
An E�cient Decision Procedure

for a Theory of Fixed�Sized Bitvectors

with Composition and Extraction�

David Cyrluk�� Oliver M�ollerx� Harald Rue�x

�Computer ence Lab oratory xFakult�at f�ur Informatik

SRI International Universit�at Ulm

Menlo Park� CA ������ USA D	
���� Ulm� Germany

cyrluk�csl�sri�com fmoeller�ruessg�ki�informatik�uni�ulm�de

Abstract

The theory of �xed�sized bitvectors with composition and extraction has been shown to be useful in
the realm of hardware veri�cation� and in this paper we develop an e�cient algorithm for deciding this
theory� A proper input is an unquanti�ed bitvector equation� say t � u� and our algorithm returns true
if t � u is valid in the bitvector theory� false if t � u is unsatis�able� and a system of solved equations
otherwise� The time complexity of this solver is O�j t j � log n 	 n�
� where j t j is the length of the
bitvector term t and n denotes the number of bits on either side of the equation� Moreover� the resulting
procedure can readily be integrated into Shostak�s procedure for deciding combinations of theories�

� Introduction

Bitvectors are a fundamental datatype for many hardware veri�cation tasks
 Commonly used operations
on bitvectors include sequential composition of several bitvectors and selection of one or more bits from
a bitvector
 Sometimes� bitvectors are simply modelled as lists of bits� but �xed	sized bitvectors model
the underlying hardware more accurately
 The bitvector library of the PVS system �ORS���� for example�
formalizes bitvectors of length n as �nite functions with domain ����n� and codomain f�� �g

Experience with hardware veri�cation �SM��� Rue��� has shown that the lack of specialized decision
procedures for notions related to bitvectors is the main impediment to e�ective automation in systems like
PVS
 This insight forms the starting point of this paper� and we develop an e�cient decision procedure for
the theory of �xed	sized bitvectors with composition and extraction
 Moreover� this decision procedure can
readily be incorporated into Shostak�s procedure for combinations of theories �Sho
��� since our algorithm
ful�lls the requirements for component theories as stated in �CLS���

This paper is organized as follows
 Section � contains background material on procedures for deciding
combinations of quanti�er	free theories� and in Section � we present the theory of �xed	sized bitvectors
with composition and extraction as a many	sorted conditional equational theory
 A straightforward decision
procedure for this theory is developed in Section � and further re�ned in the rest of the paper
 Section �
contains a so	called canonizer �Sho
�� for the bitvector theory� and it is shown that this canonizer ful�lls
the requirements as stated in �CLS���
 The main part of this paper consists of Section �� where we develop
an optimized version of a solver for the bitvector theory in Section �� prove the requirements for a solver as
given in �CLS���� and analyze its time complexity
 The paper closes with some �nal remarks in Section �

�Appeared as Technical Report Nr� UIB����� from the Universit�at Ulm� Fakult�at f�ur Informatik�

�

� Deciding Combinations of Quanti�er�Free Theories

This section contains background material on procedures for deciding combinations of quanti�er	free theories

The key to these algorithms is the computation of the congruence closure of a binary relation on a �nite
labeled graph �Gal
��
 Here� a relation is called congruent if it is both an equivalence relation and backward
closed
 This means informally that the congruence of two nodes follows from the congruence of all the
�ordered� successor nodes

Usually� an equivalence relation is represented by its corresponding partition� and two procedures for
operating on partitions are assumed to be available� union and �nd
 union�u� v� combines the equivalence
classes of u and v into a single class� and �nd�u� returns a unique representative associated with the
equivalence class of u

Nelson and Oppen �NO
�� present an algorithm for computing the congruence closure of a binary relation
R on a graph using union and �nd
 They show that if G has m edges and G has no isolated nodes� then
the algorithm can be implemented to run in O�m�� time� Downey� Sethi� and Tarjan �DST
�� give a faster
algorithm running in O�m � log�m�� average time
 Based on this algorithm for computing the congruence
closure of a binary relation on a graph� Nelson and Oppen �NO��� developed a technique for combining
decision procedures for individual theories to decide the combination of these theories by simply propagating
equalities between the di�erent procedures
 The main e�ciency drawback to Nelson	Oppen�s approach�
however� is that each theory has much of the same notion of equality resulting in duplicated e�ort �CLS���

Shostak �Sho
�� uses a di�erent approach and merges simpli�ers for the individual theories into a single
procedure based on congruence closure
 It has been mentioned in �CLS��� that� in practice� Shostak�s
procedure is an order of magnitude more e�cient than that of Nelson and Oppen

Shostak�s procedure operates over a subclass of certain unquanti�ed �rst	order theories called �	theories

Informally� these theories have a computable canonizer function � from terms �in the theory� to terms�
such that an equation u � v is valid in the theory if and only if ��u� is identical with ��v�� the full set
of requirements on canonizers is stated in �CLS���
 A canonizer for linear arithmetic� for example� could
be constructed by transforming such expressions �using associativity� commutativity� distributivity� into the
form a�x� � � � � � anxn � c where each ai is a nonzero constant and the summands are arranged in some
canonical order

To construct a decision procedure for equality in a combination of �	theories� Shostak�s method requires
that the �	theories have the additional property of algebraic solvability
 A �	theory is algebraically solvable
if there exists a computable function solve� that takes an equation s � t and returns either true� false� or
an equivalent conjunction of equations of the form xi � ti � where the xi �s are distinct variables of t that do
not occur in any of the ti �s
 A solver for real linear arithmetic� for example� takes an equation of the form
a�x� � � � � � anxn � c � b�x� � � � � � bnxn � d and returns x� � ��b� � a����a� � b��� � x� � � � � � ��bn �
an ���a��b����xn ��d �c�
 Given a set of algebraically solvable �	theories� Shostak�s procedure decides the
combination of theories
 This method centralizes equality reasoning in the congruence closure algorithm� and
the individual theories communicate through semantic canonizers and solvers
 �CLS��� describe and analyze
this procedure by systematically optimizing and augmenting Nelson and Oppen�s procedure for computing
the congruence closure of a relation on a graph

Procedures for deciding the combination of certain quanti�er	free formulas are at the core of many the	
orem proving systems
 The Nelson	Oppen procedure is used in the Stanford Pascal Veri�er �LGvH���� and
in Eves �CKM����� while systems like EHDM �Com��� and PVS �ORS��� implement Shostak�s combination
procedure for theories like linear arithmetic� the theory of arrays� and inductive datatypes

In the rest of the paper we show how the theory of bitvectors with composition and extraction can be
integrated into Shostak�s framework and we develop an e�cient canonizer and solver for this theory

� A Core Theory of Bitvectors

This section develops an equational theory of �xed	sized bitvectors of length n
 Note that the length n is
constrained to be a positive natural number� since bitvectors of length � are not permitted� and the bits of

�

a bitvector of length n are indexed� from left to right� from n � � down to �
 In the following� n�m� k � � � �
denote valid lengths of bitvectors
 The bitvector theory contains constant bitvectors ��n� and ��n� of length
n� composition t � u of bitvectors t and u� and extraction t��i � j �� where i � j � N� of i � j � � many bits i
through j from bitvector t

These considerations lead to a many	sorted signature �see� for example� �Gal
��� with in�nitely many
sort symbols bvecn � n � N

�

De�nition ��� Let � be the signature

� ��� hfbvecn j n � N
�g�

f��n� j n � N
�g � f��n� j n � N

�g�
f� � n�m � j n�m � N�g�
f� �n �i � j � j n � N

� � i � j � N � n � i � j � �g
i

such that for appropriate n� i� and j �

��n� � 	 bvecn

��n� � 	 bvecn

� � n�m � � bvecn
 bvecm 	 bvecn�m

� �n�i � j � � bvecn 	 bveci�j��

The dots to the left and to the right of function symbols indicate the use of in�x notation� and extraction
�
n �i � j � is assumed to bind stronger than composition � n�m
 In the following� x�n� � y�m� � z�k � � � � � denote

variables of sort bvecn � bvecm � and bveck respectively
 The set of well	formed terms is de�ned in the usual
way and t�n� � u�m� � v�k � � � � � denote bitvector terms of respective lengths
 Subscripts are omitted whenever
possible and can be inferred from the context
 Moreover� t � u denotes syntactic equality of bitvectors t
and u� and vars�t� denotes the set of variables in t

A bitvector term t is called atomic if it is a variable or a constant ��n� or ��n�� and simple terms are
either atomic or of the form t�n�

��i � j � where t�n� is atomic and at least one of the inequalities i �� n � ��
j �� � holds
 Moreover� terms of the form t� � t� � � � � � tk �modulo associativity�� where ti are all simple�
are referred to as being in composition normal form
 If� in addition� none of the neighboring simple terms
denote the same constant �modulo length� and a simple term of the form t��i � j � is not followed by a simple
term of the form t��j � �� k�� then a term in composition normal form is called maximally connected

De�nition ��� Let � be the bitvector signature de�ned in De�nition ���� then� the characteristic properties
of the bitvector theory with extraction and composition are given by the 	conditional
 ��equalities

�
 �t�n� � u�m� �
��i � j � � u�m�

��i � j � if m � i � j � �
�
 �t�n� � u�m� �

��i � j � � t�n�
��i �m� j �m� if m � n � i � j � m

�
 �t�n� � u�m� �
��i � j � � t�n�

��i �m� �� � u�m�
��m � �� j � if m � n � i � m � j

 t�n�
��n � �� �� � t�n�

�
 t�n�
��i � j � � t�n�

��j � �� k� � t�n�
��i � k�

�
 �t�n� � u�m� � � v�p� � t�n� � �u�m� � v�p� �
�
 t�n�

��i � j ���k � l� � t�n�
��k � j � l � j �

Note that well	formedness of terms implies that n � i � j � k � � in equation �
 and n � i � j � � �
i � j � k � l � � in equation �
 above
 Semantic entailment j� in the bitvector theory above is de�ned in
the usual way

In the bitvector library of the PVS system �ORS���� �xed	sized bitvectors of length n are interpreted as
�nite functions with domain ����n� and codomain f�� �g
 The function symbols of the bitvector theory are

�

���s� ���
cases s of t � u 	 ���t� � ���u��

x���
���� �� 	 x��� �

t��i � j ���k � l� 	 ���t
��k � j � l � j ���

�t�n� � u�m� �
��i � j � 	 if m � i then

���u�m�
��i � j ��

elseif j � m then

���t�n�
��i �m� j �m��

else

���t�n�
��i �m� ��� � ���u�m�

��n � �� j ��

endif

otherwise s

endcases

Figure �� Simpli�cation of Bitvectors with atoms of unit length �

interpreted as

��n� ��� � x � ����n�� �

��n� ��� � x � ����n�� �

s � t ��� � x � ����n �m�� if x � m then t�x � else s�x �m�

s��i � j � ��� � x � ����i � j � ��� s�x � j �

with variables s � bvecn � t � bvecm and appropriate i and j
 Furthermore� this library contains formalized
proofs that this interpretation of �xed	sized bitvectors ful�lls the equations �
 through �
 above� Thus� the
bitvector theory in De�nition �
� is consistent

� A Simple Decision Procedure

In this section we sketch a rather simple approach for deciding the bitvector theory in Section �
 Its
input is a bitvector equation e� and the result satis�es the conditions for a solver given in Section �
 The
algorithm proceeds roughly by

 replacing any bitvector variable x�n� with xn�� � � � � � x�� where xi are �fresh� variables of sort bvec��

 computing the composition normal form of each side�

 bitwise comparing the corresponding left	hand and right	hand sides of the equations�

 propagating the resulting equalities by processing the bitwise equalities one	by	one and building up a
union	�nd structure�

 and �nally� replacing the bitvariables with canonical representatives

Pseudocode for this simple solver of the bitvector theory is listed in Figures � and �

We illustrate this algorithm by solving the following bitvector equation

�

solve��t � u� ���
�t � u�� replace each x � vars�t � u� in �t � u� with xk�� � � � � � x�

�� here� xi are fresh bit variables ��
tn�� � � � � � t� � ���t�
un�� � � � � � u� � ���u�
E � ftn�� � un��� � � � � t� � u�g
foreach ti � ui � E do merge�ti � ui� od
A� �

foreach x in vars�t � u� do
A� A � fx � �nd�xk��� � � � � � �nd�x��g

�� with xi the bit variables introduced above for each x ��
od

return A

merge�t � u� ���
if �nd�t� �� �nd�u� then

union�t � u�

Figure �� A Simple Algorithm for Deciding the Bitvector Theory

Example ���

x��� � �y��� � z�	� �
���� �� � ���� � ��y���

���� �� � x��� �
���� �� � z�	� � x��� �

����� ��

Replacement of variables like y��� with y� � � � � � y�� normalization� and bitwise comparison yields the sys	
tem of equations

x� � x�� x� � x�� x� � x�
y� � z�� z� � z�� ���� � z�

���� � z�� ���� � z�� ���� � x�

The next step of the algorithm processes these equations one	by	one in arbitrary order� and builds up a
union��nd structure
 The �rst three identities are removed from this set of equations� and processing of the
remaining equations yields the canonical representatives

�nd�fy�� z�� z�g� � z�

�nd�f���� � z�� z�� z�� x�g� � ����

of the resulting congruence classes
 Here� the choice of canonical representatives is arbitrary as long as there
are no constants in the congruence class
 In these cases� the �nd algorithm is assumed to choose a constant
as the canonical representative
 Note also that a call to union fails whenever di�erent constants are merged
and solve� returns false on top level

Finally� the newly introduced bit variables are replaced with their canonical representatives
 This yields

x��� � ���� � x� � x�

y��� � y� � y� � y� � z�

z�	� � z� � z� � ���� � ���� � ����

�

These terms on the variables x � y � z on the right	hand sides of the equations above can be simpli�ed �with
a��� and a��� fresh variables� to�

x��� � ���� � a���

y��� � a��� � z�

z�	� � z� � z� � ����

This simpli�cation step� however� is omitted in Figure �

Obviously� the solver in Figure � terminates and the worst	case computational complexity is O�j t j

� log n � n��� with j t j the length of the �larger� bitvector term t in the equation t � u and n the number of
bits of the bitvector t or u� since

 the canonizer �� is of complexity O�j t j � log n�� for each of the j t j recursion steps involves � in the
worst case � comparison of integers� consuming log n time� and

 merge is called n times and its complexity is O�n�� since the union��nd algorithm reduces in this case
to O�n�

In the remainder of this paper we improve this algorithm for the bitvector theory by splitting the input
variables in the �rst step in larger chunks whenever possible

� Canonization

In this section we develop a semantic canonizer for the bitvector theory that ful�lls the constraint for a
canonizer as stated in �CLS���

Canonization of bitvector terms is divided into two subsequent phases
 The �rst phase normalizes a
bitvector term t to an equivalent term in composition normal form �see Section �� according to function �
in Figure �
 Note that there is a non	determinism in selecting various cases in this function �

The resulting composition normal form may still contain subterms such as c�n� � c�m� or
x���

���� �� � x���
���� ��� which can be further normalized to c�n�m� and x��� respectively
 These kinds

of merging are accomplished in the second phase of canonization by the function 	 in Figure �� and� conse	
quently� a term s � ��t� with ��t� ��� 	���t�� is a maximally connected composition normal form

Lemma ��� For all terms t� ��t� computes the maximally connected composition normal form

Using this result one can prove that � ful�lls the requirements given in �CLS��� for a canonizer in Shostak�s
framework

Theorem ���

�
 An equation t � u in the theory is valid if and only if ��t� � ��u��

�
 If t is a term not in the theory� then ��t� � t

�
 ����t�� � ��t�

 If ��t� � f �t�� ���� tn� for a term t in the theory then ��ti � � ti for � � i � n�

�
 vars���t�� � vars�t��

�

��s� ��� cases s of t � u 	 ��t� � ��u��

t�n�
��n � �� �� 	 ��t�n� ��

t��i � j ���k � l� 	 ��t��k � j � l � j ���

�t�n� � u�m� �
��i � j � 	 if m � i then ��u�n�

��i � j ��

elseif j � m then ��t�n�
��i �m� j �m��

else ��t�n�
��i �m� ��� � ��u�m�

��m � �� j ��

endif �

otherwise s

endcases

	�s� ��� cases s of c�n� � c�m� � u 	 	�c�n�m� � u��

x�n�
��i � j � � x�n�

��j � �� k� � u 	 	�x�n�
��i � k� � u��

x�n�
��i � j � � u 	 x�n�

��i � j � � 	�u��

otherwise s

endcases

��t� ��� 	���t��

Figure �� Canonizer for Bitvector Theory

Proof�

�� ��� Let t � u be a valid equation and presume ��t� �� ��u�
 This inequality is of the form
t� � t� � � � � � tn �� u� � u� � � � � � um where ti � uj are simple terms� furthermore� let ni and
mj respectively denote the lengths of ti and uj
 Since ��t� �� ��u�� there is a least index i� such that
ti� �� ui�

Case ni� � mi� 	 for t � u� every bit has to match
 Thus� either t and u denote the same constant
or extraction from the same part on the same variable� otherwise a counterexample can be con	
structed instantly
 In any case� ti� �� ui� is a contradiction

Case ni� �� mi� 	 without loss of generality let ni� � mi�
 Then there exists a neighbor ti��� of ti� �
since t and u have the same length
 ti��� can not be combined with ti� � for ��t� is maximally
connected
 If ui� is a constant� then either ti� or ti��� denotes something di�erent
 If ui� is
a variable or an extraction term� ti� � ti��� can not build up a pre�x of it �for they can�t be
combined�
 This yields a contradiction

��� � respects the equations in De�nition �
� as one can check easily

�� In case t is not in the theory� only the otherwise clause in � matches

�� According to Lemma �
�� ��t� is maximally connected
 Consequently� only the otherwise clause in
� matches ��t� and none of the subterms of ��t� can be combined by 	

�� Again� according to Lemma �
�� ��t� is maximally connected
 Thus� either ��t� � y � ��t� � c� ��t� �
x��i � j � or ��t� � t� � � � � � tn � and� consequently� only the latter two cases must be considered

Since ��x � � x we are done in the third case
 The last case follows immediately from the fact that all
ti are necessarily simple terms

�

solve�t � u� ���
t � ��t�
u � ��u�
if t � u then return true endif
if vars�t� � then swap�t � u� endif
if vars�t� � then return false endif
ft� � u�� t� � u�� ���� tm � umg � slice�ft � ug�
E �

Sm

i
� csolve�ti � ui �
if false � E then return false endif
Ex� � Ex� � ��� � Exp

� E
�� t
i
 fExi

g is a partition of E where Exi
contains all equations xi � ��� ��

foreach i � f�� ���� pg do Exi
� slice�Exi

� od
foreach i � f�� ���� pg do lazy constant propagation�Exi

� od
fEx� � Ex� � ���� Exp

g � coarsest slicing�fEx� � Ex� � ���� Exp
g�

foreach i � f�� ���� pg do equality propagation�Exi
� od

return
Vp

i
�

�
xi � 	��nd�Exi

��
�

� � ��nd� meaning a composition of representants of each column in Exi
� �

Figure �� Solver for Bitvector Theory

�� � does not introduce any new variables

This completes the proof
 q�e�d�

� An E	cient Solver

The decision procedure in Section � can be improved considerably� since� in most cases� it is not necessary
to reduce the problem to a bitwise comparison of t and u
 In this respect� the solver solve in Figure � is
much more delicate� for it does split large chunks only if needed

Given an equation t � u� this solver �rst canonizes �see Section �� both sides of the equation to obtain
the equation ��t� � ��u� over the maximally connected composition normal forms ��t� and ��u�
 The
equation �
� of our running example

x��� � �y��� � z�	� �
���� �� � ����� �z �

t

� ��y���
���� �� � x��� �

���� �� � z�	� � x��� �
����� ��� �z �

u

canonizes to

x��� � y���
���� �� � z�	�

���� �� � ����� �z �
��t�

� x��� � z�	� � x���
���� ��� �z �

��u�

The next essential step of the algorithm� called slicing� computes composition normal forms t� � � � � � tm
and u� � � � � � um of ��u� and ��t� respectively� such that each ti and ui are of the same length� moreover�
it does so by minimizing the number m� called granulation� of simple terms on each side
 This can be
performed in O�n� time by introducing a boolean array and marking the places where to cut �we assume
that n is small enough� so that an equality test of the occuring numbers can be performed in constant time�

Slicing of the canonized equation above� for example� leads to the following equation

csolve�t � u� ���
if t � u then return endif
if vars�t� � then swap�t � u� endif
if vars�t� � then return false endif

if vars�u� � then return fvar�t� � ug endif
if vars�t� � vars�u�
then �� both terms are necessarily extractions ��

case

both parts do not overlap
fresh�a����� fresh�a����� fresh�a����� fresh�b����
return fvary�t� � a��� � b��� � a��� � b��� � a��� g

�
� � length�t� � length�overlapping part�

fresh�a����� fresh�a����� fresh�b����� fresh�b����
return fvar�t� � a��� � b��� � b��� � b��� � b��� � b��� � a��� g

length�overlapping part� � �
� � length�t�

!� leftmost position�t � u�� rightmost position�t � u� � �
"�j left position�t�� left position�u� j
#� ! mod "
if # � � then fresh�a����� fresh�a����� fresh�b��� � bvec�"��

return fvar�t� � a��� � b��� � ��� � b���a���g
else fresh�a����� fresh�a�����

fresh�b��� � bvec�#��� fresh�b��� � bvec�"� #��
return fvar�t� � a��� � b��� � b��� � ���

� b��� � b��� � b��� � a���g
endif

endcases

else fresh�a����� fresh�a����� fresh�a����� fresh�a����� fresh�c�����
returnfvar�t� � a��� � c��� � a��� � var�u� � a��� � c��� � a���g

endif

Figure �� Subprocedure csolve

x�����z�
t�

� y���
���� ��� �z �
t�

� z�	�
���� ��� �z �
t�

� ������z�
t�

� ������z�
t�

� x�����z�
u�

� z�	�
���� ��� �z �
u�

� z�	�
���� ��� �z �
u�

� z�	�
���� ��� �z �
u�

� x���
���� ��� �z �
u�

Obviously� this equation holds if and only if the conjunction of the equations in the set E holds

E ��� fx��� � x��� �
y���

���� �� � z�	�
���� ���

z�	�
���� �� � z�	�

���� ���
���� � z�	�

���� ���
���� � x���

���� ��g

Since E contains only equations over simple terms� the problem of solving an equation over arbitrary terms
is reduced to solving equations over simple terms

yif j vars	t
 j� �� let the function var map to this variable

�

Solving equations over simple terms	 the function csolve in Figure � solves an equation t � u over
simple terms t and u for all variables in this equation
 This process involves the introduction of fresh
variables in order to describe the requirements of shared parts within a bitvector and overlapping part
between di�erent bitvectors
 Consequently� we distinguish between three di�erent kinds of fresh variables�
namely variables of kind A� B � and C � where

 variables of kind A occur in but one place and nowhere else

 variables of kind B occur in exactly one equation at least two times

 variables of kind C occur in exactly two di�erent resulting equations� once in each

Furtheron� a� b or c denote �fresh� variables of kind A� B � and C � respectively
 Solving equations over simple
terms results in a set of solved equations� and one naturally distinguishes between � di�erent situations� the
set of solved equations�

 is empty �the empty set is interpreted as true�� if t � u

 contains false � if and only if t and u are di�erent constants

 contains exactly one solved equation of the form x � s � with x � vars�t � u� and s is a simple term
�over constants and fresh variables of kinds A and B�
 This case occurs whenever x is the only variable
in t � u

 contains exactly two solved equations of the form x � s�� y � s�� with x � y � vars�t � u� and s�� s�
are terms containing fresh variables of kinds A and C

Solving equations of the form x���� �� � x���� �� is the only non	trival case� since� in these situations� one has
to distinguish between the following three subcases

In the �rst case we consider� the extracted parts on each side of the equation do not overlap
 In this
case� a fresh variable of kind B � is introduced
 This variable occurs exactly twice in the equation� and the
blank positions are denoted by variables of kind A
 Altogether� the solved equation is of the form

x � a��� � b��� � a��� � b��� � a���

Note also that some or even all of the a��� may be omitted if they are of length �
 Consider� for example�
the equation x����

� �
� �� � x����
� ��� ���

	
 � � � � � � � �

	
 � � � � � � � �

� x���� �

	
 � � � � � � � �

Consequently� x���� � a���
��� � b��� ��� � a���

��� � b��� ���

Second� the extracted parts on both sides of the equation overlap
 Consider� for example� the
equation x����

��
� �� � x����
���� ��
 As the picture below shows� we denote the non�overlapping

part on each side with " and the overall length of the a�ected region with !
 Apparently� the
number of overlapping bits is � in our example and ! � �" in the general case
 This part
has to be repeated thrice and the positions � and � contain the same bit in the solved form

��

	
 � � � � � � � �

	
 � � � � � � � �

�

 � � � �

� � � � �

" � �
z �� �

! �

� �z �

� x���� �

	
 � � � � � � � �

Consequently� the solved form of the example above is given by the equality

x���� � a���
��� � b��� ��� � b��� ��� � b��� ��� � b������ � b��� ��� � a���

���

The length of the vector b��� is determined by !��" and the length of b��� is �"�!
 This is true� however�
only if the overlapping part is not too big
 At the extreme� if it is half as long as !� the length of the variable
b��� shrinks to zero� that means b��� vanishes

In the third case� we consider the slightly di�erent situation where !� �" � �
� �!�"�
 This case is

illustrated by the example x����
��
� �� � x����

���� �� where ! �
 and "���

	
 � � � � � � � �

	
 � � � � � � � �

�

 � � � � �

� � � � � �

" � �z �� �

! �

� �z �

� x���� �

	
 � � � � � � � �

Solving this equation involves the introduction of � fresh variables of kind A to pad the blank ends of the
bitvectors and � fresh variables of kind B �and length �� to represent the black and the grey squares above�
thus a valid result is given by�

x���� � a���
��� � b��� ��� � b��� ��� � b������ � b��� ��� � b��� ��� � b��� ��� � b������ � b��� ��� � a���

���

Furthermore� the sequence b��� ��� � b��� ��� can be replaces by b��� ��� � b��� ��� � b��� ���
 This yields
the simpli�ed equation x���� � a���

��� � b������ � b��� ��� � b��� ��� � b��� ��� � a���
���
 One can generalize

this example by introducing fresh variables of kind B of length ! mod "z and " � ! mod "
 Then the
resulting equation is�

x�n� � a��� � b��� � b���� �z �

�

� � � � � b��� � b��� � b�����z�
the part of "� that does not $�t% in !

� a���

Altogether� solving the equations over simple terms in our running example yields the following set of
equations�

csolve�x��� � x��� � � �

csolve�y���
���� �� � z�	� ��� ��� � fy � a���

��� � c������ � z � c��� ��� � a���
��� g

zthis value can be zero and the
rst variable may therefore � as in the given example � vanish

��

csolve�z�	�
���� �� � z�	� ��� ��� � fz � b��� ��� � b��� ��� � a���

��� g

csolve����� � z�	�
���� ��� � fz � a���

��� � ����g

csolve����� � x���
���� ��� � fx � ���� � a���

��� g

Now the corresponding equations with the lhs xi are captured in sets �or� as we refer to them� blocks�
Exi

� and a slicing operation is performed on every block
 In our running example� this operation yields the
three blocks below

Ex � j ���� j a���
��� j Ey � j a���

��� j c��� ��� j Ez �
c��� ��� a��� �

��� a��� ��
���

b��� ��� b������ a���
���

a��� �
��� a��� ��

��� ����

Lazy propagation of constants	 If our equation contains a constant� it is simpler in some way
 If
two constants $at the same place% do not match� it is unsolvable�x if they match� forget the second one

We can view at a construct Exi

as a block with several lines and columns� each of which of the same
width
 Each place contains a constant or a fresh variable� which possibly has been sliced �e
g
 a���

��� might

split up into a��� �
��� � a

��� ��
��� � and a��� ���

��� �
 To illustrate these concepts� we introduce a new example�

width � width � width � width �
z �� � z �� � z �� � z �� �

Exi
�

� a��� � a��� �� a��� ���

a��� � a��� �� b��� b���

a��� � a��� �� a��� ��� c���

� a��� � a��� �� a��� ���

a��� � a��� �� a��� ��� �
a��� c��� a��� � a��� ��

In the �rst column� the constants match
 For this� it is consistent and the variables a��� �� a��� �� a��� �� a��� �

and a��� are just replaced by ���� �which has no further consequences� for variables of the kind A do not occur
anywhere else�
 The forth column evaluates to ����� wich a�ects b���� c���� several variables of kind A just
vanish� and ���� gets propagated to column � �for the identity of both columns via b����� this process yields
the block�

width � width � width � width �
z �� � z �� � z �� � z �� �

Exi
�

� a��� � � �
� a��� �� � �
� a��� �� � �
� a��� � � �
� a��� �� � �
� c��� � �

c��� � ����

Variable c��� is not considered any more� but the equality of c��� with a constant is propagated into the
other block Exj

� where c��� occurs
 If c��� was but a part of a variable of kind C � then this split has to be
performed in the block Exj

� too
 This is sensible at this time� since every propagated constant deletes at
least one other variable and shrinks width of the blocks to a minimal size

Coarsest Slicing	 A coarsest slicing is a transformation of a set of equations of the form x � t � where t is
in composition normal form� such that the cross	references between the terms in composition normal form
on the right hand sides are resolved
 More precisely� if a fresh variable c of kind C is split up into several
parts c�� c��� ��� in one equation �and possibly into parts &c� &&c� ��� in another one� these split	ups are sliced with
each other� thus increasing the number of splinters of c� but computing what is the coarsest granulation

xgiven valid terms� the only case of getting false � as a fact

��

lazy constant propagation�Exi
� ���

if Exi
contains only one term

then return

else j column� j column� j ��� j columnr j� Exi

for i from � to r do
m � width�columni �
if ��m� � columni � ��m� � columni then return false endif
if constm � columni
then for each fresh variable c � columni do

let Exj
be the other block where c occurs

lazy constant propagation�Exj
with c � constm� od

for each b � columni do
replace b in Exi

with constm
repeat the propagation there �until termination� od

od

od

endif

Figure �� Subprocedure lazy constant propagation

equality propagation�Exi
� ���

if Exi
contains less than two lines

then skip

else column� j ��� j columnr � Exi

foreach i � f�� ���� rg do
choose
 � columni
foreach g � columni do

�nd�g�
�
� �nd�
�

 �� �nd�
�
od

� � t
i
 perform a $merge% in this column � �
od

endif

Figure �� Equality Propagation

possible at this point of the propagation

In our example� this operation leaves the blocks untouched� given the blocks Ev � j c� j c�� j a j and
Ew � j c j � however� Ew gets updated to j c� j c�� j

Propagation of equalities	 at last one has to transform all blocks to the coarsest slicing� so all references
between them can be made explicit
 The principle herefore is very much the same as the naive method in
section �
 However� it is applied on �hopefully� vast parts of the variables instead of tiny bits
 And� it is not
necessary to check the consistency with the constants� for any con'ict would have already occured in the
lazy constant propagation step

��

Now the constants in our running example are propagated� with the only e�ect that a��� ��
��� and a���

���

in Ez disappear
 The coarsest slicing is already achieved� for c������ is not split up in Ey or Ez
 This results
in

solve�E � � f x��� � ���� � a���
��� �

y��� � a���
��� � c������ �

z�	� � b������ � b��� ��� � ���� g

Requirements on the solver	 in the following we prove that solve in Figure � is indeed a correct and
complete solver for the given bitvector theory

Theorem
�� Let fe�� � � � � eng ��� solve�e�� then� e � �e� � � � � � en � is valid in the bitvector theory�

Proof Outline� The equation e is assumed to be of the form t � u
 In the �rst steps� canonization
and slicing on the canonical forms of t � u yields an equivalent equation of the form

t� � � � � � tm � u� � � � � � um

Since ti and ui have equal lengths� for i � �� � � � �m� this equation is equivalent to the following conjunction
of equations over simple terms�

m�
i
�

�ti � ui � ���

These equations are processed successively by the function csolve
 It is left to the reader to check that the
algorithm in Figure � yields a system of equations that is equivalent to ��� and where the terms on the
left hand sides consist solely of basic variables� i
e
 a variable in either t or u
 Moreover� the right hand
sides only contain constants and fresh variables of kinds A� B� or C
 This set of equations is rearranged
into blocks containing the right hand sides for each basic variable
 Obviously� slicing on each block yields
$equivalent% blocks
 In this way� we consider blocks to be transformed according to the coarsest slicing
 In a
next step� equalities within each column are propagated
 Lazy constant propagation anticipates propagation
of columns containing constants
 It is not di�cult to check that all the transformations in the propagation
step are equality	preserving
 q�e�d�

Moreover� the bitvector decision procedure solve can be readily used in Shostak�s framework for deciding
combinations of theories� since it ful�lls� besides Theorem �
� Shostak�s requirements for individual solvers
as stated in �CLS���

Theorem
�� Let E ��� solve�e�� then�

a� E � ftrue � false g or E �
V

i

�
xi � ti

�
�

b� If vars�e� � � then E � ftrue � false g�

c� If E �
V

i

�
xi � ti

�
then the following holds�

�� xi � vars�e�

�� for all i � j � xi �� vars�tj �

�� for all i �� j � xi �� xj

� for all i � ��ti � � ti �

Proof Outline� Parts a� and b� are checked easily� so let us focus on c��

�i� csolve returns just terms of the form x � t � where x � vars�e� and vars�t� � vars�e� �

�ii� every rhs of a resulting equation �from csolve� is a composition over fresh variables and�or constants

�iii� every resulting equation �from csolve� with the same lhs x is collected in Ex by the partition

��

The statements c
� and c
� follow from �i� and �ii�� for the separation between basic variables on the lhs
and fresh variables on the rhs of equations is maintained throughout the algorithm
 �nd�Ex � produces only
one representative term t � being a composition of representatives of each column �and therefore a 'at term��
statement c
� follows with �iii�
 Finally� application of 	 with this t �in the last line of solve� results in a
maximally connected composition normal form� thus c
� is true
 q�e�d�

Time Complexity	 �nally� it is shown that the worst	case time complexity of the solver solve in �gure �
is O�j t j � log n � n��

As shown in section �� the naive solver has complexity O�j t j � log n � n��
 In the worst case� the solver
in Figure � splits up every variable into atomic bits
 In this case� the complicated algorithm reduces to the
naive method �modulo some simple tests� of splitting bitvector equations into equations over bits from the
beginning
 This split up is not too time consuming� since there are only O�n� steps� and propagation of
equalities takes O�n�� time

On the other hand� the complexity of our solver is not worse than O�n��
 The canonizer in �gure � works
in O�j t j � log n � n log n� time
 The function � visits each subterm a constant number of times� since the
topmost bitvector operator is eliminated in each step
 The case analysis takes at most O�log n� time� since
it involves only comparison of integers which can be coded in log n bits
 Thus� the complexity of � is bound
by O�j t j � log n�
 In phase 	 the algorithm makes as many steps as there are atomic extractions and each
check is performed in O�log n� time� too
 The slicing can be computed e�ciently by transforming all terms
into lists of booleans (a true denotes the position of a separation
 Then a big OR	operation is applied
onto these lists� resulting in a list that marks the places of necessary separations with true
 This (and the
separation (takes O�n� time
 It is a bit tricky to determine the complexity of the propagation operators�
but in a worst	case estimation one can say� that

 lazy constant propagation deletes variables from the terms (if they have to be propagated into other
blocks� then some of the variables there will vanish� for this� this propagation just makes the procedure
faster�

 a slicing to atomic terms possibly has to be performed� this can be done in O�n� time by introducing
a boolean vector of length n and $mark% the positions of cuts

 the equality of terms �which have not to be split up any more� has to be propagated� this takes �as
shown above� at most O�n�� time

Altogether� this yields the time complexity O�j t j � log n � n��

 Final Remarks

The main achievement of this paper is the development of an e�cient decision procedure for the fundamental
theory of �xed	sized bitvectors with composition and extraction
 To the best of our knowledge this is the �rst
time that a specialized� e�cient decision procedure for this bitvector theory has been developed
 Moreover�
the resulting decision procedure can readily be used in Shostak�s procedure for combining decision procedures

The bitvector decision procedures have been implemented and integrated with the decision procedures
of the PVS prover
 Preliminary tests suggest that the improved algorithm as described in Sections � and �
outperforms the simple algorithm in Section �� which relies on bitwise comparison� by an order of magnitude

Another interesting observation lies in the fact that the run	time of a number of examples we have dealt
with is largely independent of the size of the bitvectors involved
 Clearly� more experiments are needed
to substantiate these claims
 Most of the examples we have dealt with so far have been extracted from
the veri�cation of an industrial	strength microprocessor �SM���
 Since many of these examples involve (
besides composition and extraction (additional operations on bitvectors like bitwise logical operations and
shifting� we had to extend the core decision procedure accordingly
 Further work includes extensions of the

��

bitvector decision procedures to deal with arbitrary	sized bitvectors� variable extractions and with arithmetic
interpretations of bitvectors

Acknowledgements	 Thanks to J
 Skakkebaek for many useful comments� M
K
 Srivas for supplying
interesting test examples� and the second author expresses his gratitude to F
W
 von Henke and J
 Rushby
for supporting a fruitful visit at SRI International� Menlo Park

References

�CKM�
�� D� Craigen� S� Kromodimoeljo� I� Meisels� B� Pase� and M� Saaltink� EVES� An Overview� volume ��� of
Lecture Notes in Computer Science� pages ��
����� Springer�Verlag� Noordwijkerhout� The Netherlands�
October �

��

�CLS
�� D� Cyrluk� P� Lincoln� and N� Shankar� On Shostak�s Decision Procedure for Combination of Theories� In
Proc� of CADE���� Lecture Notes in Computer Science� Springer�Verlag� �

�� Accepted for Publication�

�Com
�� Computer Science Laboratory� SRI International� Menlo Park� CA� User Guide for the EHDM Speci��
cation Language and Veri�cation System� Version ��	� February �

�� Three volumes�

�DST��� P�J� Downey� R� Sethi� and R�E� Tarjan� Variations on the Common Subexpression Problem� Journal of
the ACM� ����
��������� October �
���

�Gal��� J�H� Gallier� Logic for Computer Science
 Foundations of Automatic Theorem Proving� J� Wiley � Sons�
�
���

�LGvH��
� D�C� Luckham� S�M� German� F�W� von Henke� R�A� Karp� P�W� Milne� D�C� Oppen� W� Polak� and
W�L� Scherlis� Stanford Pascal Veri�er User Manual� CSD Report STAN�CS��
����� Stanford University�
Stanford� CA� March �
�
�

�NO�
� G� Nelson and D�C� Oppen� Simpli�cation by Cooperating Decision Procedures� ACM Transactions on
Programming Languages and Systems� ���
��������� October �
�
�

�NO��� G� Nelson and D�C� Oppen� Fast Decision Procedures on Congruence Closure� Journal of the Association
for Computing Machinery� ����
��������� April �
���

�ORS
�� S� Owre� J� M� Rushby� and N� Shankar� PVS� A prototype veri�cation system� In Deepak Kapur�
editor� 		th International Conference on Automated Deduction �CADE�� volume ��� of Lecture Notes in
Arti�cial Intelligence� pages �������� Saratoga� NY� �

�� Springer�Verlag�

�Rue
�� H� Rue�� Hierarchical Veri�cation of Two�Dimensional High�Speed Multiplication in PVS� A Case Study�
In M�K� Srivas and A� Camilleri� editors� Formal Methods in Computer�Aided Design� number ���� in
Lecture Notes in Computer Science� Springer�Verlag� November �

��

�Sho��� R�E� Shostak� Deciding Combinations of Theories� Journal of the ACM� ����
������ January �
���

�SM
�� M�K� Srivas and S�P� Miller� Formal Veri�cation of the AAMP� Microprocessor� In M�G� Hinchey and
J�P� Bowen� editors� Applications of Formal Methods� International Series in Computer Science� chapter ��
pages �������� Prentice Hall� Hemel Hempstead� UK� �

��

��

