
Linking Reactive Software to the X-Window System

Wolfram Schulte Ton Vullinghs

Fakultat fiir Informatik, Universitat Ulm
E-mail: {wolf ram, ton}@inf ormat i k . uni-ulm . de

November 30, 1994

Abstract

We discuss our experience with linking (existing) reactive applications to X11 based
graphical user interfaces. For implementing the user interface we choose to use the Tcl/Tk
toolkit, whereas the application itself may be written in any language (even a declarative
one) that provides means to perform primitive I/O. The application and the graphical
user interface run as separate processes and communicate in either a synchronous or
asynchronous way using a bidirectional communication channel. The proposed approach
separates software engineering concerns, is easy to use, is reasonably efficient and enables
the linking of arbitrary languages to graphical user interfaces.

1 Introduction

Reactive systems are characterized by being event driven, which means that they continuously
have to react to external and internal stimuli. Examples include elevators, autonomous ro-
bots, operating systems, simulation systems and the user interface of many kinds of ordinary
software [6].

This paper outlines a new approach to embed reactive software, supporting a command-
line oriented interface, in a graphical user environment. The embedding is done using the
commands provided by the X11 toolkit Tcl/Tk [ll, 12, 131. Thanks to the convenient ab-
straction level of this language, the main problems one has to consider upon creation of the
graphical user interface (GUI) are aesthetical ones. The underlying event loops, call back and
display routines are all hidden from the programmer.

The command-line interface of the reactive system is linked to Tcl/Tk, using a straight-
forward method; the application and the GUI run as separate processes and are linked by a
pipe. The GUI sends commands to the application, which for its part returns its results to
the GUI.

It is obvious, that in the case of synchronous communication, we can easily link any
language that contains commands to write and read from a pipe. In addition, we present a
method to let the GUI and the application communicate in an asynchronous way, i.e., the
number of commands and results that have to be passed between the two processes are not
known a priori.

The benefits of this approach are manifold:

It obeys the principle 'separation of concerns'. The GUI and the application are each
written in languages that are appropriate for their purpose on their particular problem
domain with a very precise textual interface defined in between (Section 2).

I t is easy to use. Programmers can readily link GUIs to (existing) applications, which
may communicate either in a synchronous or asynchronous way, by writing Tcl/Tk code
that only has to comply with very simple rules (Section 3).

I t is not necessary to integrate GUIs i n existing languages. As long as the language
provides command-line oriented communication, any language can be combined with
Tcl/Tk. For instance, we present a referential transparent solution of a lift control
system in the functional language Gofer which is linked to an attractive GUI (Section

4).

It is reasonably eficient. The implementation is sufficiently efficient, as long as only
text is communicated between both processes (Section 5).

During the last half year we have encountered a lot of positive experiences with this
approach. In summary, we feel that the entire system, combined in the way which is described
in detail below, works particularly smoothly as a whole, from the standpoint of both the
programmer and the user of the system.

2 Using Tcl and Tk

The combination of Tcl' and Tk provides a simple and comfortable programming system for
developing simple applications and graphical user interfaces.

2.1 Tcl

Tcl (tool command language) is- a small interpretive programming language for controlling
and extending applications. It provides variables, procedures, control constructs, and other
features. Tcl is an embeddable language, i.e., the language is in fact a library, designed
to be linked together with other applications. Tcl only supports the data type string. All
commands, expressions, etc. are strings. Depending on the context, strings have to be in
some particular format (e.g. numeral strings in arithmetic expressions). Evaluation of strings
is done by (recursively) calling the Tcl-interpreter. The example below computes the n-th
fibonacci number:

proc f i b (n) (
i f ($n<=l) (r e tu rn 13 e l s e (
r e tu rn [expr [f i b [expr $n - I]] + [f i b [expr $n - 2]11))

s e t e [f i b 71

'In fact, to have benefit of a more powerful instruction set, we made use of the Tcl extension TclX. Especially
the select command, needed for asynchronous communication, is a not a Tcl command but is provided by
TclX

Using the s e t command we can assign values to strings. Preceding a string by a $-sign
means replacing the string by its assigned value. Strings placed between ' [' and '1 ' cause the
Tcl interpreter to evaluate the string whereas strings between { and) are passed directly to
the interpreter; no substitutions or evaluations are performed.

Tk is a toolkit for the X Window System [14] based on Tcl. Items that may appear at the
user interface like buttons, labels and menus are called widgets. The Tk toolkit offers a set
of widget commands for the creation of user interfaces. All of the functionality of Tk-based
applications is available through Tcl, i.e., evaluation of X events in Tk is done by invoking
Tcl commands. Since programming in Tcl is rather easy, defining and implementing user
interfaces becomes straightforward as well. For the running example in the next section we
will use the interface defined by the following program:

proc MakeGUI (
pack [button .b -text "Press Me". -width 10 -command Press] -side l e f t
pack [label . c - text "Commands:" -width 101 -s ide l e f t
pack [label .d -textvariable corn -width 51 -s ide l e f t
pack [label . e -text "Results:" -width 101 -s ide l e f t
pack [label . f -textvariable res -width 51)

proc Ini t 0 (
global corn res
s e t corn 0; s e t res 0; MakeGUI)

proc Press C) (
global corn res
incr corn; incr res)

The procedure MakeGUI actually implements the interface, consisting of a button, two text
labels and two labels displaying the values of the variables corn and res . Whenever the user
presses the button, the procedure Press is invoked, thus increasing the value of the global
variables corn and res by one. Execution of the program starts with calling the procedure
In i t which initializes the global variables and sets up the user interface.

The pack command manages the positioning of widgets in a window. The optional -s ide
argument determines the relative position of the next widget to be placed within the available
space. Figure 1 shows the state of the widgets after pressing the button 3 times.

3 Interprocess Communication

Although Tcl/Tk is adequate for controlling applications, it is of no use for the development
of complex programs, which should be written in languages that are better suited for the
particular problem domain. The question arises how to achieve mixed language working. In
answering this question we made the following design decisions:

Figure 1: A small user interface

Changes in existing software should be as small as possible. Since pipes can easily be
established between processes and are the only way to achieve portable interlanguage
working, we consider the application and the GUI to be separate processes that com-
municate over a bidirectional pipe using the command-line interface of the application
as the communication protocol.2

Input and output in either direction should be processed as soon as possible, e.g., if an
event by the GUI or action of the application is generated, it should be sent immediately
to the application or GCTI, respectively, and should be processed, as soon as it arrives.
Sending is achieved by writing commands or results into the pipe, whereas processing
means reading the command or result from the pipe and interpreting it.

T h e whole sys tem should be e f ic ient , or stated in other words, whenever a process has
nothing to do, it should be suspended. Since inactive applications have to wait for the
next event to process, blocking reads can be used to suspend the application. If the
system uses synchronous communication the GUI has to wait until the application sends
the next result. To solve this problem, the system can use blocking reads too. However,
if the system uses asynchronous communication, the GUI has to wait for a possible
result of the application. The GUI therefore inspects the pipe's state periodically -
during this period the GUI suspends its execution but allows new events to occur.

3.1 Synchronous Communication

To illustrate synchronous communication we return to the previous example, but now we
implement it using two processes. The counter r e s is administered in a C application, which
writes res 's incremented value on standard output whenever it reads an empty line from
standard input. Here is the C code of the program synchronous:

void m a i n 0 C
char sC801; i n t r e s = 0;
uh i l e (ge t s (s)) Ipr in t f ("%i \nI1 ,++res) ; f f lush(s tdout) ;))

Note that we need flushed output in order to process events or actions as soon as possible.
The Tcl program starts, using the Tcl command open, with creating the C application

synchronous as its subprocess. Once it is created, interaction is possible via a pipe, using the
commands puts and ge ts , i.e., on every press the Tcl program writes a newline into the pipe
and reads the C program's result. The procedures I n i t and Press are changed accordingly.

'instead of communicating via pipes, it is also possible to make use of the additional software package
expectk (see [9, 101). This package extends Tcl/Tk with a number of commands for communication with
other applications using virtual terminals. Our approach however, is considerably simpler and makes use of
standard Tcl/Tk only.

proc Init 0 (
global channel corn res
set corn 0; set res 0; set channel [open "lsynchronous" r+]; MakeGUI]

proc Press 0 C
global channel com res
incr corn; Write "I1; set res [gets $channel13

proc Write (rn3 (

global channel
puts $channel $rn; flush $channel3

The resulting system, composed of the C application and the Tcl/Tk process, has the
same observable behaviour as the example of Section 2: The number of commands equals the
number of results.

3.2 Asynchronous Communication

If an application has to process an unpredictable number of events or generates an unforeseen
number of results, we have to deal with asynchronous communication.

We modify the previous example once more. This time the application reads an arbitrary
number of times from standard input before it writes an arbitrary number of times the
incremented value of res on its standard output. The C program asynchronous then is
defined as follows.

void main()(
char s[80]; int res = 0; int n = 0; int m;
while(gets(s))
if (n--==0) (
for (m=rand()%17; m>O; rn--){printf ("%i\nl' ,++red ; ff lush(stdout) ; 3
n=randO%l7; 33

The Init procedure of the Tcl program is the same as in the previous example except
that the C program asynchronous is the subprocess to which a pipe is established. On every
press of the button a newline is written into the pipe. However, now it is undefined whether
the C program replies. Therefore we poll the state of the pipe periodically using the Extended
Tcl command select which returns the empty string if the pipe is not ready to read. In case
the pipe is not empty, we first read the C program's result and then allow the next event to
be dealt with using the Tcl command update. The modified procedures Init and Press are
listed below:

proc Init (3 (
global channel corn res
set corn 0; set res 0; set channel [open " lasynchronous" r+] ; MakeGUI3

proc Press C3 I
global corn res channel
incr com; Write "";

while {"[select $channel () () 01" != ""1 (
set res [gets $channel]
update)) :

Even though this example seems to be rather trivial, it demonstrates our strategy towards
embedding reactive systems. The user generates events in an unpredictable manner. These
events are processed by the read loop of the command-line oriented application.. If reading is
performed in a blocking manner (as in our example), the application waits for the next event
to occur. If non-blocking read is used (which can be realized using the C library function
select), the application can continue working on some other internal job. In any case, the
GUI potentially has to deal with an unknown number of replies. These replies are processed
by an iterative non-blocking read, which in each iteration is interruptible to generate new
events. Note that there may be several incarnations of the procedure Press. However, since
the succession of the select and gets command in one incarnation are not interruptible -
new events are only accepted after execution of the update command - all incarnations use
the same global variables and thus the resulting output is deterministic.

4 The Lift Example

As a more sophisticated example of how to use our approach in combination with a functio-
nal language, we present the lift problem. Readers who are not acquainted with the main
principles of functional programming may skip .this section. For an introduction to functional
programming we refer to [3] or [8].

The problem is to simulate the behaviour of a lift in a multi-story building, used by
passengers to get to their destination floor.

At each floor we have two buttons (up and down), allowing passengers to call the lift for
taking them up or taking them down, respectively. If a button is pressed, it is highlighted to
indicate that the request has been recognized. As soon as the request is processed, i.e., the
lift has moved to the requested floor and has opened its door, the button's light is turned off.
Furthermore, there is a panel in the lift containing floor-number buttons. By pressing one
of these buttons, a passenger decides which floor he or she wants' to go to. The buttons are
highlighted as long as the lift has not reached the corresponding floor. If a lift reaches a floor
of destination it automatically opens the door.

In order to close the door, the lift has a close-button. By pressing it, the lift's door is
closed again and the lift will start moving if there are any requests from passengers available.
If the door is closed, the close-button is disabled.

The lift's behaviour, which corresponds to the lift in our research institute, is based on
the following processing strategy:

1. When moving up (down), the lift will process all up (down) or goto requests that can
be fulfilled without changing its actual direction.

2. If there is not such an up (down) or goto request, but down (up) requests from floors
above (below) the current location exist, then the lift will keep on moving up (down)
to fulfill the down (up) request from the highest (lowest) floor.

3. Otherwise, if there are any other pending requests, the lift changes its direction and
processes them.

We will now consider the two processes that make up the implementation of the lift system.
For the simulation we use an asynchronous process model.

The textual interface is defined by the possible events at the user interface and the corre-
sponding actions of the lift:

The strings denoting the possible events are 'close', 'up n', 'down n' and 'goto n', where
n denotes the requested floor. Additionally, if the door is closed, the environment
generates newlines (clock-ticks) in order to simulate the time interval of a potential
move of the lift.

The output of the lift-controller are the actions to move the lift or to open the door. The
possible actions are 'Move up', 'Move down', 'Open up' and 'Open down'. The argument
of the open action indicates the direction the lift was moving in before opening the door,
which is needed to turn off the up or down light indicator, respectively.

4.1 The Controller . .

The implementation of the lift's operating system is written in Gofer [8], which is a subset of
the referential transparent lazy functional language Haskell [7]. Gofer offers several facilities
for I/O through which connection to Tcl/Tk is possible. Important however, is to use a Gofer
version that uses flushed output.

The lift's state is represented by a four-tuple containing the actual floor number of the
lift, a string denoting its direction, the state of the liftdoor, and a list of requests to process.
Requests are tagged with a label indicating whether they should be processed while moving
up or down.

type Floor = Int
type Dir = String
type Req = (Int ,Dir)
type Reqs = CReql
data Door = Open I Closed
type State = (Floor ,Dir ,Door ,Reqs)

The input of the functional program is an infinite sequence of events resulting in a poten-
tially infinite sequence of actions. Since events and actions are represented by strings we can
use Gofer's interact function and interpret our program as a function Dialogue, mapping
an input string of characters (from stdin) into an output string (on stdout).

main : : Dialogue
main = interact. (running (State 0 Up Open [I [I))

The function running divides the input stream into lines of words. It uses the library
function span, which partitions a sequence into two lists, in such a way that the first one
equals the longest initial segment of the list all of whose elements do not satisfy the given
predicate.

running : : State -> String -> String
running s ta te input =

l e t (headLine, (- : ta i lLines)) = span ('\nS/=) input
(newstate, outline) = event s ta te (words headline)

i n outLine ++ (running newstate t a i l l i n e s)

The function event computes a new state and returns a possibly empty result string. If
the controller accepts a goto-request this request has to be tagged appropriately with 'up' or
'down'. If the request is from a floor below (above) the actual floor, it is inserted as a down
(up) request. If the goto request is from the actual floor itself, it is tagged with the lift's actual
direction. Requests entered by pressing the up or down button are immediately inserted with
the corresponding tag. A close door command changes the door-state to LClosed'. Finally, if
only a newline was sent, the controller will compute the lifts new position.

event : : State -> [String] -> (Statesstring)
event (f,dir,door,reqs) cmd = case cmd of

[Ilgoto" ,n] -> if r > f then ((f ,dir,door, (r, "up") :reqs) , "") else
if r < f then ((f ,dir,door, (r, "down") :reqs) , "") else

((f ,dir,door, (r,dir) :reqs) ,'"'I
where r = numval n

[req, nl -> ((f ,dir, door, (numval n, req) : reqs) , "")
["close"] -> ((f ,dir,Closed,reqs) , " "1
[I -> action (f , dir , door, reqs)

numval : : String -> Int
numval cs = fold1 (\n x -> 10 * n + ((ord x) - ord '0')) 0 cs

Computing the new position is done by the function action. The behaviour of this func-
tion is in accordance with the strategy presented at the beginning of this section. Whenever
the lift has to move up or down the corresponding string is sent; if the lift reaches a floor on
which a request has to be processed, the request is removed from the list of requests and the
door is opened.

action : : State -> (State,String)
action (f,dir,door,[]) ='((f,dir,door,[1),"")
action (f ,dir, Open,reqs) = ((f ,dir,Open,reqs) , '"'1
action (f , dir , Closed, reqs)

= ((f ,dir , Open,new,reqs) ,"Open "++dir++"\n") ,(f,dir) 'elem' reqs
= ((f+one dir,dir,Closed,reqs),"Move "++dir++"\n") ,future-reqs /= [I
= action (f ,swap dir , Closed,reqs) ,otherwise
where new-reqs = filter (/=(f,dir)) reqs

future-reqs = filter (\x -> (next dir) (fst x) f) reqs

The auxiliary functions swap, next and one are given by the following definitions:

swap "up" = "down" next "up" = (>) one "up" = 1
swap "down" = I1 UP " next "down" = (0 one "down" = -1

4.2 The User Interface

We define a user interface to visualize the lift problem for a 10-floor building.
The Tk widget button is used to simulate a real world button of the lift. Highlighted

buttons are represented by disabled Tcl/Tk buttons, whereas all other buttons are active
ones. The lift is realized using the scale widget. This widget appears as a linear scale with a

Figure 2: Three lift states

slider indicating a value relative to the slider's position. This value corresponds to the actual
floor number, the slider represents the lift cabin.

Figure 2 shows three snapshots of the lift system. In the first window we see the lift after
receiving requests from floor 2 and 5. The second picture shows the lift after processing the
first request. The client who got in decided to go to floor 7. The lift will now first process
the up-request at floor 7 and thereafter take care of the down-request at floor 5.

The procedure Makelift defines the interface. The procedure as presented below is hand-
coded. However, instead of writing your programs by hand it is also possible to use XF [5] ,
a programming environment for interactive construction of Tcl/Tk interfaces.

proc Makelift (min ma) (
m title . lift
pack [frame .lift] -side left -fill y
pack [frame .panell
pack [frame .panel. names]
pack [button .lift.door -command Close] -fill x
pack [scale .lift.cab -from $max -to $min -label Floor] -fill y -expand 1
foreach e (goto up down) (

pack [label .panel.names.$e -text $e -width 51 -side left)
for (set i $mid C$i <= $ma) (incr i) (

pack [frame .panel.floor$i] -fill x -side bottom
foreach e [list "goto $it' "up U" "down Dl1] (
pack [button .panel. f loor$i. [lindex $e 01 -text [lindex $e 11 \

-width 5 -command "Request [lindex $e 01 $in'] -side left))
.panel.floor$min.down configure -text "" -relief flat -state disabled
.panel. f loor$max. up configure -text "" -relief flat -state disabled)

Pressing a goto-, up- or down-button will invoke the procedure Request, which sends a
string to the lift controller. The pressed button remains disabled until the request is processed.

proc Request (req floor) (

Write "$req $flooru
.panel.floor$floor.$req configure -state disabled)

By pressing the close button, the lift is eventually enabled to move again. The close
button is not usable until the door is opened by the controller.

proc Close 0 (
global busy
Write "close1'
.lift.door configure -text "Closed" -state disabled
set busy 1; Getbusy)

The procedure Getbusy sends newlines (clock ticks) to the controller. Each time a tick is
sent, the controller computes the next lift state and possibly returns a result string. As long
as no open action is replied by the controller, new clock ticks are generated. The sequence
after 100; update makes the user-interface wait for 0.1 seconds to make visualisation more
realistic and to process new events.

proc Getbusy 0 (
global channel busy
while ($busy) (
Write ""
if ("[select $channel () () 01" != "") (eval [gets $channel])
after 100; update))

Result strings are evaluated using the Tcl command eval. This command evaluates its
arguments as an Tcl script. For example eval "Open up" causes Tcl to call the procedure
Open with argument up which enables the close- and floor-number button and reactivates
the corresponding up button. Additionally, the global variable busy is set to false which
terminates the loop in Getbusy.

proc Open (dir) (

global busy floor
. lift. door configure -text "Close" -state normal
.panel.floor$floor.goto configure -state normal
.panel.floor$floor.$dir configure -state normal
set busy 0)

Likewise, Move is invoked with argument up or down to move the scale-slider.

proc Move (dir) (

global floor
if ("$dir" == "up") then (incr floor) else (incr floor -1)
.lift.cab set $floor)

Finally, the procedure Init initializes the communication, sets up the user interface, and
opens the liftdoor. The procedure Write is defined as before.

proc Init 0 C
global channel
set channel [open (Ilift) r+l; Makelift; Open up)

proc Write (m) (

global channel
puts $channel $m; flush $channel)

5 Discussion

Several case studies have shown the practical value of the proposed method to embed reactive
software in Tcl/Tk. The method is for example applied successfully in the design of a GUI
for a board game written in Gofer and in the development of a simulator for a stack machine
(p-machine). The motivation for these studies was induced by the reimplementation of the
user interface of the program transformation system CIP-S [2]. In less than three months we
succeeded in rewriting the complete user-interface and linking the existing application.

The most important lessons we learned from these experiences are:

User interface and application can and should be developed independently of each other.
The relation between the two components is very precisely defined. This encourages one
to develop the application, extended with an abstract user interface, first, and hereafter
the concrete GUI itself.

Both Tcl/Tk and the method to link applications are straightforward and easy to learn.
And since only Tcl/Tk's pure kernel is needed, robustness and stability of the resulting
system is guaranteed. In addition, systems become rather portable since Tcl/Tk is
available for a wide spectrum of architectures.

Combining GUIs with arbitrary languages is rather easy. For example, for a lot of
functional languages much effort is spent on the integration of graphical I/O (e.g. [I , 41).
In [15] a solution is proposed to link Haskell to Tcl/Tk. The disadvantage of this
approach is however that it requires important changes to both the Tcl/Tk and Haskell
implementation. By using the standard I/O mechanisms of functional languages in
combination with our approach, similar results are obtained in a cheaper way.

Last but not least, the system is reasonable efficient, although efficiency depends on
the kind of communication used. To illustrate this fact, let us return to the example
in section 3. If we use synchronous communication over pipes (cf. section 3.1) the total
system runs about three times slower than writing the application in Tcl/Tk (cf. section
2.2). If we use asynchronous communication (cf. section 3.2), the situation becomes even
more critical: execution times become about ten times longer.

Although this might seem unacceptable, the following remarks have to be made:

- For most reactivelinteractive applications interaction speed is not critical, i.e.,
whether we can press a button 5 or 100 times a second makes no difference for the
system as a whole, since the latter is no longer realistic.

- The more complex the application, the greater the benefits of the embedding me-
thod. For complex applications, most time is spent on the calculations at the
application's side, not on communicating. For example it makes no sense to deve-
lop an abstract machine code simulator (including an interpreter) in Tcl/Tk.

- In case asynchronous communication decreases system performance too much,
mapping on synchronous communication is often a straightforward strategy to
improve efficiency.

- And as long as only plain text messages of reasonable size, i.e., less than 250 lines,
are passed between the application and the GUI, no significant loss of efficiency
arises.

Summarizing, the proposed method meets the ideal requirements stated in section 1 in
many respects although there still exist some unanswered questions, for example, how to
formally specify the application in combination with its GUI.

References

[I] P. Achten, J . van Groningen, and M. Plasmeijer. High-level specification of i/o in func-
tional languages. In Glasgow Workshop on Functional Programming. Springer Verlag,
1992.

[2] F. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, 0 . Paukner, and P. Pepper. The
Munich Project CIP. Volume 11: The Transformation System, volume 292 of Lecture
Notes in Computer Science. Springer Verlag, 1987.

[3] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall Interna-
tional, 1989.

[4] M. Carlsson and T. Hallgren. fidgets - a graphical user interface in a lazy functional ,

language. In Conference on Functional Programming and Computer Architecture. ACM
Press, 1993.

[5] S. Delmas. XF, Design and Implementation of a Programming Environment for Inter-
active Construction of Graphical User Interfaces, 1993.

[6] D. Hare1 and A. Pnueli. On the development of reactive systems. In Logics and Models
of Concurrent Systems. Springer Verlag, 1985.

[7] P. Hudak, S. P. Jones, and P. W. (Eds.). Report on the programming language haskell,
version 1.2. ACM SIGPLAN Notices, 27(5), 1992.

[8] M. Jones. An introduction to Gofer (draft), 1993.

[9] D. Libes. expect: Scripts for controlling interactive processes. Computing Systems, 4(2),
1991.

[lo] D. Libes. X wrappers for non-graphic interactive programs. In Proceedings of Xhibition
94, 1994.

[l l] J. K. Ousterhout. Tcl: An embeddable command language. In Proc. USENIX Winter
Conference, 1990.

[12] J. K. Ousterhout. An x l l tooolkit based on the tcl language. In Proc. USENIX Winter
Conference, 1991. i

[13] J. K. Ousterhout. T C L and T K toolkit. Addison Wesley, 1994.

[14] R. Scheiffler and J. Getty. The X window system. ACM lPransactions on Graphics, 5(2),
1986.

[15] D. Sinclair. Graphical user interfaces for haskell. In Glasgow Workshop on Functional
Programming. Springer Verlag, 1992.

I
I Liste der bisher erschienenen Ulmer Informatik-Berichtp

Einige davon sind per FTP von f t p . inf ormatik . mi-ulm . de erhaltlich
Die mit * markierten Berichte sind vergriffen I

List of technical reports published by the University of Ulm
Some of them are available by FTP from f t p . inf ormat ik . mi-ulm . de

Reports marked with * are ou t of print

91-01 Ker-I KO, P. Orponen, U. Schoning, 0. Watanabe
Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler I
Compiler-Based Implementation of Syntax-Directed Functional programming

91-03 Alfons Geser
Relative Termination

91-04* J. Kobler, U. Schoning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Kobler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06 Uwe Schoning
Recent Highlights in Structural Complexity Theory

91-07 F. Green, J. Kobler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Hun, L. Hamachandra, J. Kobler, A . Lozano,
M. Mundhenk, A . Ogiwam, U. Schoning, R. Silvestri, T . Thierauf i

Reductions for Sets of Low Information-Content ~
92-Ol* Vikraman Arvind, Johannes Kobler, Martin Mundhenk 1

On Bounded Truth-Table and Conjunctive Reductions t o Sparse and Tally
Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluationof Noncircular Attr ibute
Grammars

92-03 Fakultat fur Informatik 1
17. Workshop iiber Komplexitatstheorie, effiziente Algorithmen und Daten-
strukturen

92-04 V. Arvind, J. Kobler, M. Mundhenk I

Lowness and the Complexity of Sparse and Tally Descriptions

92-05 Johannes Kobler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06 Armin Kuhnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntbx-
directed semantics

I

I

I

92-07 Heinz Fassbender, Heiko Vogler L

A Universal Unification Algorithm Based on Unification-Driven ~ e f t m L s t
Outermost Narrowing

92-08 Uwe Schoning
On Random Reductions from Sparse Sets to Tally Sets

92-09 Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Re-
present Any Linearly Separable Boolean Function

92-11 Johannes Kobler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Kobler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Com-
munications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thieraui Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin- Y i Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe; T . Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gapner
Rechnerunterstiitzung f i r die konzeptuelle Modellierung

93-07 Ullrich Kepler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kzi'hnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Fapbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro
Tree Transducers

94-05 V . Arvind, J. Kobler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam I

Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
c A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rue$
Arbeitstreffen Typtheorie: Zusammenfassung der Beitrage ! !

94-09 F. W . won Henke, A. Dold, H. Rue$, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of I

Software I

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Kobler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

I

94-12 Rainer Schuler
On Average Polynomial Time

!
94-13 Rainer Schuler, Osamu Watanabe

Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software t o the X-Window System

94-15 Alfred Lupper
Narnensverwaltung und Adressierung in Distributed Shared ~emory -~ys tkmen

