
A Generic Speci�cation for Verifying

Peephole Optimizations�

A� Dold� F� W� von Henke� H� Pfeifer� H� Rue�

Abt� K�unstliche Intelligenz

Fakult�at f�ur Informatik

Universit�at Ulm

Ulmer Informatik�Berichte

Nr� ��	
�
December 
���

Abstract

In this paper a generic speci�cation for verifying local optimizations on
machine code �peephole optimization� using the speci�cation and veri�ca�
tion system PVS is presented� The scheme which provides useful de�nitions�
basic properties and user�de�ned proof strategies abstracts from the speci�
�c instruction set of a machine as well as from its semantics� In addition�
we formally represent a stack machine as well as a two�address machine�
The general scheme is applied to both machines and local optimizations are
formalized and veri�ed using the de�ned proof strategies�

�This research has been funded in part by the German Research Council �DFG� under project �Veri�x�



�� Introduction

Peephole optimization is generally understood as the replacement of a sequence of in�
structions by a semantically equivalent but more e�cient sequence� Consider� for exam�
ple� the addition of constant zero to the content of a register� This is obviously redundant
and can be eliminated�� Experience shows that optimizers of this kind can tremendously
improve the object code 	
� ��� �� 
� ��� especially when the code has been automati�
cally generated by a code generator� Typically� a peephole optimizer works by moving a
�window� of the size of two or three consecutive instructions through the object code�
and when a pattern is detected it is replaced by the faster sequence� Hence� a peephole
optimizer usually works locally and does not incorporate global data��ow knowledge of
the machine program� However� some peephole optimizer are extended to consider a
restricted form of global optimization 	
��
In this paper� we present a generic scheme for formally verifying peephole optimiza�

tions and use this scheme to prove correct a set of peephole optimizations for di�erent
machines� Although local optimization seems to be an easy task �everybody would ac�
cept the �add zero� transformation given above�� we demonstrate the importance of a
rigorous formal treatment having detected some errors in existing approaches� and ma�
king necessary applicability conditions explicit� We show that omitting these conditions
would result in incorrect transformations� Our scheme is generic in the sense that we
abstract from a speci�c machine architecture where the optimizations are carried out�
It consists of an abstract machine description and a number of de�nitions based on
this description useful for the veri�cation of local transformations such as the concept
of basic blocks and semantic equality of two basic blocks� Instantiating the scheme� the
optimizations can simply be written as triples consisting of two code sequences and an
applicability condition� We apply the scheme to two di�erent machine architectures� a
stack machine �for intermediate code� consisting of more than �� instructions and a
PDP��� like two�address machine with several addressing modes� For both machines a
number of peephole optimizations are formalized and veri�ed� The purpose of the scheme
is to provide a tool for simplifying the veri�cation and administration burden�
We choose the PVS speci�cation and veri�cation system 	�� in order to have ade�

quate system support� Its language is based on a higher�order logic with a rich type
system including dependent types and semantic subtypes� In addition� it provides tools
for analyzing� modifying and documenting theories and proofs together with a powerful
sequent calculus based interactive prover� A tutorial 	�� provides a detailed comprehen�
sive introduction to PVS� Powerful user�de�ned proof strategies can greatly improve the
level of automation� We have de�ned some strategies which enable an almost automatic
veri�cation of the given transformations� Finally� we hope that this work also serves as
an interesting example illustrating the representation of generic speci�cations in PVS�
The paper is organized as follows� in the following we give an overview of related work�

The next section describes the generic peephole optimization scheme� Section � and �

�This is only true in cases where no side e�ects such as a change of the condition codes are considered
or if such a modi�cation is irrelevant for the next machine instruction�

�



present the formalization of a stack machine and a two�address machine� respectively�
together with a set of peephole optimizations� Some of the PVS theories are given in the
appendix� The complete set of theories and proof scripts are available from the authors�

Related Work

The literature on the construction of peephole optimizers is extensive� however� to the
best of our knowledge� no formal treatment of peephole optimization has been published
so far�
One of the �rst machine�independent peephole optimizers has been developed by Da�

vidson and Fraser 	
�� Their idea is to simulate pairs of consecutive instructions and
replace them� where possible� with an equivalent single instruction� The machine is des�
cribed by register and memory transfers� Their optimizer is enhanced further by looking
for logically adjacent instructions instead of lexically adjacent ones using a simple data�
�ow analysis about which resources are accessed or modi�ed by an instruction pair 	���
and by the optimizer automatically generating rules from a test set 	���
Tanenbaum�s peephole optimizer 	��� operates on a stack machine based intermediate

code suitable for imperative languages and several machine architectures� Its semantics is
given by a pseudo�PASCAL fragment� A large set of optimizations is given in advance in a
table including more than ��� rules �pattern�replacement pairs�� We show in Sect� � that
some of the transformations are incorrect or lacking necessary applicability conditions�
Similar work has been carried out by D�A� Lamb 	�� constructing a peephole optimizer

for VAX���
�� assembly language� Optimizations are described in a pattern language
as conditional pattern�replacement rules and an algorithmn using a �peephole window�
applies the transformations to the object code�
In 	
�� the automatic generation of a peephole optimizer from an architectural de�

scription of the machine is outlined which additionally performs a restricted form of
global data��ow analysis allowing optimizations across basic blocks� The application to
the MC����� is presented� A machine is given in a Lisp based description language� One
can specify the addressing modes� the instructions by register transfer statements to�
gether with costs for time and space� Based on this architectural description the system
automatically generates optimization tables prior to the construction of the compiler�
The optimizer then uses the tables to e�ectively perform the optimizations� The number
of consequent instructions to be matched is restricted to two�
Another system 	�� automatically generating peephole optimization rules works back�

wards� i�e� it considers each possible output instruction� decomposes it into parts �for
example� a part which modi�es a register content and a second part which sets the con�
dition codes�� and searches the machine description for all input instructions equivalent
to each part� In contrast to 	
� this system can identify instruction sequences of arbitrary
length that are equivalent to a single instruction� In all these approaches neither a formal
machine semantics is provided nor the transformations are formally veri�ed�
In related work on hardware veri�cation� P� Windley uses generic schemes to verify

microprocessors 	�
� ���� A microprocessor is modeled by di�erent levels of abstraction
�for example� a macro level which re�ects the programmer�s view and a micro level spe�






cifying the register�transfer level�� using a generic state transition system �interpreter� to
represent each level� This hierarchical system is then veri�ed by relating the interpreters
of subsequent levels� A microprocessor speci�cation of each level consists mainly of four
parts�

� a representation of the state�

� a set of state transition functions for each machine instruction� �this corresponds
to the one�step interpreter described in the next section��

� a selection function which fetches the next instruction to be executed according to
the current state�

� and �nally� a predicate I� the interpreter speci�cation� relating the states before
and after the execution of an instruction�

Windley uses the HOL 	�� system to represent the generic theory� He has given several
instantiations for his theory formalizing and verifying existing microprocessors� In con�
trast to Windley�s work the goal of the work described herein is not to verify existing
microprocessors but rather to provide a tool supporting the veri�cation process of local
transformations�

�� The Generic Speci�cation

In this section we present a generic scheme for specifying peephole optimizations� Op�
timizations are speci�ed in a PVS theory that is parameterized by the elements that
characterize an abstract machine in a form suitable for verifying optimizations�

�� inst� the instruction set of a machine as an uninterpreted type� An instantiation of
it normally consists of a �non�recursive� abstract data type where each instruction
is given by a constructor�


� state� the machine state� again as an uninterpreted type� Usually� the state is
instantiated to a tuple or record type consisting of the register set� the program
counter� the memory� status registers� and �ags�

�� admissible� for each instruction� a predicate that constrains the set of states to
which the instruction is applicable� For example� applying a store instruction of a
stack machine� which stores the top element of the stack into memory� requires the
stack to be nonempty� In PVS we represent admissible as a higher�order function
from instructions to the domain of predicates over states�

�� one step ip� For the purpose of local optmizations it su�ces to give the semantics
of the machine in terms of a one�step interpreter which de�nes the semantics
for each instruction as a state transition function� Hence� we do not provide a

�



description of the machine�s global behavior� � The concept of semantic subtypes
is used to formalize the condition that the one�step interpreter is only de�ned for
states which are admissible for the speci�c instruction� This elegantly avoids the
use of partial functions and explicit error handling�

�� jump inst�� a predicate on instructions that identi�es conditional and uncondi�
tional jumps� This is needed since the local optimizations considered here are
concerned only with linear code sequences� i�e� code sequence without jumps �basic
blocks��

These parameters are expressed as formal parameters of a PVS theory �pred�state� is
an abbreviation for the type �state �� bool���

pho�scheme

�inst � TYPE�

state � TYPE�

admissible � �inst �� pred�state���

one�step�ip � �o�inst� s�	s
�state � admissible�o
�s

� �� state��

jump�inst� � pred�inst�� � THEORY

BEGIN

���� theory body �see below
 ����

END pho�scheme

The following de�nitions based on the abstract machine description above constitute
the theory body of pho scheme�
As stated above the concept of a basic block is essential when applying local optimiza�

tions� In order to ensure their correctness they can generally be carried out only within
a basic block� A program is a sequence of instructions�

prg�seq � TYPE � list�inst�

and a basic block is a sequence of instructions that has only one entry point and whose
transfer mechanism between statements is that of proceeding to the next statement�
Here� in order to compare the semantics of two basic blocks it su�ces to model a basic
block as a sequence of instructions where at most the last instruction is a jump� i�e� a
return from a subroutine� or a jump to the next basic block�

basic�block��l�prg�seq
 � RECURSIVE bool �

CASES l OF

null � true�

cons�p
�l

 � IF null��l

 THEN true

ELSE not�jump�inst��p


 � basic�block��l

 ENDIF

ENDCASES

MEASURE �LAMBDA �l�prg�seq
� length�l



�This behavior can be de�ned as a repeated call of the one	step interpreter depending on the current
position of the program counter� One can easily abstract from the behavior of a speci�c machine� It
is a repeated run through the following phases
 fetch phase� decoding phase� and execution phase�
see also �
���

�



In PVS only total functions are allowed� For recursive functions one has to provide a
well�founded measure for which one has to show that it decreases for each recursive call�
Here� one simply uses the length of the instruction sequence�
An interpreter for a basic block can be de�ned in terms of the given one�step interpreter

as a repeated execution of the one�step interpreter starting in an admissible state� A state
s is admissible for a basic block if it is admissible for the �rst instruction of that block�

admis�init�b��basic�block�
� s�state
 � bool �

cons��b
 IMPLIES admissible�car�b

�s


We use an axiomatic speci�cation of the basic block interpreter since we only want to
specify the behaviour of the interpreter in admissible states�

bb�ip � �bb � �basic�block�
� s � state �� state�

bb�ip�cons � AXIOM

cons��b
 � admis�init�b� s


IMPLIES bb�ip�b� s
 � bb�ip�cdr�b
� one�step�ip�car�b
� s



bb�ip�null � AXIOM bb�ip�null��basic�block�
� s
 � s

Semantic equality of two basic blocks can then be de�ned by means of bb ip� Two
basic blocks are �semantically� equal �eq bb� with respect to an applicability condition
if the interpreter when started in a state which is admissible for both blocks and where
the applicability condition holds results in the same state�

eq�bb�b
�b���basic�block�
� start�cond�pred�state�
 � bool �

�FORALL �s�	s
�state � admis�init�b
�s

 � admis�init�b��s

 � start�cond�s

�
�

bb�ip�b
�s
 � bb�ip�b��s



Optimizations on basic blocks can be considered as conditional rewrite rules� We
represent them as triples of type opt pat consisting of a given basic block �the pattern��
the optimized basic block �the replacement�� and the applicability condition�

opt�pat � TYPE � ��basic�block�
� �basic�block�
� pred�state��

A transformation is correct �correct opt pat�� if the pattern and the replacement are
equal according to the given precondition� A null sequence �null seq�� is a redundant
basic block with respect to a given precondition� i�e� this block can be replaced by the
empty code sequence� and type proved pattern comprises all correct transformations�

correct�opt�pat��op�opt�pat
� bool � eq�bb�proj�
�op
� proj���op
� proj���op



null�seq��pat�	bb��basic�block�
 � cons��bb
�� start�cond � pred�state�
�bool �

correct�opt�pat��pat� null� start�cond


proved�pattern � TYPE � �correct�opt�pat�


�



In the following we show that applying a transformation within a basic block under
some applicability condition results in a semantically equivalent basic block� In order to
prove this we need the notion of an executable basic block� A basic block is executable if�
when interpreting the block starting in a state where some condition holds� each inter�
mediate state is admissible for the instruction to be applied� The predicate executable�
is based on an auxiliary predicate ex aux� which is de�ned recursively on the structure
of basic blocks�

ex�aux��b��basic�block�
� s�state
 � RECURSIVE bool �

CASES b OF

null � true�

cons�ins� rest
 � admissible�ins
�s
 � ex�aux��rest� one�step�ip�ins� s



ENDCASES

MEASURE length�b


executable��b��basic�block�
� app�cond�pred�state�
 � bool �

FORALL �s � 	s
�state � app�cond�s

�
� ex�aux��b� s


An optimization can be applied within a basic block bb w�r�t� some condition if there
exists a �match� of the pattern within bb and this match is valid�

apl��op�proved�pattern� bb��basic�block�
� ac�pred�state�
 � bool �

EXISTS �fp� lp � �basic�block�

�

bb � append�fp� append�proj�
�op
� lp

 � applicable��op� fp� lp� ac


A match is valid �predicate applicable�� if

� both the given and the transformed block are basic blocks�

� fp is executable w�r�t to the initial condition ac� and

� interpreting fp up to the beginning of the pattern results in a state which satis�es
the applicability condition of the transformation and in which both the pattern
and the replacement are executable�

applicable��op�proved�pattern� fp� lp��basic�block�
� ac�pred�state�
�bool �

LET pat � proj�
�op
� rep � proj���op
� app�cond � proj���op


IN basic�block��append�fp� append�pat� lp


 �

basic�block��append�fp� append�rep� lp


 �

executable��fp� ac
 �

�FORALL �s� 	s
�state � ac�s

�
�

LET res�fp � bb�ip�fp� s


IN app�cond�res�fp


� executable��pat� �LAMBDA �st�state
� st � res�fp



� executable��rep� �LAMBDA �st�state
� st � res�fp




It remains to show that applying an applicable transformation within a basic block is
correct� i�e� both the given basic block and the transformed one are semantically equal
with respect to some initial condition ac�

�



applicable�equal � THEOREM

applicable��op� fp� lp� ac
 IMPLIES

eq�bb�append�fp� append�proj�
�op
� lp

�

append�fp� append�proj���op
� lp

� ac


The full theory is provided in appendix A� Typechecking this theory results in a
number of type correctness conditions �TCC�s� which have to be discharged� To manage
the proof of applicable equal� we have introduced some additional lemmas� All TCC�s
and lemmas have been successfully discharged� the proof scripts are available by the
authors�
In addition� we provide some proof strategies for this generic theory� A user de�ned

proof strategy consists of basic proof rules together with commands for repeating a com�
mand sequence on di�erent branches� rewriting de�nitions and theories� The �rst one�
called bb� proves a program sequence to be a basic block� It simply expands the recursive
de�nition� The second one pho proves the correctness of a transformation by rewriting
de�nitions� making type constraints explicit� and applying PVS decision procedures� see
appendix B for more details� Most of the transformations given in the next sections are
automatically proved using these strategies� some of them require a small amount of
additional user interaction�

�� A Stack Machine �SM�

In this section we formally represent a stack machine for intermediate code adapted from
	���� The machine consists of a stack where all arithmetic instructions are carried out�
i�e� the operands are fetched from top of the stack and the result is put back to the stack�
The machine does not have general registers� Besides arithmetic instructions it provides
instructions for loading operands onto the stack and popping them o� into memory
using several addressing modes �o�set� indirect� parameter� direct� ����� Furthermore�
instructions for conditional and unconditional jumps� for shifting operands� and special
purpose instructions for incrementing� memory clearing� comparisons and block moves
are provided� Our formalization includes �� of �� instructions� We only have omitted
two instructions for rotating bits and the call and return from a procedure� Since all
memory locations have to be even� we model ramadr� the type of memory locations� as
the type of even natural numbers� Memory locations can hold values of type value� and
the program counter can have values of type romadr� Here� we use integer arithmetic�

ramadr � TYPE � 	n�nat � even��n
�

romadr � TYPE � nat

value � TYPE � int

It is convenient� though not necessary� to represent the instruction set as an abstract
data type �sm inst� since one automatically obtains a full PVS theory �after type�
checking has been carried out� together with useful axioms such as the disjointness
of the constructors� In addition� PVS�s rewriting mechanism e�ciently works on ab�
stract data types� The instruction lop�n�� for example� indirectly loads the contents of






a memory cell n onto the stack� and bra	 beq denote an unconditional and conditional
branch� respectively�

sm�inst � DATATYPE

BEGIN

lop�lop�adr�ramadr
 � lov�inst�

beq�beq�adr�romadr
 � beq�inst�

bra�bra�adr�romadr
 � bra�inst�

�����

END sm�inst

Amachine state consists of the stack� the memory� and the program counter� We model
the memory as a function from memory locations �ramadr� to values and the state as
a record with selector �elds mem	 stk	 pc�� We use the theory of parameterized stacks
which is prede�ned in the PVS prelude library�

memory � �ramadr �� value�

sm�state � �� mem � memory� stk � stack�value�� pc � romadr ��

In addition� for each instruction we have to constrain the states in which it is appli�
cable� For example� the sti�k� instruction for storing �k div 
� elements from stack
into memory requires the stack consisting of at least �k div 
� � � elements �predicate
n stack��� In addition� it must be ensured that the top element of the stack denotes
a valid memory address� i�e� it has to be an even natural number� The higher�order
function sm admissible is given by a case analysis on the instruction type��

sm�admissible�p�sm�inst
 � pred�sm�state� �

CASES p OF

add � LAMBDA �s�sm�state
� two�stack��stk�s

�

sti�k
 � LAMBDA �s�sm�state
�

nonemptystack��stk�s

 � n�stack��pop�stk�s

� div��k

 �

valid�mem�adr��top�stk�s


�

�����

ENDCASES

The semantics of SM is given by a one�step interpreter which de�nes the semantics of
each instruction separately� Instructions with similar behavior can be grouped together
into instruction classes and their e�ect can then be de�ned by means of higher�order
functions� For example� all binary machine operations �add� sub� mul� xor� ���� have a
similar behavior since they fetch two operands from the stack� apply the binary operation
and push the result back onto the stack�� �

�Note that in PVS selection of �eld mem from a state s is written as mem�s� in contrast to the more
usual s�mem notation�

�Predicate two stack� is true if a stack contains at least two elements�
�We omit modelling the incrementation of the program counter since within a basic block all instructions
are executed sequentially� Only the �nal value of the pc is relevant
 either the program counter points
to the beginning of the next block or to some target label of a jump�

�In PVS the WITH expression is used to update a record at a speci�c �eld�

�



binop�sem�s � 	s
 � sm�state � two�stack��stk�s


��

bop � �value� value �� value�
 � sm�state �

LET t
 � top�stk�s

� t� � top�pop�stk�s




IN s WITH ��stk
 �� push�bop�t��t

� pop�pop�stk�s



�

Similarly� the e�ect of unary operations can be de�ned� Conditional branch instruc�
tions beq�k�	 bge�k�	 


	 bne�k� pop two operands from the stack� compare them
using the associated relation rel� and increment the program counter by k if the relation
is true�

branch�sem�s � 	s
 � sm�state � two�stack��stk�s


��

rel � �value� value �� bool�� k�romadr
 � sm�state �

LET t
 � top�stk�s

� t� � top�pop�stk�s


�

newpc � IF rel�t��t

 THEN pc�s
 � k ELSE pc�s
 ENDIF

IN s WITH ��stk
 �� pop�pop�stk�s


� �pc
 �� newpc�

Analogously� higher�order functions can be de�ned for compare instructions� and
�branch�zero� instructions� The interpreter is then de�ned by means of these functions�

sm�ip�p�sm�inst� s�	st�sm�state � �sm�admissible�p

�st
�
 � sm�state �

CASES p OF

add � binop�sem�s� �LAMBDA �v
�v��value
� v
 � v�

�

beq�k
 � branch�sem�s� �LAMBDA �v
�v��value
� v
 � v�
� k


sti�k
 � sti�aux�s WITH ��stk
 �� pop�stk�s

�� top�stk�s

� div��k

�

�����

ENDCASES

The meaning of sti�k� is de�ned using an auxiliary recursive function sti aux which
stores �k div 
� words starting at base address top�stk�s���

sti�aux�s�sm�state� base�ramadr�

num�	n
�nat � n�stack��stk�s
� n

�
 � RECURSIVE sm�state �

IF �num � �
 THEN s

ELSE

sti�aux�s WITH ��mem
�base � �� � num
 � �
 �� top�stk�s

�

�stk
 �� pop�stk�s

�� base� num � 



ENDIF

MEASURE num

��� Optimizations on the Stack Machine

In 	��� more than ��� transformations are given in a pattern�replacement table� We have
adopted nearly all transformations� formalized and proved them correct or falsi�ed them�
The optimizations are represented as lemmas within PVS theory sm pho� To utilize the
generic speci�cation we have to instantiate it with the speci�c stack machine values�

� sm inst� the �abstract data type� of instructions�

� sm state� the record� consisting of the memory� the stack and the program counter�

�



� sm admissible� the admissible functional�

� sm ip and

� a predicate which denotes SM�s conditional and unconditional jumps�

The head of the theory looks as follows�

sm�pho � THEORY

BEGIN

IMPORTING stack�machine�

pho�scheme�sm�inst� sm�state� sm�admissible� sm�ip�

�LAMBDA �oc�sm�inst
� beq�inst��oc
 OR

zeq�inst��oc


�����
�

�����

END sm�pho

Tanenbaum has grouped the optimizations into ten di�erent groups� We pick out some
characteristic transformations and illustrate their formalization and veri�cation� Most of
them can be proved automatically using the peephole optimization strategy pho� Some
of them require some additional minor proof steps� However� the main aspect is that we
have discovered some transformations being incorrect� and the fact that preconditions
which must be established to make the transformation valid have not been provided�

� Constant Folding�

add�fold � LEMMA

correct�opt�pat���� loc�a
� loc�b
� add �
�

�� loc�a � b
 �
�

true


Loading constant a and b onto the stack and applying add can be equivalently
replaced by loading constant a � b� Here� the applicability condition is given by
the constant true function� � Another transformation of this group� for example�
replaces a negation followed by an addition by an equivalent subtraction�

neg�add � LEMMA

correct�opt�pat���� neg� add �
�

�� sub �


true


We have formalized �� transformations of this group all of them can be proved
automatically using the de�ned proof strategy pho�

�The �� ��� �� notation is used to represent lists�
�Actually� we use type conversions� Since �true� does not have the expected type �sm state �	 bool


a conversion function is applied�

��



� Operator Strength Reduction
This group is concerned with the replacement of arithmetic operations by more
e�cient ones� For example� the replacement of multiplication by two by an e�cient
left shift operation�

mult�shift� � LEMMA

correct�opt�pat���� loc��
� mul �
�

�� loc�

� shl �
�

nonemptystack�


Here� the transformation can only be applied in states in which the stack consists
of at least one element� All seven transformations of this group can be proved
automatically by pho�

� Null sequences
This group mainly deals with redundant instruction sequences� For instance� ad�
ding zero is redundant�

add�zero � LEMMA

null�seq���� loc��
� add �
� nonemptystack�


The proof can be established by pho plus an applicability of the stack push�eta�
axiom given in the ADT�theory of stacks� and an applicability of the extensionality
axiom for functions�

� We have formalized �� transformations� � can be proved by pho� 
 require one
or two additional steps�

� Combined Moves
The combined move group tries to combine consecutive push or pop operations into
a single one� In this group we have discovered some errors� important preconditions
are missing� The transformation below is only valid if the locations given by m and n
are distinct� Omitting the preconditions would result in memory writing con�icts�
For instance� trying to prove the transformation stv lov stv with strategy pho

the prover stops in a subgoal which can only be solved if the locations given by
m and n are distinct� We have added this precondition� and then have proved the
transformation correct�

stv�lov�stv � LEMMA

correct�opt�pat���� stv�n
� lov�m
� stv�n��
 �
�

�� lov�m
� sdv�n
 �
�

n �� m


Transformation lav blm� which converts block move instructions to indirect loads
and stores requires the stack to be nonempty and its top element must be distinct
to location n � 
� This precondition is also missing in 	����

��



lav�blm� � LEMMA

correct�opt�pat���� lav�n
� blm��
 �
�

�� loi��
� sdv�n
 �
�

�LAMBDA �s�sm�state
� nonemptystack��stk�s

 �

top�stk�s

 �� n � �



� We have formalized all �� transformations� have corrected two of them� �� can
be proved by pho� � require some additional properties about the auxiliary
functions sti aux	 loi aux�

� Commutative Laws

lov�lov�beq � LEMMA

correct�opt�pat���� lov�n
� lov�n��
� beq�k
 �
�

�� ldv�n��
� beq�k
 �
�

n �� �


This transformation is valid for all jump instructions�

� There are � transformations� two comprise jumps� so they require an additio�
nal case analysis� two can be proved automatically�

� Indirect Moves
The transformations of this group are concerned with replacing indirect moves by
more e�cient direct ones� For example�

lav�loi � LEMMA

correct�opt�pat���� lav�n
� loi��
 �
�

�� lov�n
 �
�

true


� We have formalized all 
� rules� two of them were incorrect� �number 
� and

��� all others can be proved automatically using pho�

� Comparison
These rules deal with comparisons followed by a conditional jump�

tlt�zeq � LEMMA

correct�opt�pat���� tlt� zeq�k
 �
�

�� zge�k
 �
�

true


� We have formalized �� all of which can be proved by pho plus an additional
case analysis�

� Special Instructions
These rules deal with the replacement of an instruction sequence by a special
purpose instruction� For example� addition by one can be replaced by an increment
instruction�

�




loc
�add � LEMMA

correct�opt�pat���� loc�

� add �
�

�� inc �
�

true


� We have formalized �� transformations� �� can be proved by pho� the others
consist of conditional branches and hence require an additional simple case
analysis�

� DUP instruction� Reordering
The DUP group avoids refetching of an operand that is already on the stack� while
the reordering group simply reorders the instructions so that other transformations
can be applied more easily� For example�

stv�lov � LEMMA

correct�opt�pat���� stv�n
� lov�n
 �
�

�� dup� stv�n
 �
�

true


� We have formalized all � transformations� 
 of them can be proved simply by
pho� one requires an additional application of the stack�push�eta axiom�

Summarizing the results we have formalized and proved correct ��� transformations� ��
of them can be automatically proved by strategy pho� most of the others only require a
small additional interaction like for example� a simple case�analysis if conditional jumps
are involved� However� the main aspect is that we have discovered some transformations
being incorrect and the fact that preconditions which must be established to make the
transformations valid have not been provided�

�� A Two	Address Machine �TAM�

The second machine for which we formalize and verify optimizations is a PDP��� like
two�address machine adapted from 	
�� It has eight general purpose registers� and the
instruction set consists of compare instructions �test	 cmp�� transfer instructions �mov��
arithmetic instructions �add	 sub	 inc	 dec�� shift instructions �asl	 asr�� and con�
ditional and unconditional jumps �bra	 beq�� The machine provides several addressing
modes�

� Register� R�n�� the operand is given in register n�

� Autoincrement� �R�n���� the operand is given in memory where register n holds
the address� The contents of register n is automatically incremented by two�

� Autodecrement� ��R�n��� decrements �rst the contents of register n� The operand
is given in memory at the �decremented� address�

��



� Index�Address� x�R�n��� the operand is given in memory at an indexed address
with base x and register n holds the o�set�

� Simple Adress� x� the operand is given in memory at location x�

� Immediate� �x� denotes the constant x�

The addressing modes are conveniently represented as an abstract data type Mode� The
register �le is encoded as a function which assigns values to register numbers� We again
use integer arithmetic�

regnumber � TYPE � 	n � nat � n �� ��

reg�file � TYPE � �regnumber �� value�

memory � TYPE � �adr �� value�

Mode � DATATYPE

BEGIN

reg�reg�num � regnumber
 � reg�word�

autoinc�ai�num � regnumber
 � autoinc�word�

autodec�ad�num � regnumber
 � autodec�word�

index�adr�ind�adr � adr� ind�num � regnumber
 � index�word�

single�adr�s�adr � adr
 � single�adr�word�

lit�value�lit�v � value
 � lit�value�word�

END Mode

All modes can be referenced directly or indirectly� This can be encoded as a hierarchical
data type using type Mode� The type of available addressing modes is then given by
datatype AMode�

AMode � DATATYPE

BEGIN

direct�w�dir � Mode
 � direct�

indirect�w�ind � Mode
 � indirect�

END AMode

The machine state is represented as a record consisting of the memory� the register
�le� the status register which is set according to the result of the instruction� and the
program counter�

status�value � TYPE � 	i�integer � �i � �

 OR �i � �
 OR �i � 

�

set�status�i�value
� status�value �

IF �i � �
 THEN � ELSIF �i � �
 THEN 
 ELSE �
 ENDIF

tam�state � TYPE �

�� mem � memory� reg � reg�file� flag � status�value� pc � romadr ��

Memory addresses are positive while values can also be negative� We must ensure
that all referenced memory addresses are positive� Hence we need a predicate for each

��



mode constraining the admissible references� Again we use a functional admissible word

which� when given an addressing mode yields a predicate on states� For example� a correct
autoincrement reference requires register n to hold a positive integer�

admissible�word�w�AMode
 � pred�tam�state� �

CASES w OF

direct�w

 �

CASES w
 OF

�����

autoinc�n
 � �LAMBDA �s�tam�state
� reg�s
�n
 �� �
�

�����

ENDCASES�

indirect�w

 �

�����

ENDCASES

The semantics of the addressing modes and references is given by function AMode sem

which fetches an operand in an admissible state from the given reference� This is again
an example how to avoid explicit error handling using PVS�s subtype mechanism�

AMode�sem�w�AMode� s�	s
�tam�state � �admissible�word�w

�s

�
 � value

CASES w OF

direct�w

 �

CASES w
 OF

�����

autoinc�n
 � mem�s
�reg�s
�n

�

�����

ENDCASES�

indirect�w

 �

CASES w
 OF

�����

autoinc�n
 � mem�s
�mem�s
�reg�s
�n


�

�����

ENDCASES

ENDCASES

As before� we encode the instruction set as an abstract data type�

tam�inst � DATATYPE

BEGIN

tst�w�tst � �not�dir�immed�mode�

 � tst�inst�

mov�w�mov
 � AMode� w�mov� � �not�dir�immed�mode�

 � mov�inst�

add�w�add
 � AMode� w�add� � �not�dir�immed�mode�

 � add�inst�

�����

END tam�inst

Since not all addressing modes are allowed with all instructions we have to restrict
the possible modes using a predicate

��



not�dir�immed�mode��w�AMode
 � bool �

CASES w OF

direct�w

 �

CASES w
 OF

lit�value�i
 � false

ELSE true

ENDCASES�

indirect�w

 � true

ENDCASES

For example� in a mov�a	b� operation where b gets the value of a it is impossible that
b is a constant�
Instructions can only be executed in admissible states where each operand has to be

an admissible reference�

tam�admissible�i�tam�inst
 � pred�tam�state� �

CASES i OF

tst�op
 � �LAMBDA �s�tam�state
� admissible�word�op
�s

�

�����

ENDCASES

The semantics of binary and unary operations again can be de�ned by means of
higher�order functions� for example

binop�sem�op
�AMode� op���not�dir�immed�mode�
�

s�	s
�tam�state � admissible�word�op

�s

 � admissible�word�op�
�s

��

bop � �value� value �� value�
 � tam�state �

LET res
 � AMode�sem�op
�s
�

res� � AMode�sem�op��s
�

newstatus � set�status�bop�res
� res�

�

res � inst�sem�aux�op�� s� bop�res
� res�



IN res WITH ��flag
 �� newstatus�

The auxiliary function inst sem aux loads a register or updates the memory at the
referenced location with a given value�

inst�sem�aux�w��not�dir�immed�mode�
�

s�	s
�tam�state � �admissible�word�w

�s

��

res�value
 � tam�state �

CASES w OF

direct�w

 �

CASES w
 OF

reg�n
 � s WITH ��reg
�n
 �� res��

�����

ENDCASES�

indirect�w

 �

CASES w
 OF

reg�n
 � s WITH ��mem
�reg�s
�n

 �� res��

�����

��



ENDCASES

ENDCASES

Function tam ip then speci�es a one�step interpreter for TAM�

tam�ip�i�tam�inst� s�	s
�tam�state � tam�admissible�i
�s

�
 � tam�state �

CASES i OF

tst�op
 � LET result � AMode�sem�op�s


IN s WITH ��flag
 �� set�status�result
��

add�op
� op�
 � binop�sem�op
� op�� s� �LAMBDA �v
�v��value
� v
 � v�

�

�����

ENDCASES

��� Optimizations on TAM

There are only a few transformations given in 	
�� One� for example� deals with the de�
crementation of a register using the autodecrement mode� Consider the transformation�

SUB ��� Ri � CLR �Ri ���� CLR ��Ri


First decrementing the contents of register i and then clearing the memory at this
location can more e�ciently be done by a single instruction using the auto decrementing
mode� To formalize this transformation we �rst have to instantiate the general scheme
with the speci�c TAM values�

inst ��� tam�inst

state ��� tam�state

admissible ��� tam�admissible

one�step�ip ��� tam�ip

jump�inst� ��� LAMBDA �oc�tam�inst
� bra�inst��oc
 OR beq�inst��oc


The above transformation can then be represented by

sub�clr � LEMMA FORALL �n�regnumber
�

correct�opt�pat��

�� sub�direct�lit�value��

� direct�reg�n


� clr�indirect�reg�n


 �
�

�� clr�direct�autodec�n


 �
�

true


The proof is by applying the pho strategy and expanding the auxiliary function
inst sem aux� We have added a few more optimizations� Adding zero to the content
of a register is redundant� i�e� a null sequence� This is not true in general since each
instruction changes the value of the status register� In order to make the transformation
valid the status value of the initial state must correspond to the status value of the
register�

�




add�zero � LEMMA FORALL �n�regnumber
�

null�seq���� add�direct�lit�value��

� direct�reg�n


 �
�

LAMBDA �s�tam�state
� flag�s
 � set�status�reg�s
�n




The proof is by pho plus an application of the extensionality axiom� Another op�
timization step deals with the equality of operands� Comparing two equal operands
�independent of the addressing modes involved� followed by a conditional branch can be
replaced by a simple unconditional branch if in the initial state the status value is set
to one�

cmp�bra � LEMMA FORALL �op�AMode
� �a�romadr
�

correct�opt�pat���� cmp�op� op
� beq�a
 �
�

�� bra�a
 �
�

�LAMBDA �s�tam�state
� flag�s
 � 




Here� the proof is by a call of strategy pho�


� Concluding Remarks

We have outlined how to represent a general scheme for specifying and verifying local
optimizations� how to instantiate it to speci�c machines and how to encode and prove
correct a set of local transformations� By detecting some errors� we have demonstrated
the importance of a rigorous formal treatment� The PVS system has turned out to be a
sutiable tool� in contrast to HOL� for example� it is possible to express abstract schemes
directly by means of parameterized theories for which domain speci�c strategies can be
de�ned� The general scheme can readily be utilized for optimizations on other machines�
For example� in addition to the examples given in this paper� we have adopted parts
of the formalization of the Tamarack microprocessor given by Windley 	��� and have
veri�ed some peephole optimizations for Tamarack�
The work presented here illustrates how generic speci�cation and veri�cation can be

dealt with in PVS� It is part of a larger e�ort on constructing veri�ably correct compilers�
that work makes essential use of similar generic techniques�

References

	�� J� Crow� S� Owre� J� Rushby� N� Shankar� and M� Srivas� A Tutorial Introduc�
tion to PVS� Technical report� Computer Science Laboratory� SRI International�
Menlo Park CA ���
�� USA� March ����� To presented at WIFT���� Workshop on
Industrial�Strength Formal Speci�cation Techniques� Boca raton� Florida�

	
� Jack W� Davidson and Christoper W� Fraser� The Design and Application of a
Retargetable Peephole Optimizer� ACM Transactions on Programming Languages
and Systems� 
�
������
�
� April �����

��



	�� Jack W� Davidson and Christoper W� Fraser� Register Allocation and Exhaustive
Peephole Optimization� Software � Practice � Experience� ��������
����� Septem�
ber �����

	�� Jack W� Davidson and Christoper W� Fraser� Automatic Inference and fast In�
terpretation of Peephole Optimization Rules� Software � Practice � Experience�
�
�����������
� November ���
�

	�� Michael J� C� Gordon� A Proof Generating System for Higher�Order Logic� In
P� Subrahmanyam G� Birtwistle� editor� VLSI Speci�cation� Veri�cation and Syn�
thesis� pages 
���
�� Kluwer Academic Publishers� Boston� �����

	�� P� B� Kessler� Discovering Machine Speci�c Code Improvements� Sigplan� 
��
��
���

��� �����

	
� R� R� Kessler� Peep � an Architectural Description Driven Peephole Optimizer�
Sigplan� �������������� June �����

	�� David Alex Lamb� Construction of a Peephole Optimizer� Software � Practice and
Experience� ������������
� June �����

	�� S� Owre� J� M� Rushby� and N� Shankar� PVS� A Prototype Veri�cation System�
In Deepak Kapur� editor� ��th International Conference on Automated Deduction
�CADE	� volume ��
 of Lecture Notes in Arti�cial Intelligence� pages 
���
�
�
Saratoga� NY� ���
� Springer�Verlag�

	��� Michael Coe Phillip J� Windley� Microprocessor Veri�cation� A Tutorial� Tech�
nical Report LAL��
���� University of Idaho� Department of Computer Science�
Laboratory for Applied Logic� ���
�

	��� Andrew S� Tanenbaum� Hans van Staveren� and Johan W� Stevenson� Using Pee�
phole Optimization on Intermediate Code� ACM Transactions on Programming
Languages and Systems� �����
����� jan ���
�

	�
� Phillip J� Windley� A Theory of Generic Interpreters� In George J� Milne and Lau�
rence Pierre� editors� Correct Hardware Design and Veri�cation Methods� volume
��� of Lecture Notes in Computer Science� pages �

����� Springer�Verlag� May
�����

	��� Phillip J� Windley� Specifying Instruction�Set Architectures in HOL� A Primer� In
Thomas F� Melham and Juanito Camilleri� editors� Proceedings of the 
th Interna�
tional Workshop on the Higher�Order Logic Theorem Proving and Its Applications�
volume ��� of Lecture Notes in Computer Science� pages �������� Springer�Verlag�
September �����

��



A� The Peephole Optimization Theory

pho�scheme �inst � TYPE��

state � TYPE��

admissible � �inst �� pred�state���

one�step�ip � �o�inst�

s�	s
�state � admissible�o
�s

� �� state��

jump�inst� � �inst �� bool�� � THEORY

BEGIN

� �������� code sequence �����������������������������������������������

prg�seq � TYPE � list�inst�

null�prg � prg�seq � null�inst�

� �������� basic block �������������������������������������������������

basic�block��l�prg�seq
 � RECURSIVE bool �

CASES l OF

null � true�

cons�p
�l

 � IF null��l

 THEN true ELSE

not�jump�inst��p


 � basic�block��l

 ENDIF

ENDCASES

MEASURE length�l


admis�init�b��basic�block�
� s�state
 � bool �

cons��b
 IMPLIES admissible�car�b

�s


b � VAR �basic�block�


s � VAR state

������� the interpreter for bb s ��������������������������������������

bb�ip � �bb � �basic�block�
� s � state �� state�

bb�ip
 � AXIOM cons��b
 � admis�init�b� s
 IMPLIES

bb�ip�b� s
 � bb�ip�cdr�b
� one�step�ip�car�b
� s



bb�ip� � AXIOM bb�ip�null��basic�block�
� s
 � s

� ������������ semantic equality of two bb s ��������������������������

eq�bb�b
�b���basic�block�
� start�cond�pred�state�
 � bool �

�FORALL �s�	s
 � state � admis�init�b
�s

 � admis�init�b��s



� start�cond�s
�
�

bb�ip�b
�s
 � bb�ip�b��s




�



� ������������� executable basic blocks ���������������������������������

� auxiliary function

ex�aux��b��basic�block�
� s�state
 � RECURSIVE bool �

CASES b OF

null � true�

cons�ins� rest
 � admissible�ins
�s
 �

ex�aux��rest� one�step�ip�ins� s



ENDCASES

MEASURE length�b


executable��b��basic�block�
� app�cond � pred�state�
 � bool �

FORALL �s�	s
 � state � app�cond�s

�
� ex�aux��b� s


� ������������� optimization pattern �����������������������������������

opt�pat � TYPE �

�lhs � �basic�block�
� rhs � �basic�block�
� ac � pred�state��

������������� correct optimization pattern ����������������������������

correct�opt�pat��op�opt�pat
� bool �

eq�bb�proj�
�op
� proj���op
� proj���op



null�seq��pat��basic�block�
� start�cond � pred�state�
 � bool �

correct�opt�pat��pat� null�prg� start�cond


proved�pattern � TYPE � �correct�opt�pat�


proved�pattern�lst � TYPE � list�proved�pattern�

� ������������� replace a proved pattern within a basic block �����������

l
� l� � VAR prg�seq

bb� b
� b�� b�� l� r� fp� lp � VAR �basic�block�


ac�c � VAR pred�state�

op � VAR proved�pattern

� ��� auxiliary lemmas ������������������������������������������������

sublist�is�bb � LEMMA

basic�block��append�l
�l�

 IMPLIES basic�block��l

 � basic�block��l�


bb�app � LEMMA

executable��b
� ac
 � bb � append�b
�b�
 � ac�s


IMPLIES

bb�ip�bb� s
 � bb�ip�b�� bb�ip�b
� s




�



bb�app� � LEMMA

executable��b
� ac
 � bb � append�b
� append�b�� b�

 �

ac�s
 � executable��b�� �LAMBDA �st�state
� st � bb�ip�b
� s




IMPLIES

bb�ip�append�b
� append�b�� b�

� s
 �

bb�ip�b�� bb�ip�b�� bb�ip�b
� s




� �������� main lemma� replace l with r in bb ���������������������������

bb�eq � LEMMA

executable��b
� ac
 � bb � append�b
� append�l� b�



� ac�s
 � c�bb�ip�b
� s



� executable��l� �LAMBDA �st�state
� st � bb�ip�b
� s




� executable��r� �LAMBDA �st�state
� st � bb�ip�b
� s




� basic�block��append�b
� append�r� b�




� eq�bb�l� r� c


IMPLIES bb�ip�bb� s
 � bb�ip�append�b
� append�r� b�

� s


� �������������� applicablity of a transformation ������������������������

applicable��op�proved�pattern� fp� lp��basic�block�
�

ac�pred�state�
 � bool �

basic�block��append�fp� append�proj�
�op
� lp


 �

executable��fp� ac
 �

basic�block��append�fp� append�proj���op
� lp


 �

�FORALL �s�	s
 � state � ac�s

�
�

LET res�fp � bb�ip�fp� s


IN proj���op
�res�fp


� executable��proj�
�op
� �LAMBDA �st�state
� st � res�fp



� executable��proj���op
� �LAMBDA �st�state
� st � res�fp




apl��op�proved�pattern� bb��basic�block�
� ac�pred�state�
 � bool �

EXISTS �fp� lp � �basic�block�

�

bb � append�fp� append�proj�
�op
� lp



� applicable��op� fp� lp� ac


� �������� main result� correctness of transformation application ���������

applicable�equal � THEOREM

applicable��op� fp� lp� ac


IMPLIES

eq�bb�append�fp� append�proj�
�op
� lp

�

append�fp� append�proj���op
� lp

� ac


END pho�scheme







B� Proof Strategies

� Strategy bb

�defstep bb �


�then� �skosimp


�repeat �expand !basic�block�!




!�bb
 �

strategy to prove that a machine program is a basic block�!

!"�Applying bb�strategy!


� Strategy pho

�defstep pho ��optional theories rewrites exclude�theories exclude


�then�

�skosimp


�expand !null�seq�!


�expand !correct�opt�pat�!


�expand !eq�bb!


�skosimp


�install�rewrites �defs T theories rewrites exclude�theories exclude


�auto�rewrite !bb�ip
! !bb�ip�!


�typepred !s#
!


�flatten


�assert


�repeat �rewrite !bb�ip�!



�flatten


�assert


�apply�extensionality



!�pho �OPTIONAL THEORIES REWRITES EXCLUDE�THEORIES EXCLUDE
 �

Sets up auto�rewrites from definitions in the statement�

from THEORIES and REWRITES�

and stops rewriting on EXCLUDE�THEORIES and EXCLUDE�

Then tries to prove the correctness of an optimizing pattern�!

!"�Applying peephole�optimization strategy!



�


