
Towards Average�Case Complexity Analysis of

NP Optimization Problems�

Rainer SCHULER

Abteilung Theoretische Informatik

Universit�at Ulm

Oberer Eselsberg

D ����� Ulm� Germany

schuler�informatik	uni
ulm	de

Osamu WATANABE

Department of Computer Science

Tokyo Institute of Technology

Meguro
ku Ookayama �
��
�

Tokyo ��� JAPAN

watanabe�cs	titech	ac	jp

ABSTRACT

For the worst�case complexity measure� if P � NP� then P � OptP� i�e�� all NP

optimization problems are polynomial�time solvable� On the other hand� it is not

clear whether a similar relation holds when considering average�case complexity� We

investigate the relationship between the complexity of NP decision problems and that

of NP optimization problems under polynomial�time computable distributions� and

study what makes them �seemingly� di�erent� It is shown that the di�erence between

PNP
tt �samplable and PNP�samplable distributions is crucial�

�� Introduction

Recently� �average
case complexity� has received considerable attention by researchers

in several �elds of computer science	 Even a problem is not �or may not be� solvable

e�ciently in the worst
case� it may be solvable e�ciently on average	 Indeed� several

results have been obtained that show even simple algorithms work well on average �see�

e	g	� �Joh����	 On the other hand� most of those results are about concrete problems� and

not so much has been done for more general study of average
case complexity� though

there are many interesting open questions in this area	 In this paper� we consider one

of such open questions� and improve our knowledge towards this question	

We consider the following question� Suppose every NP problem is polynomial time

�The part of this work has been done while the second author was visiting Universit�at Ulm and

supported in part by the guest scienti�c program of Universit�at Ulm� The second author is supported in

part by Grant in Aid for Scienti�c Research of the Ministry of Education� Science and Culture of Japan

under Grant�in�Aid for Research �C� 	

�	�	� ������

�

solvable on average	 Does this mean that every NP optimization problem is also po

lynomial time solvable on average� Here �NP problem� is a decision problem for an

NP set	 On the other hand� �NP optimization problem� is a problem of �nding opti

mal solutions for a problem with a polynomial
time computable cost function	 Krentel

�Kre��� de�ned the class OptP for the class of NP optimization problems	 Thus� the

question is whether P � NP on average implies P � OptP on average	 �Since OptP is

the class of functions� �P � OptP� should be written as �PF � OptP�	 In this paper�

however� we will use P to denote both language and function classes	�

For discussing average
case complexity� one should be careful about input distri

butions and distribution classes	 It may not be so realistic to discuss polynomial
time

computability considering any input distribution	 Levin �Lev���� who established a fra

mework for average
case complexity theory� proposed to consider only �polynomial
time

computable distribution �in short� P
computable distribution�� as input distributions	

Later more generalized notion� i	e	� �polynomial
time samplable distribution �in short�

P
samplable distribution��� has been proposed �BCGL���	 We essentially follow Levin�s

framework� and regard P
computable distributions �or P
samplable distributions� as

realistic input distributions	 Thus� by �P � NP on average� we mean that for every NP

problem and every P
computable distribution� the problem is solvable in polynomial

time on average when an input instance is given under the distribution	 �In this intro

duction� we will use� e	g	� �P �ave NP �under P
comp	 dist	�� to mean �P � NP on

average for any P
computable distribution	��

For the worst
case complexity measure� we have P � NP �� P � OptP	 This

is from the following reason� Every NP optimization problem A is polynomial
time

solvable by some algorithm Q by using some NP set X as an oracle	 But since P �

NP� we can replace oracle X with some polynomial
time machine M for X	 Thus� QM

solves X in polynomial
time	 This simple argument does not work� however� in the

average
case complexity	 Even if X is solvable by M in polynomial
time on average

under any P
computable distribution� this does not mean that QM runs in polynomial

time on average under every P
computable distribution	 This is because queries to

X may occur under a very strange distribution� for which no algorithm solves X in

polynomial
time on average	 Thus� it is not clear that the relation P �ave NP �under

P
comp	 dist	� �� P �ave OptP �under P
comp	 dist	� holds� or� it may not hold at

all	 In this paper� we study what makes this relation di�cult	

We consider two approaches	 First� we investigate how much we need to enlarge

a distribution class D� so that the following implication holds� P �ave NP �under D�

dist	� �� P �ave OptP �under P
comp	 dist	�	 Secondly� we consider for which class D�

�

can we prove the following implication� P �ave NP �under P
comp	 dist	� �� P �ave

NP �under D� dist	�	 Obviously� if D� � D�� then we have an a�rmative answer to our

question	 While we have been unable to achieve this� we can prove the following results	

��� If P �ave NP under every PNP
samplable distribution� then P �ave OptP under

every P
computable distribution	 Furthermore� the converse relation holds	 That

is� the assumption is indeed necessary for showing P �ave OptP �under P
comp	

dist	�	

��� If P �ave NP under every P
computable distribution� then P �ave NP under every

PNP
tt
samplable distribution	

Thus� we now know that the di�erence between PNP
tt
samplable and P

NP
samplable

distributions is crucial for our question	 Motivated by this� we also study how strong

PNP
tt
samplable distributions are� and obtain the following result	

��� Every �P
computable distribution can be approximated within constant factor by

some PNP
tt
samplable distribution	

Thus� from this and the above result ���� we can show that �P
computable distribu

tions are not stronger than P
computable distributions for discussing the average
case

polynomial
time computability of NP	

Impagliazzo and Levin �IL��� made an important observation on di�erent classes

of distributions	 They showed that if P �ave NP �under P
comp	 dist	�� then it indeed

holds that P �ave NP �under P
samplable dist	�	 For obtaining the above results ���

and ���� we extend their technique and prove that if P �ave NP �under P
comp	 dist	��

then P �ave NP even for any �average� P
samplable distribution	 For showing ���� we

use another property of hash functions	

�� Preliminaries

In this paper� we follow the standard de�nitions and notations in computational com

plexity theory �see� e	g	� �BDG��� BDG����	

Throughout this paper� we �x our alphabet to � � f�� �g� and by a string we mean

an element of ��	 For any string x� let jxj denote the length of x	 For any n � � and

any set L of strings� let L�n and L�n be the set of strings in L of length � n and of

length n respectively	 We use jjL jj to denote the cardinality of L	 Let N denote the

set of nonnegative integers	 Usually� we assume the binary encoding of N on ��� but

sometimes numbers are encoded in a tally form� i	e	� as a string in ��	 For any n � N�

let n denote �n	

�

We use a standard one
to
one pairing function from ����� to �� that is computable

and invertible in polynomial
time	 For inputs x and y� we denote the output of the

pairing function by hx� yi� this notation is extended to denote any n tuple	 We also use

a polynomial
time computable pairing function� say� hn� x� yin such that for every n � �

and for all �x� y� in some �nite set Dn� hn� x� yin is of the same length� which is uniquely

determined by n	 �We assume that hn� x� yin is unde�ned for �x� y� �� Dn	� It is not so

hard to de�ne such pairing functions by using standard padding technique	 We often

omit specifying Dn when it is clear from the context	

For any random event �� let Pr�f ��� g be the probability ��� holds	 For example�

for any randomized machine M � PrMf g is the probability that holds when M

executes following its internal coin tosses� Prx�Uf �x� g is the probability that holds

when x is chosen from U randomly	 The latter one is also written as Prf �x� jx � U g	

For our computation model� we use randomized �oracle� Turing machines	 We say

that a machine M accepts a language L if for all x � ���

x � L �� PrMfM accepts x g � ���� and

x �� L �� PrMfM accepts x g � ����

Similarly� for any �multi
valued� function f � we say that f is computed by M if for

every x� the probability that M�x� computes f�x� is greater than ���	 Note that for

any decision problem and any single
valued function evaluation problem� we can easily

reduce the error probability by executing a machine several times and then taking their

majority	 Also even for evaluating a multi
valued function� if it is easy to verify the

correctness of a given answer� then we can easily reduce the error probability	

Throughout this paper� we use this randomized polynomial
time computability in

stead of the deterministic one	 Thus� by �f is polynomial
time computable�� we pre

cisely mean that f is polynomial
time computable by some randomized machine	 Note

that for a randomized machine M and any input x� the running time of M on x may

di�er depending on the random sequence that M uses	 The running time of M on x

�written as timeM �x�� is formally de�ned as an expected running time of M on x over

all random sequences of M 	

Optimization problems we consider are speci�ed by polynomial
time computable

functions	 For a polynomial
time computable function cost � �� � �� � N� and a

polynomial p� the NP optimization problem speci�ed by cost and p is to compute the

following function opt
val�

opt
val�x� � y � ��p�jxj� such that cost�x� y� � opt�x��

�

where opt �x� � maxfcost �x� y�� j y� � ��p�jxj�g	 Notice that opt
val is multi
valued in

general	 OptP is the class of functions like opt
val	 �In order to keep similarity with

�NP search problem�� we modi�ed the original de�nition of OptP �Kre���� where OptP

is de�ned as the class of functions like opt 	 It is� however� easy to show that the above

class OptP is a generalization of the original class� and they are essentially the same for

discussing polynomial
time computability	�

For a given NP set L� an NP search problem for L is to search� for a given instance

x in L� some witness for x � L	 More formally� for a polynomial
time computable

predicate R on ������ and a polynomial p� the NP search problem speci�ed by R and

p is to compute a value of the following function search �

search �x� � y � ��p�jxj� such that R�x� y� holds�

Notice again that search may be multi
valued in general	 Let SearchP denote the class

of functions like search 	

Preliminaries for Average
Case Complexity Theory

A probability function � on U is a total function from U to ��� �� such that
P

x�U ��x�

� �	 We use � to denote the uniform probability function on �r� where r will be

speci�ed in each context	

Throughout this paper� only length
wise input distributions are considered	 That

is� for each n � �� we consider probability function �n on �n �hence�
P

x��n �n�x� � ���

and discuss average
case complexity assuming that each instance x � �n appears with

probability �n�x�	 Thus� formally speaking� an input distribution �or� distribution in

short� is speci�ed as a family f�ngn�� of such length
wise probability functions �n	 In

this paper� however� we denote an input distribution by a single function such as �� and

for each x � �n� we use ��x� to denote �n�x�	

De�nition ���� �PC
computable distribution� PCtt
computable distribution�

For any complexity class C and any input distribution �� � is a PC�computable distri�

bution if its cumulative distribution �� is computed by some polynomial
time bounded

randomized oracle Turing machine M relative to some oracle set X � C	 The notion of

�PCtt
computable distribution� is de�ned similarly by considering oracle Turing machines

that ask queries only nonadaptively	

Remark� We are using the randomized polynomial
time computability for the

�polynomial
time computability� notion	 Furthermore� we are using length
wise proba

bility� and the cumulative distribution �� of � is de�ned by ���x� �
P

x�	x���n �x��x ��x
���

where � is the standard lexicographic order on ��	 Thus� the above de�nition is not

equivalent to the original one in �Lev���	 Nevertheless� the following argument does not

change even if the above notion is de�ned by using the deterministic polynomial
time

computability	 In this case� it is easy to show that our de�nition is equivalent to the

original one as long as the probability for each length is polynomial
time computable	

De�nition ���� �PC
samplable distribution� PCtt
samplable distribution�

For any complexity class C and any input distribution �� � is a PC�samplable distribution

if there exist a polynomial
time bounded randomized oracle Turing machine G� which

is called a generator� and some set X � C such that for each x �let n � jxj��

��x� � PrGfGX�n� yields x g�

The notion of �PCtt
samplable distribution� is de�ned similarly by considering oracle

Turing machines that ask queries only nonadaptively	

We de�ne distribution classes	 For any complexity class C� let PC
comp denote

the classes of distributions that are PC
computable	 Let PC
samp �resp	� PCtt
samp�

denote the class of PC
samplable �resp	� PCtt
samplable� distributions	 Though we de�ned

notions in a general way� we will mainly consider distribution classes P
comp� P
samp�

PNP
tt
samp� and P

NP
samp	

Note that by these de�nitions� the values of probability functions are always �binary�

rational numbers	 Thus� these de�nitions are weaker than the original ones �Lev���

BCGL��� that allow real numbers for probability	 Nevertheless� it is shown �Gur���

Lemma �	�� that we lose no generality by this restriction for discussing polynomial
time

computability	

Levin �Lev��� gave a general and robust de�nition to the notion of �polynomial
time

solvable on average�	 Levin�s de�nition uses distributions on ��� on the other hand� we

are using length
wise input distributions in order to make our discussion more intuitive	

Thus� we modify Levin�s de�nition to a length
wise version� which is more intuitive but

less robust	 The following de�nition for �polynomial on �
average� was suggested by

Gurevich �Gur���	

De�nition ���� �Polynomial on �
average�

A function f is polynomial on ��average if there exist constants c� d � � such that for

all n � ��

X
x��n

f�x���d

n
��x� � c�

�

For showing �polynomial on �
average�� the following simple characterizations are

useful	

Proposition ���� Let f be any function from �� toN� and � be any input distribution	

Then f is polynomial on �
average if there exist polynomials p and q and a constant

d � � that satisfy the following for all n � ��

X
x��n

f�x���d

q�n�
��x� � p�n��

Remark� The proposition is provable by using an argument similar to the proof of

�Gur��� Lemma �	�	

Proposition ���� Let f and t be any functions from �� to N and fromN to N respec

tively� and let � be any input distribution	 For any k � �� assume that f is polynomial

in t�n�k on �
average� that is� for some constants c� d � � and for all n � �� we have

X
x��n

f�x���d

t�n�k
��x� � c�

Then for any set X � �� such that ��X 	 �n� � ��t�n� for all n � �� f is polynomial

on �
average on X� or more speci�cally� for all n � � and X � � �n such that ��X �� �

��t�n�� we have

X
x�X �

f�x�����dk�
 ��x� � c! ��

Proof� We split the sum depending on the value of f�x�����dk�	

��� Let S be the set of all x � X � with f�x�����dk� � t�n�	 Then

X
x�S

f�x�����dk�
 ��x� �
X
x�S

t�n�
 ��x� � t�n�

X
x�S

��x� � t�n�

�

t�n�
� ��

��� Let T be the set of all x � X � with f�x�����dk� � t�n�� i	e f�x�����d� � t�n�k	 Then

X
x�T

f�x�����dk�
 ��x� �
X
x�T

t�n�k
 f�x�����dk�

t�n�k
��x�

�
X
x�T

f�x�����d�
 f�x�����dk�

t�n�k
��x� �

X
x�T

f�x���d

t�n�k
��x� � c�

tu

We say that a machine M runs in polynomial�time on ��average if its �expected�

running time timeM is polynomial on �
average	 It is shown �Gur��� Proposition �	��

that the above de�nition is equivalent to Levin�s original one for distributions satisfying a

"

certain natural condition	 Furthermore� all the arguments in this paper can be modi�ed

for Levin�s de�nition	 Thus� we will lose no generality by using this de�nition	

For our notion of �average polynomial
time�� we will use the above de�nition in this

paper	 Nevertheless� we should also note that there are weaker �but still natural and

robust� ways to de�ne this notion	 The following is one such example� which has been

used in the study of cryptographic one
way functions	

De�nition ���� �Almost polynomial under ��

A function f is almost polynomial under � if there exist integer k such that for all c � �

and for almost all n � ��

�fx � �n j f�x� � nk g � ��
�

nc
�

The reducibility notion often helps us to discuss the implication of complexity as

sumptions such as P � NP	 Here we use the following reducibility from �BCGL���	

De�nition ��	� �Random reduction�

Let �L�� ��� and �L�� ��� be respectively a pair of a language and a probability function	

A random reduction �or� more speci�cally� �P
T�reduction� from �L�� ��� to �L�� ��� is a

randomized oracle Turing machine Q with the following properties�

�a� Q is polynomial
time bounded	

�b� For every x � ���

x � L� �� PrQfQL� accepts x g � ���� and

x �� L� �� PrQfQL� rejects x g � ����

�c� There exists a polynomial p such that for any n � � and for every y � �� that is

queried by QL� on some x � �n� we have

���y� �
�

p�n�

X
x��n

AskQ�x� y�L��
 ���x��

where AskQ�x� y�L�� is the probability PrMf QL��x� queries y g	

Remark� Here we modi�ed the original de�nition for our length
wise probability

functions	 Some of the above conditions are slightly more restrictive than the original

ones	

A �P
T
reduction Q that asks queries only nonadaptively is called a �P

tt�reduction	 A

�P
T
reduction is extensively used from a �multi
valued� function to a set	 It is easy to

show that the following relation holds �BCGL���	

�

Proposition ��
� Let �L�� ��� and �L�� ��� be respectively a pair of a language and a

probability function	 If �L�� ��� is �P
T
reducible to �L�� ���� and L� is polynomial
time

solvable on ��
average� then L� is polynomial
time solvable on ��
average	

Remark� This can be extended for a reduction from �f�� ��� to �L�� ���� for a �possibly

multi
valued� function f�	

�� Known Results and Some Simple Observations

For simplifying our statements� we will use the following complexity class introduced in

�SY���	

De�nition ���� �Class PD�

For any distribution classD� PD is the class of languages L such that for any distribution

� � D� L is accepted by some randomized Turing machine whose running time is

polynomial on �
average	

Remark� We will also use this notation for discussing the complexity of computing

functions	 That is� a function f is in PD if for any distribution � � D� f is computable

by some randomized Turing transducer whose running time is polynomial on �
average	

For example� PP
comp is the class of languages that are polynomial
time solvable on

average under any polynomial
time computable distributions	 Hence� the relation NP

� PP
comp is equivalent to the following statement� for all P
computable distribution �

and all L in NP� L is polynomial
time decidable on �
average	 Thus� by this notation�

we can state our principal question as follows� Is it true that NP � PP
comp �� OptP �

PP
comp� Also two questions we asked in the introduction are stated as follows	

Q�� For which distribution class D� do we have the following implication��

NP � PD �� OptP � PP
comp�

Q�� For which distribution class D� do we have the following implication��

NP � PP
comp �� NP � PD�

Here let us review previous results	

Proposition ���� �BCGL���

��� NP � PP
samp �� #P
� � PP
samp �where #P

� � P
NP
tt �	

��� NP � PP
samp �� SearchP � PP
samp	

Remark� The �rst fact� which is almost immediate from Proposition �	�� is not

explicitly stated in �BCGL���� but the idea has been used to show the second fact	

�

Proposition ���� �IL��� NP � PP
comp �� NP � PP
samp	

By using these propositions� it is not so hard to show that if NP � PP
comp� then

every NP optimization problem has an average
polynomial
time approximation scheme	

Consider any NP optimization problem $� and let cost and p be a cost function

and a polynomial specifying $	 For any probability function �� we say that $ has a

��average�polynomial�time approximation scheme if for each 	� �
 	
 �� there exists

a randomized Turing machine M with the following properties�

�a� The running time of M is polynomial on �
average	

�b� For any x � ��� with probability greater than ����M�x� yields an 	�approximation

y� that is� y satis�es
opt �x� � cost�x� y�

opt �x�
� 	�

�Recall that we assumed that cost�x� y� � � and that we are considering maximiza

tion problems	�

Theorem ���� If NP � PP
comp� then every NP optimization problem has a �
average

polynomial
time approximation scheme for every P
computable distribution �	

Proof� �The same idea has been used for proving �CG��� Lemma ��	�

Let $ be any NP optimization problem that is speci�ed by cost and p	 Also let � be

any P
computable distribution	

Consider any constant 	� �
 	
 �� and let it be �xed	 We show some machine

exists that satis�es the above conditions �a� and �b� for 		 Formally� the problem is to

compute a �multi
valued� function ap
val whose value on x takes every 	
approximation

of x	 We reduce this approximation problem to some NP search problem	 Let opt �x�

� maxfcost�x� y�� j y� � ��p�jxj�g	 We may assume that for every x � ��� � � opt�x� �

�q�jxj� for some polynomial q	 Also let r be a polynomial such that b��� 	�r�n��q�n�c � �

for any n	 Now we consider the problem of computing the following function�

For each hn� x� kin� where x � �n and � � k � r�n��

search �hn� x� kin� � y such that b�� � 	�k�q�n�c � cost �x� y� � d�� � 	�k���q�n�e�

Clearly� if there is no solution for hn� x� k� �in� then any solution for hn� x� kin is an

	
approximation	 Thus� the problem of computing ap
val�x� is solvable by computing

search for all hn� x� kin� � � k � r�n�	 That is� ap
val is polynomial
time reducible to

search 	 Now it su�ces to show some �� in P
comp such that �ap
val� �� is �P
T
reducible

�in fact� �P
tt
reducible� to �search� �

��	 This can be done by simply de�ning ���hn� x� kin�

� ��x��r�jxj�	 tu

��

�� The First Question

Here we discuss our �rst question	 Namely� we would like to obtain some su�cient

condition �in terms of the relation NP � PD� for all NP optimization problems to be

polynomial
time solvable on average under any P
computable distribution	 For example�

it has been shown �SY��� that PE
comp is exactly the same as P� where E
comp is the

class of exponential
time computable distributions	 Hence� NP � PE
comp implies that P

� NP even in the worst
case� thus clearly� all NP optimization problems are polynomial

time solvable �even in the worst
case�	 Here we will show that a much weaker condition

NP � PPNP
samp is su�cient� and furthermore it is indeed necessary	

Before proving this result� let us �rst show that we lose no generality if we discuss

our problem by using %P
� class	

Theorem ���� For any distribution class D de�ned in Section �� we have %P
� � PD

� OptP � PD	

Proof� ��� Let L be any set in %P
� 	 By using the proof technique for �Kre��� Theorem

�	��� we can de�ne some function opt
val in OptP such that x � L if and only if the last

bit of opt
val�x� is �	 Thus� for any distribution � � D� if opt
val is polynomial
time

computable on �
average� so is L	

���� Let opt
val be any function in OptP	 We assume that for some polynomial r�

jopt
val�x�j � r�jxj� for all x � ��	 It is easy to show that the following set L is in %P
� �

L � f hn� x� i� din � x � �n� � � i � r�n�� d � f�� �g� and

the ith bit of the lexicographically smallest opt
val�x� is d g�

Clearly� for any x � ��� some value of opt
val�x� �in fact� the lexicographically smallest

value of opt
val�x�� is polynomial
time computable by asking at most q�jxj� queries to

L	 Then it is easy to show that �opt
val� �� is �P
T
reducible �in fact� �

P
tt
reducible� to

�L���� for some �� � PD	 Then the proof follows from Proposition �	�	 tu

Now we are ready to prove our �rst main result	 That is� NP � PPNP
samp is su�cient

and indeed necessary for showing%P
� � PP
comp �i	e	� OptP� PP
comp�	 First we show the

su�ciency	 In fact� we can prove that NP � PPNP
samp is su�cient for %
P
� � PPNP
samp	

Theorem ���� If NP � PPNP
samp� then %
P
� � PPNP
samp	

Proof� Let L� be any set in %P
� and �� be any P

NP
samplable distribution	 Then we

have a polynomial
time bounded deterministic Turing machine Q and an NP set L� such

that QL� accepts L�	 Also there exist a polynomial
time bounded randomized Turing

��

machine G and an NP set X witnessing �� is PNP
samplable	 We may assume� for some

polynomial q� and all x � �n� that QL��x� asks exactly q��n� distinct queries� and that

it always asks queries of the form hn� x� yin for some y	

Now for any hn� x� yin that is queried by Q
L��x�� de�ne ���hn� x� yin� � ���x��q��n��

and ���z� � � for any other z	 Then �� is a well
de�ned probability function	 Also it is

clear that �� satis�es the condition �c� of De�nition �	" for L�� L�� Q� and �� by taking

p�n� � � and q�n� � q��n�	 Hence� �L�� ��� is �P
T
reducible to �L�� ���	

On the other hand� for a given n � �� one can generate each hn� x� yin with pro

bability ���hn� x� yin� in the following way� First� simulate GX�n� to generate x	 Then

simulate QL��x� to generate all queries	 Finally� output one of the generated queries at

random	 Thus� �� is PX�L�
samplable	 Therefore� by assumption� L� is polynomial
time

solvable on ��
average� which proves that L� is polynomial
time solvable on ��
average

because �L�� ��� �P
T �L�� ���	 tu

Next we show that NP � PPNP
samp is indeed necessary for showing %
P
� � PP
comp	

That is� the following relation	

Theorem ���� If %P
� � PP
comp� then NP � PPNP
samp	

Suppose %P
� � PP
comp� and let us �rst discuss very intuitively why this seems to

imply NP � PPNP
samp	 Consider any distribution �� in P
NP
samp	 By de�nition� there

exist a randomized machine G� and a NP oracle set X� such that G
X�

� �n� produces

x � �n according to ��	 Since %P
� � PP
comp� every PNP
computation can be simulated

by some randomized machine whose running time is polynomial on average� thus� the

computation of GX�

� can be simulated by some randomized machine G�
� whose running

time is polynomial on average	 That is� the distribution �� itself is �on average� P

samplable� or� one can de�ne a P
samplable distribution ��� that �approximates� ��	

Since %P
� � PP
comp� clearly NP � PP
comp	 Thus� by Proposition �	�� NP � PP
samp�

that is� NP sets are decidable in polynomial
time on �
average for any P
samplable

distribution �	 Hence� NP sets are decidable in polynomial
time on ���
average	 But

this property seems to hold for �� because ��� is a �good approximation� of ��	

This intuitive idea can be formalized to prove a similar relation for weaker �average

polynomial
time� notions such as our almost polynomial
time criteria �De�nition �	��	

On the other hand� for proving the above theorem� we need a more careful argument	

We begin by de�ning the notion of �polynomial
time samplable on average�	

For any probability function �� we say that � is aveP�samplable distribution if there

exists a deterministic Turing machine G such that for each n � ��

��

��� for every s� s� � ��� if G�n� s� ���� then G�n� ss�� ��	

��� for every x � �n� ��x� � �f s � �� � G�n� s� yields x g� and

��� G runs polynomial
time on �
average� that is� there exist constants c� d � � �inde

pendent from n� such that

X
s��� �G�n�s�	�

�timeG�n� s����d

n
��s� � c�

Here we use � to denote the uniform distribution on ��	 That is� G�n� s� �with

G�n� s� ���� is regarded as the execution of randomized generator that halts after con

suming all bits of s for its coin
tossing	 In the following� we will refer G satisfying ���

and ��� as a deterministic generator for �	 Notice that the generator G in De�nition �	�

can be modi�ed to this type of generator that halts always in polynomial
time	 Thus�

this notion is a natural generalization of P
samplable distribution	 We use aveP
samp

to denote the class of aveP
samplable distributions	

Now we prove the following theorem� which is a generalization of Proposition �	�	

Theorem ���� NP � PP
comp �� NP � PaveP
samp	

Proof� Consider any set L� in NP and any aveP
samplable distribution ��	 We will

construct some machine M� that recognizes L� in polynomial
time on ��
average	

Let G� be a deterministic generator for �� that satis�es the condition ��� � ���

above	 We consider any n � �� let us �x it for a while� and discuss only inputs in �n	

For simplifying notation� in the following� we write G�n� s� as G�s�	

Note that L� � NP is solvable in exponential
time	 Hence� for some polynomial

e�� we may consider only instances x with ��x� � ��e��n�
�� that is� we can use the

exponential
time algorithm for L� for those instances x with ��x�
 ��e��n�
�� and this

does not a�ect the polynomial
time computability discussion	 Thus� in the following�

we may assume that ���x� � ��e�
�	 �Again we use e� to denote e��n�	� On the other

hand� for each x � �n� we have �f s � G��s� � x � G��s� takes more than ��e�c�n�d�

steps g � ��e� 	 Thus� even if we modify G� so that it terminates after ��e�c�n�d� steps�

the probability that x is generated is reduced by only ��e� � which is at most the half of

���x�� since we have just assumed that ���x� � ��e�
�	 Hence� without losing generality�

we may assume that the worst
case running time of G��s� is bounded by ��e�c�n�d� 	

From the condition ���� G� runs in polynomial
time on �
average� which is witnessed

by constants c�� d� � �	 This intuitively means that the average running time of G��s�

is �c�n�d� 	 That is� with t�u� � ��uG�n�d� � On the other hand� as explained above�

the worst
case running time of G��s� is bounded by ��e�c�n�d� 	 Hence� with t�u� �

��

��uG�n�d�� we can claim that the running time of G� for producing some string of

length n is bounded by t��� on average� and bounded by t�e�� in the worst case	 Thus�

intuitively� for most of s � �� such that G��s� ���� G��s� halts in t��� steps� and the

number of s for which G��s� needs more than t�u� steps becomes less and less when u

increases	

For any u� � � u � e�� de�ne G
�u�
� � ��u�� � and c�� as follows�

G
�u�
� �s� �

��� G��s�� if ��u��c�n�d�
 timeG�
�s� � ��uc�n�d� � and

�� otherwise	

�For u � � use the condition timeG�
�s� � �c�n�d� instead	�

�
�u�
� �x� � �� �G

�u�
� ����x� �� c���u� � X

x��n
�
�u�
� �x��

Then the following relations are clear from the de�nition	

Fact ��

��� For any x � �n� we have ���x� �
e�X
u��

�
�u�
� �x�	 Hence�

e�X
u��

c���u� � �	

��� For any u� � � u � e�� we have c���u�� �u�� � �	

It follows from the above ��� that for any x� there exists some u� � � u � e�� such

that ��u�� �x� � ���x���e� ! ��	 Let ux denote it	 Intuitively� for most of random seeds

generating x� G� runs about t�ux� steps	

Here for the proof� we make use of one key lemma� which is provable by a straight

forward modi�cation of �IL���	 Let us �rst review �IL���	 Consider any set L in NP

and any P
samplable distribution �	 Hence� � has a polynomial�time bounded generator

G	 From the assumption that NP � PP
comp� Impagliazzo and Levin constructed some

randomized machine M such that ��� M recognizes L� and ��� M runs in polynomial

time on �
average	 By modifying their argument �see Appendix for the detail�� we can

construct the following M� for our L� and G�	

Lemma ���� There exists a randomized machine M� with the following properties�

��� For all x � �n and u � ��

�i� M��hn� t�u�� xin�t�u�� outputs either �� �� or ��

�ii� if M��hn� t�u�� xin�t�u�� ���� then M��hn� t�u�� xin�t�u�� � � � x � L�� and

�iii� if �
�u�
� �x� �� �� then PrM�

fM��hn� t�u�� xin�t�u�� ���g � ���	

��� M� runs in polynomial time on ��
average� where ���hn� t�u�� xin�t�u�� � �
�u�
� �x� for

any u� � � u � e�	 �We arti�cially set ���hn� �� �in�t�u�� � �� c���u�� and ���x�� � �
for any other form of x�	�

��

Now by using M�� we de�ne the following algorithm M�	

prog M� �input x��

n � jxj� N � p��n�� & p� is su�ciently large polynomial	

in parallel do

��� simulate N executions of M��hn� t���� xin�t���� in parallel

by using N randomly chosen sequences as M��s random resource�

if M� yields �'� then accept'reject�
			

�e�� simulate N executions of M��hn� t�e��� xin�t�e��� in parallel

by using N randomly chosen sequences as M��s random resource�

if M� yields �'� then accept'reject�

��� determine x � L� by brute force deterministic computation�

if the computation accepts'rejects then accept'reject

od	

Clearly� this M� recognizes L� correctly	 Thus� it su�ces to show that M� runs in

polynomial
time on ��
average	 In the following discussion� we consider any su�ciently

large n� and let it be �xed	

Let c� and d� are constants witnessing that M� is polynomial
time on ��
average	

Thus� for any u� � � u � e��

X
x��n

�timeM�
�hn� t�u�� xin�t�u���

��d�

jhn� t�u�� xin�t�u�j
���hn� t�u�� xin�t�u�� � c��

Recall that ���hn� t�u�� xin�t�u�� � �
�u�
� �x� and that jhn� t�u�� xin�t�u�j is less than some

polynomial in n! t�u�� which is bounded by ��u��n�d� for some d�	 Thus� for any u�

X
x��n

�timeM�
�hn� t�u�� xin�t�u�����d�

��u��n�d�
�
�u�
� �x� � c��

Note also that
P

x��n �
�u�
� �x� � c���u� � ���u�� for any u	 Thus� for any u� � � u � e��

it follows from Proposition �	 that

X
x��n

�timeM�
�hn� t�u�� xin�t�u���

����d�d��

nd�
�
�u�
� �x� � c� ! ��

Now for a given input x � �n� estimate the running time of M��x�	 Here we fo

cus on the uxth parallel step� that is� the simulation of M��hn� t�ux�� xin�t�ux��	 Re

call that the probability that M��hn� t�ux�� xin�t�ux�� ��� is greater than ���� and

�

that M��hn� t�ux�� xin�t�ux�� is simulated by using N random sequences in parallel	

Thus� with very high probability� some simulation of M��hn� t�ux�� xin�t�ux�� yields �

or �� and furthermore it halts in �
 timeM�
�hn� t�ux�� xin�t�ux�� steps	 �Recall that

timeM�
�hn� t�ux�� xin�t�ux�� is the expected running time over all random sequences of

M��	 Thus� we can assume that the running time of M��x� is bounded by that of the

uxth parallel step� which is bounded by �NtimeM�
�hn� t�ux�� xin�t�ux��!p���

uxn� for some

polynomial p�	

Hence� for some constant d� � �d�d� such that �p���uxn��
��d� � �ux��n we have

X
x	ux�u

�timeM�
�x����d�

n
���x�

� �e� ! ��

X

x	ux�u

��NtimeM�
�hn� t�ux�� xin�t�ux�� ! p���uxn����d�

n
�
�ux�
� �x�

� �e� ! ��n
d���

X
x	ux�u

��NtimeM�
�hn� t�ux�� xin�t�ux���

��d�

nd�
�
�ux�
� �x�

! �e� ! ��

X

x	ux�u

�p���uxn��
��d�

n
�
�ux�
� �x�

� �e� ! ��n
d�����N���d��c� ! �� ! �e� ! ��

�ux��n

n

�

�ux��

� �e� ! ��
�
nd�����N���d��c� ! �� ! �

�
�

Hence� summing up this for u � � to u � e��n�� we have
P

x��n�timeM�
�x����d��n �

p��n� for some polynomial p�	 Therefore� from Proposition �	�� we conclude that M�

runs in polynomial
time on ��
average	 tu

Now with Theorem �	�� the proof of Theorem �	� is easy	

Proof of Theorem ���� It su�ces to show that under the assumption that %P
�

� PP
comp� every PNP
samplable distribution is aveP
samplable	 Consider any PNP

samplable distribution �	 Then there exists some PNP
generator GX for �	 That is� G is

a polynomial
time bounded deterministic machine� X is a set in NP� and they satis�es

the following for some polynomial r and all n � � and x � �n�

��x� � �f s � �r�n� � GX�n� s� � x g�

Then de�ne L by

L � f hn� s� i� din � n � �� s � �
r�n�� � � i � n� d � f�� �g� and �GX�n� s��i � d g�

��

where �GX�n� s��i is the ith bit of GX�n� s�	 Clearly� L is in %P
� 	 Thus� it is polynomial

time decidable on average under uniform distribution	 On the other hand� the function

GX �under uniform distribution� is �P
tt
reducible to L �under uniform distribution�	

Therefore� GX is computed by some G� that runs in polynomial
time on average under

uniform distribution	 tu

�� The Second Question

In this section� we discuss the second question	 That is� from the assumption NP �

PP
comp� how far can we prove� Or more speci�cally� for which distribution class D� can

we prove NP � PD�

We �rst show that the assumption implies NP � PPNP
tt

samp	

Theorem ���� If NP � PP
comp� then NP � PPNP
tt

samp	

Proof� The proof is essentially the same as the one for Theorem �	�	 It follows from Pro

position �	� that the assumption implies that PNPtt � PP
comp	 Then by exactly the same

argument as the one for Theorem �	�� we can show� for every PNP
tt
samplable distribution

�� that � is aveP
samplable	 Thus� by Theorem �	�� every NP set is polynomial
time

solvable on �
average	 That is� NP � PPNP
tt

samp	 tu

Therefore� the di�erence between PPNP
tt

samp and PPNP
samp is essential for our original

question� namely� the question of whether it holds that NP � PP
comp �� OptP �

PP
comp	 This leads us to another type of question	 That is� the relation between

PPNP
tt

samp and PPNP
samp� or in more general� between distribution classes P

NP
tt
samp and

PNP
samp	

Here we show that the class PNP
tt
samp is in fact not so small by proving that it

�essentially� contains some distribution class� i	e	� the class of �P
computable distri

butions� which seems much stronger than P
comp	 Let us �rst de�ne the notion of

��P
computable distribution�	 Intuitively� an input distribution � is a �P
computable

if � is de�ned as some �P function	 That is� there exists a polynomial
time computable

binary predicate R and a polynomial q such that for each x �let n � jxj��

��x� �
jj fw � �q�n� jR�x�w� g jj

�q�n�
�

Let �P
comp denote the class of �P
computable distributions	

For any two input distributions �� and ��� we say that �� approximates �� within

constant factor if c����x� � ���x� � c����x� for some constants c�� c� � � and for all

x � ��	 We have the following theorem	

�"

Theorem ���� Every input distribution in �P
comp is approximated within constant

factor by some input distribution in PNPtt
samp	

For the proof we use hashing functions	 Here we use linear hashing functions of

Carter and Wegman �CW"�� for our concrete hashing functions	 A linear hash function

h from �l to �m is given by a Boolean �m� l�
matrix A � �ai�j�� and maps any string

x � x� � � � xl � �l to some string y � y� � � � ym� where y � Ax under modulo �	 Let

Hl�m be the set of linear hash functions from �l to �m	 The following facts are basic

properties of linear hash functions	

Fact �� For all x � �l and for all y � �m�

Prh�Hl�m
fh�x� � y g �

�

�m
�

Fact �� For all x�� x� � �
l� x� �� x�� and for all y�� y� � �

m�

Prh�Hl�m
fh�x�� � y� j h�x�� � y� g �

�

�m
� and thus

Prh�Hl�m
fh�x�� � y� � h�x�� � y� g �

�

��m
�

We make use of the following lemma	

Lemma ���� Let X be any subset of �l of size K � �k for some k � �� and letm � k!c

for some integer c � �	 For all x � X de�ne Px by

Px � Prf �h�x� � y� � ��x� � x� � X � x� �� x �h�x�� �� y �� j h � Hl�m� y � �
m g�

Then Px is bounded as follows��
��

�

�c

�

�

�c
�
�

K
� Px �

�

K
�

Proof� In the following� we assume that hashing function h is chosen from Hl�m ran

domly and that the domain of y is �m	 First we have

Px �
X
y

��m
Prf �x� � x� � X � x� �� x �h�x�� �� y � j h�x� � y g
 Prf h�x� � y g

�
X
y

��m
 ��m ��� Prf �x� � X �x� �� x � h�x�� � y � j h�x� � y g�

�
X
y

��m
	
��

jjXjj � �

�k
c

�

�

�k
c
�

�
��

�

�c

�
�

�c
�
�

K
�

On the other hand� we have

��

Px � Prf h�y� � x j y � �m� h � Hl�m g �
X
y

��m
 ��m � ��m �
�

K
� tu

Jerrum� Valiant� and Vazirani �JVV��� showed a method to generate� for any set

X in P and a given l� a string of length l in X with almost the same probability in

polynomial
time by using some NP oracle	 The above lemma gives a much simpler

method to do the same task provided we know the size of X 	 �l� in fact� the method

uses an NP oracle only nonadaptively	 This point is crucial for proving our theorem	

Proof of Theorem ���� Let � be any input distribution in �P
comp	 Then by de�

nition� there exists a polynomial q and a polynomial
time computable binary predicate

R such that for any n � � and any x � �n� ��x� � jj fw � �q�n� jR�x�w� g jj��q�n�	 We

�rst de�ne the following sets X� and X��

X� � f hn� h� yi � n � �� h � Hn
q�n��q�n�
�� y � �
q�n�
�� and

�x�w� x�� w� � x� x� � �n � w�w� � �q�n�

� xw �� x�w� � h�xw� � h�x�w�� � y � R�x�w� � R�x�� w�� � g�

X� � f hn� h� y� i� di �

n � �� h � Hn
q�n��q�n�
�� y � �
q�n�
�� � � i � n! q�n�� d � f�� �g� and

�x�w � x � �n � w � �q�n� � h�xw� � y � R�x�w� � �xw�i � d � g�

�where �xw�i is the ith bit of w�

Next consider the following randomized machine G� and for any x � �n� de�ne ���x� to

be the probability that G�n� generates x	

prog G �input n��

generate h from Hn
q�n��q�n�
� randomly�

generate y � �q�n�
� randomly�

if hn� h� yi � X� then output � and halt�

use oracle X� to �nd some xw � �n
q�n� with h�xw� � y and R�x�w��

if no such xw exists then output � else output x	

Then clearly both X� and X� are in NP	 Furthermore� it is easy to modify G so

that G asks only nonadaptive queries to X� �X� � NP	 Thus� G can be considered as

a PNPtt
generator	 On the other hand� it follows from Lemma 	� that �� approximates

� within constant factor	 This almost proves the theorem	

Here� precisely speaking� �� is not a real input distribution because �� may assign

some positive value to error symbol (��	 It is possible� however� to modify G to use

polynomially many y�s in parallel and thereby reducing the probability to yield (�� to

less than ��q�n�	 Then G can output any string of length n instead of (�� while keeping

��

the property that �� approximates � within constant factor	 The detail analysis is left

to the reader	 tu

Notice that if �� approximates �� within constant factor� then the polynomial
time

solvability is equivalent between ��
average and ��
average	 Thus� we have the following

corollary	

Corollary ���� P�P
comp � PNPtt
samp	

Acknowledgments

The second author thanks to Professor Uwe Sch�oning for inviting him to the Univer

sit�at Ulm� which made this joint research possible� and to the people in the Abteilung

Theoretische Informatik �in particular� Uwe Sch�oning and Thomas Thierauf� for their

warm hospitality to him	 The authors have bene�tted very much from valuable discus

sions with Professor Johannes K�obler� Professor Uwe Sch�oning� and Professor Thomas

Thierauf	

References

�BDG��� J	 Balc)azar� J	 D)*az� and J	 Gabarr)o� Structural Complexity I� EATCS Mo

nographs on Theoretical Computer Science� Springer
Verlag� ����	

�BDG��� J	 Balc)azar� J	 D)*az� and J	 Gabarr)o� Structural Complexity II� EATCS

Monographs on Theoretical Computer Science� Springer
Verlag� ����	

�BCGL��� S	 Ben
David� B	 Chor� O	 Goldreich� and M	 Luby� On the theory of average

case complexity� J� Comput� Syst� Sci� �� ������� �������	

�CW"�� J	 Carter and M	 Wegman� Universal classes of hash functions� J� Comput�

Syst� Sci� �� ���"��� ������	

�CG��� R	 Chang and W	 Gasarch� On bounded queries and approximation� in Proc�

��th IEEE Sympos� on Foundations of Computer Science� IEEE �������

�"��	

�Gur��� Y	 Gurevich� Average case completeness� J� Comput� Syst� Sci� �� �������

�������	

��

�IL��� R	 Impagliazzo and L	 Levin� No better ways to generate hard NP instances

than picking uniformly at random� in Proc� ��st IEEE Sympos� on Founda�

tions of Computer Science ������� �������	

�JVV��� M	 Jerrum� L	 Valiant� and V	 Vazirani� Random generation of combinatorial

structures from a uniform distribution� Theoret� Comput� Sci� �� �������

�������	

�Joh��� D	 Johnson� The NP
completeness column� An on going guide� J� Algorithms

 ������� �������	

�Kre��� M	 Krentel� The complexity of optimization problems� J� Comput� Syst� Sci�

�� ������� ������	

�Lev��� L	 Levin� Average case complete problems� SIAM J� Comput� � �������

������	

�SY��� R	 Schuler and T	 Yamakami� Structural average case complexity� in Proc�

��th Foundations of Software Technology and Theoretical Computer Science�

Lecture Notes in Computer Science �� ������� �������	

��

Appendix� Proof of Lemma ���

Let us �rst review the proof of the following theorem �i	e	� Proposition �	�� proved in

�IL���	 Then the lemma is proved by a straightforward modi�cation of their proof	

Theorem A��� �IL��� NP � PP
comp �� NP � PP
samp	

Suppose that NP � PP
comp	 Consider any �� in PP
samp and any NP set L�� and

we show that L� is polynomial
time decidable on ��
average	

We may assume some polynomial
time computable predicateW� and polynomial p�

such that for all x � �� �letting n � jxj�� x � L� � �w � �p��n� �W��x�w� �	 Since ��

is P
samplable� there exist some polynomial
time bounded generator G� for ��	 That

is� for some polynomial r� and for all x � �n�

���x� �
k f s � �r��n� jG��n� s� � x g k

�r��n�
�

Now consider any su�ciently large n� and let us �x it in the following discussion	

For simplifying our notation� we write G��n� s� as G��s�� and r��n� and p��n� as r� and

p� respectively	

Here again we use linear hash functions	 Recall that Hl�m is the set of linear hash

functions from �l to �m	 For any x � �n� h� � Hl� �r�� and h� � Hn�l� � we say that

�h�� h�� z� determines x if

�v � �l� � h��v� � s � f��s� � x � h��x� � z �

� �v� � �l� � �h��v�� � s� � f��v�� � x� �� x � �� h��x�� �� z ��

We show that for appropriate choice of l� and l�� �h�� h�� h��x�� determines x with high

probability	 In the following� let kx � bjj logG��
� �x� jjc	 Note that �

kx � jjG��
� �x� jj

�kx
�� hence� ���r��kx� � ���x�
 ���r��kx�
�	

Lemma A��� For any x � �n� let l� � r� � kx � � and l� � l� ! �	 Then we have

P� � Prf �h�� h�� h��x�� determines x jh� � Hl��r�� h� � Hn�l� g �
�

��
�

Proof� Let us �x our x� and let z � h��x�	 In the following� we assume that h� �resp	�

h�� is chosen from Hl��r� �resp	� Hn�l�� uniformly at random	 De�ne P� and P� as follows

�P� varies depending on h���

P� � Prh�f �v � �
l� �G��h��v�� � x � g� and

P� � Prh�f �v�� v� � �
l� �G��h��v��� �� G��h��v����

h��G��h��v���� � h��G��h��v���� � z � g�

��

Then clearly� P� � P� � maxh� P�	

First from the following inequalities� we show that P� � ���	 �In the following� the

range of s�s and v�s are G��
� �x� and �

l� respectively	�

P� �
X
�s�v�

Prh�fh��v� � s g �
X

�s�v���s��v��

Prh�fh��v� � s � h��v
�� � s� g

�

�z ��
jjG��

� �x� jj � �
l�

�r�
�
���� ��

�
�

�

��r���
�

�

�

�
��

�

�

�
�

�

�
�

For estimating P�� let F be the range of G� � h�	 Then� for all h�� jjF jj � �l� and

therefore we have the following	

P� � Prh�f �x�� x� � F �x� �� x� � h��x�� � h��x�� � z � g

�
X

x� 	�x��F

Prh�fh��x�� � h��x�� � z g

� jjF jj����l��� � ��l���l� �
�

��
�

tu

Now consider a procedure Q� stated below	 The idea of Q� is as follows	 For a given

x � �n� let G��
� �x� be the set of strings y such that G��y� � x	 Choose k randomly

from f�� �� ���� r�g� then with probability ��r�� we have k � kx �kx � blog jjG��
� �x�jjc�	

If k � kx� then by Lemma A	�� for randomly selected hash functions h� and h��

�h�� h�� h��x�� determines x with probability � �'��	 That is� we can indirectly spe

cify x by �h�� h�� h��x��� and thus� Q� can ask a right query to an oracle L��� which is

essentially the same as asking x to L�	

prog Q� �input x � �n��

choose k randomly from f�� ���� r�g�

l� � r� � k � �� l� � l� ! ��

choose h� randomly from Hl��r�� choose h� randomly from Hn�l� �

y � hn� k� h�� h�� h��x�in � and yi � hn� k� h�� h�� h��x�� iin for each i� � � i � n�

if y � EX� � y �� EX� �
Vn
i���xi � � � yi � EX��

then if y � L�� then accept else reject

else output �	

Here oracle sets are de�ned as follows �here let l� � r� � k � �� l� � l� ! �� x �

G��h��v��� x� � G��h��v���� and x� � G��h��v�����

EX� � f hn� k� h�� h�� zin � �v � �l� � h��x� � z � g

EX� � f hn� k� h�� h�� zin � �v�� v� � �l� � x� �� x� � h��x�� � h�x�� � z � g�

EX� � f hn� k� h�� h�� z� iin � �v � �l� � h��x� � z � xi � � � g�

L�� � f hn� k� h�� h�� zin � �v � �l�� w � �p� � z � h��x� � W��x�w� � g�

��

Following the above argument� we can easily show that Q��x� gives a correct answer

with probability � ����r�	 Note also that when Q��x� says accept'reject� then the

answer is always correct	

From the assumption that NP � PP
comp� sets EX�� EX�� and L
�
� are all solvable

by some machines N�� N�� and N� respectively in polynomial
time under the following

uniform distribution �in the following� we use Hl��r� and Hn�l� to denote jjHl��r� jj and

jjHn�l� jj��

���hn� k� h�� h�� zin� �
�

r�
Hl��r�
Hn�l�
 �
l�
�

Similarly� EX� is solvable by some machine N in polynomial
time under the following

uniform distribution�

���hn� k� h�� h�� z� iin� �
�

r�
Hl��r�
Hn�l�
 �
l�
 n

�

We estimate the computation time of Q� when using these three machines N� � N	

�In the following� only N� � N� �under distribution ��� are investigated� the analysis for

N �under ��� is almost the same and thus omitted	� Unfortunately� we cannot claim

that Q� runs in polynomial
time on ��
average	 The problem is that for wrong choice of

k� h�� h�� Q��x� may ask a query y to N� � N� with probability much larger than ���y�	

It is� however� possible to show that if �h�� h�� h��x�� determines x� then the probability

that y is queried is close to ���y�	

De�ne ��� � �� to be the probability that a string y is queried by Q��x� when x is

given under distribution ��	 That is�

��� � ���hn� k� h�� h�� zin� � ���x� � PrQ�
f Q��x� queries hn� k� h�� h�� zin g�

Here suppose that k is chosen correctly� that is� k � kx	 Then for any �h�� h�� h��x��

that determines x� we have

��� � ���hn� k� h�� h�� h��x�in� � ���x�

�

Hl��r�

�

Hn�l�

� ���r��k�

�

Hl��r�

�

Hn�l�

� ��l�

�

Hl��r�

�

Hn�l�

�
�

r�
Hl��r�
Hn�l�
 �
l�

� ���hn� k� h�� h�� h��x�in��

where�means equal up to a polynomial factor	 Thus� for those hn� k� h�� h�� h��x�in that

determine x� machines N� � N� �and similarly N� return the answer within reasonable

amount of time	 Or more speci�cally� if we estimate the time complexity of QN��N��N��N�

�

only for the case where k � kx and �h�� h�� h��x�� determines x� then we can show that

the running time is polynomial on ��
average	

��

Now for a su�ciently large polynomial p� consider a new procedure Q�
� that runs Q�

for p�n� times in parallel and outputs an answer if one of the executions of Q� returns

the answer	 Recall that there is not so small chance that k � kx and �h�� h�� h��x�� de

termines x	 Thus� for any input x� the probability that it is determined with the correct

k by some execution of Q� is very high	 This is enough to prove that �Q�
��
N��N��N��N�

runs in polynomial
time on ��
average	 Therefore we have Theorem A	�	

Lemma �	 is proved almost the same way as above	 Here we need to consider a

generator G� that may not halt in a �xed polynomial
time	 However� by considering

time bounded version G
�u�
� of G�� we can easily show that �Q�

��
N��N��N��N� indeed satis�es

the conditions ��� and ���	

�

