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Abstract

In ���� Schapire gave an equivalent characterization of Levin
s notion of functions�
that are polynomial on average� This characterization gives a very smooth translation
from worst case complexity to average case complexity of the notions for time and
space complexity� We prove tight space and timehierarchy theorems and discuss
the structure of deterministic and nondeterministic average case complexity classes�
In particular� we show for polynomial and exponential timebounded classes that
nondeterministic average case is equivalent to deterministic average case if this is
true in worst case complexity� We consider tally encodings of randomized decision
problems and show that there are tally randomized decision problems in average
nondeterministic polynomial time which are not in average deterministic polynomial
time if and only if average deterministic exponential time is di�erent from average
nondeterministic exponential time�
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� Introduction

Despite having bad worst case behavior� many algorithms are frequently used in practice because
they are e�cient on the average� A well known example is the Simplex algorithm� a worst
case exponential time algorithm for linear programming which performs well in practice� even
better than worst case polynomial time algorithms for the same problem� It seems that the
instances which cause the bad worst case complexity do not occur in practical applications� A
similar example� within P� is the Quicksort algorithm� Even though the worst case is O�n�� for
all �deterministic� implementations� the Quicksort algorithm is often used in practice� since its
average case complexity is O�n logn�� Thus� in some cases� the average case complexity of a
problem is a better measure than its worst case complexity�

A general theory of average case complexity was introduced by Levin� He de�ned a robust
notion of �functions are polynomial on average� with respect to a probability distribution on all
instances �Lev���� Since then this notion has been considered by many researchers� In particular
the notion of completeness and various reductions have been studied �Lev��� Gur��� BDCGL�	�
WB��� RS��� SY���� The basic objects of average case complexity are randomized decision
problems� pairs consisting of a decision �or search� problem and a probability distribution on the

instances of the problem� An open problem� a generalization of the famous �P
�
� NP� question�

is whether all sets in NP can be solved deterministically in polynomial time on average under
all �natural� �or easy� probability distributions� Levin considered in his papers polynomial time
computable distributions �as natural� �Lev��� Lev���� This notion seemed to be to restrictive and
later the more general notion of polynomial time samplable distributions has been proposed in
�BDCGL�	��

A �rst important connection between average case complexity and worst case complexity was
given in �BDCGL�	�� BenDavid et al� show that if all problems in NP can be solved determi
nistically in polynomial time on average under every polynomial time computable distribution�
then deterministic linearexponential time is equal to nondeterministic linearexponential time�
�This indicates that it is unlikely that all sets in NP are polynomial time solvable on average
under polynomial time computable distributions�� However� the question whether the above as
sumption implies that the polynomial time hierarchy PH �or even PNP� can be solved e�ciently
on average� is not clear �SW����

As pointed out in �Gur���� using Levin
s de�nition it is reasonable to de�ne the notion of
�polynomial on average� and �linear on average�� In this paper we generalize Levin
s notion
and de�ne �g on average� for arbitrary functions g following a characterization of �polynomial
on average� given in �Sch��� �see also �SY�	� SY��� Imp����� The timebound g is here a two
placed function� where the �rst argument is the length of the input and the second argument is
the inverse of a probability weight� Now a function f �i�e� the time bound of a Turing machine�
is said to be g on average if for every probability weight � the probability over all x that f�x�
exceeds g�jxj� ���� is smaller than �� Note that the notion of �polynomial on average� remains
unchanged� but now it is possible to consider functions that are g on average but not o�g� on
average� This allows to incorporate results from �classical� average case complexity into the
framework given by Levin�

We remark at this placd� that di�erent approaches to de�ne �g on �average� have been
suggested �RS��� CS���� However� these approaches de�ne notions which are di�erent to Levin
s
de�nition of �polynomial time on average��

The aim of our paper is to give a characterization of average case complexity classes that are
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similar in structure to worst case complexity and allow to precisely classify problems according
to their average case complexity�

The paper is organized as follows�

In section 	 we recall the necessary notions and de�nitions of average case complexity and
give a de�nition of g on �average�

In section � we de�ne deterministic time and spacebounded average case complexity classes
and give time and space hierarchy theorems� which are as tight as those� known from worst case
complexity theory �see for example �HU����� It is possible to show the hierarchy theorems under
an �easy� �polynomialtime computable� distribution�

In section � the de�nitions of time and spacebounded computations are extended to non
deterministic Turing machines� We require that the timebounds of nondeterministic Turing
machines are exactly real time computable� That is� a function f is a timebound if for all x�
�f�x� can be computed by a deterministic transducer in time O�f� �cf� �Gol����� We feel that
this requirement is justi�ed since otherwise nondeterministic polynomial time on average is not
contained in any deterministic �on average� timebounded class�

Section � compares the structure of average case complexity classes with the structure in worst
case complexity� Wang � Belanger show that if P is a proper subset of NP� then deterministic
average polynomial time �AP� is properly included in nondeterministic average polynomial time
�ANP� and if there is a randomized decision problem which is hard on positive instances �i�e�
no Turing machine is polynomial time bounded on average� even if only instances in the set
are considered� then P is a proper subset of NP �WB���� Under the assumption that the time
bounds �of nondeterministic machines� are exactly real time computable it is possible to show
that AP � ANP if and only if P � NP� This equivalence is extended to exponential time classes�
Furthermore we show a similar relation for nondeterministic polynomial time and deterministic
exponential time� i�e� ANP is included in AE if and only if NP is a subset of E� �AE and E denote
average linearexponential time and linearexponential time resp�� Note that for the �only if�
direction the assumption that the timebounds are exactly real time computable is necessary�

In section � we study upward collapse properties of average case complexity classes� In
worst case complexity theory it is known that if P � NP� then EXP � NEXP� We show�
that the same relationship also holds in average case complexity� If AP is equal to ANP then
deterministic average exponentialtime �AEXP� is equal to nondeterministic average exponential
time �ANEXP�� Book showed� that there are tally sets in NP�P if and only if E �� NE �Boo����
We de�ne a tally coding of randomized decision problems which allows us to extend this result
to average case complexity�

� Preliminaries

In this paper we use the standard notations and de�nitions of computational complexity theory
�see for example �BDG��� Pap����� For an introduction on average case complexity the reader is
refered to �Gur����

Let � � f�� �g be �xed and �� denote the set of all �nite strings over �� For every x � ���
let jxj denote the length of x� A set �language� is always a subset of ��� The cardinality of a set
X is denoted by jjX jj� We use a standard pairing function h�� �i � ����� � �� that is computable
and invertible in polynomial time� de�ned as hx� yi � x��x�� � � ��xjxj�y� where x � x�x� � � � xjxj�
This function is extended to ntuples in the usual way� e�g� hx� y� zi� hx� hy� zii�

�



A total function � from �� to ��� �� is called a probability function �or density function�� ifP
x ��x� � �� The probability distribution �� of � is given by ���x� �

P
y�x ��y�� for all x�

Intuitively� if the random variable X is de�ned by the elementary event that a string x � �� is
chosen under some distribution ��� then ��x� is the probability that x is selected� i� e� ��x� �
Prob�X � x�� Without loss of generality we allow probability functions to converge to a constant
c �� �� For a set X � �� let ��X� �

P
x�X ��x��

For a Turing machine M let M�x� denote the output of M on input x� M is said to accept
x if M�x� � � and L�M� denotes the set of strings accepted by M � A Turing machine M is said
to accept a set �language� L if L � L�M��

The conditional probability function �n of � is de�ned as

�n�x� �

�
��x�����n� � if jxj � n and ���n� � �
� � otherwise

That is �n�x� is equal to the probability� that x occurs under the assumption that the length of
the string is n�

A distribution �� is called positive� if for all but �nitely many x� ��x� � �� It is called the
standard distribution if

��x� �
�

jxj � �jxj� �� � 	jxj �

A distribution �� is computable� if there exists a transducer M � such that for every x � ���
j���x��M�x� �k�j � 	�k �KF�	�� If M is polynomial timebounded in jxj� k� then we say that
� is ptimecomputable�

The expected value of a total function f � �� � IR�
� with respect to a probability function �

is
Exp��f�x�� �

X
x���

��x� � f�x��

Let A be a boolean predicate� i�e� a function from �� to f�� �g� The probability of A with respect
to �� denoted by Prob��A�x�� is equal to the expected value of A with respect to ��

Prob��A�x�� � Exp��A�x�� �

A randomized decision problem is a pair �D� �� consisting of a recursive language D and a com
putable probability function �� An average case complexity class is a set of randomized decision
problems� For example the class DistNP �Lev��� BDCGL�	� Gur��� is the set of all randomized
decision problems �D� ��� where D � NP and �� is ptimecomputable�

The complement of a randomized decision problem �D� �� is �D� ��� where D � �� � D� If
C is a class of randomized decision problems� then coC � f�D� �� j �D� �� � Cg is called the
complement of C�

The foundation of average case complexity is Levin
s notion of �functions are polynomial on
average��

De�nition ��� ��Lev�	
� A function f is polynomial on average with respect to a probability
function � �or short� polynomial on ��average�� if there exists a constant � � � 	 �� such that

X
x���

f�x�� � ��x�

jxj �
�

If � � � then f is called linear on ��average�
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The set of average polynomial functions has similar closure properties as the set of polynomials
�Lev��� Gur����

If � is clear from the context� then functions that are polynomial on �average are simply
called average polynomial functions�

In this paper we use an equivalent characterization of �polynomial on average� given in �Sch����
He shows� that a function f is polynomial on �average �in the sense of Levin as de�ned above�
if and only if there exists a polynomial p from IN � IN to IR�

� � such that for all m � �

Prob��f�x� � p�jxj� m���
�

m
�

Using Schapire
s characterization it is possible to generalize the notion of �polynomial on average�
to �g on average� for arbitrary functions g�

De�nition ��� �g on ��average� Let f be a total function from �� to IR�
� and � be a probability

function� f is g on �average for a function g from IN � IN to IR�
� � if for all m � �

Prob��f�x� � g�jxj� m���
�

m
�

The de�nition takes into account that the average case measure depends not only on the given
instance x but also on the probability ��x� of the occurrence of x� If the instance x does not
appear� i� e� ��x� � �� it has no a�ect on the average case analysis� Similar if for some string x�
��x� � � then

f�x� 	 g�jxj� d����x�e�� ���

The following propositions are examples that the de�nition of �g on average� is reasonable to
analyse the average case complexity of algorithms� First it is shown that if a function has uniform
complexity �on strings of the same length�� then worst case complexity is equal to average case
complexity under any distribution�

Proposition �� Let f� g be functions from IN to IN and g��n�m� � g�n� � g�m� �

� If f�x� � g�jxj� for all x � ��� then f is g� on ��average for any density function ��

� If f�x� � g��jxj� �� for all x � ��� then f is not g� on ��average for any density function ��

Similar it is possible to show that Quicksort has average case complexity ���n logn���m logm��
under a standard distribution� The intuition of this result is� that for a constant c and every m the
probability that on random input x the running time of Quicksort exeeds c�jxj�log jxj���m�logm� is
smaller than ��m� On the other hand there exist some constants c and m such that the probability
that running time of Quicksort exeeds �jxj log jxj� � �m logm��c is larger than ��m�

As input to Quicksort we consider permutations on an initial sequence of the natural numbers�
For every n� � IN a standard distribution 	 can be de�ned as follows�

	�x� �

�
�

�n�n���n�n����n	
� if x is a permutation of ��� � � � � n� and n � n�

� � otherwise�

Proposition ��	 Let g�n�m� � �n logn���m logm�� The Quicksort algorithm is c�g on 	�average
but not g�c on 	�average� for some constant c and a standard distribution 	�
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Proof� Let Q�x� denote the running time of the Quicksort algorithm on input x� We use the
following Lemma� Recall� that

P
x��n Q�x�	n�x� � ��n logn��

Lemma ��� Let 	n denote the uniform distribution on permutations of ��� � � �n�� There exist
constants c�� c� and n�� such that for all n � n�

��� �m � � � Prob�n �Q�x� � c� m n logn� � ��m�

�	� Prob�n �Q�x� � �n logn��c�� � ��c��

Proof� The proof of ��� follows from Markov
s inequality�
The proof of �	� is by a standard counting argument� Note that every computation of Quicksort
corresponds to exactly one input sequence� There are n� many possible input sequences but only
	�n logn��c� computations of Quicksort of length less than �n logn��c�� Thus less than n��c� many
input sequences are computed by Quicksort in time �n logn��c�� �

Let c�� c�� and n� be the constants from Lemma 	��� let c � maxfc�� �c��� log c�g and let 	 be
a standard distribution for n� as de�ned above�

First we show that Q is c � gbounded on 	average� For any constant m � � it holds

Prob��Q�x� � c � g�jxj� m�� 	 Prob��Q�x� � c m n log n�

�
X
n�n�

Prob��jxj � n Q�x� � c m n logn�

�
X
n�n�

�

�n� n���n� n� � ��
Prob�n �Q�x� � c m n log n�

�
�

m
�
X
n�n�

�

�n � n���n� n� � ��

�
X
n��

�

n�n� ��
�

�

m
�

To show� that Q is not g�cbounded on 	average� let m � c��

Prob�

�
Q�x� �

g�jxj� c��
c

�
�

X
n�n�

Prob�

�
jxj � n  Q�x� �

�n logn��c� log c��

c

�

�
X
n�n�

�

�n� n���n� n� � ��
Prob�n

�
Q�x� �

n logn

c�

�

�
�

c�
�

�

Now we use the de�nition �g on average� to de�ne several classes of functions�

De�nition ��� Let f by a function from IN to IR�
� � f is called

� linear on ��average� if there exist constants c� d � IR�
� � such that f is c�n�m�d on ��average�

� polynomial on ��average� if there exists a polynomial p � IN � IN � IR�
� such that f is p on

��average�
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� linear�exponential on ��average� if there exist constants c� d � IR�
� � such that f is 	c�n�m�d on

��average�

� exponential on ��average� if there exists a polynomial p � IN� IN � IR�
� such that f is 	p on

��average�

As mentioned above� the set of polynomial on average functions is closed under addition� multi
plication and exponentiation with a constant �Lev��� Gur���� The same also holds for the set of
linearexponential �exponential� resp�� functions�

Here we give a proof of the closure under exponentiation with a constant� Let f be exponential
on �average and c � IR�

� a constant� Then� by de�nition� there is a polynomial p� such that for
all m � �

Prob�
h
f�x� � 	p�jxj�m�

i
�

�

m
�

Then for all m � � it holds� that Prob��f�x�c � p�jxj� m�c� � ��m� Since �	p�jxj�m��c is an exponen
tial function� f�x�c is exponential on �average� The same argument holds for linearexponential
functions�

� Deterministic average case complexity

In average case complexity theory we miss one property� which is generally used in worst case
complexity theory without explicitly refering to it� This is the constructibility of the timebounds
�spacebounds resp��� It is impossible to enumerate all functions which are polynomial on average�
since the question whether an arbitrary function is polynomial on average or not� depends on the
choice of the probability function� So the wellknown diagonalization technique cannot be applied
directly in average case complexity�

Nevertheless many techniques of worst case complexity work in average case complexity too�
For example� if we know that the running time of a deterministic machine is polynomial on
average under the probability function �� we can use this machine as a clock to make other
machines polynomial on �average timebounded�

��� Time�bounded computations

For a deterministic Turing machine M � let timeM �x� denote the length of the computation path
�the number of transition steps� of M on input x� If the computation of M terminates on every
input then timeM �x� is total� We consider only Turing machines that terminate on every input�

A deterministic Turing machine M is polynomial on ��average time�bounded� if timeM�x� is
polynomial on �average� This leads to the de�nition of the class AP� the set of problems that
are solvable in polynomial time on average �Lev��� Gur��� BDCGL�	� WB����

De�nition �� �AP� A randomized decision problem �D� �� is in AP if D is accepted by a
deterministic Turing machine� which is polynomial on ��average time�bounded�

We remark here that there are sets D not in P that are polynomial time solvable on �average
for every ptimecomputable distribution �� i�e� �D� �� � AP�

In general a deterministic Turing machine M is g on ��average time�bounded� if timeM �x� is
g on �average� This notion is used to de�ne deterministic average case timebounded classes�
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De�nition �� �ADTIME�g�� Let g be a function from IN� IN to IN� The randomized decision
problem �D� �� is in the class ADTIME�g� if D is accepted by a deterministic Turing machine�
which is g on ��average time�bounded�

Note that the function g in the above de�nition is not the �worst case� timebound of the
Turing machine M � If � is a positive density function and g�jxj� h�jxj�� is timeconstructible�
where

h�n� � max
jxj
n

�d����x�e��

then for every D with �D� �� � ADTIME�g� it holds� by equation ���� that

D � DTIME�g�jxj� h�jxj���

Proposition � AP �
S
k�� ADTIME�nkmk � k��

De�nition �	 �AE� AEXP� A randomized decision problem �D� �� is in AE �AEXP� resp�� if
D is accepted by a deterministic Turing machine� which is linear�exponential �exponential� resp��
on ��average time�bounded�

We get immediately� that

AE �
�
k��

ADTIME�	k�n�m�k� and

AEXP �
�
k��

ADTIME�	n
kmk�k��

��� Space�bounded computations

Let spaceM �x� denote the number of tape cells used by the Turing machine M on input x� We
say� the Turing machine M is g on �average spacebounded� if spaceM �x� is g on �average� This
leads to the de�nition of ADSPACE�g��

De�nition �� �ADSPACE�g�� Let g be a total function from IN � IN to IN� The randomized
decision problem �D� �� is in the class ADSPACE�g� if D is accepted by a deterministic Turing
machine� which is g on ��average space�bounded�

We are interested especially in randomized decision problems� which can be computed by poly
nomial on the average spacebounded Turing machines� We denote the set of these problems by
APSPACE� formally de�ned as

APSPACE �
�
k��

ADSPACE�nkmk � k��
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��� Hierarchy theorems

One major result in computational complexity theory was the proof of tight time and space
hierarchy theorems� In this section we give similar hierarchy theorems for average case complexity�
We de�ne a ptimecomputable distribution � and show that there exists a tight hierarchy of tally
sets under the distribution �� A di�erent approach was followed in �GGH���� Grape et al� show
that there exists a hierarchy of languages that are hard to compute on all but polynomial many
strings for each length�

Theorem �� �Time Hierarchy Theorem� Let f and g be total functions from IN� IN to IN�
If f�n�m� � logn� logm and

lim
n�	

g�n� n� logg�n� n�

f�n� n�
� �

then ADTIME�g�� ADTIME�f��

Proof� De�ne the function h � IN � IN as h��� � � and h�k� � 	h�k���� if k � �� The density
function � over f�h�k� j k � �g is de�ned as ���h���� � ��� and

���h�k�� �

h�k���X
i
h�k���

�

	i
�

For any x �� f�h�k� j k � �g� ��x� is equal to �� The functions h and � provide the following
property

��
kX
i
�

���h�i�� �
�

h�k�
� ���h�k��� �	�

Claim �� Let T � f�h�k� j k � �g� If T � DTIME�f�n� n�� then �T� �� � ADTIME�f��

Proof� Let M be a f�n� n� timebounded deterministic Turing machine with L�M� � T � For an
arbitrary integer m � � let

km � max fi � IN j h�i� 	 mg�
Then for all i 	 km we get timeM ��h�i�� 	 f�h�i�� h�i�� 	 f�h�i�� m�� We can estimate the
probability� that M on input x needs more than f�jxj� m� steps� as�

Prob��timeM��n� � f�n�m�� � �� Prob��timeM ��n� 	 f�n�m��

	 ��
kX
i
�

���h�i�� �
�

h�k�
	 �

m
�

Thus �T� �� � ADTIME�f�� �

Claim �� Let T � f�h�k� j k � �g� If T �� DTIME�g�n� n�� then �T� �� �� ADTIME�g��
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Proof� We give a proof by contraposition� Assume� that �T� �� is a randomized decision problem
in ADTIME�g�� Then there exists a deterministic Turing machine M with L�M� � T � such that
for all m � �

Prob��timeM��n� � g�n�m���
�

m
�

First note� that f�h�k� j k � �g in DTIME�logn�� For every k let mk � h�k�� By inequality �	� it
holds �����h�k�� � h�k�� Thus timeM��h�k�� 	 g�h�k�� h�k��� �

Claim �� There exists a set T � f�h�k� j k � �g such that

T � DTIME�f�n� n��� DTIME�g�n� n���

Proof� We construct the set T by diagonalization� Let M�� M�� M�� � � � be an enumeration
of all deterministic Turing machines� such that every machine occurs in�nitely often� Then T is
de�ned by the following machine�

input �n�

if �there exists a k such that h�k� � n	 then

do within f�n� n� steps

simulate Mk on input �n�
if Mk��n� halts and accepts then reject

else accept�

reject�

Obviously� it holds T � DTIME�f�n� n��� DTIME�g�n� n��� �

Combining Claim ���� Claim ��� and Claim ��� the theorem follows� �

The fact f�n� n� � 
�g�n� n� logg�n� n�� is only needed in Claim ��� to simulate an arbitrary
ktape machine by a �xed 	tape machine� For details see �HS����

Corollary ��� AP � AE � AEXP�

Corollary ��� For every integer k � � and any � � � it holds

ADTIME�nkmk� � ADTIME�nk��mk����

A similar theorem can be given for spacebounded computations�

Theorem ��� �Space Hierarchy Theorem� Let f and g be total functions from IN � IN to
IN� If

lim
n�	

g�n� n�

f�n� n�
� �

then ADSPACE�g� � ADSPACE�f��
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� Nondeterministic average case complexity

Before we discuss nondeterministic computations� we �x the complexity measures that will be
used� Let timeN �x�� the running time of the nondeterministic Turing machine N on input x� be
the length of the shortest accepting computation path if N accepts x� and � otherwise� Similar�
the space needed by the nondeterministic Turing machine N on input x� denoted by spaceN �x��
is the smallest number of tape cells on any accepting computation path� if N accepts x� and �
otherwise�

��� Computable boundaries

In analogue to �Coo��� we say� a total function f � �� � IN is exactly real time computable if there
exists a constant c and deterministic Turing machine which for every input x halts within c � f�x�
steps with a string of length f�x� on its output tape�

Note that f depends on x itself and not on the length of x as in Cook
s de�nition of real time
computable�

Let g be a total function from IN � IN � IR�
� � A nondeterministic Turing machine N is g on

the ��average time�bounded� if there exists an exactly real time computable function f � such that

� f�x� is g on �average and

� timeN �x� 	 f�x� for all x � L�N��

If g is a polynomial� we say N is polynomial on �average timebounded �similar if g is exponential
or linearexponential�� A similar de�nition was proposed in �Gol����

Forcing the real time computability of the timebound enables us to simulate nondetermini
stic computations in a deterministic manner by using f as a clock and checking each possible
computation path of N on input x for acceptance� For simplicity we identify timeN �x� with f�x�
and assume without loss of generality� that every computation of N on input x halts after exactly
f�x� steps�

The term g on the ��average space�bounded is de�ned similarly for nondeterministic space
bounded computations�

De�nition 	�� �ANTIME�g�� ANSPACE�g�� Let g be a total function from IN � IN to IN�

� The randomized decision problem �D� �� is in ANTIME�g� if D is accepted by a nondeter�
ministic Turing machine� which is g on ��average time�bounded�

� The randomized decision problem �D� �� is in the class ANSPACE�g� if D is accepted by a
nondeterministic Turing machine� which is g on ��average space�bounded�

We de�ne the following nondeterministic average case complexity classes�

ANP �
�
k��

ANTIME�nkmk � k��

ANE �
�
k��

ANTIME�	k�n�m�k��

ANEXP �
�
k��

ANTIME�	n
kmk�k� and

ANPSPACE �
�
k��

ANSPACE�nkmk � k��

��



We note here that in contrast to worst case complexity the requirement that the timebounds
are exactly real time computable is restrictive� For example there exist problems �D� �� which
cannot be accepted by a nondeterministic polynomial on �average timebounded Turing machine�
but are accepted by a nondeterministic Turing machine� whose running time is polynomial on
�average�

Denote with AverageNP the set of randomized decision problems �D� ��� where D is accepted
by a nondeterministic Turing machine N whose running time timeN�x� is polynomial on �
average �but not necessarily polynomial timebounded on �average as de�ned above� �WB����
This class contains problems� which are not computable by any nondeterministic polynomial on
average timebounded machine�

Theorem 	�� ANP � AverageNP�

Proof� Let D by a recursive language� which is accepted by the Turing machine M and is not

in DTIME�	�
n
�

�� De�ne the probability function � as

��x� �

���
�	

���jxj� � 	jxj � timeM�x�� � � D

���jxj� � 	jxj� � otherwise

Note that M can be considered as nondeterministic Turing machine�

By Markov
s inequality we get for an arbitrary m � ��

Prob�



timeM �x� �

��

��
� jxj �m

�
�

�
��

��m
�Exp�

�
timeM�x�

jxj
�

�
��

��m
�
X
x���

��x� � timeM �x�

jxj

�
��

��m
�
X
x���

�

jxj�k	jxj �
�

m
�

This shows �D� �� � AverageNP�

Now suppose� �D� �� � ANP� i�e� there exists a Turing machine N with L�N� � D and a
constant k� such that timeN �x� is nkmk � k on �average timebounded� Since � is positive� it
holds for all x � D� that timeN �x� 	 jxjkd����x�ek � k � jxj�	kjxj � k� Consider the following
algorithm M � for deciding membership in D�

input x 

if �timeN�x� 	 jxj�	kjxj � k� then
simulate N on input x in a deterministic manner 
if N�x� accepts then accept

else reject 
else accept 

The running time of M � consists of the deterministic simulation of N � so timeM ��x� is bounded

by 	�
jxj�

� This implies D � DTIME�	�
n
�

�� This is a contradiction� �

The same argument shows that AverageNP is not contained in ADTIME�g� for any �xed
�recursive� function g�

��



��� Relations between average case measures

Next we state some relations between average case time and space complexity measures� It is not
surprising� that these relations are the same as in worst case complexity�

Lemma 	� Let g be a total function from IN � IN to IN�

��� ADTIME�g� � ADSPACE�g��

�	� ANTIME�g� � ANSPACE�g��

�
� ADTIME�g� � co�ADTIME�g��

��� ADSPACE�g� � co�ADSPACE�g��

��� There exists a constant c � �� such that ANTIME�g� � ADTIME�cg��

�� There exists a constant c � �� such that ADSPACE�g� � ADTIME�cg��

��� ANSPACE�g� � ADSPACE�g���

��� If g�n�m� � log n� logm then ANSPACE�g� � co�ANSPACE�g��

Proof� The statements ���!��� follow directly from the above de�nitions of the average case
complexity classes�

To proof ���� let �D� �� be a randomized decision problem in ANTIME�g� and let N be a
nondeterministic Turing machine such that L�N� � D and

Prob��timeN�x� � g�jxj� m���
�

m

for every integer m � ��

Consider a deterministic Turing machine M that determines if N accepts an input x by
constructing a list of all con�gurations of N on input x that are accessible from the initial
con�guration� The number of these con�gurations is bounded by dtimeN �x� for a constant d� which
is independent from x� Recall that we assume that timeN �x� is exactly real time computable� So
this list can be computed within ctimeN �x� steps where c is an appropriate constant� Therefore�

Prob�
h
timeM �x� � cg�jxj�m�

i
	 Prob�

h
ctimeN �x� � cg�jxj�m�

i
�

�

m
�

This implies �D� �� � ADTIME�cg��

The proof of ��� is similar to ���� ��� can be obtained by porting Savitch
s theorem to average
case complexity theory� ��� can be obtained by porting the result of ImmermanSzelepcs"enyi�
that NSPACE�g� � coNSPACE�g�� �

Theorem 	�	

��� ANP � AEXP�

�	� APSPACE � ANPSPACE � co�ANPSPACE�

�
� APSPACE � AEXP�

Proof� By extensive usage of Lemma ���� �

��



� Relations to worst case complexity

Now we give some �fundamental� relations between worst case and average case complexity classes�
We compare deterministic and nondeterministic average case complexity classes with their worst
case counterparts� We show that a collapse of a deterministic and a nondeterministic class in the
average case is equivalent to a collapse in the worst case�

A relation between worst case complexity and average case complexity� that follows immedia
tely from the de�nitions is the following proposition�

Proposition ��� Let C � fP�E�EXP�NP�NE�NEXP�PSPACEg� Then for all D � C and for
any computable � it holds that �D� �� � AC�

It is shown in �WB���� that if P �� NP then AP �� ANP� Wang � Belanger use in their
proof �polynomial� complexity cores� which exist for NPsets� if P �� NP� We show the converse
direction by using explicitly the exactly real time computability of nondeterministic timebounds�
Furthermore we extend these results to the exponential time average case classes�

In the proof we will use generalized complexity cores� which are studied in �BD���� Let C be
a class of languages and for any language A let CA be the set fC � C j C � Ag� A set H is a
complexity core �or hard core� for A with respect to C if for every C � CA the intersection C �H is
a �nite set� If H � A� then H is called a proper complexity core for A with respect to C�

Theorem ��� �Theorem ���� in �BD��
� Let C be a recursively enumerable class of recursive
sets� that is closed under �nite union and �nite variation� Any in�nite recursive set not in C has
an in�nite recursive proper complexity core with respect to C�

Since P ful�ls the conditions of the Theorem� there exists #under the assumption P �� NP#
a proper complexity core for SAT �or any NPcomplete language� with respect to P� Assigning
high probability to the elements of the core we can construct a randomized decision problem in
ANP which is not in AP� The same argument holds for exponential and linearexponential time�

Theorem ��

��� P � NP if and only if AP � ANP�

�	� E � NE if and only if AE � ANE�

�
� EXP � NEXP if and only if AEXP � ANEXP�

Proof� We give a proof for exponential time ���� Suppose EXP �� NEXP and consider the
Exponential Bounded Halting problem EBH � which is de�ned as

EBH � fhN� x� ti j The Turing machine N accepts x in 	 t stepsg�
Note that N is a nondeterministic Turing machine and k is encoded in binary� Since EBH is
NEXPcomplete� it holds EBH � NEXP�EXP� By Theorem ��	 there exists a complexity core
H � EBH with respect to EXP� Consider the probability function

��x� �

���
�	

���jxj�jjH jxjjj� � if x � H

���jxj�	jxj� � otherwise

��



Since EBH � NEXP it holds �EBH� �� � ANEXP� Now suppose� that �EBH� �� � AEXP�
Then there exists a deterministic Turing machine M with L�M� � EBH and a constant k � ��

such that timeM �x� is 	n
kmk

on �average timebounded� H is a complexity core for EBH
with respect to EXP� So there exists a constant n�� such that for all x � H � jxj � n�� it holds

timeM �x� � 	jxj
kjxj�k � For m � n�� we can estimate

Prob�
h
timeM �x� � 	jxj

kmk
i

� Prob�
h
x � H  timeM �x� � 	jxj

kmk
i

�
X
x���

��x�
h
x � Hn�  timeM �x� � 	jxj

kn�k
�

i

�
jjHn� jj

n�� � jjHn� jj �
�

m
�

This is a contradiction� Thus �EBH� �� �� AEXP�

For the other direction assume EXP � NEXP� Then EBH � EXP� i�e� there exists a constant
k such that EBH � DTIME�	n

k

�� We de�ne the set

EBH � �
n
hN� x� ti j The Turing machine N accepts x in 	 k

p
t steps

o
�

which is in DTIME�	c�n� for a constant c � ��

Let �D� �� be a randomized decision problem in ANEXP� Let N be a nondeterministic Turing
machine with L�N� � D and pD � IN � IN � IN a polynomial such that for all m � �

Prob�
h
timeN �x� � 	pD�jxj�m�

i
�

�

m
�

Consider the deterministic Turing machine M �

input x 

t �� timeN �x�k 
if hN� x� ti � EBH � then accept
else reject 

Since jhN� x� timeN�x�kij is bounded by � � �jN j� jxj� log�timeN �x�k�� the running time of M
can be computed as

timeM�x� � timeN �x�k � timeEBH ��hN� x� timeN�x�ki�
	 timeN �x�k � 	c�jhN�x�timeN�x�

kij

	 timeN �x�k � 	c����jN j�jxj� � timeN �x���k

	 	d�jxj � timeN �x���k for d � � � c � jN j�
Let p�n�m� � d � jxj� � � k � pD�n�m�� Then it holds for any m � ��

Prob�
h
timeM �x� � 	p�jxj�m�

i
	 Prob�

h
	d�jxj � timeN �x�k � 	d�jxj�k�pD�jxj�m�

i
� Prob�

�
timeN �x���k �

�
	pD�jxj�m�

��k�

� Prob�
h
timeN �x� � 	pD�jxj�m�

i
�

�

m
�

Thus �D� �� � AEXP� �

The next result links the assumption that ANP is included in AE to worst case complexity�

��



Theorem ��	 NP � E if and only if ANP � AE�

Proof� Similar to Theorem ��� �

� Upward collapse properties and tally sets

A well known structural result in worst case complexity is the upward collapse property� that
is� a collapse of some smaller deterministic and nondeterministic timebounded classes implies
a collapse of the respectively �exponentially� larger timebounded classes� In this section we
show that the upward collapse properties also hold in average case complexity� In particular
the implication �If P � NP then E � NE �EXP � NEXP�� similarily holds in average case
complexity�

Theorem ���

��� If AP � ANP then AE � ANE�

�	� If AP � ANP then AEXP � ANEXP�

Proof� ��� We use Theorem ���� AP � ANP � P � NP � E � NE � AE � ANE�
�	� analogue to ���� �

Another famous result is from Book� In �Boo��� he shows that E �� NE if and only if there
exists a tally set in NP�P� Here we give an average case analogue of this theorem� Interestingly
this leads to weaker exponential time on average classes called APE in the deterministic and
ANPE in the nondeterministic case� Recall that the timebound is a function in the length of the
input and the probability weight of the strings which exeed the timebound� For example in the
de�nition of AP� to achieve a probability weight smaller than ��m the timebound is a function
polynomial in m and in the length n of the input� Similar� for AE the function is allowed to be
exponential in m and n� In the case of APE �and ANPE� the timebound is exponential in n but
polynomial in m�

De�nition ��� �APE� ANPE�

APE �
�
k��

ADTIME�	k�nmk � k�

ANPE �
�
k��

ANTIME�	k�nmk � k�

Using the hierarchy theorem� we get immediately APE � AE�

Lemma �� E � NE if and only if APE � ANPE�

Proof� Similar to Theorem ���� �

Corollary ��	 AE � ANE if and only if APE � ANPE�

��



The tally encoding of the randomized decision problem �D� �� is a randomized decision problem
�D�� ��� where D� � f�x j x � Dg and

���y� �

�
��x� � if y � �x for some x � ���

� � otherwise

This de�nition is based on the assumption that the tally encoding �x of an instance x occurs
with the same probability as x itself� So we can use transformations between tally and binary
encoding without changing the underlying probability distribution� We denote the tally encoding
of �D� �� with tally�D� ���

We say� �D� �� is a randomized tally decision problem� if D � f�g� and ��x� � � if x �� f�g��

Lemma ��� Let �D� �� be any randomized decision problem� Then�

��� �D� �� � APE if and only if tally�D� �� � AP�

�	� �D� �� � ANPE if and only if tally�D� �� � ANP�

Proof� We give a proof for the deterministic case� The proof for nondeterministic computations
is similar� Let �D� �� � APE� Then there exists a Turing machine M with L�M� � D and a
constant k such that for all m � �

Prob�
h
timeM�x� � 	k�jxjmk � k

i
�

�

m
�

To show that �D�� ��� � tally�D� �� � AP� consider the following machine M �� that accepts D��

input �x 
simulate M on input x 
if M�x� accepts then accept 
else reject 

The time of M � is used for the simulation of M � so timeM ���x� � timeM �x�� For every integer
m � � it follows

Prob��

h
x � �y  timeM ��x� � jxjkmk � k

i
� Prob��

h
x � �y  timeM �y� � jxjkmk � k

i
� Prob��

h
x � �y  timeM �y� � 	k�jyjmk � k

i
	 Prob�

h
timeM �x� � 	k�jxjmk � k

i
�

�

m
�

For the converse let �D� �� be a randomized decision problem such that �D�� ��� � tally�D� ��
is in AP� Then by de�nition there exists a Turing machine M � with L�M �� � D� and a constant
k � � such that nkmk � k guarantees the polynomial on �average timebound of M �� i�e� for all
m � �

Prob�
h
timeM ��x� � jxjkmk � k

i
�

�

m
�

Consider the following machine M �

��



input x 
y �� �x 
simulate M � on input y 
if M ��y� accepts then accept 
else reject 

The machine M accepts D by simulating M � and the running time of M is timeM �x� � O�j�xj��
timeM ���x��

Prob�
h
timeM�x� � 	k�jxjmk � k

i
� Prob�

h
y � �x  timeM �x� � jyjkmk � k

i
� Prob�

h
y � �x  timeM ��y� � jyjkmk � k

i
� Prob��

h
timeM ��x� � jxjkmk � k

i
�

�

m
�

This implies �D� �� � APE� �

Theorem ��� AE �� ANE if and only if there exists a randomized tally decision problem in
ANP �AP�

Proof� The Theorem follows from Corollary ��� and Lemma ���� �

� Conclusions and Open Problems

We have proposed a de�nition of �g on average� based on Schapire
s characterization of Levin
s
notion of �polynomial on average�� This de�nition #while preserving the notion of �polynomial
on average�# allows to precisely measure the average case complexity of functions �or resource
bounds of Turing machines resp���

The notion of exactly real time computable functions has been used to de�ne nondeterministic
average case time and spacebounded complexity classes� We have shown that the requirement�
that the time$spacebound of a nondeterministic Turing machine is exactly real time computable�
is su�cient to get a structure in average case complexity similar to worst case complexity� Without
any requirement on the computability of the timebounds� nondeterministic computations that
are timebounded on average are not contained in any �xed �worst case� timebounded class�

A crucial question in averge case complexity is the complexity of the underlying distribution�
It is known that there exist certain �noncomputable� universal� distributions such that for every
algorithm its worst case complexity is equal to its average case complexity� In particular there
are exponential time computable distributions such that any problem which is in AP under this
distribution is already in P� Thus it seems reasonable to consider only distributions that are easy
to compute �i�e� ptimecomputable�� or easy to generate �i�e� polynomialsamplable��

Some of the results �like the hierarchy theorems� hold for easy distributions� However for the
collapse results �Theorem ����� the distributions �need enough power� to compute the instances
of the complexity core� Thus it is not known whether �AP � ANP if and only if P � NP� still
holds if we restrict ourselves on less powerful �i�e� polynomial time computable� distributions�

	�



A further goal would be to close the gap between the average case complexity �as considered
here� and the traditional �lengthwise� average case complexity� More precisely let ��� ��� � � � be
a sequence of probability distributions such that �n��n� � � and �n � � if jxj �� n� Now assume
that for a function f and all n X

x��n
f�x� � �n�x� � g�x��

This should be equivalent to the statement that f is g�n�m� � g�n� � g�m� on �average for some
appropriate distribution � such as ��x� � n�� � �n�x�� where n � jxj�
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