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Abstract

We consider sets Turing reducible to p-selective sets under various re-
source bounds and restricted number of queries to the oracle. We show
that there is a hierarchy among the sets polynomial-time Turing reducible
to p-selective sets with respect to the degree of a polynomial bounding
the number of adaptive queries used by a reduction. We give a charac-
terization of EXP/poly in terms of exponential-time Turing reducibility
to p-selective sets. Finally we show that EXP can not be reduced to the
p-selective sets under 2hn time reductions with at most nk queries for any
fixed k € N.

1 Introduction

Selman [13] introduced p-selective sets as a polynomial time analogue to the
semirecursive sets as studied by Jockusch [8]. Roughly speaking, a set is p-
selective if there is a polynomial-time procedure which decides for a pair of
strings which of them is "more likely" to be in the set. Selman used p-selective
sets to show that polynomial-time Turing reducibility and many-one reducibility
differ on NP, unless E = NE.

Since then much attention has been paid to sets reducible to p-selective
sets under various polynomial-time reducibilities. This extends a long line of
research of sets reducible to sets of low density, such as tally and sparse sets (for
a survey, see [16]). Toda [15] showed various collapses under the assumption
that all sets in certain complexity classes are truth-table reducible to some p-
selective set. In particular, he showed that if each set in UP is truth-table
reducible to some p-selective set then P = UP and if each set in A£ is truth-
table reducible to some p-selective set then P = NP. Recently it has been
shown that if each set in NP is truth-table reducible to some p-selective set then
P = NP [1, 4, 12]. A rather detailed examination of the relationships between
sets reducible or equivalent to the p-selective sets under various reducibilities



has been given by Hemaspaandra et al.[6]. For a survey on results concerning
p-selective sets we refer to [5]

Here we concentrate on sets Turing reducible to p-selective sets. We start by
showing that there is a proper hierarchy between the P«(P-sel) and Pr(P-sel)
with respect to the degree of a polynomial bounding the number of adaptive
queries to some p-selective oracle. The proof is by diagonalization based on a
simple fact concerning the number of sets selected by a Single selector-function.

Selman [13] showed that each tally set is polynomial-time Turing reducible
to some p-selective set. Ko [9] showed that the p-selective sets are contained
in the nonuniform advice class P/poly which in turn is predsely the dass of
sets polynomial-time Turing redudble to some tally set. Hence P/poly can be
characterized by the sets polynomial-time Turing reducible to some p-selective
set. In Section 4 we adress the question wether a similar characterization of the
dasses EXP/poly and E/lin can be given. It should be mentioned that a char
acterization of EXP/poly via tally sets is impossible since every set is already
exponential-time many-one reducible to some tally set, namely its tally version
where each instance is encoded in unary. However, we can show that EXP /poly
is predsely the dass of sets which are exponential-time Turing redudble to
some p-selective set using at most polynomially many adaptive queries. Fur-
thermore we show that a set which is Turing redudble in time 0(2ltn) to some
p-selective set using at most linearly many queries is contained in E/lin. Here
the converse falls. Concerning the non-uniform complexity of p-selective sets via
linear-length advices there is a recent result by Hemaspaandra and Torenvliet
showing P-sel C NP//m n coNP//m [7].

The proofs are based on an Observation which informally can be stated as
follows: Suppose that V is a iinite set and we know the number of strings in
A fl V for some p-selective set A. Then we can dedde whether x is in A for
each string in F, by simply counting the strings in V that are "more likely"
than x in A. We apply this Observation to sets Turing reducible to p-selective
sets considering various resource bounds. We thereby obtain a close relation
between the number of oracle queries to some p-selective set and the length of
the advice needed to decide a set reducible to some p-selective set nonuniformly.

In Section 5 we consider the relationship of (uniform) exponential-time com
plexity dasses and sets Turing redudble to some p-selective set. It is an open
question whether EXP is included in P/poly. Regarding the characterization of
P/poly in terms of sets polynomial-time Turing reducible to some p-selective set
it is natural to ask whether one can settle the relationship between subdasses of
P/poly and EXP, where this subclasses are obtained from restricting the access
to some p-selective oracle. In fact, Toda [15] showed that EXP is not included
in the class of sets polynomial-time truth-table reducible to some p-selective
set. Here we extend this result to sets Turing reducible to some p-selective
set where the reduction may use at most q{n) adaptive queries for every fixed
polynomial q{n).



2 Preliminaries

We write N to denote the set of nonnegative integers. A string is a finite
sequence of characters over the two letter aiphabet E = {0,1}. We write E*
for the set of all strings including the empty string and \x\ for the length of a
string x € E*. We use ||j4|| to denote the cardinality of a finite set A. Let A-n
denote the set of strings in A of length at most n. A~n is the set of strings in
A of length n. A tally set is a set A C {0n : n € N}. Let TALLY denote the
class of all tally sets.

We use deterministic-, nondeterministic- and oracle Turing machines and
other notions of complexity theory, as can be found in [2]. We are espe-
cially interested in the following deterministic time complexity classes P =
(J*eN DTIME(n*), E= Uc€N DTIME(2cn) and EXP = UfceNDTIME(2nfc)-

A set A is Turing reducible to a set B if there exists an oracle Turing machine
such that A = £(M, B). A query tree of an oracle Turing machine M on input
x is a binary tree in which the nodes are labeled with all possible queries M can
ask on input z, i.e. the root is labeled with the first query, and for each internal
node corresponding to a query g, the left (resp. right) successor corresponds to
the next query M asks with a positive (resp. negative) answer on q. For a time
bound t(n) and a class of sets C, let DTIME(t(n))r(C) denote the class of all
sets that are Turing reducible to some set in C via a t(n) time bounded oracle
Turing machine. For a function q : N -+ N let DTIME(i(n))g(n).T(C) denote
the class of all sets in DTIME(<(7i))t(C) where the oracle Turing machine asks
at most q(n) queries on every path of the query tree. We extend this notation
to complexity classes and function classes, for example as Pg(n)-T(£)> ^Kn-T(C),
Ypoiy-T(C) etc.

Throughout a computation an oracleTuring machine may ask queries which
depend on the answers to previously asked queries. These kind of queries are
called adaptive queries. In contrast, a set A is truth-table reducible to a set B if
there exists an oracle Turing machine M such that A = L(M, B) and all queries
asked by M are nonadaptive, i.e. do not depend on the answers to previously
asked queries. For a time bound t(n) and a class ofsets C,let DTIME(t(n))«(C)
denote the class of all sets that are truth-table reducible to some set in C via a
t(n) time bounded oracle Turing machine asking only nonadaptive queries.

All time bounds and functions bounding the number of queries are assumed
to be monotonic increasing and time constructible.

3 A hierarchy between polynomial-time truth-table
and Turing reducibility to p-selective sets

We show that there is a proper hierarchy between the class P«(P-sel) and
Pj(P-sel) with respect to the degree of a polynomial bounding the number of
queries to some p-selective oracle. First we briefly review the definition and a
Standard construction of p-selective sets from [13].

Definition 3.1 ([13]). Äset A C E* is p-selective if there is a polynomial-time
computable function / : E* x E* —• E* such that for all strings x, y € Ev•>*



1- f(x,y) = x or f(x,y) = y, and

2. if x € j4 or y € A, then /(ar, y) € j4

A function / fulfilling Conditions (i) and (ii) is called a p-selectorfor A.

Let P-sel denote the class of all p-selective sets. It immediately follows from
the definition that every set in P is p-selective. On the other hand, Selman [13]
showed that for every tally set there exists a polynomial-time Turing equivalent
p-selective set. Hence there are arbitrarily difiicult p-selective sets. The proof
of this fact makes use of a of a subclass of the p-selective sets, namely the class
of Standard leftcuts with respect to an infinite binary sequence (cf. [13, 9]).
Recall that the dictionary ordering of binary strings over the aiphabet {0,1}
can be defined as follows: 0 -< 1, and for x = x\. ..xmi y = 3/1.. .yn, x < y
ifF (i) m = n and (3i < m)(Vj < i)[xj —yj & X{ -< yt], or (ii) m < n and
%•< y\... ym, or (iii) rn > n and x\...xn < y. The Standard leftcut La with
respect to an infinite binary sequence a is the set of strings x which are less
than or equal to the initial segment of et of length \x\.

Proposition 3.2 ([13]). Every Standard leftcut is p-selective.

Proof. Every Standard leftcut is selected by the p-selector /(x, y) = x if x <
y eise y. D

We go on to consider sets reducible to some p-selective set. It is known
that 2k —1 nonadaptive queries to some p-selective set can be simulated by k
adaptive queries of a polynomial-time bounded oracle Turing machine. A proof
of this fact can be found in [6]. Though it is stated there only for a constant
number of queries it can be easily generalized to the case where the nonadaptive
queries are bounded only by the running time of the reduetion.

Proposition 3.3 ([6]). P«(P-sel) = Po(logn)-T(P-sel).

We next show a hierarchy theorem among the sets polynomial-time Turing
reducible to some p-selective set with respect to the number of adaptive queries
used by the reduetion. In the case of constant number of queries Hemaspaandra
et al. [6] showed a tight hierarchy theorem: P*_T(P-sel) c Pfc+i-T(P-sel), k > 1.
They use a construction of p-selective sets introduced by Naik et al. [11]. If
the number of queries depends on the length of the input we get a less tight
hierarchy. The construeted set will be reducible to some p-selective leftcut. We
isolate the combinatorial part of the diagonalization in the following lemma (cf.

[6])-

Lemma 3.4. Let f be a P-selector and V a finite set of strings. Then

\\{W C V: fselects W}\\ < \\W\\.

Proof. Suppose that there are more than \\W\\ subsets of W* which are selected
by /. Hence among these sets there exists distinet sets W\, W2 Q W with the
same cardinality. That is, for some x\t x<i € W, x\ € W\—W2 and X2 € W2—W1.
It follows that f(xi,X2) cannot select both of W\ and W25 D



Proposition 3.5. P * (P-sel) cPt+i (P-sel), k > 1.

Proof. Let Afo,Mi,... be an enumeration of all polynomial-time oracle ma-
k

chines asking at most nä queries on an input of length n. Let /o,/i, • • • be an
enumeration of all polynomial-time transducers such that /(s,y) 6 {x,y}.

Let fi(s) = 25+4, and let Fn denote the lexicographically first n? + (k + 1) •
/o</(n) strings of length n.

We will construct a set A in stages. The set A will consist only of strings
of FM(S), s > 0. In stage s = (i,j), we will satisfy the following requirement:

(Rs) for any set B which is selected by fjy A is not accepted by Mi with oracle
B.

The construction proceeds as follows. Let A! denote the set of strings put into A
prior to stage s. Let n = fi(s) and Qn be the set of all queries in the query-tree

of Mi on an all inputs xe Fn. Then ||Qn|| < nf+(k+iyiog(n)-2n*. By Lemma
3.4, there exist at most ||Qn|| subsets of Qn which are selected by fj. Hence Mi

can agree on at most (n§ +(k +1) •log{n)) •2n* <n**1. 2n* =2n*+(fc+1)-M«)
subsets of F„ with some oracle selected by fj. But there are 2n*X^-M")
distinct subsets of Fn. Hence there exists some (smallest) set Dn C Fn which
cannot be accepted by Mt- with any oracle selected by fj. Setting A = A'UDn
we thus established (Rs).

It remains to show that A is Turing reducible to some p-selective set with
at most n 2 adaptive queries. Let rfn, for n ~ fi>{s), the string of length
nä + (k + 1) • log(n) denoting the (finite) chara; ristic function of Dn in the
construction of A in stage s. Define a p-selectiv< t B to be the leftcut with
respect to the infinite sequence ^(0)^(1)^(2) — ^ ne membership ofsome x
of length n = fj,(s) in A is fixed by dn. It thus suffices to reconstruct dn from
the oracle B. By prefix search, this requires at most St=4 (2*) 2+ (k+1) •i <
log(n) -n? + (k -f 1) •log2(n) < y/n-n* = n 2 adaptive queries. D

The announced hierarchy between P«(P-sel) and Pt(P-scI) now follows as
a corollary.

Corollary 3.6. 1. P«(P-sel) C Pn.T(P-sel).

2. Pnfc.T(P-sel) C Pnfe+1.T(P-sel), k>\.

3. Pnfc.T(P-sel) C PT(P-sel), k > 1.

4 Exponential-time advice classes

We consider the nonuniform complexity of sets Turing reducible to p-selective
sets in terms of advice classes. As the main result we obtain a characterization

of EXP/po/y in terms of reducibility to p-selective sets.



Definition 4.1. An advice function is a function h : N -* E*. For a func
tion q : N -* N, let ADV(q(n)) denote the set of all advice functions h
with \h(n)\ < q(n) for all n e N. For functions t,q : N -»• N, the advice
class DT1ME(t(n))/ADV(q(n)) is the class of sets B for which there exists a
set A € DTIME(*(n)) and an advice function h{n) e ADV(q(n)) such that
B = {x:(x,h(\x\))eA}.

Using Definition 4.1 we can redefine P/po/y as U*eN T>TIME(nk)/ADV(nk).
Additionally we consider the advice classes E/lin and EXP/po/y which can be
defined similarly.

The following lemma is the key Observation which leads to all subsequent
results of this paper.

Lemma 4.2. Let A be a p-selective set with selector-function f. Let V a fi-
nite set of strings. Then for each x € V, x € A if and only if \\{x' : x' €
V and f(x,x') = x'}|| < ||A n V||.

Proof. Fix a string x € V. First assume that x is in A. By the definition of a
p-selector, /(x, a;') = x' implies x' € A. Therefore, the number of strings x' in
V for which f(x,x') = x' is at most \\A n V||. If x is not in A, then for all x'
in A, f(x,x') = x'. Additionally, /(&,x) = x. Hence for more than ||A n V||
strings x' in V it holds that /(x,x;) = x'. D

Consider a p-selective set A and a p-selector / for A. Let the advice be
the binary representation of the number of strings in A of length n. Then
the length of the advice is at most n + 1. By Lemma 4.2, for each string
x of length n, the membership of x A can be decided with the help of the
advice by counting the strings x' of length n for which f(x,x') = x'. Since
/ is polynomial-time computable, this can be done in time 0(22n). That is,
P-sel C DTIME(22n)/i4I>y(n + 1). This argument can be generalized to sets
Turing reducible to p-selective sets, whereby we obtain a relationship between
the number of oracle queries and the length of the advice.

Lemma 4.3.

DTIME(t(n))g(n).T(P-sel) C (J DTIME(*(n)* •22*W+2n)/ADV(q{n) + n+ 1)

Proof. Let A be a set Turing reducible to a p-selective set B via a 0(t(n)) time
bounded oracle Turing machine which asks at most q(n) queries on every path
of the query tree on some input of length n. Let / be the p-selector for B and
assume that / is computable in time 0(nk) for some constant A: € N.

Let Qn = \Jix\=nQ(x) where Q(x) denotes the set of all queries in the
query-tree of M on an input x. Define the advice function h : N —> E* to be
the binary representation of \\B DQn||- Thus the length of h(n) is less or equal
to q(n) + n+ 1.

For a string x of length n, we decide x € A by the following algorithm. First
generate a list of all queries q € Qn by traversing the query trees of M for all
inputs of length n. In order to avoid counting a Single query more than once in



the following step, eliminate multiple occurrences of queries in this list. Now
simulate M on x. Whenever M asks a query g, count the strings q' in the list
such that /(g, q') = q'. If this number is less or equal to h(n), continue with the
answer "YES", otherwise continue with "NO". Accept if and only if M accepts
x.

By Lemma 4.2, we always continue with the correct answer. Therefore, we
accept x iff x € A. To compute the list of all queries in Qn, we have to generate
successively Q(x) for allx oflength n. This can bedone in time 0{2n-29^-t(n)).
Eliminating multiple occurrences of queries in this list requires additionally time
0((2n-2g(n))2-t(n)). To determine theanswer for a query q, we have to compute
the p-selector / on at most 2n «29^ strings oflength less or equal to t(n). Since
/ is computable in time 0(nfc), this requires time 0((t(n))k •2n •2^n)). We
conclude that the whole algorithm runs in time 0(t(n)k •22«<n)+2n). D

Applying Lemma 4.3 and the Standard leftcut construction we obtain the
characterization of EXP /poly.

Theorem 4.4. EXPpo/y.T(P-sel) = EXP/po/y

Proof. By Lemma 4.3, EXPpo/y.7'(P-sel) C EXP/po/y. To see the inverse in-
clusion let A be accepted by an exponential-time Turing machine M with the
advice function h. Define an infinite binary sequence a = /i(0)01h(l)01...,
where x denotes the string x with each bit doubled. In order to decide x € A
with the p-selectiveleftcut Ia, first compute /i(0)01/i(l)01.. .Ol/iflxl) from LQ
by prefix search. Then simulate M with input x and the advice /i(|x|). Since
the length of h(\x\) is polynomially bounded, both the number and the length
of the queries are bounded by some polynomial. It follows that h(\x\) can be
obtained from the oracle La in polynomial-time. Hence the whole algorithm
runs in exponential-time. D

Remark 4-5. Note that in the above proof the queries used by the exponential-
time reduetion are polynomially length bounded. Thus it follows from Theorem
4.4 that every set in EXPp0/y.T(P-sel) can be exponential-time Turing reduced
to some p-selective set where both the number and the length of the queries are
polynomially bounded.

A characterization similar to Theorem 4.4 falls for E/lin. Adapting a proof
in [3], we show that E/,n.r(P-sel) is properly included in E/lin. In the proof
we use a Kolmogorov-random sequence. For the definition of Kolmogorov com
plexity and related facts we refer to [10].

Theorem 4.6. EKn.r(P-sel) C E/lin

Proof. The inclusion Enn.T(P-sel) C E/lin follows from Lemma 4.3. Moreover,
replacing Qn = \J\x\=nQ(x) bY Q<n = \J\x\<nQ(x) in the Proof of Lemma
4.3 we see that for a set in E/tn.r(P-sel) all strings up to length n can be
deeided in exponential-time with an advice of linear length. This implies that
the Kolmogorov complexity of all initial segments of the characteristic sequence
up to strings of length n is at most linear in n.



Now consider a binary Kolmogorov random infinite sequence p. That is, a
sequence such that the Kolmogorov complexity of its prefixes is at least linear
in the length of the prefixes infinitely often. We define a set A which contains
at most the first n strings of length n. Let x be the lexicographically i-th string,
i <n, of length n. Then x€Aifand only ifthe (w(w2~^ +t)-th bit of pis 1.
That is, we divide p into consecutive subsequences of length 1,2,..., n,... and
the n-th subsequence of length n denotes the membership of the first n strings
of length n in A. It follows that A is in E/lin. We use a prefix of length n2 of
p to define A up to strings of length n. Hence the Kolmogorov complexity of
the prefixes of the characteristic sequence of A up to strings of length n is at
least quadratic in n infinitely often. Thus A is not in Ejtn.T(P-sel). D

Remark 4-7. Throughout this paper we consider only boundedquery reductions
to p-selective sets. The reason is that if we do not restrict the number of
queries, then every set is reducible in linear exponential time to p-selective sets.
In order to see that, fix any set A. Then A can be many-one reduced in linear
exponential-time to its tally version tally(A) = {0* : s« € A}, where S{ is the
i-th string in the lexicographical ordering on S*. Furthermore, every tally set
can be Turing reduced to some p-selective set in polynomial time [13]. Hence
A is in Em(PT(P-sel)). Since Em(PT(P-sel)) C Er(P-sel), we conclude that A
is in ET(P-sel).

5 Turing reducibility to p-selective sets and uniform
exponential-time complexity

We locate sets Turing reducible to p-selectivesets in (uniform) exponential-time
classes using Lemma 4.3 and the following proposition.

Proposition 5.1. Let f : N -* N be a function with n < f(n) < 2n. Then
DTIME(24-'<n)) g T>TIME(2ttn))/ADV(f(n)).

Proof. Let Mo, Mi,... be an enumeration of all Turing machines M« running
in time i2^n\ We will construct a set A in stages. Each stage determines the
membership of all strings of length n. In stage n, we will satisfy the following
requirement:

(Rn) for any advice function h € ADV(f(n)), A is not accepted by Mn with
advice h.

This clearly implies A $ BTIUE(2^n^)/ADV(f(n)). Let A! denote the set of
strings put into A prior to stage n. There are at most2^n) < 22" setsof strings
of length n which can be accepted by Mn with some advice of length f(n). Since
there are 22 distinct subsets of S=n there is a (smallest) set Dn C S=n which
is not accepted by Mn with some advice of length f(n). Setting A = A! U Dn
we thus established (Rn).

In order to decide x € A (uniformly) for some string x of length n we only
have to determine the set Dn in the above construction. But this can be done
in time 0(2'<n) •2n •n •2'<n)), hence A is in DTIME(24>(n)). D



Theorem 5.2. Fix c,fc G N. Then

1- E g Pcn.T(P-sel)

2. EXP g Enk.T(P-sel)

Proo/- (1) By Lemma 4.3, for every c € N, Pcn.T(P-sel) C DTIME(2c'n)/,4W(c'n)
for some constant c' € N. But E g DTIME(2c'n)/ADV(c'n) by Proposition
5.1. The proof of (2) is similar. D

Remark 5.3. Theorem 5.2 (1) holds not only for polynomial-time reducibility,
but also for super polynomial-time bounds. More precisely, for all t(n) such
that, for all kGN, t(n)k €0(2*), Eg DTIMEWn^rCP-sel).

6 Conclusion

We showed that there is a hierarchy among the sets Turing reducible to p-
selective sets with respect to the degree of the polynomial bounding the number
of adaptive queries used by a reduction. Furthermore, we gave a characteriza-
tion of EXP/poly in terms of Turing reducibility to p-selective sets.

Furthermore, weextended Toda's result EXP g P«(P-sel) to EXP g En*_T(P-sel)
for every fixed k € N. Wilson [14] constructed an oracle relative to which
EXPNP (and hence EXP) is included in T/poly = PT(P-sel). Thus our Sepa
ration seems to be the best possible without using nonrelativizing techniques.
However, since EXP C F/poly if and only if EXP /poly C P/po/y, our charac-
terization might shed some light on the EXP C P/poly question.
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