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Abstract

Given two graphs Gi = (Vi, Ei) and G2 = (V2, £2), |Vi| = \V2\ = n,
to determine whether they have a size-A; common subgraph is one
of the earliest examples of an NP-complete problem (by a trivial
reduction from the Maximum Clique problem). We show that this
problem for equally sized G\ and G2, i.e. when |23i| = |2?2| = m,
remains NP-complete. Moreover, the restriction to the case k =
m—tfn, c> 1, is also NP-complete. In this result k and m can hardly
be made tighter because the largest Common Subgraph problem for
equally sized graphs is reducible to the Graph Isomorphism problem
in time 7i°(m-fc).

Further, we consider the optimization problem of Computing the
maximum common subgraph size. It is only known that this pro
blem is not harder than Computing the maximum clique size (V.Kann,
STACS'92), and that it is approximable within factor 0( j^tn) (M.Hall-
dörsson, 1994). For some e € (0,1), weprove that the largest common
subgraph size is not approximable within addend nc unless NP = P.

The techniques used are reductions from the problem of distinguis-
hing between graphs with large and small clique size.

•Supported in part by grant No. MGT 000 from the International Science Foundation.
Part of this work was done while visiting the Ulm university.



1 Introduction

We address the complexity properties of the Largest Common Subgraph
problem (further on LCS), one of the earliest examples of an NP-complete
problem. Given two graphs G\ = (Vi,üq) and G2 = (T^,J52), we denote
the size of the largest isomorphic subgraphs of G\ and G2 by <j(Gi,G2)-
The problem is, given G\ and G?2, |Vi| = |V21 = n-, and a natural k, to
determine whether <t(Gi,G2) > k. This problem is NP-complete by a
trivial reduction from the Maximum Clique problem.

In this paper we consider a natural version of LCS for equally sized gra
phs, i.e. graphs with |üq| = |2J?2| = rn. The reduction from Maximum
Clique does not work now. To show that LCS OF EQUALLY SIZED GRAPHS
remains NP-complete, we suggest a reduction from a generalization of Ma
ximum Clique, namely, from the problem of distinguishing between graphs
with large and small maximum clique size. The last problem was shown
to be NP-hard owing to the progress in the area of the probabilistically
checkable proofs [8, 2, 1].

Furthermore, we consider the restriction of LCS to the case k = m —
l(n) where / is a prespecified function of n. This problem denoted by
LCS[/(n)] is of interest due to its connections to the Graph Isomorphism
problem. We show that whereas for superpolynomially small / the problem
LCS[/(n)] is closely related to Graph Isomorphism (see Proposition 3.1),
for polynomially small / it is NP-complete.

Finally, we address the problem of approximating ^(GijG^)-
M.Halldorsson showed that the maximum common subgraph size is ap
proximable within factor 0 (j^) [6> GT36].It is known nothing about the
hardness of approximating tnis problem within a constant factor. The me-
thod of the present paper allows us to prove that for some e G (0,1), the
value 0"(Cri,Cr2) is not approximable within addend nc unless NP = P.
In this connection it should be remarked that some NP-hard optimization
Problems, e.g. Maximum Packing in Two Containers, are approximable
within a constant addend ([11], see also [10]).

Related work. NP-completeness of some problems related to Graph
Isomorphism was established by A.Lubiw [15].

Provided NP ^ P, non-approximability within a constant addend was
shown for some problems admitting FPTAS, e.g. for Knapsak [10].

The developments in the probabilistically checkable proofs allowed one



to prove that many of the well-known optimization problems are hard to
approximate (see survey [3]). First this technique was applied to the opti
mization problem Max Clique. V.Kann [13] showed that Maximum Com
mon Subgraph is reducible to Maximum Clique with respect to an appro-
ximation preserving reduction. Some approximation problems reducible to
Maximum Clique was shown to be hard in [4] and [17].

The approximation complexity of some variations of Maximum Common
Subgraph was investigated in [13].

The paper is organized as follows. Section 2 contains the needed defini-
tions and some auxiliary propositions along with well-known results cited
in the paper. We give an account of our results consequently in Theorems
3.1, 3.2, 3.3 of Section 3. A proof of every theorem extends a proof of the
previous one. The paper is concluded by the discussions of related open
questions in Section 4.

2 Preliminaries

By G = (V,E) we denote a graph G whose set of vertices is V and set
of edges is E. The number of vertices |V| will be denoted by n, v or N.
G' = (V, E') is a subgraph of G = (V, E) if E' C E and V is the Vertex set
of all the edges from E'. Sometimes we will identify a graph with its set
of edges. Under this Convention, a subgraph is just an arbitrary subset of
edges.

Two graphs Gi = (Vi, Ei) and G2 = (V2,E2) are isomorphic iff there
exists a bijection <j> : Vi —• V2 preserving the adjacent relation. Given
two graphs Gi = (Vi, Ü7i) and G2 = (V2,E2), by a(Gi,G2) we denote the
maximum size of a common subgraph of Gi and G2, that is, the maximum
\E<\ over isomorphic E[ C Ei and E'2 C E2.

Given two graphs Gi = (Vi,£i) and G2 = (V2,E2) with Vi n Vi = 0, we
define their (disjoint) union by GiUG2 = (Vi UV2l Ei UE2).

Lemma 2.1 For any graphs Gi, G2) G = (V,E) it is true

a(Gi UG,G2UG) = <r(GuG2) + \E\.

The proof of Lemma 2.1 will appear in the füll version of the paper.



Definition 2.1 Definitions of the problems that occur in the paper.
LCS—Largest Common Subgraph

INPUT: graphs Gx .-•--. (Vi.JBi) and G2 = (V2,E2), |Vi| = \V2\, a natural
number k

QUESTION:cr(Gi,G2)>ib?
LCS OF EQUALLY SIZED GRAPHS

INPUT: graphs ft = (Vi,^) and G2 = (V2iE2), \Vi\ = \V2\, \Ei\ = \E2\, a
natural number k

QUESTION: a(GuG2) > k?
LCS[/(n)] (the problem is specified by a function / : N —> R such that

|7(n)] is computable in polynomial time)
INPUT: graphs Gi = (VuEi) and G2 = (V2,E2), \Vi\ = |V2|, |£i| = \E2\, a
natural number k

QUESTION: <r(GuG2) > \E<\ - l(\Vi\)7
Gl—Graph Isomorphism is the problem LCS[0]

Kn is a complete graph on n vertices. En Stands for a graph on n vertices
with the empty set of edges. u>((?) denotes the size of the largest clique in
a graph G, that is, the maximal s such that G has a subgraph Ks.

Given functions a and 6, we define the problem of distinguishing between
graphs with large and small clique size CLIQUE[a(n), b(n)] as follows.
Given a graph Gönn vertices, it is required to Output

• 1 if lj(G) > a{n),

• 0 if u(G) < 6(n);

otherwise the Output does not matter.
We use <£ to denote the many-one polynomial time reducibility. We

say that a language L is many-one reducible to CLIQUE[a(n), b(n)] in
polynomial time iff there is a polynomial time computable transformation
r mapping every w to a graph Gönn vertices with w(6r) > a(n) if w € L,
and with u(G) < b(n) if w <£ L. We say the problem CLIQUE[a(n), b(n)]
is NP-hard if any NP-language is <£-reducible to it.

We say that the problem CLIQUE[a(ra), 6(n)] is many-one reducible to
a language L in polynomial time iff there is a polynomial time computable
transformation r such that for any graph Gönn vertices if u(G) > a(n)
then r(G) GL, and if w(G) < b(n) then r(G) <£ L.



Obviously, if Li <£ CLIQUE[a(n), 6(n)] and CLIQUE[a(n), fc(rc)] <£
L2 then Li <£ L2.

Proposition 2.1 ([8, 2, 1]) i) For some Q>8,
the problem CLIQUE[n/Q,n/4Q] is NP-hard.

ii) There are q > 3 and C > 1 such that for

C + l C

a~fo +l)C +l' ß-(q +i)C +V (1)
the problem CLIQUE[na,n*] is NP-hard.

Remark 2.1 i) is a corollary from the equality NP = PCP(logn, 1) [2,1].
Q = 2q where q is a number oforaclequeries of an PCP machine recognizing
an NP-complete language. More efficientusing random sources by the PCP
machine [12] allows one to improve i) to ii). The constant C depends on
the expanders used.

As a matter of fact, the restrictions of CLIQUE[n/Q, n/4Q] and CLI-
QUE[n°,n^] to graphs of order n such that n/Q, n/4Q and na, nß are
integer remain NP-complete. Due to this, we can simplify the exposition
assuming n/Q, n/4Q and na, nß integer throughout the paper.

Proposition 2.2 (Turän's theorem, see e.g. [7, 5]) Letf(a,b) denote
the maximal possible number of edges in a graph on a vertices without an
size-b clique. Then

/(a, b) = a(a - l)/2 - (6 - l)d(d - l)/2 - dr

where

a = (b-l)d + r, 0 < r < b- 1.

The extremal graph G = (V,E) with \V\ = a, \E\ = /(a,6), w(G) < b
can be effectively constructed in time (a2).

Corollary 2.1 A graph obtained from Ka by deleting arbitrary a edges
contains a subgraph K^aj^.

By Fm we denote a graph consisting ofmindependent edges. a(F\n/2\, G)
is the sizeof the maximal matching in a graph G of order n. It is wellknown
that <T(F[n/2},G) can be computed in time (n3) (see e.g. [9]).



3 The Complexity of the Largest Common

Subgraph problem

Theorem 3.1 LCS OF EQUALLY SIZED GRAPHS is NP-complete.

Theorem 3.1 is a direct corollary from Proposition 2.1 and the following
lemma.

Lemma 3.1 Let a and b be polynomial time computable functions, and
a(n) > 36(n) for sufjßciently large n. Then

CLIQUE[a(rc), b(n)] <£ LCS OF EQUALLY SIZED GRAPHS.

Proof: We describe a reduction transforming an graph G = (V, E), \V\ =
n, \E\ = m, into a pair of graphs G\, G2 and a natural k so that

u(G) > a{n) implies <r{GuG2) > k, (2)
ut(G) < b(n) implies <r{GuG2) < k. (3)

For the brevity we will sometimes denote a(n) just by a, and b{n) by b.
Of course, we can consider only G without isolated vertices. We assume
m > a(a —l)/2 + n/2, otherwise it is clear that w(G) < a. Given such G,
we take Gi = Ka UFTO_B(0_i)/2 and G2 = GrU^2m-o(a-2)-n- Clearly, Gi and
G2 are equally sized.

Let s be the size of the maximal matching in G. We take k = a(a —
l)/2 + (5 - a).

As easily seen, if u(G) > a then Gi and G2 have a common subgraph
Ka UFa_a of size k. Thus, o~(Gi,G2) > k and (2) is true.

Suppose now that (7(^1,02) > k. This means there is a subgraph Ä"
of Gi that can be embedded into G. It is clear that \H D Ka\ > k —s =
a(a - l)/2 - a. By Corollary 2.1, H fl Ka contains a subgraph K\>. Thus,
u>((?) > 6 and (3) follows. •

The following proposition shows the relations between the problems
LCS[/(n)] and Gl.

Proposition 3.1 i) Gl <£ LCS[Z(n)] provided l(n) < y/n/3.

ii) LCS[/(n)] is many-one reducible to Gl in time n°(l(n)).



Proof: The proof of i) will appear in the füll version of the paper. As
to ii), the straightforward Turing reduction can be turned into a many-one
reduction by techniques from [14] involving OR-function for Gl. •

Theorem 3.2 For any c > 1, the problem LCS[tfn\ is NP-complete.

Theorem 3.2 follows from the first part of Proposition 2.1 and the follo
wing lemma by trivial padding arguments.

Lemma 3.2 For any rational Q, CLIQUE[n/Q, n/4Q] <£ LCS[u/4].

Proof: We have to describe a reduction transforming a graph G = (V,E),
\V\ = ra, \E\ = m, into a pair of graphs Gi = (Vi, Ei) and G2 = (V2,E2),
\Vi\ = \V2\ = i/, 1^1 = \E2\ = //, so that

w(G) > n/Q implies <r(GuG2) > \x - v/4, (4)

u(G) < n/4Q implies a(Gu G2)<fi- u/4. (5)

Denote a = n/Q, b = n/4Q. We can assume m < f(n, 6); on all the
other instances CLIQUE[a, 6] can be easily solved because then to(G) > b.

First we take an extremal graph on n vertices without üf&-subgraph and
delete m edges from it. Denote the obtained graph by G. Take the disjoint
union of G and G and add n more edges to it so that every Vertex of one
graph is matched to a Vertex of the other graph. Denote the obtained
graph by G'. Obviously, G' has 2n vertices, /(n, b) + n edges and a size-n
matching. Clearly, co(G) > a implies u>(G') > a, and co(G) < b implies
u(G') < b.

Now we apply to G' the reduction from the proof of Lemma 3.1, obtaining
two graphs G\ = (V{, E[) and G'2 = (V2\ E'2), \V{\ = \Vi\ = N, \E[\ = \E'2\ =
M. We have

M = f(n,b)+n, N = 2M-a(a-2). (6)

For K = a(a- l)/2 + (n - a), (2) and (3) give

uj(G)>a implies (t(G;,G2) > K, (7)
u(G)<b implies o-(G[,Gf2) < K. (8)



By Turän's theorem, f(n, 6) = \n2 —2Qn —2Q. Therefore,

M = ]-n2-(2Q-\)n-2Q,
N = (l-Q-2)n2-2(2Q-l-Q-1)n-4Q,

K = g-V +a-^Q-1)^

Finally, take a graph H on 4(M —K) —N vertices with M —2K edges
and construct the desired graphs Gi = G[ UH and G2 = G'2 U H. As easily
seen,

v = 4(M - K), n = 2(M - K). (9)

By Lemma 2.1,

v(GuG2) = (t(G;,G2) + (M - 2K). (10)

Thus,

*(G'n G2) > K implies g(Gu G2) > M - K,
a(G'i,G'2) < K implies <t(GuG2)<M-K.

Summing up this with (7), (8), and (9), we get (4) and (5).
•

In the rest of this section we consider an optimization problem of Com
puting the value a(Gi,G2), given a pair of graphs G?i = (Vi,Ei) and
G2 = (V2,E2), \Vi\ = \V2\ = n.

Definition 3.1 er is approximable within addend g(n) iff there is a poly
nomial time algorithm A such that

a(Gi,G2)-g(n) < A(GUG2) < a(GuG2)

Theorem 3.3 For some e £ (0,1), o~(ßi,G2) is not approximable within
addend nc unless NP = P.

Theorem 3.3 immediately follows from the second part of Proposition 2.1
and the following lemma.



Lemma 3.3 For any e < a —ß/2 where a and ß are defined by (1), q,C >
1, the problem CLIQUE>[na,nß] is reducible to approximation of o~(Gi,G2)
within addend Nc, that is, a polynomial time algorithm approximating the
value cf(Gi,G2) within addend Nc can be transformed into a polynomial
time algorithm solving CLIQUE[nQ,n^].

Proof: Denote a = na and 6 = nß. Consider the reduction from the
proof of Lemma 3.2 transforming a graph G = (V,E), \V\ = n, \E\ = m,
into a pair of graphs G\ = (V{,E[) and G'2 = (V2',E'2), \V{\ = \V2'\ = N,
\E[\ = \E'2\ = M. By (7),

u(G) >aimplies tr(G\,G'2) >n+\n2ot - \na. (11)
By Turän's theorem,

f(a, 6) =\n^ - \n2«-* - \n2^ - \n-*.
Assume a(G'i,G2) > n + \n2a - \n2a-ß. Then for G' (see the description
of the reduction) we have o(Ka, G') > \n2a - \n2Q-ß > f(a, b). Therefore,
w(G') > b and u(G) > b. It is proved that

u(G) <bimplies o-(G[,G'2) <n+\n2a - \n2a-ß. (12)
(11) and (12) show that an algorithm approximating o~(Gi,G2) within

addend rC, for any 7 < 2a —ß, allows one to distinguish between the cases
w(G) > a and w(G) < b. To conclude the proof it suffices to notice that
N = n2(l —o(l)). This follows from (6) and the simple estimates

f(n, b) = n(n - l)/2 - (nß - l)d(d - l)/2 - dr

where

_ !£ ,-iß n'-0(l - n-h+W) ,_<, _. „_,
d= > n M= ^ < n ^(1 -|- 2n p), r = n p,

i^i 1 — n~

obtained by Turän's theorem. •

Remark 3.1 The slightly updated proof of Theorem 3.3 gives also the
following proposition. For any A G (0,1/2) there exist e,6 6 (0,1) such
that the difference nx —o~(Gi,G2), if positive, is not approximable within
factor nc even for Gx and G2 with \n(l - n~6) <m <\n unless NP = P.



4 Discussions and Open Problems

4.1 Approximation properties of Maximum Common
Subgraph

In this paper we obtained the first hardness approximation result for the
Maximum Common Subgraph problem saying that approximating it within
addend nc is NP-hard. The challenging problem is to show that cr(Gi, G2)
is hard to approximate within factor c, at least for some constant c > 1.
In particular, it is unclear whether Maximum Common Subgraph is Max
SNP-hard.

4.2 The case of half-sized graphs

We say that G = (V, E) is a half-sized graph if |V| = n and \E\ = n{n-l)/4.
The Largest Common Subgraph problem restricted to half-sized graphs
Gi = (Vx,Ei), G2 = (V2,E2), \Vi\ = \V2\, is of interest due to the following
fact.

Proposition 4.1 For any two graphs Gi = (Vi,.Ei) and G2 = (V2,E2)
with \Vi\ = \V2\ = n, \E\ = n(n - l)/4,

a(Gi,G2)>^l.
It is not hard to show that LARGEST COMMON SUBGRAPH OF EQUALLY

SlZED GRAPHS is equivalent to its restriction on half-sized graphs. Denote
the restriction of LCS[f(n)] to half-sized graphs by LCS[/(n)] OF HALF-
SIZED GRAPHS. Theorem 3.2 can be somewhat strengthened.

Proposition 4.2 For any c > l, the problem LCS[tfn\ OF HALF-SIZED
GRAPHS is NP-complete.

In view of Propositions 4.1 and 4.2 the following question looks inte-
resting. Is it possible to establish the NP-completeness of LCS[/(n)] OF
HALF-SIZED GRAPHS for l(n) = n(n - l)/8 - o(l)? I cannot solve this
question even for l(n) = cn(n —1), c £ (0,1/8).

Proposition 4.1 shows that a(Gi,G2) is trivially approximable within
factor 2 for half-sized graphs. What is complexity of finding a size-n^8~^
common subgraph in this case? Can the Performance ratio be improved?
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4.3 A generalized version of the Graph Automor-
phism problem

The Graph Isomorphism and Graph Automorphism problems are of par-
ticular interest in structural complexity theory (see [14]). It is natural to
regard the problem LCS[/(n)] as an edge deletion generalization of Gl.
Whereas Proposition 3.1 asserts that for superpolynomially small / the
problem LCS[/(ra)] is closely related to Gl, Theorem 3.2 shows that for
polynomially small / LCS[/(n)] is NP-complete.

In this subsection we introduce an NP-problem related to Graph Au
tomorphism. The problem deals with the asymmetry measure of a graph
that has been studied in combinatorics.

Given a graph G = (V,E), define A(G) = {|£>| : EAD has nontrivial
automorphism } where D is a set of edges on V. In words, A(G) is the mi
nimal number of edges to be changed in G in order to obtain a symmetrica!
graph. A natural problem is defined as follows.

Given a graph G and a natural k, to determine whether A(G) <
k.

Is this problem NP-complete?
Concluding, we remark some relevant combinatorial results. It is known

that A(G) < n/2 for any G = (V,E), \V\ = n, and A(G) = n(l/2 - o(l))
for some sequence of graphs [7]. The proof of these facts in [7] is non-
constructive. Some constructivization was achieved in [16] where it was
shown that a sequence of graphs Gn with A(Gn) > (1/12 —e)n can be
encoded by boolean function computable by constant depth poly(log n)-
size circuits over basis {&, $}.
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