction)

Let (L1, p11) and (La, p2) be respectively a pair of a language and a probability function.
A random reduction (or, more specifically, ok -reduction) from (Lq, 1) to (L, pi2) is a
randomized oracle Turing machine ¢) with the following properties:

(a) @ is polynomial-time bounded.

(b) For every a € ¥~,

r €Ly = Pro{Q accepts =}
€L, = Prg{Q™ rejects z }

2/3, and

>
> 2/3.

(¢c) There exists a polynomial p such that for any n > 0 and for every y € ¥* that is

queried by Q2 on some x € X7, we have

) > s > Ask(r.u:La)- in(x),

where Askg(z,y; Ly) is the probability Pry{ Q%2 (z) queries y }.
Remark. Here we modified the original definition for our length-wise probability
functions. Some of the above conditions are slightly more restrictive than the original

ones.

A ock-reduction @ that asks queries only nonadaptively is called a ol -reduction. A
och-reduction is extensively used from a (multi-valued) function to a set. It is easy to

show that the following relation holds [BCGL92].

8

Proposition 2.8. Let (Ly, py) and (Lsg, p12) be respectively a pair of a language and a
probability function. If (Ly, ;) is ocp-reducible to (La, p2), and L, is polynomial-time
solvable on py-average, then L is polynomial-time solvable on pq-average.

Remark. This can be extended for a reduction from (fi, p1) to (Le, p2), for a (possibly

multi-valued) function f.

3. Known Results and Some Simple Observations

For simplifying our statements, we will use the following complexity class introduced in

[SY92].

Definition 3.1. (Class Pp)

For any distribution class D, Pp is the class of languages L such that for any distribution
i € D, L is accepted by some randomized Turing machine whose running time is
polynomial on p-average.

Remark. We will also use this notation for discussing the complexity of computing
functions. That is, a function f is in Pp if for any distribution p € D, f is computable

by some randomized Turing transducer whose running time is polynomial on p-average.

For example, Pp_comp 1s the class of languages that are polynomial-time solvable on
average under any polynomial-time computable distributions. Hence, the relation NP
C Pp-comp 18 equivalent to the following statement: for all P-computable distribution p
and all L in NP, L is polynomial-time decidable on p-average. Thus, by this notation,
we can state our principal question as follows: Is it true that NP C Pp_¢o,p = OptP C

Pp-comp?! Also two questions we asked in the introduction are stated as follows.
Q1. For which distribution class D, do we have the following implication?:
NP CPp = OptP C Pp_comp-
Q2. For which distribution class D, do we have the following implication?:
NP C Pp-comp = NP C Pp.
Here let us review previous results.

Proposition 3.2. [BCGL92]

(1) NP C Ppocamp = O} C Ppogamp (where OF = PN,

(2) NP C Pp_gamp = SearchP C Pp_gump.

Remark. The first fact, which is almost immediate from Proposition 2.8, is not
explicitly stated in [BCGL92], but the idea has been used to show the second fact.

9

Proposition 3.3. [IL90] NP C Pp_comp = NP C Pp_qamp-

By using these propositions, it is not so hard to show that if NP C Pp_.omp, then
every NP optimization problem has an average-polynomial-time approximation scheme.
Consider any NP optimization problem II, and let cost and p be a cost function
and a polynomial specifying II. For any probability function p, we say that II has a
w-average-polynomaal-time approzimation scheme if for each ¢, 0 < ¢ < 1, there exists
a randomized Turing machine M with the following properties:
(a) The running time of M is polynomial on p-average.
(b) For any x € ¥*, with probability greater than 2/3, M(x) yields an -approzimation

y; that is, y satisfies
opt(x) — cost(x,y)
opt(x) -

(Recall that we assumed that cost(x,y) > 0 and that we are considering maximiza-

E.

tion problems.)

Theorem 3.4. If NP C Pp_omp, then every NP optimization problem has a p-average-

polynomial-time approximation scheme for every P-computable distribution p.

Proof. (The same idea has been used for proving [CG93, Lemma 4].)
Let IT be any NP optimization problem that is specified by cost and p. Also let u be
any P-computable distribution.

Consider any constant ¢, 0 < ¢ < 1, and let it be fixed. We show some machine
exists that satisfies the above conditions (a) and (b) for e. Formally, the problem is to
compute a (multi-valued) function ap-val whose value on x takes every e-approximation
of . We reduce this approximation problem to some NP search problem. Let opt(x)
= max{cost(z,y") | v € S=PITDY We may assume that for every 2 € %, 0 < opt(x) <
24 for some polynomial ¢. Also let r be a polynomial such that [(1 —¢g)"("24W | =0

for any n. Now we consider the problem of computing the following function:

For each (n,x, k),, where v € ¥" and 1 < k < r(n),
search((n,z,k),) = y such that [(1 —)20]| < cost(x,y) < [(1 —e)F~120(0)7,

Clearly, if there is no solution for (n,z, k — 1), then any solution for (n,x, k), is an
g-approximation. Thus, the problem of computing ap-val(x) is solvable by computing
search for all (n,x,k),, 1 <k < r(n). That is, ap-val is polynomial-time reducible to
search. Now it suffices to show some ' in P-comp such that (ap-val, i) is och-reducible
(in fact, o< -reducible) to (search, p'). This can be done by simply defining u/({n, z, k),,)

= (@) /r(lz])- O

10

4. The First Question

Here we discuss our first question. Namely, we would like to obtain some sufficient
condition (in terms of the relation NP C Pp) for all NP optimization problems to be
polynomial-time solvable on average under any P-computable distribution. For example,
it has been shown [SY92] that Pg-comp is exactly the same as P, where E-comp is the
class of exponential-time computable distributions. Hence, NP C Py o, implies that P
= NP even in the worst-case; thus clearly, all NP optimization problems are polynomial-
time solvable (even in the worst-case). Here we will show that a much weaker condition
NP C Ppnp_gump is sufficient, and furthermore it is indeed necessary.

Before proving this result, let us first show that we lose no generality if we discuss

our problem by using Al class.

Theorem 4.1. For any distribution class D defined in Section 2, we have A} C Pp
<— OptP C Pp.

Proof. (<) Let L be any set in Al'. By using the proof technique for [Kre88, Theorem
3.1], we can define some function opt-vel in OptP such that @ € L if and only if the last
bit of opt-val(x) is 1. Thus, for any distribution ¢ € D, if opt-val is polynomial-time
computable on u-average, so is L.

(=) Let opt-val be any function in OptP. We assume that for some polynomial r,
lopt-val(z)| < r(|z|) for all z € ©*. Tt is easy to show that the following set L is in A}:

L = {(nad, : ¥ 1<i<r(n), de{0,1}, and
the ith bit of the lexicographically smallest opt-val(x) is d }.

Clearly, for any x € ¥*, some value of opt-val(x) (in fact, the lexicographically smallest
value of opt-val(x)) is polynomial-time computable by asking at most ¢(|z|) queries to
L. Then it is easy to show that (opt-val, ;1) is odi-reducible (in fact, oli-reducible) to
(L, u') for some p' € Pp. Then the proof follows from Proposition 2.8. O

Now we are ready to prove our first main result. That is, NP C Ppxr_g,,, is sufficient
and indeed necessary for showing Ag C Pp-comp (i-€., OptP C Pp_comp). First we show the

sufficiency. In fact, we can prove that NP C Ppyr_g,p, is sufficient for AY C Ppxe _samp-
Theorem 4.2. If NP C Pprr_g,,,, then Al C Pprr_gamp-

Proof. Let L; be any set in A} and p; be any PNP-samplable distribution. Then we
have a polynomial-time bounded deterministic Turing machine ¢} and an NP set L, such

that Q™ accepts L;. Also there exist a polynomial-time bounded randomized Turing

11

PN_samplable. We may assume, for some

machine G and an NP set X witnessing p 1s
polynomial ¢; and all + € 3", that Q*2(z) asks exactly ¢;(n) distinct queries, and that
it always asks queries of the form (n,z,y), for some y.

Now for any (n,z,y), that is queried by Q¥*(z), define yy({n,z,y)n) = p1(x)/qi(n),
and ps(z) = 0 for any other z. Then ps is a well-defined probability function. Also it is
clear that uy satisfies the condition (¢) of Definition 2.7 for Ly, L, @, and x4 by taking
p(n) =1 and q(n) = ¢;(n). Hence, (Ly, 1) is ock-reducible to (Ls, pia).

On the other hand, for a given n > 0, one can generate each (n,z,y), with pro-
bability y2((n,z,y),) in the following way: First, simulate G* (%) to generate x. Then
simulate Q1?(z) to generate all queries. Finally, output one of the generated queries at
random. Thus, py is PX®2_samplable. Therefore, by assumption, L, is polynomial-time

solvable on py-average, which proves that Ly is polynomial-time solvable on pq-average

because (Ly, p1) o (Lg, z). O

Next we show that NP C Ppye_g,,, 1s indeed necessary for showing Al C Pp-comp-

That is, the following relation.
Theorem 4.3. If A} C Pp_comp, then NP C Ppur_gump.

Suppose AY C Pp-comp, and let us first discuss very intuitively why this seems to
imply NP C Ppyr_gyp,. Consider any distribution pg in PNP_samp. By definition, there
exist a randomized machine Gy and a NP oracle set X, such that Gé(o(ﬁ) produces
x € X" according to . Since Ag C Pp-comp. every PN_computation can be simulated
by some randomized machine whose running time is polynomial on average; thus, the
computation of G5° can be simulated by some randomized machine G, whose running
time is polynomial on average. That is, the distribution pg itself is “on average” P-
samplable, or, one can define a P-samplable distribution pj that “approximates” py.
Since Ag C Pp-comp, clearly NP C Pp_comp. Thus, by Proposition 3.3, NP C Pp_gump;
that is, NP sets are decidable in polynomial-time on p-average for any P-samplable
distribution p. Hence, NP sets are decidable in polynomial-time on pg-average. But
this property seems to hold for p because p is a “good approximation” of .

This intuitive idea can be formalized to prove a similar relation for weaker “average
polynomial-time” notions such as our almost polynomial-time criteria (Definition 2.6).
On the other hand, for proving the above theorem, we need a more careful argument.
We begin by defining the notion of “polynomial-time samplable on average”.

For any probability function u, we say that p is aveP-samplable distribution if there

exists a deterministic Turing machine G such that for each n > 0,

12

(1) for every s,s’ € %, if G(7m,s) #L, then G(n, ss") =L.
(2) forevery x € X", p(x) = M s € &* : G(m,s) yields « }, and
(3) G runs polynomial-time on A-average; that is, there exist constants ¢,d > 0 (inde-

pendent from n) such that

g wea@ma)H, o,

SEX* AG(m,s)# L n

Here we use A to denote the uniform distribution on ¥*. That is, G(7,s) (with
G(m,s) #L1) is regarded as the execution of randomized generator that halts after con-
suming all bits of s for its coin-tossing. In the following, we will refer G satistying (1)
and (2) as a determanistic generator for . Notice that the generator G in Definition 2.2
can be modified to this type of generator that halts elways in polynomial-time. Thus,
this notion is a natural generalization of P-samplable distribution. We use aveP-samp
to denote the class of aveP-samplable distributions.

Now we prove the following theorem, which is a generalization of Proposition 3.3.
Theorem 4.4. NP C Pp_omp = NP C PaveP-samp-

Proof. Consider any set Ly in NP and any aveP-samplable distribution pg. We will
construct some machine M, that recognizes Ly in polynomial-time on pg-average.

Let Go be a deterministic generator for po that satisfies the condition (1) ~ (3)
above. We consider any n > 0; let us fix it for a while, and discuss only inputs in ¥".
For simplifying notation, in the following, we write G(T7, s) as G(s).

Note that Ly € NP is solvable in exponential-time. Hence, for some polynomial
co, we may consider only instances x with p(z) > 27%+!: that is, we can use the
exponential-time algorithm for L, for those instances @ with u(x) < 270+ and this
does not affect the polynomial-time computability discussion. Thus, in the following,
we may assume that po(z) > 27T (Again we use ¢y to denote eg(n).) On the other
hand, for each z € £, we have AM{s : Go(s) = A Go(s) takes more than (2%cqn)%
steps } < 27%. Thus, even if we modify Gy so that it terminates after (2°0con)® steps,
the probability that x is generated is reduced by only 27, which is at most the half of
o), since we have just assumed that po(x) > 2%, Hence, without losing generality,
we may assume that the worst-case running time of Go(s) is bounded by (2% con)®.

From the condition (2), Gy runs in polynomial-time on A-average, which is witnessed
by constants cg,dyp > 0. This intuitively means that the average running time of Go(s)
is (con)®. That is, with t(u) = (2“Gon)®, On the other hand, as explained above,

the worst-case running time of Go(s) is bounded by (2%con)%. Hence, with #(u) =

13

(2vGon)¥, we can claim that the running time of Gy for producing some string of
length n is bounded by #(0) on average, and bounded by #(eg) in the worst case. Thus,
intuitively, for most of s € ¥* such that Go(s) #L, Go(s) halts in #(0) steps, and the
number of s for which Go(s) needs more than #(u) steps becomes less and less when u
increases.

For any u, 0 < u < ¢, define Géu), /,Léu), and [ip as follows:

G(u) _ G0(3)7 if (2“—1con)do < timeGO(S) S (2ucon)do7 and
o () L

or u = 0 use the condition timeg, (s) < (con)® 1nstead.
F 0 h diti 1 o < do § d

, otherwise.

p(2) = MG @)) = 3 (@),
reX”™
Then the following relations are clear from the definition.

Fact 1. . .
(1) For any = € £", we have po(z) = Y /,Léu)(x). Hence, > fio(u) = 1.
u=0

= u=0

(2) For any u, 0 < u < eg, we have fo(u) x 2“7t < 1.

It follows from the above (1) that for any x, there exists some u, 0 < u < eq, such
that /,Léu)(:zj) > po(x)/(eg + 1). Let u, denote it. Intuitively, for most of random seeds
generating =, G runs about #(u,) steps.

Here for the proof, we make use of one key lemma, which is provable by a straight-
forward modification of [IL90]. Let us first review [IL90]. Consider any set L in NP
and any P-samplable distribution . Hence, u has a polynomial-time bounded generator
G. From the assumption that NP C Pp_omp, Impagliazzo and Levin constructed some
randomized machine M such that (1) M recognizes L, and (2) M runs in polynomial-
time on p-average. By modifying their argument (see Appendix for the detail), we can

construct the following M; for our Ly and Gy.

Lemma 4.5. There exists a randomized machine M; with the following properties:
(1) For all € ¥" and u > 0,
(1) Mﬂ(n,@,@m(u)) outputs either 0, 1, or L,
(ii) if Mﬂ(n,@,@m(u)) # 1, then Mﬂ(n,@,@m(u)) =1<«= z € Ly, and
(i) if u§" (@) # 0, then Prag, { My ((n, #(u), @)y su)) # L} > 2/3.
(2) M; runs in polynomial time on j;-average, where i ((n, t(u), TYnt(u)) = /,Léu)(:zj) for
any u, 0 < u < eg. (We artificially set p1((n,0,0),40)) = 1 — fro(u), and py(2") =0

for any other form of z'.)

14

Now by using M;, we define the following algorithm M,.

prog M, (input x);
n «— |z|; N « pi(n); % p1 is sufficiently large polynomial.
in parallel do
(0) simulate N executions of M;((n,#(0), T)n4(0)) in parallel
by using N randomly chosen sequences as M;’s random resource;

if M, yields 0/1 then accept/reject;

(eo) simulate N executions of Mi((n,t(eo),)n () in parallel
by using N randomly chosen sequences as M;’s random resource;
if M, yields 0/1 then accept/reject;

() determine @ € Ly by brute force deterministic computation;

if the computation accepts/rejects then accept/reject

od.

Clearly, this M, recognizes Lo correctly. Thus, it suffices to show that M, runs in
polynomial-time on pg-average. In the following discussion, we consider any sufficiently
large n, and let it be fixed.

Let ¢; and d; are constants witnessing that M; is polynomial-time on p4-average.
Thus, for any u, 0 < u < e,

3 (timenr, (o t(w), @) i)

zEXL™ |<n7t()7x>n,t(u)|

M1(<n7 mv x>n,t(u)) < .

<

- () -

Recall that i((n,t(u), 2),)) = to () and that |[(n,t(u),), is less than some
polynomial in n + #(u), which is bounded by (2*7'n)% for some d,. Thus, for any u,

(timens, (. (u), 2)s))™ (0
= g) <

Ccq.
zEXT

Note also that 3, cvn /,Léu)(:zj) = fo(u) < 1/2%7! for any u. Thus, for any u, 0 < u < e,
it follows from Proposition 2.5 that

timens, n,t(w), @)) G2
Z (i (. 1 r)od2 () Mé)(:L') <+l

zEXT

Now for a given input x € X", estimate the running time of My(x). Here we fo-
cus on the wu,th parallel step; that is, the simulation of Mi({n,t(us),%)ne(u,)). Re-

call that the probability that M;((n,#(u.),2)n(u,)) #L is greater than 2/3, and

15

that My((n,t(us), T)n(u,)) 1s simulated by using N random sequences in parallel.

Thus, with very high probability, some simulation of M1(<n,m,x>m(um)) yields 0
or 1, and furthermore it halts in 2 - timeM1(<n,m,x>m(um)) steps. (Recall that
timeM1(<n,m,x>m(um)) is the expected running time over all random sequences of
M;). Thus, we can assume that the running time of M»(x) is bounded by that of the
u,th parallel step, which is bounded by 2Ntimeyy, ((n, #(u.), L) t(un)) T P2(2%°n) for some
polynomial p;.

Hence, for some constant ds > 2d;d, such that (p2(2“$n))1/d3 < 2us—lp we have

1/ds

Z (timeps,(x))

o fo()

TiUug=u

2Ntime 1 n,t(Uy)y T)nt(u,)) + Pz gy 1/ds “
< (eo+1)- Z (my ((n, t(us) >,t()) pal) /lé)(:1;)

TiUug=u n

2Ntimens, (1, (e)y) siuny NV (a
< ottty NI) e o

iUz =u

n

(P2(24n)™ (o)

+(eo+1)- Y ———F—uy"(x)

TiUgr=U n
(eo + 1)nd2_1(2]\7)1/d3(cl +1)4+(eg+1)-
< (eo+1) (nPTHEN)YE (e +1) + 1)

Qua—lp 1

n 2u$—1

IA

Hence, summing up this for u = 0 to u = eg(n), we have 3, cvn(timeys, ()% /n <
ps(n) for some polynomial ps. Therefore, from Proposition 2.4, we conclude that M,

runs in polynomial-time on pq-average. O
Now with Theorem 4.4, the proof of Theorem 4.3 is easy.

Proof of Theorem 4.3. It suffices to show that under the assumption that AL
C Pp-comp, every PNP_samplable distribution is aveP-samplable. Consider any PN'-
samplable distribution z. Then there exists some PN'-generator G* for p. That is, G is
a polynomial-time bounded deterministic machine, X is a set in NP, and they satisfies

the following for some polynomial r and all n > 0 and = € ¥™:
plz) = Msex®™ . ¢¥m,s) =2}
Then define L by

L = {(n,s,id), :n>0,se 1<i<n,de{0,1}, and (GX(7m,s)); = d},

16

where (GX (7, s)); is the th bit of G* (7, s). Clearly, L is in A}. Thus, it is polynomial-
time decidable on average under uniform distribution. On the other hand, the function
G* (under uniform distribution) is ol -reducible to L (under uniform distribution).
Therefore, G¥ is computed by some G’ that runs in polynomial-time on average under

uniform distribution. O

5. The Second Question

In this section, we discuss the second question. That is, from the assumption NP C
Pp-comp, how far can we prove? Or more specifically, for which distribution class D, can
we prove NP C Pp?

We first show that the assumption implies NP C Ppur

-samp*

Theorem 5.1. If NP C Pp_.p, then NP C PPtNtP

-samp*

Proof. The proof is essentially the same as the one for Theorem 4.3. It follows from Pro-
position 3.3 that the assumption implies that PN" C Pp_comp. Then by exactly the same
argument as the one for Theorem 4.3, we can show, for every PN -samplable distribution
w, that p is aveP-samplable. Thus, by Theorem 4.4, every NP set is polynomial-time
solvable on p-average. That is, NP C Ppyr O

-samp*

Therefore, the difference between Ppxe and Ppxp_g,y, 1s essential for our original

—samp

question, namely, the question of whether it holds that NP C Pp_omp = OptP C
Pp-comp. This leads us to another type of question. That is, the relation between
Ppye and Ppxe_g,p,,, or in more general, between distribution classes PNP_samp and
PNP

—samp
-samp.

Here we show that the class PN-samp is in fact not so small by proving that it
(essentially) contains some distribution class, i.e., the class of #P-computable distri-
butions, which seems much stronger than P-comp. Let us first define the notion of
“#P-computable distribution”. Intuitively, an input distribution p is a #P-computable
if 1 1s defined as some #P function. That is, there exists a polynomial-time computable
binary predicate R and a polynomial ¢ such that for each x (let n = |z|),

~ {w e Rz, w)}]
M(x) - 9q(n) .

Let #P-comp denote the class of #P-computable distributions.
For any two input distributions py and py, we say that py approzimates py within
constant factor if cipi(x) < pa(a) < copr(x) for some constants ¢q, ¢y > 0 and for all

x € X*. We have the following theorem.

17

Theorem 5.2. Every input distribution in #P-comp is approximated within constant

factor by some input distribution in PXF-samp.

For the proof we use hashing functions. Here we use linear hashing functions of
Carter and Wegman [CWT79] for our concrete hashing functions. A linear hash function
h from 2! to ©™ is given by a Boolean (m,[)-matrix A = (q,;), and maps any string
r =z1...7; € X' to some string y = ¥y ...Y,n, where y = Az under modulo 2. Let
H;,, be the set of linear hash functions from ¥ to ©™. The following facts are basic

properties of linear hash functions.

Fact 2. For all z € 3! and for all y € 27,
1
Pricn,, {h(z) =y} = om

Fact 3. For all xy, 2, € &/, 21 # 24, and for all y;,y, € ™,

1
Pl"heHz,m{ h(l'?) =y | h(l'l) =yt = om
1

PrhEHl,m{ h(wl) =1 A h($2) = y?} — 22_m

and thus

Y

We make use of the following lemma.

Lemma 5.3. Let X be any subset of ¥/ of size K = 2* for some k > 0, and let m = k+c
for some integer ¢ > 0. For all + € X define P, by

P.=Pr{(h(z)=y) AN (Va': 2’ e X A" £z [h(z")£y])| h€ Hpmy y € X }.

Then P, 1s bounded as follows:

(1 1)1><1<P<1
2¢) 22 K — "7 T K’

Proof. In the following, we assume that hashing function h is chosen from H;,, ran-

domly and that the domain of y is ¥™. First we have
P, = > 27" Pe{Va': ' e X Na' #x[Ma)#y] | Ma)=y }-Pr{ h(z) =y }

= Y 2.2 (1—Pr{ I’ € X[/ #a A B(z")=y] | h(z) =y })
_lxfi=1 1 Iyt 1

Yy
> Yo (1 > (1-) = x
= Zy: (Do)X2k+c = (zc) > " K

On the other hand, we have

18

1
{4
y
Jerrum, Valiant, and Vazirani [JVV86] showed a method to generate, for any set
X in P and a given [, a string of length [in X with almost the same probability in
polynomial-time by using some NP oracle. The above lemma gives a much simpler
method to do the same task provided we know the size of X N X'; in fact, the method

uses an NP oracle only nonadaptively. This point is crucial for proving our theorem.

Proof of Theorem 5.2. Let u be any input distribution in #P-comp. Then by defi-
nition, there exists a polynomial ¢ and a polynomial-time computable binary predicate
R such that for any n > 0 and any z € 2", pu(z) = || {w €)| R(z,w) }||/210). We
first define the following sets X; and X,:

Xi = {(nhyy) : n>0,h€Hypynygmyt1, Y € $a()+ - and
Ja,w, 2w x, € T A w,w' e D1
[2w # 2w’ A h(zw) = h(z'w')=y AN Rlz,w) N R(a',w')] }.
Xy = { (n,h,y,1,d)
n>0,h€ Huypgm)gn+1, ¥ € Ya+l 1 < <n+ q(n), d € {0,1}, and
Jr,w: €Y Awe X [hzw) =y A R(z,w) A (zw); =d]}.
(where (zw); is the ith bit of w)

Next consider the following randomized machine G, and for any « € X", define p/(x) to

be the probability that G(7) generates x.

prog G (input 72);
generate h from H, | 4(n),q(n)+1 randomly;
generate y € 29+ randomly;
if (n,h,y) € X; then output ? and halt;
use oracle X to find some zw € ¥4 with h(zw) =y and R(zx,w);

if no such zw exists then output ? else output .

Then clearly both X; and X, are in NP. Furthermore, it is easy to modify G so
that G asks only nonadaptive queries to X; ¢ Xy € NP. Thus, G can be considered as
a PNP-generator. On the other hand, it follows from Lemma 5.3 that p' approximates
p within constant factor. This almost proves the theorem.

Here, precisely speaking, ;' is not a real input distribution because y’ may assign
some positive value to error symbol ‘?’. It is possible, however, to modify G to use
polynomially many y’s in parallel and thereby reducing the probability to yield ‘7’ to
less than 279", Then G can output any string of length n instead of ‘?” while keeping

19

the property that p' approximates p within constant factor. The detail analysis is left
to the reader. O

Notice that if ;11 approximates po within constant factor, then the polynomial-time
solvability is equivalent between p-average and py-average. Thus, we have the following

corollary.

Corollary 5.4. Pyp-comp C PﬂP—samp.

Acknowledgments

The second author thanks to Professor Uwe Schoning for inviting him to the Univer-
sitat Ulm, which made this joint research possible, and to the people in the Abteilung
Theoretische Informatik (in particular, Uwe Schoéning and Thomas Thierauf) for their
warm hospitality to him. The authors have benefitted very much from valuable discus-

sions with Professor Johannes Kobler, Professor Uwe Schoning, and Professor Thomas

Thierauf.

References

[BDGS88| J. Balcézar, J. Diaz, and J. Gabarro, Structural Complexity I, EATCS Mo-
nographs on Theoretical Computer Science, Springer-Verlag, 1988.

[BDGI1] J. Balcazar, J. Diaz, and J. Gabarrd, Structural Complexity II, EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, 1991.

[BCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average
case complexity, J. Comput. Syst. Sei. 44 (1992), 193—219.

[CWT9] J. Carter and M. Wegman, Universal classes of hash functions, J. Comput.
Syst. Sei. 18 (1979), 143—154.

[CGI3] R. Chang and W. Gasarch, On bounded queries and approximation, in Proc.
34th IEEE Sympos. on Foundations of Computer Science, IEEE (1993),
547—556.

[Gur91] Y. Gurevich, Average case completeness, J. Comput. Syst. Sci. 42 (1991),
346—398.

20

[IL90]

[TVVS6]

[Joh84]

[Kre88]

[Lev86]

[SY92]

R. Impagliazzo and L. Levin, No better ways to generate hard NP instances
than picking uniformly at random, in Proc. §1st IEEE Sympos. on Founda-
tions of Computer Science (1990), 812—821.

M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci. 43 (1986),
169—188.

D. Johnson, The NP-completeness column: An on going guide, J. Algorithms
5 (1984), 284—299.

M. Krentel, The complexity of optimization problems, J. Comput. Syst. Sci.
36 (1988), 490—5009.

L. Levin, Average case complete problems, STAM J. Comput. 15 (1986),
285—286.

R. Schuler and T. Yamakami, Structural average case complexity, in Proc.
12th Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Science 652 (1992), 128—139.

21

Appendix: Proof of Lemma 4.5

Let us first review the proof of the following theorem (i.e., Proposition 3.3) proved in

[IL90]. Then the lemma is proved by a straightforward modification of their proof.
Theorem A.1. [IL90] NP C Pp_comp = NP C Pp_qamp-

Suppose that NP C Pp_omp. Consider any po in Pp_gump and any NP set Ly, and
we show that Ly is polynomial-time decidable on pg-average.

We may assume some polynomial-time computable predicate Wy and polynomial py
such that for all # € ©* (letting n = |z|), z € Ly <= Fw € TP [Wy(z,w)]. Since o
is P-samplable, there exist some polynomial-time bounded generator Go for po. That
is, for some polynomial rg and for all x € X7,

s € oW | Go(m,s) =
iy = (6o =z}

Now consider any sufficiently large n, and let us fix it in the following discussion.
For simplifying our notation, we write Go(7, s) as Go(s), and ro(n) and po(n) as ro and
po respectively.

Here again we use linear hash functions. Recall that H;,, is the set of linear hash

functions from ! to ™. For any « € X", hy € Hy, ., and hy € H,;,, we say that

)

(h1, ha2, z) determaines x if

JoeBh [hi(v)=s A fo(s) =2 A ho(x) = 2]
AV €S [(h(v) =5 A folv')=a' #z) = ho(a') # 2].

We show that for appropriate choice of Iy and I3, (hy, h, ho(2)) determines @ with high
probability. In the following, let k, = ||| log G5'(x)]|]. Note that 2% < ||Gg'(2)]| <
2k: 41 hence, 27(0=ke) < () < 27(o—ke) 1,

Lemma A.2. For any v € ¥", let ; =rqg — k., — 1 and I = [; + 2. Then we have

1
Py = Pr{(hi, hq, hao(x)) determines x| hy € Hy, o, he € Hyypy } > T
Proof. Let us fix our , and let z = hy(a). In the following, we assume that hy (resp.,

hs) is chosen from Hy, ,, (resp., H,) uniformly at random. Define P, and P; as follows

(P varies depending on hy):

Py = Pry, {Fv e S [Go(hi(v)) = 7]
P2 = PI’}L2{ Elvl,vg - le [Go(hl(vl
ha Gol by

22

Then clearly, Py > P, — maxy, Ps.
First from the following inequalities, we show that P; > 1/4. (In the following, the
range of s’s and v’s are Gy'(x) and $% respectively.)

P > Z Prp, {hi(v) =s} — Z Pr,{hi(v) =s A h(v') =5}
(s,0) (s,0),(s" ')

#*
_ G @) [x 2" #(# 1) 1 1 Iy _ 1
- 970 T Xgp < 5(1_5) Y

For estimating Py, let F be the range of G o hy. Then, for all Ay, || F|| < 2" and

therefore we have the following.
P2 = PI’}L2{E|$1,$2€F[$17£$2 A hg(l’l):hg(wz):Z]}
S Z PI’}L2{ hg(l’l) = hg(l’g) = Z}

z1FT2€F 1
< IFIF/@ < 2 = L

16
O

Now consider a procedure @)y stated below. The idea of) is as follows. For a given

z € X" let Gg'(x) be the set of strings y such that Go(y) = z. Choose k randomly

from {0,1,...,70}; then with probability 1/r¢, we have k = k, (k, = |log||G5 (2)|]])-

If # = k,, then by Lemma A.2, for randomly selected hash functions h; and hs,

(h1, ha, ho(2)) determines @ with probability > 1/16. That is, we can indirectly spe-
/

cify x by (hq, ha, ha(2)), and thus, Qo can ask a right query to an oracle Ly, which is

essentially the same as asking = to L.
prog (o (input = € ¥");
choose k randomly from {0,7o};
Zl — To—k—Q; 12 — Zl+27

choose hy randomly from Hj, ,,; choose hy randomly from H,, ,;

Yy = <n7k7h17h27h2($)>n7 and Yi < <n7k7h17h27h2(x)7i>n for each i, 1< i < n;

ifyc EXy Nygd EXo AN (v, =1 < y, € EX5)
then if y € L then accept else reject

else output 7.

Here oracle sets are defined as follows (here let 7 = ro —k =2, L =L + 2, 2 =
Go(h1(v)), v1 = Go(h1(v1)), and @ = Go(hq(v2))):

EX, = {(n,k,hi,hy,2)y, © Foe X [hy(a)=2]}

EXy = { (n,k,hi,hy,2)n @ Fui, 00 €50 [y # 29 A ho(zy) = h(29) = 2] }.

EX; = { (n,k,hi,hy,2,0), + e [hylz)=2 Az, =1]1}.

Ly = { (n,k,hi,hg,2), : €T w e TP [2= ho(x) A Wo(a,w)] }.

23

Following the above argument, we can easily show that Qo(x) gives a correct answer
with probability > 1/16r,. Note also that when Qo(x) says accept/reject, then the
answer is always correct.

From the assumption that NP C Pp_comp, sets EXy, EXy, and Lj are all solvable
by some machines Ny, N,, and N3 respectively in polynomial-time under the following

uniform distribution (in the following, we use Hy, ,, and H,, to denote || H, ,, || and
| Ho []):

1
TO) Hll,’/’o) Hn

V1(<n7k7h17h272>n) = L9ob

7l2
Similarly, £ X35 is solvable by some machine N, in polynomial-time under the following
uniform distribution:

1
ro - Hh,?“o . th -2 . pn

7/2(<TL, k, hl, h2727i>n) =

We estimate the computation time of ()g when using these three machines Ny ~ Ny.
(In the following, only Ny ~ N5 (under distribution 1) are investigated; the analysis for
Ny (under 1) is almost the same and thus omitted.) Unfortunately, we cannot claim
that ¢)o runs in polynomial-time on pgp-average. The problem is that for wrong choice of
k, hi, ha, Qo(x) may ask a query y to Ny ~ N3 with probability much larger than v4(y).
It is, however, possible to show that if (hq, ha, ha(x)) determines x, then the probability
that y is queried is close to 11(y).

Define (o x A) to be the probability that a string y is queried by Qo(x) when x is

given under distribution po. That is,

(po X N)({n, k, hy,he,2)n) = polx) X Prg,{ Qo(x) queries (n, k, hy, ha, 2), }.

Here suppose that k is chosen correctly; that is, & = k,. Then for any (hq, ha, ho(z))

that determines x, we have

(/~L0 X /\)(<n,k,h1,h2,h2($)>n) - Mo(x) ‘ Hll,ro ‘ Hn,lz ~ 2_(T0_k) ‘ Hhﬂ“o ‘ H,
1 1 1

~ 27" R~

‘ Hll,’/’o ‘ Hn,lg - TO) Hll,’/’o) Hn
- y1(<n,k,h1,h2,h2(l‘)>n),

7l2

. 9l

7l2

where &~ means equal up to a polynomial factor. Thus, for those (n, k, h1, ha, ho(2)), that
determine x, machines N7 ~ N3 (and similarly Ny) return the answer within reasonable
amount of time. Or more specifically, if we estimate the time complexity of QéVl’N2’N3’N4
only for the case where k = k, and (hq, he, ho(2)) determines x, then we can show that

the running time is polynomial on pp-average.

24

Now for a sufficiently large polynomial p, consider a new procedure Qf that runs @
for p(n) times in parallel and outputs an answer if one of the executions of @)y returns
the answer. Recall that there is not so small chance that & = k, and (hq, ha, ho(z)) de-
termines x. Thus, for any input x, the probability that it is determined with the correct
k by some execution of Qg is very high. This is enough to prove that (@)™ V2.2 N
runs in polynomial-time on pg-average. Therefore we have Theorem A.1.

Lemma 4.5 is proved almost the same way as above. Here we need to consider a
generator GGy that may not halt in a fixed polynomial-time. However, by considering
time bounded version Géu) of Gy, we can easily show that (Q})" V2NN indeed satisfies
the conditions (1) and (2).

25

