
Architecture Independent
Massive Parallelization of

I

Divide-and-Conquer Algorithms '

Klaus Achatz and Wolfram ~chul ' te

Fakultat fir Informatik, Universitat Ulm
Email: {achatz ,wolfram)0informatik.~ni-ulm.de

Note. This technical report is an extended version of the paper 'with
the same title in the proceedings of Mathematics of Progmm Con-
struction, 1995, Bad Irrsee, which will be published in the Springer
series Lecture Notes in Computer Science.

Abstract. We present a strategy+to develop, in a functional setting, cor-
rect, efficient and portable Divide-and-Conquer (DC) programs for mas-
sively parallel architectures. Starting from an operational DC program,
mapping sequences to sequences, we apply a set of semantics preserving
transformation rules, which transform the parallel control structurp of
DC into a sequential control flow, thereby making the implicit data par-
allelism in a DC scheme explicit. In the next phase of our strategy, the
parallel architecture is fully expressed, where 'architecture dependent'
higher-order functions are introduced. Then - due to the rising commu-
nication complexities on particular architectures - topology dependent
communication patterns are optimized in order to reduce the overall
communication costs. The advantages of this approach are manifold and
are demonstrated with a set of non-trivial examples.

1 Introduction

I t is well-known that the main problems in exploiting the power of modern
parallel systems are the developnlent of correct, efficient and portable programs
[Pep93, Fox891. The most promising way to treat these problems in common
seems to be a systematic, formal, top-down development of parallel software.

In this paper we choose transformatzonal progmmmzng to develop parallel
programs where transformational programming summarizes a methodology for
constructing correct and efficient programs from formal specifications by app-
lying meaning-preserving rules [Pargo]. Starting with a functional specification,
we derive programs for the masszvely data parallel mode l , which assumes a large
data collection that needs to be processed and that there is a single processor
element (PE) for each member in the collection. The same set of instructions
is concurrently applied to all data elements, i.e., there is a single control flow
which guides the computation on all PEs. li

The main characteristics of our strategy, using transformationd program-
ming to develop data parallel software, are the following ones: as , ,a problem

adequate structure we restrict ourselves to sequences, which are fully satisfac-
tory in the vast majority of situations. The.usual data parallel operations, like
apply-to-all or reduce, are provided. In addition, certain high level operations
are introdu'ced, which can be interpreted as communication operations on the
machine level (cf. Sect. 2).

As the starting point of our strategy, we choose a very popular tactic for
designing parallel algorithms: Divide-and-Conquer (DC). Batcher's bitonic sort
is a well-known example. DC algorithms are particularly suited for parallel im-
plementation because the sub-problems can be solved independently and thus
in parallel. Obviously DC algorithms have explicit control parallelism, i.e., there
are separate independent parts that can be processed simultaneously by distinct
CPUs. However, our model of computation does not allow several control flows.
Therefore we aim at exploiting the inherent data parallelism. Hence, we present
a set of semantic preserving transformation rules, which make the implicit data
parallelism in a DC scheme on sequences explicit, thereby introducing architec-
ture indep&ndent communication operations on sequences (cf. Sect. 3).

The arlchitecture is fully expressed in the next step of our strategy, where
1 skeletons are introduced. Skeletons are higher-order functions to express data
Y parallel operations on specific architectures. The aforementioned sequence ope-
4

rations each have a straightforward implementation in terms of skeletons. In par-
ticular it turns out that even the communication oriented sequence operations
can be implemented on arrays, meshes and hypercubes equally well. Due to the
rising communication complexity on particular architectures, topology dependent
optimzzations become more and more important. We calculate two architecture
dependent optimizations (for arrays and meshes) using only the skeleton de-
finitions, where correspondent communications followed by broadcasts can be
realized using less communication operations (cf. Sect. 4)

However, aside from answering theoretical questions concerning the correctness
of our approach, we want to stress the advantages of our work from a practical
and methodological point of view:

1

- The identification of a transformation rule to exploit the implicit data par-
allelisnl of DC and its necessary applicability condition makes the transfor-
mation process target directed.

- The developed DC algorithms are efficient and can be ported across several
architectures. If, in addition, topology dependent optimizations are applied
very efficient algorithms can be derived.

- The presented transformations can be automated using an extended compi-
lation approach, where the user may give hints in the form of laws to the
comp,iler [Fea87].

- Architecture independent data parallelism is distinguished from architecture
depekdent one. Correspondingly we operate on different levels of abstraction
(seq4ences vs. skeletons) and supply different transformation rules (data
paralfelization vs. communication transformation).

I These aspects are demonstrated with three examples: the parallel prefix com-
//

putation, Batcher's bitonic sort, and computing the convex hull of a set of points
in the plane. i j

The rest of this paper is organized as follows. Section 2 briefly presents our
sequence model, and its relation to the massively data parallel model.

The new DC transformation rules are introduced in Sect. 3. Section 4 defines
skeletons, their use and optimizations. We follow in Sect. 5 with two examp-
les, demonstrating the applicability of our approach. Section 6 compares our
approach with others. Finally, Sect. 7 draws conclusions and raises issues for
further research.

Notation. In notation we follow the standard of lazy functional programming
languages, like Haskell or Miranda. For example, we write function ,application
in curried form, as in f x y which is equivalent to (f x) y, and define functions
- whenever possible - using pattern matching. If, in addition, assertions on
parameters are used, they are given in the surrounding text.

Addendum. The differences of this technical report wrt. [AS951 are marked as
being addenda (lilie this one). Additionally proofs and an implementation of the
running e x h p l e in a real parallel language are presented in the appendices. 4

2 The Balanced Sequence Model . ,
'!

Sequences in general can be used to express data parallelism in An abstract
way, where parallelism is achieved exclusively through operations on sequences
[Ble92]. In this section we explore this approach, present the traditional operati-
ons on sequences and its data parallel view (Sect. 2.1), introduce communication
oriented operations (Sect. 2.2), and define some properties (Sect. 2.3) that will
be of value in the following exposition.

2.1 Basic Sequence Opera t ions

Our so called balanced sequence model is motivated by the underlying parallel
program development strategy, viz. divide-and-conquer (see Sect. 3),:and by the
need to perform the same computation on all data elements of the sequence in
parallel. The term "balanced sequence" stems from the fact that our DC scheme
always results in balanced computation trees.

The constructors of our balanced sequence model are the following ones: is
the empty sequence, [el is the sequence which contains the single element e, and
x it y is the sequence formed by concatenating sequences x and y, but only if
both have equal length. This always results in sequences of lengths powers of 2,
which is appropriate, since all known massively parallel machines work with 2n
PEs.

Addendum. An. alternative constructor set replaces concatenation, ;also called
left-right composition by the shuffle operator W, also named odd-even composi-
tion. In a shuffled sequence x W y the elements with even indices come from x

3

and the odd ones from y. We will later pick up this constructor set and show -
that - in a DC scheme - it can be transformed into the former.

I
a

The foliowing auxiliary functions are used to specify programs. They will be
! removed dpring program development: the operator (#) returns the length of a

sequence. The first-order functions first and last extract the f i s t or last element
I! from a nonempty sequence, respectively. The function copy creates a sequence

of n copies of identical elements.
It is perfectly well to assume every sequence element corresponds to a data

element resting on a particular processor element. Two sequences can be seen as
two different storage levels on the parallel machine.

We now start to introduce the set of balanced sequence functions, most of
them are commonly used functions [BW88, AJ931:

- map. Applies a function to every element of a sequence independently, and
therefore reflects the massively data parallel programming paradigm in the
most obvious way.

- zip Withltip With3. Takes a pair/triple of sequences, having equal length, into
,111

a ne\y sequence in which corresponding elements are combined using any
given I;binary/ternary operator. The family of zipwith functions correspond
to the map functional working on two or more storage levels.

- reduce. Reduces a nonempty sequence using any binary operator. This func-
tion can be implemented on a parallel machine in logarithmic time using a
'tree' ,[Ski93].

In a data parallel environment conditionals are somewhat different to their
sequential counterparts. The action of a parallel if can be summarized this way:
on every PE the condition is evaluated; in components where the condition is
true, the then-branch is executed, otherwise the else-branch.

A specialization of a parallel condztzonal is the operation jozn. It takes a pair
of seque4ces 2, y, having equal length, into a new sequence, which consists of
alternatplslices of z and y each of length n, n > 0 (see Fig. l (a)) .
We can define jozn by:

I
)om n (x1 +I- x2) (y l -I+ y2) = x1 ii- y2, if n = #XI
jozn n (x1 St- 22) (yl it y2) =join n x l yl ~ t - (1)

join n 22 y2, if n < #xl

Like the functions defined in the next subsection, join is a partial operation.
Since these functions are introduced during program development, definedness
of the resulting programs must be guaranteed by the appropriate transformation
rules (cf. Sect. 3).

2.2 Communication Oriented Sequence Operat ions
Il
1 A very wide range of scientific problems can be computed under the DC scheme

using a/regular communication pattern. Naturally, some communication pat-
terns are better than others for developing parallel algorithms. Essentially, they

join 2 con 2 distL.2

X o - 0 yo - 0 YI

X2 0 - y2

X3 0 - y,

X4 - 0 y4

x, - 0 y,

X6 0 - Y6

X7 0 M Y7

. '

(a) (b) (c)
.I

Fig. 1. Sequence operations: (a) join 2 z y, (b) cow 2'2, (c) dist!, 2 z

I..

have structural properties that make it easier to describe the data movement
operations necessary for parallel computations. In the case of our particular DC
scheme (see Sect. 3), the following communication operations seem to be the
most suitable ones:

Correspondent communication - modeled by function corr n x - exhibits a
butterfly-like communication pattern: for a particular value of n, each P E com-
municates with each PE whose index differs in the nth bit from the left. An
example is depicted in Fig. l (b) . Its definition is straightforward:

corr n (x it y) = (y it x), i f n = # x
c o r r n (x i t y) = c o r r n x i t c o r r n y , i f n < # x (2)

First or last communication can be realized using a correspondent commu-
nication followed by a directed broadcast. A directed broadcast operates from
right to left, where the value of the rightmost element is distributed to the left
(distL), e.g., distL n x copies the value of the last element of each sliye of length
n to its left neighbors (see Fig. l(c)). The function distR operates from left to
right. Directed broadcast is related to copy by the following definitiyn:

distL n x = copy n (last x), i f n = # x
distL n (x it y) = distL n x it distL n y, if n 5 #x (3)

The introduced sequence operations cow, distLldistR and join, mirror the
necessity of our DC scheme to exchange data between PEs and to select different
data elements on each PE, respectively.

2.3 Properties: Distributivity and Length Preservat ion

Our balanced sequence model fulfills a number of properties, where especially the
following two are needed in our transformation rules given below (cf. Sect. 3).

Let f denote a function, which maps sequences to sequences. The function is
said to be distributzve, if it distributes through concatenation of sequences:

I!

f (z l + ~) = f z + f Y

I t is said to be length preserving, if the length of the output sequence is equal ,
to the length of the input sequence: I

#(f 2) = #z

The generalization to functions taking a tuple of sequences yielding a single
sequence is straightforward.

Another generalization concerns the distributivity of functions like corr or
distL, which work on slices of length n. This time, let f n denote a function,
which maps sequences to sequences. If i t distributes through a sequence z it y,
where n'!< #z, then the function is said to be distributive modulo n, or - more

Ij -
general spoken - slice-distributzve.

All (Slice-)distributive functions that either map the empty sequence to the
empty ibquence, or are undefined for empty sequences, are uniquely defined by

Il specifying their effect on 'elementary' sequences (having length n).
I t cah be shown that functions map and zip With are distributive, corr, distL

and joid are slice-distributive, and nap , zip With, corr, distL and join are length . 1 preserving.

3 ~ i v i d e and Conquer

First, the idea and assumption of our DC tactic is discussed (Sect. 3.1) followed
by its formal account (Sect. 3.2) that aims a t transforming the parallel control-
structure of DC into a sequential control flow with a parallel data-structure.

3.1 The DC Scheme

DC is a well-known tactic for designing parallel algorithms. It consists of three
steps:

1. If tlie input isnot primitive, partition the input.
2. Solve recursively the subproblems, defined by each partition of the input.
3. Coinpose the solutions of the different subproblems into a solution for the

overall problem.

A general DC tactic can be defined as the following higher-order function:
$

~ c I q t ~ h k j = f
where f z = t x , if q = #z 1 f (z it y) = (k v w) it (j v w), otherwise ,

where (v, w) = (f (g z y),f (h z Y))
I,
I1
I 6

In DC, when the input has length q, the problem is solved trivially by t , other-
wise the input is split (by pattern matching), the subinputs are preadjusted by
g and h, solved in a recursive manner, postadjusted by k and j and then con-
catenated. Thus the decompose and compose operations consist of td;o steps:
(9, h) o it-' and it o (k , j), respectively. This leads to a computati&, where
the control flow, expressed by the sequence primitives, is separated from the
computation, expressed by the adjust functions. In addition, it is assumed that
the trivial, the pre- and the postadjust functions are length preserving.

This DC scheme is perfectly appropriate for data parallelization, since the
sequence primitives are independent of the elements in the sequence and hence
can be performed in constant time.

The power of this scheme stems from the fact that the pre- and postadjust
functions receive the complete input and output sequence, respectively. However,
since the adjust functions must be length preserving only "balanced" algorithms
can be derived.

These assumptions rule out certain important non-balanced algorithms, as
for instance Quicksort. But algorithms that either are not balanced or depend on
values are not suitable for massively data parallel computation. They require -in
contrast to our adjust functions - irregular communication patterns to get things
in the right place, which normally causes high communication costs. Therefore
such algorithms are not considered relevant for our current study. ,

dl
Addendum. Obviously one can choose the alternative constructor set using shuf-
fling instead of concatenation, too. All facts and assumptions that hold for con-
catenation also hold for shuffling. a

3.2 The Rules

The presented DC scheme exhibits cascading recursion and explicit data decom-
position. In order to transform this scheme into a corresponding data parallel
program, we have to introduce a sequential control flow, i.e., we must Fransform
the cascading recursion into linear, or - even better - tail recursion, and we have
to make the explicit data decomposition implicit.

First, we concentrate on simplifying the recursion. The computation proceeds
in two phases: in a decompose or 'top-down' phase the preadjust functions g and
h are applied to the subsequences, whereas in the compose or 'bottom-up' phase
the postadjust fuilctions k and j are applied. For a sequential flow of control,
we have to decouple the phases o f f . i.e., we introduce two functions one for the
top-down computation fJ. and one for the bottom-up computation f t.

,i
Theorem 1 (Generalized divide-and-conquer rule). Assume g, h, j , k, t t ,
tJ. and t are length preserving functions and t = tf o tJ. Let f be a general DC
algon'thk of the form:

f x = t x, if q = # x
f (x it y) = (k v w) U (j v w) , otherwise

where (v , w) = (f (9 x y),f '(h x Y))

Then, f ,can be decomposed into an equivalent function f .f o f 1:

f x = ft (f1.1
where f & x = t l x , i f q = # x

f & (x S t y) = f & (g x y) S t f & (h x y) , otherwise 11 it. = t t x , i f q = # x
f t (z S t Y) = (k v W) St ti v w) , otherwise

I where (v , w) = (f t x , f t Y)

Proof. See Appendix A.1.

The resulting functions f f and f J. still have cascading recursion. But now
pre- and postadjust functions are decoupled. Additionally, we know the number
of iterations 'beforehand', since the recursive computation only uses split and
concatenation on balanced sequences.

We rewrite the functions f & and f t to include an additional parameter, which
determines the recursion depth. Thus, it is not necessary anymore to use the
sequenck to determine the recursion depth - its length becomes constant. On
the othdr hand, the trivial, pre- and postadjust functions have to be performed

1 on the appropriate slices. This is possible, if they are length preserving. Then it
is easy tb define their slice-distributive generalizations, which work on the whole

I/ sequence and not only on the subsequences as in the case of cascading recursion.
In ordel! to supply the appropriate slices to the pre- and postadjust functions,
we must explicitly introduce correspondent communication followed by a join of
the different solutions of the subproblems.

The following two transformation rules enable us to derive tail-recursive and
therefore data parallel versions of f 4 and f t.
T h e o r e m 2 (Top-down w i t h pre-adjustment). Assume functions g , h and
t are length preserving. Let f L be a cascading top-down algorithm of the form:

Then. 41 is transformed into an equivalent function f l) , which is a tail-recursive
top-down computation with pre-adjustment. As an assertion on the parameters

V of f l) ye require # x 2 n:

f l + = f u (# x) x
where

, f l) n x = t l q x , i f q = n
f l) n x = f l) (join f (g' f x 2') (h' f x1 x)) , otherwise
where

2' = C O W ; x
t' n x = t x , i f n = # x

11 t' n (z i t y) = (t' n x) +t (t' n y), i f n < # x
S ' ~ Z Y = ~ Z Y , i f n = # z
g' n (21 it x2)(yl it y2) = (9' n x1 y l) it (9' n 22 y2), i f n 5 #x1 ii h ' n x y = h z y , i f n = # x
h ' n (21 i t x 2) (y l it y2) = (h ' n x l y 1) i t (h ' n x 2 y2) , i f n s # x l

t x = x
k x y = x
j x y = map ((+)(last 2)) y

We immediately obtain an iterative data parallel version of p s u q . The new
functions i', k' and j', however, are still recursive. Although they can be imple-
mented using DC too, it is much better to circumvent the recursion. Therefore,

11 we carry out some precomputations to determine their closed forms:
/I

~era'vation. Let n = (# X I) and x = x1 it 22 and x' = 22 it 21:

ki n x x'
= [def. of x and x', slice-distrib. of k', unfold k']

. (k x1 22) it (k 22 x l)
I/
= [unfold k]

= [assumption: x = x1 it 22]

j' n x x'

= [def. x and x', slice-distrib. j ' , unfold j']
0' 21 22) it 0' 22 21)

[unfold j]

I
(map ((+) (last 21)) 22) it (map ((+) (last 22)) X I)

= [property of map wrt. zip With]
(zip With (+) (copy n (last x l)) 22) it

(zip With (+) (copy n (last 22)) x l)

'= [fold distL]
zip With (+) (distL n $ 1) 22 it zip With (+) (distL n 22) x l

= [distrib. of zip With]

i
zip With (+) ((dzstL n X I) it (distL n x2)) (22 it x l)

= [slice-distrib. of distL, assumption on x and x']

zip With (+) (distL n x) x'
I

~ u e (t o the slice-distributivity of k' and j', definitions of k' and j' hold for
all n <_ # x l . In a similar way, ti can be shown to be equivalent to the identity
function.

By means of these definitions, we apply Theorem 3 to p s u q and result in:

p s u m x = psuml #x 1 x
whe re

psuml m n x = x , i f n = m I,

psuml m n (21 it 22) = p, otherwise , :I!
where x' = corr n x 'li

p = psuml m (2n) (join n x (zip With (+) (distL n x') x))

In the following section, we will pick up psuml, and will systematically derive
architecture specific array, mesh and hypercube algorithms, respectively.

Addendum. On closer inspection of the different constructor sets and their use
in the DC scheme, we can observe that - under certain conditions - a topdown
computation based on split and concatenation is equivalent to a lbottom up
computation based on unshuffle and shuffle, where the post-adjust 1,function of
the latter is the preadjust function of the former. However this only holds, if on
termination of DC the input has length 1 (q = 1) and is then trivially solved by
the identity f~inction (t = id). This fact was already observed by [CM91].

Theorem 4 (Odd-even vs. left-kight). Let f3. be a top-down algorithm with
pre-adjustment of the form:

Then f J is transformed into an equivalent function f t , which is a bottom-up
computation with post-adjustment.

f t x
.

= x, . if #x = 1
f t Y) = (9 V w) i t (h v w), otherwise

where (v,w) = (f t x , f t Y)
I;

Proof. By coil~putational induction.

Theorem 4 holds even if the computation ordering is changed that is, if the
roles of the pre-and postadjust functions are inverted.

This result justifies our approach, to present the former rules for only one
constructor set - whether it is the one which is based on concatenation, the one
we have chosen, or the other one, does not really matter. <I

4 Skeletons and Skeleton Transformations

In this section, the basis for the derivation of architecture specific programs is
given, i.e., topology independent skeletons are introduced (Sect. 4.1), followed
by topology dependent ones (Sect. 4.2), then the derived sequence skeletons are
calculated (Sect. 4.3), and finally communication transformations are presented
(Sect. 4.4).

1 4.1 Basic Skeletons
/I

The skeleton idea is fairly simple. The data components on all processors are
modeled as a data field wC921, i.e., as a function over some index domain D,
which describes the PE's indices, into some codomain V of problem related
values. Then, data parallel operations can be defined as higher-order functions
(called skeletons), which are either abstractions of

- elementary communication-independent computations on all PEs or
- comhunication operations, which pass values along the network connections.

'Il!
For instance, the most typical elementary operation on data parallel archi-

t tectures is a single function operating on multiple PEs. This computation is
expressed by the MAP skeleton:

MAP f a = A i . f (a i) (4)

Thehigher-order function MAP takes an operator f and a data field a , and
returns 'a data field in which each element is the result of operation f applied to
the cordesponding element of a.

~helskeleton ZIPWITH generalizes the MAP skeleton in the sense that
ZIPWITH takes a pair of data fields a and b, and combines them using a dyadic
operator @.

ZIPWITH @ a b = A i .(a i) @ (b i) (5)

The introduced skeletons can be applied to every data parallel architecture,
because no data exchange between two processors takes place. All data parallel
architectures share these topology independent skeletons.

~ndikidual types of architectures differ in their topology and thus, in their
possible patterns of communication. Communication patterns for linear arrays,
meshes ;and hypercubes will be given in the next subs'ection.

4.2 Coinmunication Skeletons

This section formally defines three important static processor organizations: li-
near arrays, meshes and hypercubes.

Linear,,arrays. I Linear arrays have a very simple interconnection network. Every
P E is linked to its left and right neighbor, if they exist. An abstraction of a li-
near ariay with N PEs, where N in general is a power of 2, will be written as a
parameterized type:

array(cr) = index -+ cr
where index = { i I 0 5 i < N)

Arrays can have wrap-around connections (then called rings), i.e:, P E 0 is
connected to P E N - 1. Here, we only consider arrays without wrip-around
connections. * I

We identify two basic data parallel exchange operations: shifting all elements
one position to the left or to the right. The next two skeletons allow comrnuni-
cation of k steps at a time, although only one step a t a time is an elementary
computation on these architectures:

SHLA k a = X i . a (N - I) , if i 2 N - k
a(i + k), . otherwise

SHRaka=Xi . . a (O) , . i f i < k
a(i - k), otherwise

Note. The above communication skeletons are modeled in such a way that PEs,
which do not receive a valid data element, yield the appropriate value of a
boundary PE. Other patterns could be chosen too.

Meshes. In a mesh network, the nodes are arranged in a q-dimensional lattice.
Communication is allowed only between neighboring nodes. Two-dimensional
meshes, for instance, have N x N identical PEs, which are positioned according
to an N x N matrix. Each P E P (i , j) is connected to its neighbor BEs P (i +
1, j) , P (i - I , j) , P(i , j + I) , and P(i , j - I) , if they exist. The abstraction of
two-dimensional meshes reads:

mesh(cr) = index -t cr
where zndex = { (z, j) I 0 5 z , j < N)

Meshes also can have wrap-around connections, where each column and each
row of the mesh is connected like a ring. Again, we only consider meshes without
wrap-around connections.

According to these interconnections, we distinguish four different exchange
operations: data is sent to its left(SHL), to its right (SHR) to its upIjer (SHU)
or lower neighbors (SHD). The skeletons have the form:

SHLM k m = X(i, j) . m(i, N - I), ' if j 2 N - k :
m(i, j + k), otherwise

SHRM k m = X(i, j) . m(i,O); ' if j < k
m (j - k) otherwise

SHUM k m = X(i, j). m(N - 1, j), if i 2 N - k (6)

m(i + k, j) , otherwise

SHDM k m = A(i,j). m(0, j) , i f i < k
m i - k j) otherwise :I:

I,

* Wrap-around connections do not add further functionality to the system, but make
communication patterns more efficiently implementable.

Hypercubes. In an n-dimensional hypercube, which has 2" nodes, each P E
has n neighbors, which it can reach in one time step. Its abstraction looks like
the one for arrays, i.e., we have:

Ih hyper(cr) = index -+ cr
4 where index = { i 1 0 < i < 2")
I/!

A P E in an n-dimensional hypercube can communicate with n of its neigh-
bors, where nodes are adjacent to each other when their indices differ in exactly
one bit position. This bit can be set on or off - correspondingly, we can communi-
cate 'up' or 'down'. Once again we generalize this communication, by specifying
communication in dimension d, which has to be a power of 2:

COMMU d h = X i . h(i - d), if i 2 (i div (2d)) .2d + d
h(i), otherwise

COMMD d h = X i. h(i + d), if i < (i div (2d)) 2d + d (7)

h(i), otherwise
11
I

Note. $lie integer parameter for shifting elements on the array or mesh describes
the nudber of elementary communication steps, whereas the first parameter of
COMMU and COMMD specifies the dimension in which a communication takes
place - khus the elementary hypercube communication isperformed in a single
step. ~
4.3 Derived Skeletons

Now tliat on the one side, we have derived data parallel functions on sequences,
and on the other have specified architecture specific skeletons, it remains to close
the gap, i.e., to implement the sequence primitives in terms of skeletons.

We state without proof the correspondence of map with MAP and zip With
with ZIPWITH. This can easily be seen, if we recognize that each operation
(by mesis of map or MAP and zipwith or ZIPWITH, respectively) is applied
indepen!bently to each data element. Therefore, it makes no difference whether

I the data component is an element of a sequence or an element of a data field.
The coinlnunication oriented sequence operations, however, have to be defined
in the context of the architecture the algorithm is aimed at.

Arrays. Sequences of length N and linear arrays defined as data fields have a
one-to-one correspondence:

where x, is the selection of the ith element of the sequence. The inverse of g is:
I!

I1
We derive tlie skeleton functions, operating on a linear array from the com-

munication oriented sequence operations. We start with the followini! definition:

After eliminating the bijection g, we get the following direct definitidns:
!I

Corollary 5.
I,

(I
JOINA n a b = A i. a i , i f 'even(i div n)

$1
b i , otherwise

CORRA n a = JOINA n (SHLA n a) (SHRA n a)
1

DISTRA n a = A i. a(l n) where l = i div n
(9)

I

DISTLA n a = A i. a((l + 1) . n - 1) where l = i div n

Proof. See Appendix A.3.
II

In order to obtain an array specific program, we replace the sequence opera-
tions by operations on data fields.

Example Parallel prefix cont'd. Unfolding the skeleton operations fo; arrays in
I psuml, results in the following architecture specific psum program: ;;
I

psum x = psum2 # x 1 x
where . .

psum2 m n x = x , i f m = n
psum2 m n x = psumn m (2n) (JOINA n x x ') , otherwise 4i
where x' = (ZIPWITH(+) (DISTLA n (CORRA n x)) x)

I1
11

Note that the resulting program suffers from a lot of redundant communica-
tion operations. Due to our architecture independent transformation iules 2 and
3, we always iiitroduce a correspondent communication. .But in the: particular
case of the above example, we only have to distribute data in one direction,
which leads to many superfluous shifts. Below, we will present communication
transformations to remove redundant communication operations. !

:j
I

Index Thnslat ions. In order to define the derived skeletons'for e h e s and
hypercubes, we could proceed as already done for arrays. However, 11having de-
fined arrays as data fields, it is much simpler to map only the indexl'domain of
the array to the hypercube or mesh domain instead of mapping the ahole data
structure. I

Let D and E be two index domains. A bijective mapping g : D 9 E , with
inverse g-' : E + D is called an zndex translatton. 1

In fact, the application of an index translation results in a change of the
underlying coordinate system, given by the source index domain D. Ij

'I

Meshes. Linear arrays of length N 2 are mapped onto a mesh with N columns
and N row's, using the following index translation:

g : ((0 ,..., N 2 - l) + { O ,..., N - l } x { O ,..., N - 1)
k I+ (kdiv N , kmodN)

where it is assumed that the indices are in row-major-order. The inverse mapping
reads: :

The mesh oriented skeletons JOINM, CORRM, DISTRu and DISTLM can
be de r i~eds t a r t i n~ from the corresponding array skeletons, this time using index
translations:

JOINM n x y = (JOINA n (x o g) (y o g)) o g-'
CORRM n x = (CORRA n (x o g)) o 9-l
DISTLM n x = (DISTLA n (x o 9)) o g-' (10)

DISTRM n x = (DISTRA n (x o g)) o g-'

~l imi l l a t i *~ the index mapping, we obtain the following direct definitions:

Corollary 6.

JOINA4 n x y = X (i , j) . x (i , j) , i f even((i . N + j) div n)
y(i , j) , otherwise

CORRM n x = X(i, j).JOINM n x1 22
where x1 = SHLM (n mod N) (SHUM (n div N) x)

x2 = SHRM (n mod N) (SHDM (n div N) x)
DISTLM n x = X(i, j) .x(((l + l) n - 1) div N , ((1 + 1)n - 1) mod N)

where 1 = (i . N + j) div N
DISTRM n x = X(i, j) .x((l n) div N , (1 . n) mod N)

where 1 = (i . N + j) div n

Proof. Sde Appendix A.4.

~ ~ ~ e r c & b e s . Derived skeletons for the hypercube architecture are defined by
choosiilg the identity function as an index translation (g = id). From (10) by
replacing the subscript M with H, we obtain:

~ 0 1 4 ~ n x y = X i . x i , i f even(i div n)
y 2, otherwise

CORRH n x = X i .JOINH n (COMMDH n x) (COMMUH n x)
UISTLH n x = X a .x((l + 1) . n - 1)- where 1 = i div n

DISTRH n x = X i .x(1 n) where 1 = i div n

Proof. See Appendix A.5.

4.4 Communication Transformations for Array and Mesh

The result of our derivation leads to communication patterns, which probably are
not the most efficient ones on a particular architecture. This is caused by the fact
that for reasons of architecture independence, we always introduce correspon-
dent communication. Sometimes first or last communication would be perfectly
sufficient. Whereas correspondent communication is cheap on the hypercube - it
can be performed in one step - it is more expensive on the mesh and rather ex-
pensive on the array. Thus it is obvious to specialize first or last communications
on these architectures by eliminating correspondent communication. This can be
achieved by partial evaluation of the cornrnunicqtion pattern. As an example, we
give two lemmas for arrays and meshes:

Lemma 8 (Communication transformation for linear arrays). Let the fol-
lowing compound communication pattern for linear armys be given:

JOINA n x (ZIPWITH @ (DISTLA n (CORRA n 2)) x)

This pattern is partially evaluated into:

JOINA n x (ZIPWITH @ (DISTRA n (SHRA 1 2)) x)

Proof. See Appendix A.6.
I

Note. The expression DISTLA n (CORRA n x) is slice-distributive, whereas the
substituted expression DISTRA n (SHRA 1 x) is not. However both yxpressions
are a t least equal on every second slice of length n. Therefore thef expression
must be embedded as the second parameter in a JOINA n. The use of ZIP WITH
generalizes the comnlunication transformation.

t

While the colllmunication pattern with the correspondent communication
needs 3n - 1 elementary shifts, the improved pattern can do with n shifts.

In a similar way, we can derive a communication improvement for mesh
connected computers.

Lemma9 (Communication transformation for meshes). Let the following
compound communication pattern for meshes be given:

JOINM n x (ZIPWITH @ (DISTLM n (CORRM n x)) x)

This pattern is partially evaluated into:

JOINM n x (ZIP WITH @ x 2') .

where x' = DISTRM n (SHRM 1 x), i f n < N
DISTLM n (SHDM $. x), otherwise

Proof. Analogous to the proof of Lemma 8. , . .

In the worst case (n > N) , the improved pattern requires N + 8 - 1 ele-
mentar; shifts on meshes, while the original communication with correspondent
shifts needs N + 3% - 2. Since communication costs are crucial for the efficiency
of real daralle~ programs, a reduction of elementary shifts by a factor of about 3
seems worth the work.

I
Ezample Parallel p ~ f ; cont 'd. Applying the communication transformation for
arrays to p s u n ~ results in:

psum z = psum3 # z 1 z
where

I psum3 m n z = x, i f m = n
psum3 m n x = psum3 m (2n) (JOINA n z z ') , otherwise
where x' = ZIPWITH (+) (DISTRA n (SHRA 1 z) x)

An implementation of psum3 in a real data parallel language is now straight-
forward and presented in Appendix B. 0 :

5 Applications , I

I

In order to demonstrate the usefulness of the presented approach, we work out
two somewhat more complex examples. In Sect. 5.1, we treat one of the most
popular sorting algorithms for data parallel computers viz. Batcher's bitonic
sort. Section 5.2 deals with a problem in computational geometry, namely the
construction of a convex hull.

5.1 Bi to~l ic Sort

The well-known bitonic sort algorithm was proposed by K. E. Batcher in 1968
for so called sorting networks [Bat681 and later adapted to parallel computers
[NS79].

Preliniinaries and Operational Specifications

The bitonic sort algorithm is based on the central notion of the bitonic sequence.
A sequence s is said to be bitonic if it either monotonically increases and then
monotonically decreases, or else monotonically decreases and then monotonically
increases. For example, the sequences [I, 4,6,8,3,2] and [9,8,3,2,4,6] are both
bitonic f

The fundamental idea behind the bitonic sort algorithm rests on the following
observAtion: let s = x it y be a bitonic sequence and let d = zip With min z y

11 and e = zip With maz x y , where min computes the minimum and max the
II maximum of two ordered values. Then we have:
li (i) d and e are each bitonic and

(ii) redlce m u d 5 reduce min e.
I)

The pigof of this proposition can be found in [Bat68]. 1

Bitonic Sorter. This fact; merging two bitonic sequences gives an ascending se-
quence, immediately gives us an operational specification according t o the DC
paradigm. As a precondition, we require the input sequence to be nonempty and
bitonic.

bimerge [el = [el
bimerge(x it y) = bimerge(zip With min x y) it bimerge(zip With m a x y)

Arbitmy Sorter. A sorter for arbitrary sequences (implemented by function
bisort) can be constructed from bitonic sorters using a sorting-by-merging scheme:
decompose a sequence of length n into separate intervals of length 2. llivially,
these intervals are bitonic so that we can use the algorithm for bitonic sequences.
In this way, we obtain pairs of sorted elements.

Unfortunately, two adjacent subsequences in ascending order cannot be put
together to form a single bitonic sequence. To achieve this, the intervals have to
be sorted alternately in ascending and descending order, or every second interval
has to be reversed. Doing so, we get a intervals of length 4, all of them are
bitonic so that again the above algorithm for bitonic sequences can.'t;e applied.
This process is repeated until we get a single bitonic interval, which eventually
will be sorted by function bzmerge.

Again, we can summarize this informal description into an operational spe-
cification using the DC strategy:

sort s = bzmerge(bisort s)
where

bisort [el = [el
bisort(x it y) = bzmerge (bzsort x) it reverse (bimerge (bisort y))

Note. Algorithm lrisort explicitly reverses every second interval, putting an ascen-
ding sequence into a descending one by means of the auxiliary function reverse.
The same effect can be achieved by inverting the comparisons, i.e., instead
of min in function bimerge we use max and vice versa. Function bimerge' =
reverse o bimepge uses inverted comparisons in order to return sequences in de-
scending order.

We redefine function sort by explicitly using function bimerge' : I:

sort s = bimerge(bisortl s)
where

bisort' [el = [el
bisortl(x it y) = bimerge (bisort' x) it bimerge' (bisort' y)

Parallelizat ion

A closer inspection of the operational specifications shows that they both fit the
patterns provided by the transformation rules given in Sect. 3.

Transformation o f function bimerge. In order to apply the rule Top-down
with pre!'adjustment to function bimerge, we have to instantiate the input scheme
given byi he or em 2:

I t x = x
I g x y = zipwith min x y

h x 4 =zipwith m a x x y

il
In tge next step, we want to rewrite the cascading recursive definitions of

t ' , g' add h' given in Theorem 2. Remember that we aim at a data-parallel
I computation scheme, where we can apply a single instruction to multiple data

elements.

~erivat ibn. Let n = # x l and x = x1 it 22 and z' = 22 it x l :

g' n , x x'

= [d'efinition of x and x', slice-distributivity of g' , unfold g' , unfold g]

(zzp With min x1 x2) it (zip With min x2 x l)

= [di~tr ibut ivi t~ of zip With, assumption: x = XI it 22 and x' = 22 i+ X I]

zip With min x x'

In a similar way, we derive simplified definitions for functions t' and h':

t ' n x = x
h' n x x' = zip With mas x x'

<I
Due +to the slice-distributivity of t ' , g' and h', their definitions hold for all

n 5 # x l . 13
II
Il' Under the assumption # x 3 1, application of the transformation rule (see
II Theorein 2) results in:
.I,
1 bimerge x = bimergel (# x) x

where
bimergel n x = x , i f n = 1
bimergel n x = bimergel (join 4 v w) , otherwise
where x' = corr 5 x

(v , w) = (zip With min x x', zip With max x' x)

Analogously, we can develop a topdown version of function bimerge':

bimergelJ n x = x , if n = l
bimerge'l n x = bimerge'l 5 (join 5 v w) , otherwise

' where x' = corr 5 x
(v , w) = (zip With max x x', zip With min z' x)

Transformation of function bisort'. We start with an instantiation of the
transformation rule Bottom-up with post-adjustment (see Theorem 3): . -

t x = x
k x y = bimerge x
j x y = bimerge' x

I
1

Again, we replace the (recursive) definitions of t', k' and j' by appropriate data
parallel (non-recursive) versions:

Derivation. Let n = #xl and x = x l -tt x2 and y = yl it y2:

k ' n x y

= [definition of x and y, slice-distributivity of kt, unfold kt, unfold k]

(bimerge $1) it (bimerge 22)

= [property of bimergeJ, assumption: n = #xl and x = x l it x2]

bzmergel n x

In exactly the same way, we compute instantiations for t' and j':

t ' n x = x
j' n x y = bimergefJ n x

Due to the slice-distributivity of t', k' and j ' , their definitions hold for all
n 5 #XI.

Under the assumption #x 2 1, the application of the transformation rule
Bottom-up with post-adjustment yields:

bisort' x = bisortfi (#x) 1 x
where

bisortfi m, n x = x, if m = n
bisortfi m n x = bisortfi m (2n) (join n v w), otherwise
where x' = corr n x

(v , w) = (bimergeJ n x , bimergefJ n x)

An obvious sinlplification (since x' does not occur in the body of bisortfi)
results in: I~

jj

bisort' x = bisortfi (#x) 1 x
where

bisortfi m n x = x, if m = n
bisortfi m n x = bisortfi m (2n) (join n u w), otherwise
where (u, w) = (bimergeJ n x, bimergefJ n x)

The final result of our transformational derivation of bitonic sort is summa-
rized in the following program:

(a) (b)

Fig. 2. Sorting a bitonic sequence of 8 elements using: (a) bimerge+ (b) bimergew

sort s = bimergel (#x) (bisortfi (#x) 1 x)
where

bisortfi m n x = x, if m = n
'bisortfi m n x = bisortfi m (2n) (join n v w), otherwise

I where
(v, w) = (bimergel n x, bimerge'l n x)

'I = corr 5 x

bimergeJ, n x = x, i f n = 1
bimergel n x = bimergel 4 (join 5 v w), otherwise
where*(v, w) = (zzp With min x x', zip With mas x' x)

bimerge'l n x = x, if n = l
bimerge'l n x = bimerge'l $ (join $ v w) , otherwise,
where (v, w) = (zip With m a x x', zipwith min x' x)

It can be efficiently executed on massively parallel computers with such diverse
topologi'es as linear array, mesh connected computer or hypercube.

Addendum. The bitonic merge algorithm is often presented with the alternative
U constructor set based on odd-even division.

The difference can nicely be illustrated using a comparison network, which I is comp,:ised solely of wires and comparators. We draw wires as horizontal lines,
its inputs appear on the left, its outputs on the right and draw the comparator,
which receives two inputs x and y and generates the two outputs x' = min x y
and y' A max x y as vertical lines.

We immediately observe that in the derived bimerge function, henceforth
called bzmerge+, the connections between comparators varies from stage to stage
(see Fig. 2(a)), whereas the connections between comparators is constant using a
shuffle network. This was already realized by Stone [Sto72]. His bimerge variant,
here called bimerge~ (see Fig. 2(b)), is a bottom-up computation with an odd-
even division instead of the left-right one: f

bimerge~ [el = [el
"

bimergew(x W y) = zip With min u w W zip With max u w
where (u, w) = (bimergewx, bimergew y)

Obviously, bimergew matches the input pattern of the odd-even to left-right
division rule. Vie apply theorem 4 to bimergew and result in bimerge+. Thus
both versions are equivalent; the data parallelization of bimergew needs only one
initial transformation step. 4

4

5.2 Convex Hul l
I.

This section considers the problem of constructing the convex hull from a finite
set S of points in tlie two-dimensional real space IR x IR. The algorithm given
here is mainly an adaptation of a sequential one presented in [pH771 with major
changes to fit the massively parallel paradigm.

Preliminaries and Operational Specifications

Given a set S = i s l , s2, . . . , szn) of points in the plane, the convex hull of S
is the smallest convex polygon P , for which each point in S is either on the
boundary of P or in its interior. The following analogy given in [AH891 might
be useful: Assume that the points of S are nails driven halfway into a wooden
board. A rubber band is now stretched around the set of nails and then released.
When the band settles, i t has the shape of a polygon. Those nails touching the
band a t the coriiers of that polygon are the vertices of the convex hull.

I t simplifies the exposition, if we divide the problem into two sub-problems.
First, we calculate tlie upper hull UH(S) of set S. This is that part of its boun-
dary traced by a clocl<wise path from the leftmost to rightmost points in S. In a
second phase, we compute the according lower hull LH(S). Since the computa-
tion of UH(S) is ,analogous to the computation of LH(S), we omit the latter. In
a preprocessing step, a sequence is created containing the elements of S sorted
by x-coordinate (e.g., by applying the bitonic sort algorithm given above).

To start with, we consider an algebraic type that defines the points in the
plane in addition with suitable operations on it. Suppose Point denotes a pair
of real numbers on which the following operations are defined:

ex, .Y :: Point -t Real
- . - . :: Point -t Point -t Boo1

max, , max,, min, , min, :: Point -t Point -t Point

The interpretation of these operations is as follows:

(a, b).x = a (a, b).y = b
m a , p q = q, if p.x < q.x m u g p q = q, if P.Y < q . ~

p, otherwise p, otherwise
min, p q = p, if p.x < q.x mi% P q = P, if P-Y < q;Y

q, otherwise q, otherwise
(P = q) = (P.Z = q.z) (P.Y = q.y)

The DC method of constructing UH(S) given in [pH771 is as follows: Let
S be a sequence of 2n points in the plane such that s1.x 5 s2.x 5 . . . 5 s2,.x
where n is a power of 2. If n 5 1, then S itself is an upper hull of S (primitive
case). Otherwise, we subdivide S into two subsequences Sl = [sl, s2,. . . , s,]
and S2 = [s,+~, . . . , s2,]. Then, we recursively compute UH(Sl) and UH(S2)
in parallel. As the final step, we must find the upper common tangent between
UH(Sl) and UH(S2), and deduce the upper hull of S.

The informal description given above can immediately be formulated as an
operational specification on non-empty sequences of points:

UH' :: [Point] -t [Point]
UH s = S, i f # s 5 2
UH(s l+ t s2)= U C T (U H s l) (U H s 2) , otherwise

F'unctioi1 UCT combines two nonintersecting upper hulls UH (Sl) and UH (S2)
Il

by meaps of the upper common tangent, which is the unique line touching both
UH (Sl) = [pl , . . . , p ~] and UH(S2) = [ql, . . . , QN] a t unique corners p and q
(see ~ i $. 3(11)).

Fig. 3. Upper common tangent of U H (S 1) and U H (S 2)

The upper common tangent can be computed by first determining those
points p, and q, of UH(S1) and UH(S2), respectively, with the maximal y-
coordinates. To compute a point s, with the maximal y-coordinate in a sequence
of points s , we use the reduce operation: s, =dl! reduce ma, s.

11
Then, p is defined as the rightmost point in UH(S1) with the minimal slope

wrt. gd! Its formal definition is: p =de, p , , i E (1,. . . , M) such that

I

where g determines the slope of the line passing through the points a &d b: - . I,
it

g :: Point + Point + Real
g a b = I , if (a = I) v (b = I) I

(b.y - a.y)/(b.x - a x) , otherwise
11

Henceforth, I denotes an undefined value, which remains unchanged during
computation. (I

The second corner q in UH(S2) is specified in a similar way, where only the
'I signs of the slopes are inverted. . L

Figure 3(a) depicts two upper hulls U H (4) and UH(S2). The dkhed li-
nes are the tangents passing through p,. The tangent with the minimal slope
(modulo sign) determines the right corner q. Figure 3(b) pictures the result

1 of computing the upper common tangent. The new upper hull now consists of
points [pl p1ql QNI. il

An operational specification of the above description reads as follows:
'I

UCT :: [Point] + [Point] + [Point]
UCT s l s2 = s l ' + s2' 4 .
where (p, , q,) = (reduce mazy s l , reduce max, s2)

(gl,g2) = (map (9 4,) sl,,map (neg 0 (g P,)) s2) '/

'((m l , m2) = (reduce min g l , reduce min 92)
(f l , f2) = (find m l g l s1,find m2 92 s2)
(p, q) = (reduce maxz f 1, reduce -min, f 2)
(sl ' , s2') = (map (upd (<) p) s l , map (upd (>) q) s2) !

I!
In UCT, first the maximal points in's1 and s2 wrt. the y-coordinate are

determined, resulting in the pair (p,, q,):Then, in every subsequence s l and s2,
respectively, the slopes are computed by means of the auxiliary function g. In
s2, function neg additionally negates the slopes, where

,!I

n e g x = I , i f x = I 4
-2, otherwise

Bi
The pair (ml , m2) denotes the minimal slope in each subsequence s l and 92.
Points, whose tangents wrt. p , and q, have a slope equal to m l anb m2 are
assembled in the pair of sequences (f 1, f 2) by means of function find:!/

11
find :: Real + [Real] + [Point] + [Point]
find m gs s = zzp Wzth (ZS, m) gs s ri
where zs, m m' x = x. if m = m' I

I, otherwise) '1

Then, the unique corners p and q of s l and s2 are the rightmost and leftmost
points in the according subsequences. Finally those elements in s l andLs2, resp.,
which do not belong to the upper hull, are replaced by dummy elements, accor-
ding to the definition of function upd:

1
upd :: (Point + Point + Bool) + Point + Point + Point ?
upd @ a b = I, if a.x @ b .x !I

b, otherwise 11

~ n f d l d i n ~ function UCT in the body of UH leads to a version, which fits the
input s6heme of transformation rule Bottom-up with post-adjustment:

UH s = s , i f # s L 2
UH (s l it s2) = k v w it j v w , o t h e r w i s e
w h e r e

(v , w) = (U H s l , UH s2)
k v w = map (upd (<) (p v w)) v j v w = map (upd (>) (q v w)) w
p v w = r e d u c e m a x Z (f l v w) q v w = r e d u c e m i n , (f 2 v w)
f l v w = f i n d (m l v w) (g l v w) v f 2 v w = f i n d (m 2 v w) (g 2 v w) w
ml v w = reduce man (g l v w) m 2 v w = reduce man (g2 v w)
* 1
gll v w = map (g (9y V W)) v 92 v W = map (neg 0 (9 (P , v w))) w
p,, v w = reducemax, v q, v w = reducemax, w

Note. In order to ease the following parallelization we lifted the object declara-
tions of UCT to functions in UH.

Parallel ization

As in the previous subsection, we carry out some precomputations in order to
derive instantiations of t ' , kt &d j' without using recursion:

Derivation. Let n = # s l and s = s l it s2 and s' = s2 it s l .

kt n s st

= [,definition of s and s t , slice-distributivity of kt unfold k t , unfold k]
'8 map (upd (<) (p s1 $ 2)) s1 it map (upd (<) (p s2 s l)) s2

= [property of map wrt. zip With , distributivity of zap With ,]

zzp With (upd (<)) (copy n (p s l s2) it copy n (p s2 s l)) (s l it s2)
= [s = s l it s2, p' n s st =def copy n (p s l s2) it copy n (p s2 s l)]

zip With (upd (<)) (p' n s s t) s

p' n s st =def copy n (p s l s2) it copy n (p s2 s l)
= [,unfold p]

copy n (reduce maxZ (f 1 s l s 2)) it copy n (reduce maxz (f 1 s2 s l))

= [reducef $ s =def copy (#s)(reduce $ 3)]
reduce? maxZ (f 1 s l s2) it reducer mwz (f 1 s2 s l)

= [reducer* $ (# s l) 1 (s l it s2) = reduce? $ s l it reduce? $ s2]
I' reduceR m a Z n 1 (f l s l 32 it f l s2 s l)

= [f l t n s s ' = d e f f l s1 3 2 i t f l s 2 s l]
reducefr maxZ n 1 (f 1' n s 3 ')

** The function reduce* is a parallel version of reducet . Its derivation is analogous to
the given ones.

In an analogous way, we can find generalizations for f 1, m l , g 1 and q, :

f 1' n s s' = zip With3 is, (ml' n s s f) (91' n s s ') s
ml' n s s' = reducefi m i n n 1 (91' n s s f)
g l ' n s s ' = z a p W i t h g (q l n s s l) . s
ql n s S' = reducefi maxu n 1 S'

Due to the slice-distributivity of k', definition of k' holds for all , n 5 # s l .
Analogously, we can derive:

I!,
t l n s = s i!
j' n s S' = zip With (upd (>)) (q' n s s ') s'
where

q' n s S' = reducefi min, n 1 (f2' n s s ')
f2' n s s' = zip With3 is, (m2' n s s ') (92' n s s ') s'
m2' n s s' = reducefi m i n n 1 (92' n s s ')
92' n s s' = map neg (zip With g (p& n s s f) s t)
pb n s s' = reducefi maxu n 1 s

The application of Theorem 3 results in:

UH s = UH' (# s) 2 s
where !

U H ' m n s = s , i f ,m = n
UH' m (2 n) (join n (k' n s s') (j ' n s' s)) , otherwise

where
81 = corr n s
k' and j' as defined above .

which, after several unfolding steps and consistent renaming, leads to a data
parallel version of UH':

U H ' m n s = s, i f m = n
UH' m (2 n) (join n I) , otherwise

where
S' = COTI. n s -
k = zip With (upd (<)) jj s 7 = zip With (upd (>)) 7 s
jj = reducefi mazx n 1 fl = reducefi minx n 1 fl - -- --
f 1 = zip With3 is, ml gl s fi = zap With3 is, m 2 92 s - -
ml = reduce0 m i n n 1 3 m 2 = reducefi m i n n 1 3 - -
gl = zip With g s 92 = map neg (zap With g s) -
q, = reducefi m u y n 1 s' = reducefi max,, n 1 s'

A closer inspection of this version of UH' shows that due to the: generality
of our transforination rules we wasted a lot of parallelism. Since joinlonly takes
half of the elements of its argument sequences, we compute some data values
sequentially instead of parallel. Thus, we continue our derivation by applying an

adapted liorizontal fusion strategy [Pargo], which amounts to "merging" different
computations into a single one.

Denvatzon. Without loss of generality, we assume n = F . The auxiliary func-
tions left and right take the first and the second half of a sequence, respectively:
left (s l it s2) = sl and tight (sl it s2) = s2.

jozn n X 1
= [unfold and j]

join n (zip With (upd (<)) jj s) (zip With (upd (>)) s)
= [distributivity of zip Wtth, unfold jorn]

zzp With (upd (<)) (left F) sl it zipwith (upd (>)) (right 7) s2

= [=de, left 5 it nght 7j]
;oin n (zip Wzth (upd (<)) W s) (zipwith (upd (>)) s)

I left B it right i j
I = [unfold $ and i j]
[eft (reduce0 max, n 1 Ti) St nght (reducefi min, n 1 fl)

= [property of reducefi under the assumption n = #fi = #Dl
;reduce0 max, n 1 ((left Ti) St reduce0 min, n 1 (right n)

= [f = d e j l e f t f l i t rzght f l]

30zn n (reduce0 max, n 1 f) (reducefi min, n 1 f)

Similar derivations lead to appropriate equations for f , X, 5, ?i and pq, (see be-
low). I

Our final version of the convex hull algorithm is summarized in the following ',

program: 't
UH s = UH' (#s) 2 s
where

UH' m n s = s, i f m = n
UH' m (2n) (jozn n 13, otherwise

where s' = corr n s -
k = zzpWath (upd (<)) jiij s -
j = zip With (upd (>)) s

11 - pq =join n (reduce0 m a z n 17) (reduce0 min, n 1 f)

1 f = zip With3 is, Ei 3 s - m = reduce* min n 1 ij
g = jozn n B (map neg a)
a = zipWzth g pq, s - pq, = reduce* m a y n 1 s'

This algorithm uses all those higher order functions on sequences, which
can immediately be rewritten as skeletons for-a massively parallel
architecture.

The algorithm we have derived here differs from those in the parallel litera-
ture (cf. [J8J92, Ak1891). Especially, it does not need unrealistic assuniptions like
a concurrent read access to shared memory variables as e.g. given by the PRAM
model, but is well suited for massively parallel computation on distributed me-
mory architectures by making efficiently use of the underlying interconnection
network to exchange data.

6 Related Work

I
Much attention has been paid to the formal parallelization of DC algorithms.
Smith develops a DC theory [Smi85, Smi931, e.g., DC can be treated as a mor-
phism from a decolnposition algebra on the input domain to a composition alge-
bra on its output domain. His emphasis is on the development of a ~ ~ ' a l ~ o r i t h m ,

'1 whereas we are interested in its data parallelization on a particular architecture.
Thus, our work can be seen as a completion of Smith's work towards d i t a parallel
execution. I

Mou and Houdali describe DC in a algebraic model called Divacon [MH88].
They recognize that the original DC model is too restrictive withi'respect to
decomposition and communication. For the latter, they introduce so called pre-
and postmorpl~ims, which correspond with our 'adjustment' functions'g, h, k and
j. They illustrate the expressive power of this generalized DC, with a broad range
of examples. However, they only sketch the mapping of the model on parallel
computers.

This algebraic model was later picked up by Carpentiery and Mou, who study
communication issues in the model [CM91]. They present hypercube specific
rules to opti~nize coinmunication by introducing new storage levels. These rules
are expressed in Divacon, whereas our approach takes the architecture explicitly
into account. Ho~vever, their approach is neither calculated nor transparent.

Axford and Joy [Axf92, AJ93] have proposed to use DC as a fundamental
design principle. and have either proposed arrays or sequences as suitable data
structures. In fact. the balanced sequence primitives that we use, were proposed
by Axford and Joy. Aside from this, no calculation nor interesting distributed
implementation is presented.

Among the first, who used the skeleton approach in a functional setting,
initiated by Cole [Co189], was a group a t Imperial College [DFH+93]. Their ske-
letons are rather highlevel, e.g., they distinguish farming, pipelining, DC and
other high level skeletons, but do not tackle massive parallelism, as it is under-
stood by us.

Still more abstract is the work on investigating parallelism within the Bird-
Meertens formalism, which recently has gained much attention (cf. e.g. [C0193]).
However, all these different approaches have in common that they stop on the

level of DC algorithms or homomorphisms, whereas our approach proceeds down
to an architecture specific target program.

An exception to these works is presented by Gorlatch and Lengauer [GL93].
They develop a DC function, using mainly the control parallelism. In particular,
they do ,not require that there is a single P E for each member in the sequence,
but assume that there is a single P E for a group of members in the sequence.
As before, the step to a working imperative implementation is still left open.

Work that is closely related to ours is done a t the University of Nijmegen
[Gee92, Gee93, Par93, BGP93, Gee941. In fact, the skeletons which we propose
were adapted from their work. Opposite to our goals, their research aims a t
introducing data parallelism out of a parallel control structure, which can be
achieved by means of partial inversion. Recently, Geerling also considers data
type trailsformations in order to adapt algorithms to different hardware. We
start, however, with a problem dependent data structure, which enables right
from the start implicit data parallelism.

In coiltrast to our approach, a group in Yale introduces data fields right from
the beginning of the derivation process [CC90, YC921. They make extensive use
of so called domain morphisms in order to specify parallel-program optimiza-
tions. Their approach seems to work well for numerical problems, where the
problem domain is given by matrices. The main problems lie in the absence of
a strategy for deriving programs and in difficulties to find appropriate index
domain ;norphisms, which lead to optimizations.

The important problem of how to cope with the usual situation that the
number of processors is smaller than the size of the input domain is ignored in
our work. We believe that this is perfectly reasonable, since either the hardware
of massibely parallel computers (e.g. Connection Machine CM-2), or the software
(e.g. Fortran on the MASPAR) abstracts from the number of real processors.
However, not all massively parallel machines support virtual processors. The-
refore, data distribution is still a major problem, which is tackled by a group
around Pepper [PES93].

7 ~dnclusion and Future Research

In this paper, we have presented a transformation strategy to develop correct,
efficient, data parallel DC algorithms, and showed how such derivation is guided.
The main advantage of making the strategy explicit lies in its reuseability. A
similar problem can be solved in a similar fashion, which is demonstrated by the
examples.

We distinguish data parallelism in the problem domain (here: sequences)
from data parallelism on the level of the architecture (here: skeletons). This
distinctioil gives rise to develop portable parallel programs, since data parallelism
on the problem domain must be mapped differently on existing hardware, if the
diversity in architectures is exploited in full.

In addition, we claim that the transformational approach taken here is rather
crucial to the presented development: The calculational properties of functional

programs, i n particular skeletons, give a basis for a solid understanding and a
formal treatment for the derivation of massive parallel algorithms from a high-
level specificatioil down to the low-level hardware.

More research is necessary for the development of further strategies. In this
context, our ultimate goal is the development of a methodology for transforma-
tional data parallel program development.

Acknowledgements. .We would like to thank Helmuth A. Partsch and' Ton Vul-
linghs for their helpful comments.

References
I

[AJ93] T. Axford and M. Joy. List processing primitives for parallel computation.
Compu1,er Languages, 19(1):1-12, 1993.

[Ak189] S. G. Aid. The Design and Analysis of Parallel Algorithms. Prentice-Hall,
1989.

[AS951 K. Aclintz and W. Schulte. Architecture independent massive paralleliza-
tion of devide-and-conquer algorithms. In B. Moller, editor, Proceedings of
Mathematics of Program Construction, Bad Irsee, 1995, volume forthcoming
of Lect.ure Notes in Compuler Science, 1995.

[Axf92] T. Axford. Crystal: The divide-and conquer paradigm as a basis for parallel
language design. In L. Kronsjo and D. Shumsheruddin, editors, Advances
in Parallel Algorithms, chapter 2. Blackwell, 1992.

(Bat681 K. E. Batcher. Sorting networks and their applications. AFIPS Spring Joint
Compuler Conference, pages 307-314, 1968.

[BBES92] I. Barth, T. Braunl, S. Engelhardt, and F. Sembach. Parallaxis version 2
user manual. Technical Report 2/92, Fakultat Informatik, Universitat Stutt-
gart, Septeliiber 1992.

[BGP93] E. A. ~ o i t e n , A. M. Geerling, and H. A. Partsch. Tkansformational deriva-
tion of (parallel) programs using skeletons. Technical Report 93-20, Katho-
lieke Universiteit Nijmegen, September 1993. Also: Proceedings of Compu-
ter Science in the Netherlands 1993, Utrecht.

[Bir89] R. Bird. Lectures on constructive functional programming. In M. Broy, edi-
tor, Constructive methods in computing science. NATO ASI SeFes. Series
F: Computer and systems sciences 55, pages 151-216, Berlin, 1989. Springer-
Verlag. Y

[Ble92] G. E. Blelloch. NESL: A nested data-parallel language (version 2.0). Tech-
nical Report CMU-CS-93-129, School of Computer Science, Carnegie Mellon
University, April 1992.

[BIe93] G. E. Blel!och. Prefix sums and their applications. In J Reif, editor, Syn-
thesis of Parallel Algorithms, chapter 1, pages 35-60. Morgan .Kaufmann
Publishers, 1993.

[BW88] R. Bird and Ph. Wadler. An Introduction to Functional Programming.
Prentice-Hall, 1988.

[CC90] M. Chen and Y. Choo. ~ o m a i n morphisms: A new construct. for paral-
lel programming and formalizing program optimization. Technical Report

+ DCS/TR-817, Department of Computer Science, Yale University, August
1990.

[CM91] ,, B. Carpentieri and G. Mou. Compile-time transformations and optimiza-
I' tions of parallel divide-and conquer algorithms. ACM SIGPLAN Notices,
'! 20(10):19-28, 1991.

[Col89] 1 1 M. Cole. Algorithmic Skeletons: Structured Management of Pamllel Com-

I putation. MIT Press, 1989.
[Co193] M. Cole. List homomorphic parallel algorithms for bracket matching. Tech-

nical Report CSR-29-93, Department of Computer Science, University of
Edinburgh, August 1993.

[DFH+93]

1

J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q. Wu, ,and
R. White. Parallel programming using skeleton functions. In A. Bode, I M. Reeve, and G. Wolf, editors, PARLE'9J Pamllel Architectures and Lan-
guages Europe, volume 694 of Leeture Notes in Computer Science, pages
146-160, 1993.

[Fea87] 1 M. S. Feather. A survey and classification of some program transformation li approaches and techniques. In L.G.L.T. Meertens, editor, Progmm Specifi-
cation and hnsfownation. North-Holland, 1987.

1 [Fox891 : G.C. Fox. Parallel computing comes of age: Supercomputer level parallel
computations a t caltech. Concurrency: Pmctice and Ezperience, 1(1):63-

'I 103, 1989.
i

[Gee921 , A. M. Geerling. Two examples of parallel-program derivation: Parallel-
prefix and matrix multiplication. Technical Report DOC 92/33, Imperial

; College London, November 1992.
[Gee931 A. M. Geerling. Formal derivation of SIMD parallelism from non-linear re-

'
cursive specifications. Technical Report CSI-R9324, Katholieke Universiteit
Nijmegen, September 1993.

[Gee941 ! A.M. Geerling. Formal derivation of SIMD parallelism from non-linear
j recursive specifications. In B. Buchberger and J . Volkert, editors, CON-
,: PARJ94 VAPP VI International Conference on Pamllel and Vector Proces-

sing, pages 136-147. Springer-Verlag, 1994.
[GL93] 1: S. Gorlatch and C. Lengauer. Parallelization of divide-and conquer in the r

1 Bird- Meertens formalism. Technical Report 12/93, Fakultat fur Mathema- 1

tik und Informatik, Universitat Passau, Dezember 1993.
i

[Jag21 3 . J a b . An introduction to parallel algorithms. Addison-Wesley, 1992.
[MH88] Z.G. Mou and M. Hudak. An algebraic model for divide-and-conquer algo-

rithms and its parallelism. Journal of Supercomputing, 2(3):257-278, 1988.
[NS79] , D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel compu-

ter. IEEE Tmnsactions on Computers, 27(1):2-7, 1979.
[Pargo] H. A. Partsch. Specification and Tmnsfownation of Progmms. Springer-

;: Verlag, 1990.
[Par931 H. Partsch. Some experiments in transforming towards parallel executabi-

lity. In R. Paige, J . Reif, and R. Wachter, editors, Pamllel Algorithm Deri-
vation and Prbgmm hnsfonnation. Kluwer Academic Publisher, 1993.

[Pep93] 11 P. Pepper. Deductive derivation of parallel programs. In R. Paige, J . Reif,

1
11

[PES93]

I
4 and R. Wachter, editors, Pamllel Algorithm Derivation and Progmm h n s -

formation. Kluwer Academic Publishers, 1993. Also: Technical Report 92-
23, Technische Univeisitat Berlin, July 1992.

I P. Pepper, J. Exner, and M. Siidholt. Functional development of massi-
vely parallel programs. In D. Bjorner, M. Broy, and 1.V. Pottosin, editors,
Formal Methods in Programming and Their Applications. Proceedings In-

ternatronal Conference Novosrbrrsk, June/July 1993., volume 735 of Lecture
Notes en Computer Scrence, pages 217-238, Berlin, 1993. Springer-Verlag.

[pH771 F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two
and three dimensions. Communicatrons of The ACM, 20:88-93, 1977.

[Ski931 D.B. Skillicorn. A cost calculus for parallel functional programming. Tech-
nical Report ISSN-0836-0227-93-348, Department of Computing and Infor-
mation Science, Queen's University, March 1993.

[Smi85] D.R. Smith. The design of divide-and-conquer algorithms. Science of Com-
puter Progmmmeng, 5:37-58, 1985.

[Smi93] D. R. Smith. Derivation of paralel sorting algorithms. In R. Paige, J. Reif,
and R. Wachter, editors, Parallel Algorithm Denvatron and Program Rams-
formation. Kluwer Academic Publisher, 1993.

[St0721 H. S. Stone. Parallel processing with perfect-shuffle. IEEE Computer, pages
153-161, February 1972.

[YC92] J. A. Yang and Y. Choo. Data fields as parallel programs. Technical Report
CT 06520-2158, Department of Computer Science, Yale University, March
1992.

A Proofs
I

A.1' Proof of t h e Generalized ~ivide-and-conquer Rule

We shoiv
l 1

f x l = f t (fix)

by induction on the length of the argument:

Induction Basis: # x = q

ft (f l x)
= [unfold f f and f 1 under assumption #x = q]

I t f (t l . 2)
-' .

condition: t = tf a tS.]

Inductjon Step: # (x St y) > q
/I
I f f (f l (x Y))

= [liuilfold f f and f J under assumption # (x + y) > q]
, k v w it j v ,w where (v , w) = (f f (fib x y)) , f t (f l (h x Y)))

= [induction hypothesis]

f (x Y)

El

A.2 Proof of Transformation Rule: Top-down with Pre-adjustment

The proof consists of two steps and makes substantial use of a lemma, which
also will be given during this subsection.

Step 1: Embedding. We start our proof by an appropriate embedding of func-
tion f 1 in order to introduce a termination parameter n, which denotes the length
of the input sequence off 1:

f l z = f l l (#.) z
where f 1' n x = d e f f 1 x provided # z = n

= [b#z = q * n = q, g and h length preserving, fold with assertion]

(11' n z = t x , i f n = q
f1' n (z St Y) = f l l (g x y) St fl' f (h x y) , otherwise

!I

Step 2: Computa t iona l Induction. In order to proof the equality off J' and
f 4, we define two functionals:

TFJ'] n 2: = t x, i f n = q
~V.1'1 n (X -it Y) = fJ' : (9 x p) -it fJ',f (h x y), otherwise'

!:
for which we assume, that the parameter n denotes the length of the input
sequence x and x -it y, respectively, and

uVU] n x = t. x, i f n = q
oVU] n x = fU 5 (join 4 v w), otherwise

where x' = corr 4 x
(v , W) = (g' : x x', h' : x' x)

for which we require that #x 2 n.
Now we have to show:

As an abbreviation we define: s = x -it y and s' = y -it x = corr #x s.

.VJ11 n x
= [unfold T VJ']]

t 2, i f n = q
fJ' : (g x y) -it f J' : (h x y), otherwise

= [induction hypothesis]
t X, i f n = q
fU ; (9 x y) -it fU : (h x y), otherwise

= [Lemma -4.2]
t X, i f n = q
fU 5 (g x y -it h x y), otherwise

= [fold g' and h', since #x = #y = 5 , property of join] ,
t X , i f n = q :,

fU 5 (join 5 (9' 5 s s') (h' : S' s)), otherwise

= [fold tJ.1

t l 2, i f n = q
f u 5 (join : (g' $ s s') (h' $ s' s)) , otherwise

= [fold o VU] with assertion]

In the above proof, we have used the slice-distributivity of function f 4:

L e m m a (Slice-distributivity of fu) . Let #x = #y 2 n. Then function fU
(see Theorem 2) fulfills the following property:

~ h A ~ r o o f is made by induction on the length of the argument.

~ n d u c t i o n Basis: n = q.

fU n (x-tt y)= t'q (x-tty)
= [unfold f]

t' 9 (x -H Y)
= [unfold t']

t'qxut'qy
= [fold f U]

f.uqx+fUq~

Induct ion Step: #x 3 2n. As an abbreviation, we define: (XI, y') = (cow n x,
cow n y).

f U (2n) (x -H Y)
= [unfold f 4]

f .U n (join n (9' n s s')(hl n s' s))
where (s, s') = (x -tt y, corr n s)

= [property of corr]
fU n (join n (9' n (x -tt y) (x' -tt yl))(h' n (2' -tt y') (x -tt y)))

= [unfold g' and h']
f 4 n (join n (9' n x 2' -tt g' n y yl)(h' n x' x it h' n Y' y))

= [property of join]
fU n (join n (9' n x x') (h' n x' x) it join n (9' n y y') (h' n y' y))

= [induction hypothesis]
f 4 n (join n ((9' n x x') (h' n x' x)) -tt f 4 n (join n (9' n y y') (h' n y' y))

= [fold f 8 with assertion 1'
f U (2n) x -tt f 4 (2n) Y

A.3 roof of Corollary 4
I

We only picli out the proposition

I g (corr n x) = CORRa n (g x)
I(
11, the renlaining propositions can be treated similarly.
11'

Inductioil Basis: n = #x

I!

C O R R A ~ (~ (X St Y))

= [unfold CORRA and g]
SHLA n (A i . (x it y) ,) , if even(i div n)
SHRA n (A i . (x it Y) ~) , if -even(i div n)

= [even(i div n) = i < n , unfold SHLA and SHRA .I

= [property of it]
A 2 . y i f i < n

x i f i 2 n
= [property of list concatenation]

A i . (y it 2) ;

= [fold g and corr]

Induction Step: n < # x . Let i E (0,. . . ,N - 1) .

(CORRA n (9 (X it y))) (i)
= [unfold CORRA]

(SHLA n g(x it y))(i), i f euen(i div n)
(SHRA n g(x it y))(i) , i f ieven(i div n)

= [unfold SHLA, SHRA and g]
(z i t ~) ~ - ~ , i f i > N - n A even(idivn)
(x it y),+,, i f i < N - n A even(i div n)
(x it Y) ~ , i f i < n A -even(i div n)
(x it i f i > n A -even(i div n)

= [even(idi\ n) a i < N - n , -even(idivn) a i 2 n]

(x it y)i+,, i f i < N - n A even(i div n)
(z i t y) ,- , , , i f i > n A -even(idivn)

Case 1: i < #2.

x,+,, i f 0 5 i < # x - n A even(zdivn)
x,-,, i f n s i < # x A -euen(idivn)

= [fold g and CORRA]

(CORRA n g (x)) (i)
= [induction liypothesis]

(9 (corr n g (x))) (i)
= [i < # X I

(9 (corr n g(x y))) (i)

Case 21: i > # x .

I Y ~ - # z + ~ , i f # X 5 i < N - n A even(i div n)
Y ~ - # Z - ~ , i f i 2 n + # X A -even(i div n)

= [index translation]

y;,,, i f 0 5 a < # x - n even(i div n)
, y,-,, i f i t n A -even(id ivn)

= [analog t o case 1]

A.4 P r o o f o f Corollary 5

As a representative o f the four propositions, we only proof

Let i , j E (0,. . . , N - 1) .

(CORRM n x) (i , j)

= ['unfold CORRM]
(JOINnn n s l s2) (i , j)
w h e r e s l = SHLM(n mod N)(SHUM(n div N) x)

s2 = SHRM (n mod N)(SHDM(n div N) x)

C a s e 1: n < N . This implies: ndiv N = 0 A nmod N = n. Then by simplifying
the above expression, we yield:

(JOINM n s l s2) (i , j)

w h e r e (s l = SHLM n x , s2 = SHRM n x)

= [unfold JOINM]

(SHLM n x) (i , j) , i f even((i . N + j) div n)
(SHRM n x) (i , j) , o therwise

= [unfold SHLM an SHRM]

, x i N - 1 , i f j > N - n A even((i . N + j) div n)
x (i , j + n) , i f j < N - n A even((i . N + j) div n)

:i x(i ,O), i f j < n A - even((i . N + j) div n)
x (j - n) , i f j t n A - e v e n ((i . N + j) d i v n)

= [n < N * (even((i . N + j) div n) = evenG div n) * j < N - n) A

(-evenb div n) * j 2 n)]

x (i , j + n) , i f j < N - n A even((i . N + j) d i v n)
x (j - n) i f j > n A - e v e n ((i . N + j) d i v n)

= [g (i . N + j + n) = (i , j + n) a n d g (i . N + j - n) = (i , j - n)]

(x o g) (z . N + j + n) , i f j < N - n A even((i . N + j)d iv n)
(x o g) (z . N + j - n) , i f j 2 n h - e v e n ((i . N + j) d i v n)

= [even(j div n) i . N + j < N 2 - n , i!
- e v e n (j d i v n) * i . N + j 2 n , j 2 n * i . N + j > n] 41

(X 0 g) (N2 - I) , i f (i . N + j) 2 N 2 - n A
even((i . N + j) div n)

(x o g) (i . N + j + n) , i f j < N - n A even((; . N + j)di\; n)
(X 0 g) (o) , i f i - N + j < n A 7 e v e n ((i - N + j) d i v n)
(x o g) (z . N + j - n) , i f i . N + j L n A - e v e n ((i . N + j) d i v n)

= [fold SHLA and SHRA]
(SHLA n (x o g)) (i . N + j) , i f e v e n ((i . N + j) d i v n)
(SHRA n (x o g)) (i . N + j) , otherwise

= [fold JOINA]
(JOINA n s l s2)(i . N + j)

where ($1, $2) = (SHLA n (x o g) , SHRA n (x o g))

= [fold CORRA and g-l]
((CORRA n (x o g)) o g - l) i j

Case 2: n 2 N . This implies: n div N = $ A n mod N = 0, since both n and
N must be a power o f 2. Then by simplifying the above expression, we yield:

(JOIN*, n s l s2)(i , j) where (s l = SHUM $ x , s2 = SHDM 5 x)

= [unfold JOINM]

(SHUng $ x) (i , j) , i f even((i . N + j) div n)
D M) (, j) otherwise

= [unfold SHUM and SHDM]

(N - 1 j) i f i 2 N - $ A even((i - N + j) div n)
(+ j) i f i < N - $ A e v e n ((i . N + j) d i v n) i/,
z(O,.i), i f i < $ A 7 even((i . N + j) div n) I

x i - j) , i f i 2 $ A 7 even((i . N + j)d i v n)
1

= [even((i . AT + j) div n) (i < N - $) A ((i a N + j) < N 2 T n) ,
-even((i . N + j) div n) * (i 2 $) A ((i . N + j) 2 n)]

(N - 1 N - 1 i f (i . N + j) 2 N 2 - n A even((i . N + j) div n)
x(2+ $: j) : i f (i - N + j) < N 2 - n A even((i . N + j) div n)
~ (o , o) , i f i . N + j < n A 7 even((i - N + j) div n)
x (i - $, j) , i f i . N + j > n A - e v e n ((i . N + j) d i v n)

= [g (i . N + j + n) = (i + a , j) a n d g (i . N + j - n) = (i - $, j)]

(X 0 g) (N 2 - 11, i f (i . N + j) 2 N 2 - n A even((i . N + j) div n)
(x o g) (i . N + j + n) , i f (a . N + j) < N 2 - n A even((i N + j) div n)
(z o g) (O) , i f i N + j < n A 7 even((i N + j) div n)
(x o g) (i - N + j - n) , i f a - N + j > n A 7 even((1. N + j) d i v n)

= [fold SHLA and SHRA]

(SHLA n (x o g)) (i N + j) , . if even((i . N + j) div n)
(SHRA n (x o g)) (i N + j) , otherwise

= [fold JOINA]
[JOINA n s l s 2) (i . N + j)
where (s l , 32) = (SHLA n (x o g) , SHRA n (x o g))

= [fold CORRA and g-']

I ((C O R R A n (z 0 9)) 0 g- ') (i , j)

A.5 Proof of Corollary 6

As a re$resentative of the four propositions, we only proof
II

CORRA n (x o g)) o g-I = CORRH n x
1

Let i E {O,.. . , 2 n - 1).
11
(CORRH n x) i
'I

= [ullfold CORRH]
(JOINH n (COMMDH n x) (COMMUH n x)) i

= [unfold JOINH]
(COMMDH n x) , if even(i div n)
(COMMUH n x) , otherwise

= [even(z div n) 3 z < (z div 2n) . 2n + n , unfold COMMDH, COMMUH]

x (z + n), i f even(z div n)
x (z - n) , otherwise

= [fold SHRA and SHLA]
(SHL n x) e, if even(i div n)
(SHR n x) e l otherwise

= [fold JOINA, fold CORRA]
(CORRA n x) i

'1
!j

roof of Lemma 7 A.6 P:

Let i E l o , . . ., N - 1):

(63) (DISTL* n (CORRA n 3)) s))(i)

i f even(i div n)
n(CORRA n s)) s) (i) , otherwise

We concentrate on the case -even(i div n) and start by unfolding ZIPWITH.

DISTLA n(CORRA n s)) (i) @ s(i)
I,

= [unfold DISTLA]
(CORRA n s)) ((i div n)n + n - 1) @ s(i)

= [unfold CORRA] %

(JOINA n (SHLA n s)(SHRA n s)) ((i div n)n + n - 1) @ s(i)

= [unfold JOINA, distributivity over conditional]
r

(SHLA n s)
((2 div n) n + n - 1) @ s (i) , if even(((i div n) n + n - 1) div n)

(SHRA n s)
((i div n) n + n - 1) @ s (i) , otherwise

= [((i div n) n + n - 1) div n = (i div n)]
(SHRA r~ s) ((i div n) n + n - 1) @ s (i)

= [unfold SHRA]

~ (0) ~ if (i div n) n + n - 1 < n
s((i dill n) n + n - 1 - n) @ s (i) , otherwise

= [(i d i v n) n + n - l < n = (i d i v n) n < l] . . !i

s (o), if (i div n) n < 1
s((i div n) n + n - 1 - n) @ s(i) , otherwise

= [abstraction] ' .

(A j . s(O), i f j < l
s(:j - I) , otherwise) ((i div n) n) @ s (i)

= [fold SHR.4 1, fold DISTRA and fold ZIPWITH] I!

(ZIPHTITH(@)(DISTRA n (SHRA 1 s)) s) (i)

Now putting the t.wo cases together and folding JOINA results in:

(J0IATA 11 s(ZIPWITH (@) (DISTRA n (SHRA 1 s)) s)) (i)

/I B ~ x a r n ~ l e Implementation of Prefix Sums

We give an implementation of psum3 (see 4.4) by means of an imperative paral-
lel langu:age, viz. Parallaxis [BBES92]. Parallaxis is a Modula-2 like imperative
language with explicit parallel control constructs as well as communication ope-
rations. 1t is not dedicated to a particular architecture, but allows the user to
specify $tconcrete one. Parallax* follows the SIMD computation model, i.e. there
is one control unit, which provides a single instruction stream to hundreds or
thousands of PEs. According to that, Parallaxis distinguishes two kinds of varia-
bles: (a), scalar variables which reside on the control unit and (b) vector variables,
which deyote data elements spread over all PEs. Communication primitives are
PROPAGATE, RECEIVE and SEND which can only be distinguished by their
behavior on inactive PEs.

SYSTEM Prefix-Sum;
CONST N = 1024; (* natural number, pover of 2 *)
TYPE inat = [I. .N] ;
(**** Architecture specification: linear array vith N PEs ****)
CONFIGUR~TION list [I. .N] ;
CONNECTI~N left : list [i] -> list [i-11 .right ;

right: listCi1 -> list [i+l] .left;
(**** Definition of extended architecture skeletons: ****)
(**** JOIN. CORR and DISTR *+++)
PROCEDURE JOIN (SCALAR n:inat; VECTOR s,t:INTEGER):VECTOR INTEGER;

VECTOR res : INTEGER;
BEGIN IF': EVEN((id-no - 1) DIV n) THEN res := s ELSE res := t END;

RETURN res
END JOIN;
PROCEDURE CORR (SCALAR n:inat; VECTOR s:INTEGER):VECTOR INTEGER;

VECTOR t.u: INTEGER;
BEGIN PRPPAGATE.left-n (s,t); PROPAGATE.right-n (s.u);

RETURN (JOIN(n, t ,u)
END CORR;
PROCEDURE DISTR (SCALAR n:inat;VECTOR s:INTEGER):VECTOR INTEGER;

SCALAR i: INTEGER;
BEGIN FOR i := 1 TO n DO

r IF (id-no - 1) HOD n # 0 THEN

11 RECEIVE list .left (s) FROU list .right(s)
END END; RETURN s

END DISTR;
(**** Computation of the parallel prefix sum ****I
PROCEDURE psum (SCALAR m,n:inat; VECTOR s:INTEGER):VECTOR INTEGER;

VECTOR t: INTEGER;
BEGIN WHILE rn # n DO PROPAGATE.right(s,t) ; t := DISTR(n.t) + s;

I1 s := JOIN(n.s,t); n := 2 n
END; RETURN s

END psum;
(**** Main program ****I
BEGIN PARALLEL ...; s := psum(N,l,s); ... ENDPARALLEL END Prefix-Sum.

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von f t p . inf ormat i k . mi-ulm. de erhdtlich

Die rnit * markierten Berichte sind vergriffen ,

List of technical reports published by the University of Ulm
Some of them are available by FTP from f t p . inf ormat i k .mi-ulm. de

Reports marked with * are out of print

91-01 Ker-I KO, P. Orponen, U. Schdning, 0. Watanabe +

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Kcbler, U. Schdning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Kdbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schdning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Kcbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Hun, L. Hamachandra, J. Kdbler, A . Lozano,
M. Mundhenk, A . Ogiwam, U. Schoning, R. Silvestri, T . Thiemuf

Reductions for Sets of Low Information Content

92-Ol* Vikraman Arvind, Johannes h'obler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse arid Tally
Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluationof Noncircular Attribute
Grammars

I
92-03 Fakultit fiir Informatik

17. Workshop iiber Komplexitatstheorie, effiziente Algorithmen und Datenstrukturen
I1

92-04* V . Arvind, J. Kebler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Kdbler
Locating P/poly Optimally in the Extended Low Hierarchy

I;

92-06* Armin Ktihnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-
directed semantics 11, :

r?.
92-07* Heinz Fassbender, Heiko Vogler

A Universal Unification Algorithm Based on Unification-Driven Leftmost
Outermost Narrowing

92-08* Uwe Schdning
iI On Random Reductions from Sparse Sets to Tally Sets

92-09* Hemann von ~asse ln , Laum Martignon
l l Consistency in Stochastic Network

92- 10 Michael Schmitt 1

A Slightly Impmvdd Upper Bound on the Size of Weights Sufficient to Represent
Any Linearly separable Boolean Function I

92- 11 Johannes KcTbler, I(Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. KcTbler, M. Mundhenk
Reliable ~educ t i o i s , High Sets and Low Sets

92-13 Alfons Geser ii
On a monotonic semantic path ordering l i

92-14* Joost Engelfriet, I/Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers ,

93-01 Alfred Lupper, ~ o h m d Froitzheim
AppleTalk Link ~ c i e s s Protocol basierend auf dem Abstract Personal Communications
Manager

I/
93-02 M.H. Scholl, C. ~oasch , C. Rich, H.-J. Schek, M. Tresch

The COCOON Object Model
I

93-03 Thomas Thiemuf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

/I
93-04 Jin- Yi Cai, Frederic Green, Thomas Thiemuf

On the Correlation of Symmetric Functions

11 93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heeinlein, P. Dadam
A Conceptual Appqoach to an Open Hospital Information System

93-06 Klaus Gaflner 11
Rechnerunterstutzung fur die konzeptuelle Modellierung

I/
93-07 Ullrich h'epler, Peter Dadam

Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Sehmitt I!'
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Amain ~tihnernanh, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

I
94-03 Harry Buhmaan, Jim Kadin, Thomas Thiemuf

On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faflbender, keiko Vogler, Andrea Wedel
Implementation of a: Deterministic
Partial E-Unification Algorithm for Macro ~ r & Transducers

!I

94-05 V. Arvind, J. Kdbler, R. Schuler
On Helping and Interactive Proof Systems

i 94-06 Christian Kalus, Peter Dadarn
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich uon Henke, Hamld Rue$
Arbeitstreffen Typtheorie: Zusammenfassung der Beitrage

94-09 F. W. won Henke, A. Dold, H. Rue$, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of
Software

94- 10 Axel Dold
Formalisierung schematischer Algorithmen

94- 11 Johannes Kdbler, Osarnu Watanabe
New Collapse Consequences of NP Having Small Circuits

94- 12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osarnu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfmrn Schulte, Ton Vullinghs
Linking Reactive Software t o the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars: Two Exercises
in Transformational Programming

94-18 Helrnuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schdning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrrnan, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tornoyuki Yarnakarni
, - Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conguer Algorithms

