A Generic Specification for Verifying
Peephole Optimizations®

A. Dold, F. W. von Henke, H. Pfeifer, H. Ruef

Abt. Kinstliche Intelligenz
Fakultat fur Informatik
Universitat Ulm

Ulmer Informatik-Berichte

Nr. 95-14
December 1995

Abstract

In this paper a generic specification for verifying local optimizations on
machine code (peephole optimization) using the specification and verifica-
tion system PVS is presented. The scheme which provides useful definitions,
basic properties and user-defined proof strategies abstracts from the speci-
fic instruction set of a machine as well as from its semantics. In addition,
we formally represent a stack machine as well as a two-address machine.
The general scheme is applied to both machines and local optimizations are
formalized and verified using the defined proof strategies.

*This research has been funded in part by the German Research Council (DFG) under project “Verifix”

1. Introduction

Peephole optimization is generally understood as the replacement of a sequence of in-
structions by a semantically equivalent but more efficient sequence. Consider, for exam-
ple, the addition of constant zero to the content of a register. This is obviously redundant
and can be eliminated.! Experience shows that optimizers of this kind can tremendously
improve the object code [2, 11, 8, 7, 6], especially when the code has been automati-
cally generated by a code generator. Typically, a peephole optimizer works by moving a
“window” of the size of two or three consecutive instructions through the object code,
and when a pattern is detected it is replaced by the faster sequence. Hence, a peephole
optimizer usually works locally and does not incorporate global data-flow knowledge of
the machine program. However, some peephole optimizer are extended to consider a
restricted form of global optimization [7].

In this paper, we present a generic scheme for formally verifying peephole optimiza-
tions and use this scheme to prove correct a set of peephole optimizations for different
machines. Although local optimization seems to be an easy task (everybody would ac-
cept the “add zero” transformation given above), we demonstrate the importance of a
rigorous formal treatment having detected some errors in existing approaches, and ma-
king necessary applicability conditions explicit. We show that omitting these conditions
would result in incorrect transformations. Our scheme is generic in the sense that we
abstract from a specific machine architecture where the optimizations are carried out.
It consists of an abstract machine description and a number of definitions based on
this description useful for the verification of local transformations such as the concept
of basic blocks and semantic equality of two basic blocks. Instantiating the scheme, the
optimizations can simply be written as triples consisting of two code sequences and an
applicability condition. We apply the scheme to two different machine architectures, a
stack machine (for intermediate code) consisting of more than 50 instructions and a
PDP-11 like two-address machine with several addressing modes. For both machines a
number of peephole optimizations are formalized and verified. The purpose of the scheme
is to provide a tool for simplifying the verification and administration burden.

We choose the PVS specification and verification system [9] in order to have ade-
quate system support. Its language is based on a higher-order logic with a rich type
system including dependent types and semantic subtypes. In addition, it provides tools
for analyzing, modifying and documenting theories and proofs together with a powerful
sequent calculus based interactive prover. A tutorial [1] provides a detailed comprehen-
sive introduction to PVS. Powerful user-defined proof strategies can greatly improve the
level of automation. We have defined some strategies which enable an almost automatic
verification of the given transformations. Finally, we hope that this work also serves as
an interesting example illustrating the representation of generic specifications in PVS.

The paper is organized as follows: in the following we give an overview of related work.
The next section describes the generic peephole optimization scheme. Section 3 and 4

'This is only true in cases where no side effects such as a change of the condition codes are considered
or if such a modification is irrelevant for the next machine instruction.

present the formalization of a stack machine and a two-address machine, respectively,
together with a set of peephole optimizations. Some of the PVS theories are given in the
appendix. The complete set of theories and proof scripts are available from the authors.

Related Work

The literature on the construction of peephole optimizers is extensive; however, to the
best of our knowledge, no formal treatment of peephole optimization has been published
so far.

One of the first machine-independent peephole optimizers has been developed by Da-
vidson and Fraser [2]. Their idea is to simulate pairs of consecutive instructions and
replace them, where possible, with an equivalent single instruction. The machine is des-
cribed by register and memory transfers. Their optimizer is enhanced further by looking
for logically adjacent instructions instead of lexically adjacent ones using a simple data-
flow analysis about which resources are accessed or modified by an instruction pair [3],
and by the optimizer automatically generating rules from a test set [4].

Tanenbaum’s peephole optimizer [11] operates on a stack machine based intermediate
code suitable for imperative languages and several machine architectures. Its semantics is
given by a pseudo-PASCAL fragment. A large set of optimizations is given in advance in a
table including more than 100 rules (pattern/replacement pairs). We show in Sect. 3 that
some of the transformations are incorrect or lacking necessary applicability conditions.

Similar work has been carried out by D.A. Lamb [8] constructing a peephole optimizer
for VAX11/780 assembly language. Optimizations are described in a pattern language
as conditional pattern/replacement rules and an algorithmn using a “peephole window”
applies the transformations to the object code.

In [7], the automatic generation of a peephole optimizer from an architectural de-
scription of the machine is outlined which additionally performs a restricted form of
global data-flow analysis allowing optimizations across basic blocks. The application to
the MC68000 is presented. A machine is given in a Lisp based description language. One
can specify the addressing modes, the instructions by register transfer statements to-
gether with costs for time and space. Based on this architectural description the system
automatically generates optimization tables prior to the construction of the compiler.
The optimizer then uses the tables to effectively perform the optimizations. The number
of consequent instructions to be matched is restricted to two.

Another system [6] automatically generating peephole optimization rules works back-
wards, i.e. it considers each possible output instruction, decomposes it into parts (for
example, a part which modifies a register content and a second part which sets the con-
dition codes), and searches the machine description for all input instructions equivalent
to each part. In contrast to [7] this system can identify instruction sequences of arbitrary
length that are equivalent to a single instruction. In all these approaches neither a formal
machine semantics is provided nor the transformations are formally verified.

In related work on hardware verification, P. Windley uses generic schemes to verify
microprocessors [12, 13]. A microprocessor is modeled by different levels of abstraction
(for example, a macro level which reflects the programmer’s view and a micro level spe-

cifying the register-transfer level), using a generic state transition system (interpreter) to
represent each level. This hierarchical system is then verified by relating the interpreters
of subsequent levels. A microprocessor specification of each level consists mainly of four
parts:

e a representation of the state,

e a set of state transition functions for each machine instruction, (this corresponds
to the one-step interpreter described in the next section),

e a selection function which fetches the next instruction to be executed according to
the current state,

e and finally, a predicate I, the interpreter specification, relating the states before
and after the execution of an instruction.

Windley uses the HOL [5] system to represent the generic theory. He has given several
instantiations for his theory formalizing and verifying existing microprocessors. In con-
trast to Windley’s work the goal of the work described herein is not to verify existing
microprocessors but rather to provide a tool supporting the verification process of local
transformations.

2. The Generic Specification

In this section we present a generic scheme for specifying peephole optimizations. Op-
timizations are specified in a PVS theory that is parameterized by the elements that
characterize an abstract machine in a form suitable for verifying optimizations:

1. inst: the instruction set of a machine as an uninterpreted type. An instantiation of
it normally consists of a (non-recursive) abstract data type where each instruction
is given by a constructor.

2. state: the machine state, again as an uninterpreted type. Usually, the state is
instantiated to a tuple or record type consisting of the register set, the program
counter, the memory, status registers, and flags.

3. admissible: for each instruction, a predicate that constrains the set of states to
which the instruction is applicable. For example, applying a store instruction of a
stack machine, which stores the top element of the stack into memory, requires the
stack to be nonempty. In PVS we represent admissible as a higher-order function
from instructions to the domain of predicates over states.

4. one_step_ip: For the purpose of local optmizations it suffices to give the semantics
of the machine in terms of a one-step interpreter which defines the semantics
for each instruction as a state transition function. Hence, we do not provide a

description of the machine’s global behavior. ? The concept of semantic subtypes
is used to formalize the condition that the one-step interpreter is only defined for
states which are admissible for the specific instruction. This elegantly avoids the
use of partial functions and explicit error handling.

5. jump_inst?: a predicate on instructions that identifies conditional and uncondi-
tional jumps. This is needed since the local optimizations considered here are
concerned only with linear code sequences, i.e. code sequence without jumps (basic

blocks).

These parameters are expressed as formal parameters of a PVS theory (pred[state] is
an abbreviation for the type [state -> booll):

pho_scheme
[inst : TYPE,
state : TYPE,
admissible : [inst -> pred[statel],
one_step_ip : [o:inst, s:{sl:state | admissible(o)(s1)} -> state],
jump_inst? : pred[inst]] : THEORY

BEGIN
[... theory body (see below) ...]
END pho_scheme

The following definitions based on the abstract machine description above constitute

the theory body of pho_scheme.

As stated above the concept of a basic block is essential when applying local optimiza-
tions. In order to ensure their correctness they can generally be carried out only within
a basic block. A program is a sequence of instructions,

prg_seq : TYPE = list[inst]

and a basic block is a sequence of instructions that has only one entry point and whose
transfer mechanism between statements is that of proceeding to the next statement.
Here, in order to compare the semantics of two basic blocks it suffices to model a basic
block as a sequence of instructions where at most the last instruction is a jump, i.e. a
return from a subroutine, or a jump to the next basic block.

basic_block?(l:prg_seq) : RECURSIVE bool =
CASES 1 OF
null : true,
cons(p1,11) : IF null?(1l1) THEN true
ELSE not(jump_inst?(pl)) & basic_block?(11) ENDIF
ENDCASES
MEASURE (LAMBDA (1l:prg_seq): length(l))

2This behavior can be defined as a repeated call of the one-step interpreter depending on the current
position of the program counter. One can easily abstract from the behavior of a specific machine. It
is a repeated run through the following phases: fetch phase, decoding phase, and execution phase,
see also [12].

In PVS only total functions are allowed. For recursive functions one has to provide a
well-founded measure for which one has to show that it decreases for each recursive call.
Here, one simply uses the length of the instruction sequence.

An interpreter for a basic block can be defined in terms of the given one-step interpreter
as a repeated execution of the one-step interpreter starting in an admissible state. A state
s is admussible for a basic block if it is admissible for the first instruction of that block.

admis_init(b:(basic_block?), s:state) : bool =
cons?(b) IMPLIES admissible(car(b))(s)

We use an axiomatic specification of the basic block interpreter since we only want to
specify the behaviour of the interpreter in admissible states.

bb_ip : [bb : (basic_block?), s : state —-> state]

bb_ip_cons : AXIOM
cons?(b) & admis_init(b, s)
IMPLIES bb_ip(b, s) = bb_ip(cdr(b), one_step_ip(car(b), s))

bb_ip_null : AXIOM bb_ip(null:(basic_block?), s) = s

Semantic equality of two basic blocks can then be defined by means of bb_ip. Two
basic blocks are (semantically) equal (eq_bb) with respect to an applicability condition
if the interpreter when started in a state which is admissible for both blocks and where
the applicability condition holds results in the same state.

eq_bb(b1,b2: (basic_block?), start_cond:pred[state]) : bool =
(FORALL (s:{sl:state | admis_init(bl,s1) & admis_init(b2,s1) & start_cond(s1)}):
bb_ip(bl,s) = bb_ip(b2,s))

Optimizations on basic blocks can be considered as conditional rewrite rules. We
represent them as triples of type opt_pat consisting of a given basic block (the pattern),
the optimized basic block (the replacement), and the applicability condition.

opt_pat : TYPE = [(basic_block?), (basic_block?), pred[statell

A transformation is correct (correct_opt_pat?) if the pattern and the replacement are
equal according to the given precondition. A null sequence (null_seq?) is a redundant
basic block with respect to a given precondition, i.e. this block can be replaced by the
empty code sequence, and type proved_pattern comprises all correct transformations.

correct_opt_pat?(op:opt_pat): bool = eq_bb(proj_1i(op), proj_2(op), proj_3(op))

null_seq?(pat:{bb:(basic_block?) | cons?(bb)}, start_cond : pred[state]):bool =
correct_opt_pat?(pat, null, start_cond)

proved_pattern : TYPE = (correct_opt_pat?)

In the following we show that applying a transformation within a basic block under
some applicability condition results in a semantically equivalent basic block. In order to
prove this we need the notion of an exzecutable basic block. A basic block is executable if,
when interpreting the block starting in a state where some condition holds, each inter-
mediate state is admissible for the instruction to be applied. The predicate executable?
is based on an auxiliary predicate ex_aux? which is defined recursively on the structure

of basic blocks:

ex_aux?(b:(basic_block?), s:state) : RECURSIVE bool =
CASES b OF
null : true,
cons(ins, rest) : admissible(ins)(s) & ex_aux?(rest, one_step_ip(ins, s))
ENDCASES
MEASURE length(b)

executable?(b: (basic_block?), app_cond:pred[state]) : bool =
FORALL (s : {sl:state | app_cond(s1)}): ex_aux?(b, s)

An optimization can be applied within a basic block bb w.r.t. some condition if there
exists a “match” of the pattern within bb and this match is valid:

apl?(op:proved_pattern, bb:(basic_block?), ac:pred[state]) : bool =
EXISTS (fp, 1lp : (basic_block?)):
bb = append(fp, append(proj_i(op), 1lp)) & applicable?(op, fp, lp, ac)

A match is valid (predicate applicable?) if
e both the given and the transformed block are basic blocks,
e fp is executable w.r.t to the initial condition ac, and

e interpreting £p up to the beginning of the pattern results in a state which satisfies
the applicability condition of the transformation and in which both the pattern
and the replacement are executable:

applicable?(op:proved_pattern, fp, lp:(basic_block?), ac:pred[state]):bool =

LET pat = proj_1(op), rep = proj_2(op), app_cond = proj_3(op)

IN basic_block?(append(fp, append(pat, 1p))) &
basic_block?(append(fp, append(rep, 1lp))) &
executable?(fp, ac) &

(FORALL (s: {si:state | ac(s1)}):
LET res_fp = bb_ip(fp, s)
IN app_cond(res_£fp)
& executable?(pat, (LAMBDA (st:state): st
& executable?(rep, (LAMBDA (st:state): st

res_£fp))
res_fp)))

It remains to show that applying an applicable transformation within a basic block is
correct, i.e. both the given basic block and the transformed one are semantically equal
with respect to some initial condition ac.

applicable_equal : THEOREM
applicable?(op, fp, lp, ac) IMPLIES
eq_bb(append(fp, append(proj_1i(op), 1p)),
append(fp, append(proj_2(op), 1p)), ac)

The full theory is provided in appendix A. Typechecking this theory results in a
number of type correctness conditions (TCC’s) which have to be discharged. To manage
the proof of applicable_equal, we have introduced some additional lemmas. All TCC’s
and lemmas have been successfully discharged, the proof scripts are available by the
authors.

In addition, we provide some proof strategies for this generic theory. A user defined
proof strategy consists of basic proof rules together with commands for repeating a com-
mand sequence on different branches, rewriting definitions and theories. The first one,
called bb, proves a program sequence to be a basic block. It simply expands the recursive
definition. The second one pho proves the correctness of a transformation by rewriting
definitions, making type constraints explicit, and applying PVS decision procedures, see
appendix B for more details. Most of the transformations given in the next sections are
automatically proved using these strategies, some of them require a small amount of
additional user interaction.

3. A Stack Machine (SM)

In this section we formally represent a stack machine for intermediate code adapted from
[11]. The machine consists of a stack where all arithmetic instructions are carried out,
i.e. the operands are fetched from top of the stack and the result is put back to the stack.
The machine does not have general registers. Besides arithmetic instructions it provides
instructions for loading operands onto the stack and popping them off into memory
using several addressing modes (offset, indirect, parameter, direct, ...). Furthermore,
instructions for conditional and unconditional jumps, for shifting operands, and special
purpose instructions for incrementing, memory clearing, comparisons and block moves
are provided. Our formalization includes 56 of 59 instructions. We only have omitted
two instructions for rotating bits and the call and return from a procedure. Since all
memory locations have to be even, we model ramadr, the type of memory locations, as
the type of even natural numbers. Memory locations can hold values of type value, and
the program counter can have values of type romadr. Here, we use integer arithmetic.

ramadr : TYPE
romadr : TYPE
value : TYPE

{n:nat | even?(n)}
nat

int

It is convenient, though not necessary, to represent the instruction set as an abstract
data type (sm_inst) since one automatically obtains a full PVS theory (after type-
checking has been carried out) together with useful axioms such as the disjointness
of the constructors. In addition, PVS’s rewriting mechanism efficiently works on ab-
stract data types. The instruction lop(n), for example, indirectly loads the contents of

a memory cell n onto the stack, and bra, beq denote an unconditional and conditional
branch, respectively.

sm_inst : DATATYPE
BEGIN
lop(lop_adr:ramadr) : lov_inst?
beq(beq_adr:romadr) : beq_inst?
bra(bra_adr:romadr) : bra_inst?
L...]
END sm_inst

A machine state consists of the stack, the memory, and the program counter. We model
the memory as a function from memory locations (ramadr) to values and the state as
a record with selector fields mem, stk, pc.®> We use the theory of parameterized stacks
which is predefined in the PVS prelude library.

memory = [ramadr -> value]
sm_state = [# mem : memory, stk : stack[value], pc : romadr #]

In addition, for each instruction we have to constrain the states in which it is appli-
cable. For example, the sti(k) instruction for storing (k div 2) elements from stack
into memory requires the stack consisting of at least (k div 2) + 1 elements (predicate
n_stack?). In addition, it must be ensured that the top element of the stack denotes
a valid memory address, i.e. it has to be an even natural number. The higher-order
function sm_admissible is given by a case analysis on the instruction type:*

sm_admissible(p:sm_inst) : pred[sm_state] =
CASES p OF
add : LAMBDA (s:sm_state): two_stack?(stk(s)),
sti(k) : LAMBDA (s:sm_state):
nonemptystack?(stk(s)) & n_stack?(pop(stk(s)), div2(k)) &
valid_mem_adr?(top(stk(s))),
L...]
ENDCASES

The semantics of SM is given by a one-step interpreter which defines the semantics of
each instruction separately. Instructions with similar behavior can be grouped together
into instruction classes and their effect can then be defined by means of higher-order
functions. For example, all binary machine operations (add, sub, mul, xor, ...) have a
similar behavior since they fetch two operands from the stack, apply the binary operation
and push the result back onto the stack:® ©

FNote that in PVS selection of field mem from a state s is written as mem(s) in contrast to the more
usual s.mem notation.

*Predicate two_stack? is true if a stack contains at least two elements.

5We omit modelling the incrementation of the program counter since within a basic block all instructions
are executed sequentially. Only the final value of the pc is relevant: either the program counter points
to the beginning of the next block or to some target label of a jump.

%In PVS the WITH expression is used to update a record at a specific field.

binop_sem(s : {sl1 : sm_state | two_stack?(stk(s1))},
bop : [value, value -> valuel]) : sm_state =
LET t1 = top(stk(s)), t2 = top(pop(stk(s)))
IN s WITH [(stk) := push(bop(t2,t1), pop(pop(stk(s))))]

Similarly, the effect of unary operations can be defined. Conditional branch instruc-
tions beq(k), bge(k), ..., bne(k) pop two operands from the stack, compare them
using the associated relation rel, and increment the program counter by k if the relation
is true:

branch_sem(s : {s1 : sm_state | two_stack?(stk(s1))Z},
rel : [value, value -> booll, k:romadr) : sm_state =
LET t1 = top(stk(s)), t2 = top(pop(stk(s))),
newpc = IF rel(t2,t1) THEN pc(s) + k ELSE pc(s) ENDIF
IN s WITH [(stk) := pop(pop(stk(s))), (pc) := newpc]

Analogously, higher-order functions can be defined for compare instructions, and
“branch-zero” instructions. The interpreter is then defined by means of these functions.

sm_ip(p:sm_inst, s:{st:sm_state | (sm_admissible(p))(st)}) : sm_state =
CASES p OF
add : binop_sem(s, (LAMBDA (vi,v2:value): vl + v2)),
beq(k) : branch_sem(s, (LAMBDA (vi,v2:value): vl = v2), k)
sti(k) : sti_aux(s WITH [(stk) := pop(stk(s))], top(stk(s)), div2(k)),
L...]
ENDCASES

The meaning of sti(k) is defined using an auxiliary recursive function sti_aux which
stores (k div 2) words starting at base address top(stk(s)).

sti_aux(s:sm_state, base:ramadr,
num:{nil:nat | n_stack?(stk(s), nl1)}) : RECURSIVE sm_state =

IF (num = 0) THEN s

ELSE

sti_aux(s WITH [(mem)(base + (2 * num) - 2) := top(stk(s)),

(stk) := pop(stk(s))], base, num - 1)
ENDIF
MEASURE num

3.1 Optimizations on the Stack Machine

In [11] more than 100 transformations are given in a pattern/replacement table. We have
adopted nearly all transformations, formalized and proved them correct or falsified them.
The optimizations are represented as lemmas within PVS theory sm_pho. To utilize the
generic specification we have to instantiate it with the specific stack machine values:

e sm_inst, the (abstract data type) of instructions,

e sm_state, the record, consisting of the memory, the stack and the program counter,

e sm_admissible, the admissible functional,
e sm_ip and
e a predicate which denotes SM’s conditional and unconditional jumps.

The head of the theory looks as follows:

sm_pho : THEORY
BEGIN
IMPORTING stack_machine,
pho_scheme[sm_inst, sm_state, sm_admissible, sm_ip,
(LAMBDA (oc:sm_inst): beq_inst?(oc) OR
zeq_inst7?(oc)
[...D)]
[...]
END sm_pho

Tanenbaum has grouped the optimizations into ten different groups. We pick out some
characteristic transformations and illustrate their formalization and verification. Most of
them can be proved automatically using the peephole optimization strategy pho. Some
of them require some additional minor proof steps. However, the main aspect is that we
have discovered some transformations being incorrect, and the fact that preconditions
which must be established to make the transformation valid have not been provided.

e Constant Folding”

add_fold : LEMMA

correct_opt_pat?((: loc(a), loc(b), add :),
(: loc(a + b) :),
true)

Loading constant a and b onto the stack and applying add can be equivalently
replaced by loading constant a + b. Here, the applicability condition is given by
the constant true function. ® Another transformation of this group, for example,
replaces a negation followed by an addition by an equivalent subtraction.

neg_add : LEMMA
correct_opt_pat?((: neg, add :),
(: sub :)
true)

We have formalized 14 transformations of this group all of them can be proved
automatically using the defined proof strategy pho.

“"The (: ... :) notation is used to represent lists.
8 Actually, we use type conversions. Since “true” does not have the expected type [sm_state -> bool]
a conversion function is applied.

10

e Operator Strength Reduction
This group is concerned with the replacement of arithmetic operations by more
efficient ones. For example, the replacement of multiplication by two by an efficient
left shift operation:

mult_shift2 : LEMMA
correct_opt_pat?((: loc(2), mul :),
(: loc(1), shl :),
nonemptystack?)

Here, the transformation can only be applied in states in which the stack consists
of at least one element. All seven transformations of this group can be proved
automatically by pho.

e Null sequences
This group mainly deals with redundant instruction sequences. For instance, ad-
ding zero is redundant:

add_zero : LEMMA
null_seq?((: loc(0), add :), nonemptystack?)

The proof can be established by pho plus an applicability of the stack push-eta-
axiom given in the ADT-theory of stacks, and an applicability of the extensionality
axiom for functions.

— We have formalized 13 transformations, 6 can be proved by pho, 7 require one
or two additional steps.

e Combined Moves

The combined move group tries to combine consecutive push or pop operations into
a single one. In this group we have discovered some errors, important preconditions
are missing. The transformation below is only valid if the locations given by m and n
are distinct. Omitting the preconditions would result in memory writing conflicts.
For instance, trying to prove the transformation stv_lov_stv with strategy pho
the prover stops in a subgoal which can only be solved if the locations given by
m and n are distinct. We have added this precondition, and then have proved the
transformation correct.

stv_lov_stv : LEMMA
correct_opt_pat?((: stv(n), lov(m), stv(nt+2) :),
(: lov(m), sdv(n) :),
n /= m)

Transformation lav_blm4 which converts block move instructions to indirect loads
and stores requires the stack to be nonempty and its top element must be distinct
to location n + 2. This precondition is also missing in [11].

11

lav_blm4 : LEMMA
correct_opt_pat?((: lav(n), blm(4) :),
(: 1loi(4), sdv(n) :),
(LAMBDA (s:sm_state): nonemptystack?(stk(s)) &
top(stk(s)) /=n + 2))

— We have formalized all 19 transformations, have corrected two of them, 15 can
be proved by pho, 4 require some additional properties about the auxiliary
functions sti_aux, loi_aux.

e Commutative Laws

lov_lov_beq : LEMMA
correct_opt_pat?((: lov(n), lov(n-2), beq(k) :),
(: ldv(n-2), beq(k) :),
n >= 2)

This transformation is valid for all jump instructions.

— There are 4 transformations, two comprise jumps, so they require an additio-
nal case analysis, two can be proved automatically.

e Indirect Moves
The transformations of this group are concerned with replacing indirect moves by
more efficient direct ones. For example,

lav_loi : LEMMA
correct_opt_pat?((: lav(n), loi(2) :),
(: lov(n) :),
true)

— We have formalized all 21 rules, two of them were incorrect, (number 78 and
79), all others can be proved automatically using pho.

e Comparison
These rules deal with comparisons followed by a conditional jump.

tlt_zeq : LEMMA
correct_opt_pat?((: tlt, zeq(k) :),
(: zge(k) :),

true)

— We have formalized 4, all of which can be proved by pho plus an additional
case analysis.

e Special Instructions
These rules deal with the replacement of an instruction sequence by a special
purpose instruction. For example, addition by one can be replaced by an increment
instruction.

12

loci_add : LEMMA
correct_opt_pat?((: loc(1l), add :),
(: inc :),
true)

— We have formalized 19 transformations, 14 can be proved by pho, the others
consist of conditional branches and hence require an additional simple case
analysis.

e DUP instruction, Reordering
The DUP group avoids refetching of an operand that is already on the stack, while
the reordering group simply reorders the instructions so that other transformations
can be applied more easily. For example,

stv_lov : LEMMA
correct_opt_pat?((: stv(n), lov(n) :),
(: dup, stv(n) :),
true)

— We have formalized all 8 transformations, 7 of them can be proved simply by
pho, one requires an additional application of the stack-push-eta axiom.

Summarizing the results we have formalized and proved correct 108 transformations, 83
of them can be automatically proved by strategy pho, most of the others only require a
small additional interaction like for example, a simple case-analysis if conditional jumps
are involved. However, the main aspect is that we have discovered some transformations
being incorrect and the fact that preconditions which must be established to make the
transformations valid have not been provided.

4. A Two-Address Machine (TAM)

The second machine for which we formalize and verify optimizations is a PDP-11 like
two-address machine adapted from [2]. It has eight general purpose registers, and the
instruction set consists of compare instructions (test, cmp), transfer instructions (mov),
arithmetic instructions (add, sub, inc, dec), shift instructions (asl, asr), and con-
ditional and unconditional jumps (bra, beq). The machine provides several addressing
modes:

e Register: R(n), the operand is given in register n.

e Autoincrement: (R(n))+, the operand is given in memory where register n holds
the address. The contents of register n is automatically incremented by two.

e Autodecrement: =(R(n)), decrements first the contents of register n. The operand
is given in memory at the (decremented) address.

13

o Index-Address: x(R(n)), the operand is given in memory at an indexed address
with base x and register n holds the offset.

e Simple Adress: x, the operand is given in memory at location x.
e Immediate: #x, denotes the constant x.

The addressing modes are conveniently represented as an abstract data type Mode. The
register file is encoded as a function which assigns values to register numbers. We again
use integer arithmetic.

regnumber : TYPE = {n : nat | n <= 7}
reg_file : TYPE = [regnumber -> valuel
memory : TYPE = [adr -> value]

Mode : DATATYPE

BEGIN
reg(reg_num : regnumber) : reg_word?
autoinc(ai_num : regnumber) : autoinc_word?
autodec(ad_num : regnumber) : autodec_word?
index_adr(ind_adr : adr, ind_num : regnumber) : index_word?
single_adr(s_adr : adr) : single_adr_word?
lit_value(lit_v : value) : lit_value_word?

END Mode

All modes can be referenced directly or indirectly. This can be encoded as a hierarchical
data type using type Mode. The type of available addressing modes is then given by
datatype AMode:

AMode : DATATYPE
BEGIN
direct(w_dir : Mode) : direct?
indirect(w_ind : Mode) : indirect?
END AMode

The machine state is represented as a record consisting of the memory, the register
file, the status register which is set according to the result of the instruction, and the
program counter.

status_value : TYPE = {i:integer | (1 = -1) OR (i = 0) OR (1 = 1)}

set_status(i:value): status_value =
IF (i > 0) THEN O ELSIF (i = 0) THEN 1 ELSE -1 ENDIF

tam_state : TYPE =
[# mem : memory, reg : reg_file, flag : status_value, pc : romadr #]

Memory addresses are positive while values can also be negative. We must ensure
that all referenced memory addresses are positive. Hence we need a predicate for each

14

mode constraining the admissible references. Again we use a functional admissible word

which, when given an addressing mode yields a predicate on states. For example, a correct
autoincrement reference requires register n to hold a positive integer.

admissible_word(w:AMode) : pred[tam_state] =
CASES w OF
direct(wl)
CASES w1l OF
[...]
autoinc(n) : (LAMBDA (s:tam_state): reg(s)(n) >= 0),
[...]
ENDCASES,
indirect(wil)
[...]
ENDCASES

The semantics of the addressing modes and references is given by function AMode_sem
which fetches an operand in an admissible state from the given reference. This is again
an example how to avoid explicit error handling using PVS’s subtype mechanism.

AMode_sem(w:AMode, s:{sl:tam_state | (admissible_word(w))(s1)}) : value
CASES w OF

direct(wl)
CASES w1 OF
C...]
autoinc(n) : mem(s)(reg(s)(n)),
C...]
ENDCASES,
indirect(wl)
CASES w1 OF
C...]
autoinc(n) : mem(s) (mem(s)(reg(s)(n))),
C...]
ENDCASES
ENDCASES

As before, we encode the instruction set as an abstract data type.

tam_inst : DATATYPE
BEGIN
tst(w_tst : (not_dir_immed_mode?)) : tst_inst?
mov(w_movl : AMode, w_mov2 : (not_dir_immed_mode?)) : mov_inst?
add(w_addl : AMode, w_add2 : (not_dir_immed_mode?)) : add_inst?
[...]
END tam_inst

Since not all addressing modes are allowed with all instructions we have to restrict
the possible modes using a predicate

15

not_dir_immed_mode?(w:AMode) : bool =
CASES w OF
direct(wl)
CASES w1l OF
lit_value(i) : false
ELSE true
ENDCASES,
indirect(wl) : true
ENDCASES

For example, in a mov(a,b) operation where b gets the value of a it is impossible that
b is a constant.

Instructions can only be executed in admissible states where each operand has to be
an admissible reference.

tam_admissible(i:tam_inst) : pred[tam_state] =
CASES i OF
tst(op) : (LAMBDA (s:tam_state): admissible_word(op)(s)),

...]
ENDCASES

The semantics of binary and unary operations again can be defined by means of
higher-order functions, for example

binop_sem(opl:AMode, op2:(not_dir_immed_mode?),
s:{sl:tam_state | admissible_word(opl)(sl) & admissible_word(op2)(s1)},
bop : [value, value -> value]) : tam_state =
LET resl = AMode_sem(opl,s),
res2 = AMode_sem(op2,s),
newstatus = set_status(bop(resl, res2)),
res = inst_sem_aux(op2, s, bop(resi, res2))
IN res WITH [(flag) := newstatus]

The auxiliary function inst_sem aux loads a register or updates the memory at the
referenced location with a given value.

inst_sem_aux(w: (not_dir_immed_mode?),
s:{sl:tam_state | (admissible_word(w))(s1)Z},
res:value) : tam_state =

CASES w OF
direct(wi)
CASES w1l OF
reg(n) : s WITH [(reg)(n) := res],
[...]
ENDCASES,
indirect(wl)
CASES w1l OF
reg(n) : s WITH [(mem)(reg(s)(n)) := res],
[...]

16

ENDCASES
ENDCASES

Function tam_ip then specifies a one-step interpreter for TAM.

tam_ip(i:tam_inst, s:{sl:tam_state | tam_admissible(i)(s1)}) : tam_state =
CASES i OF
tst(op) : LET result = AMode_sem(op,s)
IN s WITH [(flag) := set_status(result)],
add(opl, op2) : binop_sem(opl, op2, s, (LAMBDA (vi,v2:value): vi + v2)),

...]

ENDCASES

4.1 Optimizations on TAM

There are only a few transformations given in [2]. One, for example, deals with the de-
crementation of a register using the autodecrement mode. Consider the transformation:

SUB #2, Ri ; CLR ©ORi -——=> CLR -(Ri)

First decrementing the contents of register i and then clearing the memory at this
location can more efficiently be done by a single instruction using the auto decrementing
mode. To formalize this transformation we first have to instantiate the general scheme
with the specific TAM values:

inst <-- tam_inst

state <-- tam_state

admissible <-- tam_admissible

one_step_ip <-— tam_ip

jump_inst? <-- LAMBDA (oc:tam_inst): bra_inst?(oc) OR beq_inst?(oc)

The above transformation can then be represented by

sub_clr : LEMMA FORALL (n:regnumber):

correct_opt_pat?(
(: sub(direct(lit_value(2)), direct(reg(n))), clr(indirect(reg(n))) :),
(: clr(direct(autodec(n))) :),
true)

The proof is by applying the pho strategy and expanding the auxiliary function
inst_sem_aux. We have added a few more optimizations. Adding zero to the content
of a register is redundant, i.e. a null sequence. This is not true in general since each
instruction changes the value of the status register. In order to make the transformation
valid the status value of the initial state must correspond to the status value of the
register.

17

add_zero : LEMMA FORALL (n:regnumber):
null_seq?((: add(direct(lit_value(0)), direct(reg(n))) :),
LAMBDA (s:tam_state): flag(s) = set_status(reg(s)(n)))

The proof is by pho plus an application of the extensionality axiom. Another op-
timization step deals with the equality of operands. Comparing two equal operands
(independent of the addressing modes involved) followed by a conditional branch can be
replaced by a simple unconditional branch if in the initial state the status value is set
to one.

cmp_bra : LEMMA FORALL (op:AMode), (a:romadr):
correct_opt_pat?((: cmp(op, op), beq(a) :),
(: bra(a) :),
(LAMBDA (s:tam_state): flag(s) = 1))

Here, the proof is by a call of strategy pho.

5. Concluding Remarks

We have outlined how to represent a general scheme for specifying and verifying local
optimizations, how to instantiate it to specific machines and how to encode and prove
correct a set of local transformations. By detecting some errors, we have demonstrated
the importance of a rigorous formal treatment. The PVS system has turned out to be a
sutiable tool; in contrast to HOL, for example, it is possible to express abstract schemes
directly by means of parameterized theories for which domain specific strategies can be
defined. The general scheme can readily be utilized for optimizations on other machines.
For example, in addition to the examples given in this paper, we have adopted parts
of the formalization of the Tamarack microprocessor given by Windley [10] and have
verified some peephole optimizations for Tamarack.

The work presented here illustrates how generic specification and verification can be
dealt with in PVS. It is part of a larger effort on constructing verifiably correct compilers;
that work makes essential use of similar generic techniques.

References

[1] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduc-
tion to PVS. Technical report, Computer Science Laboratory, SRI International,
Menlo Park CA 94025, USA, March 1995. To presented at WIFT’95: Workshop on
Industrial-Strength Formal Specification Techniques, Boca raton, Florida.

[2] Jack W. Davidson and Christoper W. Fraser. The Design and Application of a
Retargetable Peephole Optimizer. ACM Transactions on Programming Languages
and Systems, 2(2):191-202, April 1980.

18

[3]

[13]

Jack W. Davidson and Christoper W. Fraser. Register Allocation and Exhaustive
Peephole Optimization. Software — Practice & Experience, 14(9):857-865, Septem-
ber 1984.

Jack W. Davidson and Christoper W. Fraser. Automatic Inference and fast In-
terpretation of Peephole Optimization Rules. Software — Practice & FExperience,
17(11):801-812, November 1987.

Michael J. C. Gordon. A Proof Generating System for Higher-Order Logic. In
P. Subrahmanyam G. Birtwistle, editor, VLSI Specification, Verification and Syn-
thesis, pages 73-128. Kluwer Academic Publishers, Boston, 1988.

P. B. Kessler. Discovering Machine Specific Code Improvements. Sigplan, 21(7):249—
254, 1986.

R. R. Kessler. Peep - an Architectural Description Driven Peephole Optimizer.
Sigplan, 19(6):106-110, June 1984.

David Alex Lamb. Construction of a Peephole Optimizer. Software — Practice and
Fxperience, 11(6):639-647, June 1981.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages T48-752,
Saratoga, NY, 1992. Springer-Verlag.

Michael Coe Phillip J. Windley. Microprocessor Verification: A Tutorial. Tech-
nical Report LAL-92-10, University of Idaho, Department of Computer Science,
Laboratory for Applied Logic, 1992.

Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using Pee-
phole Optimization on Intermediate Code. ACM Transactions on Programming
Languages and Systems, 4(1):21-36, jan 1982.

Phillip J. Windley. A Theory of Generic Interpreters. In George J. Milne and Lau-
rence Pierre, editors, Correct Hardware Design and Verification Methods, volume
683 of Lecture Notes in Computer Science, pages 122-134. Springer-Verlag, May
1993.

Phillip J. Windley. Specifying Instruction-Set Architectures in HOL: A Primer. In
Thomas F. Melham and Juanito Camilleri, editors, Proceedings of the 7th Interna-
tional Workshop on the Higher-Order Logic Theorem Proving and Its Applications,
volume 859 of Lecture Notes in Computer Science, pages 440-455. Springer-Verlag,
September 1994.

19

A. The Peephole Optimization Theory

pho_scheme [inst : TYPE+,
state : TYPE+,
admissible : [inst -> pred[statel],
one_step_ip : [o:inst,
s:{sl:state | admissible(o)(s1)} —> statel,
jump_inst? : [inst -> bool]] : THEORY

prg_seq : TYPE = list[inst]

null_prg : prg_seq = nulll[inst]

basic_block?(l:prg_seq) : RECURSIVE bool =
CASES 1 OF
null : true,
cons(p1,11) : IF null?(11) THEN true ELSE
not(jump_inst?(pl)) & basic_block?(11) ENDIF
ENDCASES
MEASURE length(1)

admis_init(b:(basic_block?), s:state) : bool =
cons?(b) IMPLIES admissible(car(b))(s)

b : VAR (basic_block?)
s : VAR state

Yom————= the interpreter for bb’s ———————————————————
bb_ip : [bb : (basic_block?), s : state —-> state]

bb_ipl : AXIOM cons?(b) & admis_init(b, s) IMPLIES
bb_ip(b, s) = bb_ip(cdr(b), one_step_ip(car(b), s))

bb_ip2 : AXIOM bb_ip(null:(basic_block?), s) = s

% ———————— semantic equality of two bb’s --—————--—————————————————

eq_bb(b1,b2: (basic_block?), start_cond:pred[state]) : bool =
(FORALL (s:{s1 : state | admis_init(bl,s1) & admis_init(b2,s1)
& start_cond(s)}):
bb_ip(bl,s) = bb_ip(b2,s))

20

% auxiliary function
ex_aux?(b:(basic_block?), s:state) : RECURSIVE bool =
CASES b OF

null : true,

cons(ins, rest) : admissible(ins)(s) &

ex_aux?(rest, one_step_ip(ins, s))

ENDCASES

MEASURE length(b)

executable?(b: (basic_block?), app_cond : pred[state]) : bool =
FORALL (s:{s1 : state | app_cond(s1)}): ex_aux?(b, s)

opt_pat : TYPE =
[1hs : (basic_block?), rhs : (basic_block?), ac : pred[statel]

Y- correct optimization pattern --———----———————————————————

correct_opt_pat?(op:opt_pat): bool =
eq_bb(proj_1(op), proj_2(op), proj_3(op))

null_seq?(pat:(basic_block?), start_cond : pred[state]) : bool =
correct_opt_pat?(pat, null_prg, start_cond)

proved_pattern : TYPE = (correct_opt_pat?)

proved_pattern_lst : TYPE = list[proved_pattern]

11, 12 : VAR prg_seq

bb, bl, b2, b3, 1, r, fp, 1lp : VAR (basic_block?)
ac,c : VAR pred[state]

op : VAR proved_pattern

% —-- auxiliary lemmas ————————— === ==

sublist_is_bb : LEMMA
basic_block?(append(11,12)) IMPLIES basic_block?(1l1) & basic_block?(12)

bb_app : LEMMA
executable?(bl, ac) & bb = append(bl,b2) & ac(s)
IMPLIES
bb_ip(bb, s) = bb_ip(b2, bb_ip(bl, s))

21

bb_app3 : LEMMA
executable?(bl, ac) & bb = append(bl, append(b2, b3)) &
ac(s) & executable?(b2, (LAMBDA (st:state): st = bb_ip(bl, s)))
IMPLIES
bb_ip(append(bl, append(b2, b3)), s) =
bb_ip(b3, bb_ip(b2, bb_ip(bl, s)))

bb_eq : LEMMA
executable?(bl, ac) & bb = append(bl, append(l, b2))
& ac(s) & c(bb_ip(bl, s))
& executable?(1l, (LAMBDA (st:state): st = bb_ip(bl, s)))
& executable?(r, (LAMBDA (st:state): st = bb_ip(bl, s)))
& basic_block?(append(bl, append(r, b2)))
& eq_bb(l, r, c)
IMPLIES bb_ip(bb, s) = bb_ip(append(bl, append(r, b2)), s)

applicable?(op:proved_pattern, fp, lp:(basic_block?),
ac:pred[state]) : bool =
basic_block?(append(fp, append(proj_1(op), 1p))) &
executable?(fp, ac) &
basic_block?(append(fp, append(proj_2(op), 1p))) &
(FORALL (s:{sl : state | ac(s1)}):
LET res_fp = bb_ip(fp, s)
IN proj_3(op)(res_=fp)
& executable?(proj_1(op), (LAMBDA (st:state): st = res_fp))
& executable?(proj_2(op), (LAMBDA (st:state): st = res_fp)))

apl?(op:proved_pattern, bb:(basic_block?), ac:pred[state]) : bool =
EXISTS (fp, 1lp : (basic_block?)):
bb = append(fp, append(proj_1i(op), 1p))
& applicable?(op, fp, lp, ac)

applicable_equal : THEOREM
applicable?(op, fp, lp, ac)
IMPLIES
eq_bb(append(fp, append(proj_1i(op), 1p)),
append (fp, append(proj_2(op), 1lp)), ac)

END pho_scheme

22

B. Proof Strategies

e Strategy bb

(defstep bb ()
(then* (skosimp)
(repeat (expand '"basic_block?")))
" (bb)
strategy to prove that a machine program is a basic block."
"~%Applying bb-strategy")

e Strategy pho

(defstep pho (&optional theories rewrites exclude-theories exclude)
(then*
(skosimp)
(expand "null_seq?")
(expand "correct_opt_pat?")
(expand '"eq_bb")
(skosimp)
(install-rewrites :defs T theories rewrites exclude-theories exclude)
(auto-rewrite "bb_ipl" "bb_ip2")
(typepred "s'1")
(flatten)
(assert)
(repeat (rewrite "bb_ip2"))
(flatten)
(assert)
(apply-extensionality))
"(pho &OPTIONAL THEORIES REWRITES EXCLUDE-THEORIES EXCLUDE)
Sets up auto-rewrites from definitions in the statement,
from THEORIES and REWRITES,
and stops rewriting on EXCLUDE-THEORIES and EXCLUDE.
Then tries to prove the correctness of an optimizing pattern."
"~%Applying peephole-optimization strategy")

23

