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Abstract

While the worst�case computational properties of Allen�s calculus for

qualitative temporal reasoning have been analyzed quite extensively� the

determination of the empirical e�ciency of algorithms for solving the con�

sistency problem in this calculus has received only little research atten�

tion� In this paper� we will demonstrate that using the ORD�Horn class

in Ladkin and Reinefeld�s backtracking algorithm leads to performance

improvements when deciding consistency of hard instances in Allen�s cal�

culus� For this purpose� we prove that Ladkin and Reinefeld�s algorithm

is complete when using the ORD�Horn class� we identify phase transi�

tion regions of the reasoning problem� and compare the improvements of

ORD�Horn with other heuristic methods when applied to instances in the

phase transition region� Finally� we give evidence that combining search

methods orthogonally can dramatically improve the performance of the

backtracking algorithm�



Contents

� Introduction �

� Allen�s Calculus �

� The Backtracking Algorithm �

� Test Instances and Measurement Methods �

� Phase Transitions for Reasoning in Allen�s Calculus �

	 Using the ORD
Horn Class ��

� The Power of Orthogonally Combined Strategies ��

� Conclusions and Outlook ��

ii



� Introduction

Representation of qualitative temporal information and reasoning with it is an
integral part of many arti�cial intelligence tasks� such as general planning �Allen�
������ presentation planning in a multi�media context �Feiner et al�� ���	�� natu�
ral language understanding �Song and Cohen� ��

�� and diagnosis of technical
systems �N�okel� ������ Allen�s ���
	� interval calculus is well suited for represen�
ting qualitative temporal relationships and reasoning with it� In fact� it is used
in all the applications mentioned above�
While the worst�case computational properties of Allen
s calculus and frag�

ments of it have been quite extensively analyzed �Golumbic and Shamir� ���	�
Ladkin and Maddux� ����� Nebel and B�urckert� ����� van Beek and Cohen� �����
Vilain and Kautz� ��
��� design and empirical evaluation of reasoning algorithms
for Allen
s calculus has received much less research attention� In this paper� we
address the latter problem and analyze in how far using the ORD�Horn subclass
�Nebel and B�urckert� ����� of Allen
s relations can improve the e�ciency of exi�
sting reasoning algorithms� As it turns out� the ORD�Horn class can signi�cantly
enhance the performance in search�intensive cases��

Since reasoning in the full calculus is NP�hard �Vilain and Kautz� ��
��� it is
necessary to employ some sort of exhaustive search method if one wants complete
reasoning in the full calculus� Allen ���
	� proposed in his original paper to
search through all possible �atomic� temporal constraint networks that result
from instantiating disjunctive relations to one disjunct and to test for consistency
using the path�consistency algorithm �Montanari� ����� that is incomplete for the
full calculus� but complete for atomic relations�
A more e�cient algorithm has been proposed by Ladkin and Reinefeld �������

This algorithm uses path�consistency as a forward checking technique �Haralick
and Elliot� ��
�� during the backtrack search� which results in pruning the search
tree signi�cantly� As pointed out by Ladkin and Reinefeld ������� this algorithm
allows to instantiate disjunctive relations not only by atomic relations but by any
set of relations the path�consistency method is complete for� which can considera�
bly reduce the branching factor in the backtrack search� However� if non�atomic
relations are used� it is not any longer obvious that the backtracking algorithm
is a complete reasoning method� As we show in Section 	� however� Ladkin and
Reinefeld
s suggestion is indeed correct�
Since the ORD�Horn subclass of the qualitative relations in Allen
s calcu�

lus is the unique maximal set containing all atomic relations such that path�
consistency is su�cient for consistency �Nebel and B�urckert� ������ it would
seem that employing this set in the backtracking algorithm is clearly advan�
tageous over using other subclasses� However� the experiments that have been
performed so far do not seem to justify this conjecture� Ladkin and Reinefeld

�The C�programs that were used for the evaluation are available from the author�
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������ ���	� concluded from the experiments they performed that �in practice
one can expect the number of path�consistency computation almost constant��
i�e�� in practice there won
t be much search� Van Beek and Manchak �������
who further developed Ladkin and Reinefeld
s backtracking algorithm� were able
to generate problem instances that led to signi�cant search� However� they did
not observe that using the ORD�Horn subclass led to an performance impro�
vement over using the smaller pointizable subclass �Ladkin and Maddux� �����
van Beek and Cohen� ������
It may be the case� however� that Ladkin and Reinefeld ������ ���	� missed

generating hard instances and that van Beek and Manchak ������ did not look for
the right performance indicators� In Section �� we identify the phase transition

region �Cheeseman et al�� ����� for reasoning in Allen
s calculus� which contains
arbitrarily hard instances� We use these problems to evaluate the usage of the
ORD�Horn class in Section � and demonstrate its advantage� Further� we de�
monstrate in Section � that combining the ORD�Horn subclass with other search
strategies in an orthogonal way can dramatically improve the performance on van
Beek and Manchak
s ������ hard problem instances�

� Allen�s Calculus

Allen
s ���
	� approach to reasoning about time is based on the notion of time

intervals and binary relations on them� A time interval X is an ordered pair
�X��X�� such that X� � X�� where X� and X� are interpreted as points on
the real line� Given two concrete time intervals� their relative positions can be
described by exactly one of the elements of the set A of thirteen atomic interval

relations� Atomic relations are� for example� �� �� �� and d� meaning that the
�rst interval equals� is before� is after� or is strictly inside the second interval�
respectively� These interval relations can be de�ned in terms of their interval
endpoint relations� e�g�� XdY can be de�ned by X� � Y � � X� � Y � �see
Table ���
In order to express inde�nite information� unions of the atomic interval re�

lations are used� which are written as sets of atomic relations� The formula
Xf�� dgY means� e�g�� that X equals Y or is inside Y � Since there are �	 atomic
relations� there are ��� possible unions of atomic relations� which form the set of
binary interval relations �denoted by r��including the empty relation � and the
universal relation A� The set of all binary interval relations �A is denoted by A�
On this set� we can de�ne the operations intersection �r � r��� relational converse
�r��� and relational composition �r � r���

�X�Y � Xr�Y 	 Y rX
�X�Y � X �r � r�� Y 	 XrY �Xr�Y
�X�Y � X �r � r�� Y 	 
Z� �XrZ � Zr�Y ��
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Basic Interval Sym� Pictorial Endpoint
Relation bol Example Relations

X before Y � xxx X� � Y �� X� � Y ��
Y after X � yyy X� � Y �� X� � Y �

X meets Y m xxxx X� � Y �� X� � Y ��
Y met�by X m

� yyyy X� � Y �� X� � Y �

X overlaps Y o xxxx X� � Y �� X� � Y ��
Y overlapped�by X o

� yyyy X� � Y �� X� � Y �

X during Y d xxx X� � Y �� X� � Y ��
Y includes X d

� yyyyyyy X� � Y �� X� � Y �

X starts Y s xxx X� � Y �� X� � Y ��
Y started�by X s

� yyyyyyy X� � Y �� X� � Y �

X �nishes Y f xxx X� � Y �� X� � Y ��
Y �nished�by X f

� yyyyyyy X� � Y �� X� � Y �

X equals Y � xxxx X� � Y �� X� � Y ��
yyyy X� � Y �� X� � Y �

Table �� The set A of the thirteen atomic relations� The endpoint relations
X� � X� and Y � � Y � that are valid for all relations have been omitted�

Together with these operations� A forms an algebra�� which is called Allen�s

interval algebra�
A qualitative description of an interval con�guration is usually given as a set

of formulae of the above form� or� equivalently� as a temporal constraint graph

with nodes as intervals and arcs labeled with interval relations�the constraints�
These graphs are often represented as matrices of size n�n for n intervals� where
Mij � A is the constraint between the ith and jth interval� Usually it is assumed
�without loss of generality� that Mii � f�g and Mji �Mij

��
The fundamental reasoning problem in this framework is to decide whether a

given qualitative description of an interval con�guration is satis�able� i�e�� whe�
ther there exists an assignment of real numbers to all interval endpoints� such that
all constraints in the corresponding constraint graph are satis�ed� This problem�
called ISAT� is fundamental because all other interesting reasoning problems po�
lynomially reduce to it �Golumbic and Shamir� ���	� and because it is one of the
most important tasks in practical applications �van Beek and Manchak� ������
The most often used method to determine satis�ability of a temporal cons�

traint graph is the path�consistency method�� which was already proposed by

�Note that we obtain a relation algebra if we add complement and union as operations
�Ladkin and Maddux� ����	�

�An alternative method for a subset of Allen
s interval algebra has been developed by Ge�
revini and Schubert �����	�

	



Allen ���
	�� Essentially� it consists of computing repeatedly

Mij 
Mij � �Mik �Mkj� ���

for all i� j� k until no more changes occur� Obviously� the restriction on Mij does
not remove any possible assignment� but only deletes atomic relations that are
not satis�able in any way� This method�if implemented in a sophisticated way�
runs in O�n�� time� where n is the number of intervals� In the following� a matrix
that has been �reduced� in this way is called path�consistent and is denoted by
cM �
If cMij � � for some i� j� then it follows obviously thatM is not satis�able� The

converse implication is not valid� however� as Allen ���
	� already demonstrated
using an example attributed to H� Kautz� Since ISAT is NP�complete �Vilain
and Kautz� ��
��� it is very unlikely that any polynomial algorithm can solve
ISAT� However� there exist subsets of A such that ISAT is a polynomial problem
if only relations from these subsets are used� These subsets are the continuous
endpoint class C �N�okel� ����� van Beek and Cohen� ������ the pointizable class

P �Ladkin and Maddux� ����� van Beek and Cohen� ������ and the ORD�Horn
class H �Nebel and B�urckert� ������ which form a strict hierarchy� Interestingly�
these classes lead also to completeness of the path�consistency method�

� The Backtracking Algorithm

If an application needs more expressiveness than is granted by the above men�
tioned subclasses and if complete reasoning is required� then some sort of back�
tracking search is necessary� The backtracking algorithm shown in Figure ��
which has been proposed by Ladkin and Reinefeld ������� appears to be the most
e�cient version of such an algorithm�
The procedure �path�consistency� transforms a matrix C to bC� The set Split

is a subset of A such that path�consistency is complete for ISAT� The algorithm
deviates slightly from the one published in �Ladkin and Reinefeld� ����� in that
it makes the choice of the constraint to be processed next nondeterministic� but
is otherwise identical�
When the algorithm is implemented� a number of design choices are necessary

that can in�uence the practical e�ciency considerably �van Beek and Manchak�
������ Some of these choices will be discussed in Section � below� The choice
of what subset of A to use for the set Split seems obvious� however� namely� the
largest such set� which is the ORD�Horn class �Nebel and B�urckert� ������ This
subclass covers ��� of Allen
s interval algebra �compared with �� for C and
�� for P�� and for this reason the ORD�Horn class should reduce the branching
factor in the backtrack search much more than any other class� Unfortunately�
the reduction is less dramatic than the previous �gures suggest� Based on the
assumption that the interval relations are uniformly distributed� a straightforward

�



Input� Matrix C representing a temporal constraint graph
Result� true i� C is satis�able

function consistent�C�
path�consistency�C�
if C contains empty relation

then return false
else

choose an unprocessed label Cij and split Cij

into r�� � � � � rk s�t� all rl � Split
if no label can be split then return true
endif
for all labels rl �� � l � k� do
Cij 
 rl
if consistent�C� then return true
endif

endfor
return false

endif
endfunction

Figure �� Backtracking algorithm

computer�based analysis gives the following average branching factors�� A ���� C
	����� P ������� H ���		�
The main problem with the algorithm is� however� that it is not obvious that

it is complete if Split di�ers from the set of atomic relations� In this case� it is
possible that during the backtrack search a constraintMij that has been restricted
to a relation from the set Split is further constrained by the path�consistency
procedure to a relation that is not in Split� Hence� it is not obvious that all
constraints belong to the class Split for which path�consistency is complete when
the recursive function terminates� which may lead to incompleteness�
In order to show that the above backtracking algorithm is nevertheless com�

plete� we need �rst some de�nitions� We write M � N i� Mij � Nij for all i� j�
Further we denote by M �i� j�r� the matrix that is identical to M except that
M �i� j�r�ij � r� The following lemma is straightforward �Montanari� ������

�As noted by Ladkin and Reinefeld �����	� this is a worst�case measure� because the inter�
leaved path�consistency computations reduce the branching factor considerably�

�This number deviates from �Ladkin and Reinefeld� ����	 but has been con�rmed by Peter
van Beek in personal communication�
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Lemma � cM �M �
c

cM � cM � and if M � N then cM � cN �

Now let �k denote the k�th choice of the backtracking algorithm� i�e� the
choice of the pair �i� j� and the selected relation rl� Then M ��k� denotes the
replacement of the constraint Mij by rl� Assuming that C denotes the original
temporal constraint graph� we de�ne the following sequences of matrices�

C� � C ���

Ck � dCk����k� �	�

S� � C ���

Sk � Sk����k� ���

In other words� Ck corresponds to the matrix C after the kth choice in the
backtracking algorithm and Sk re�ects the �rst k choices without having applied
path�consistency�

Lemma � cCk � cSk� for all k�

Proof
 �� We prove Ck � Sk by induction� from which cCk � cSk follows by
Lemma �� The hypothesis holds for k � � by de�nition� Assume that it holds

for k� From that it follows by Lemma � that cCk � Sk and cCk��k��� � Sk��k����

since the k  �th choice is always a subset of the corresponding relation in cCk�
By applying the de�nition of C and S� we get Ck�� � Sk��� as desired�

�� We prove cCk � cSk by induction� The hypothesis holds for k � � by

de�nition and Lemma �� Assuming that it holds for k� it follows that cCk��k��� �
cSk��k��� �!�� Since Sk � Sk��k���� we have

cSk � dSk��k���� Let �k�� be rl at

�i� j�� Clearly� dSk��k���ij � rl� Hence� also
cSk��k��� �

dSk��k���� From that and

�!� it follows that Ck�� � dSk��� from which the the claim follows by applying
Lemma � twice�

In other words� if the recursive function terminates� the temporal constraint
graph is equivalent to one which results from applying all choices �which select
constraints from Split� and using path�consistency in the end� Since soundness
is obvious and completeness follows from Lemma �� the backtracking algorithm
described above is indeed sound and complete�

Theorem � The backtracking algorithm is sound and complete if the set Split is
a subclass of Allen�s interval algebra such that the path�consistency algorithm is

complete�
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� Test Instances and Measurement Methods

In order to test empirically the usefulness of employing the ORD�Horn class in
the backtracking algorithm� some set of test instances is necessary� Ideally� a
set of �benchmark� instances that are representative of problem instances that
appear in practice should be used� However� such a collection of large bench�
mark problems does not exist for qualitative temporal reasoning problems �van
Beek and Manchak� ������ The DNA sequencing instance from molecular bio�
logy �Benzer� �����that has been suggested by van Beek and Manchak ������ is
unfortunately not adequate for our purposes because the structure of constraints
leads to identical results for P and H �van Beek and Manchak� ������
For these reasons� the only possibility to evaluate the usefulness of the ORD�

Horn class is to randomly generate temporal constraint networks as in �Ladkin and
Reinefeld� ����� Ladkin and Reinefeld� ���	� van Beek and Manchak� ������ We
use three models to generate constraint networks� denoted by A�n� d� s�� H�n� d��
and S�n� d� s��
For A�n� d� s�� random instances are generated as follows�

�� A graph with n nodes and an average degree of d for each node is generated�
This is accomplished by selecting nd�� out of the n�n� ���� possible edges
using a uniform distribution�

�� If there is no edge between the ith and jth node� we set Mij �Mji � A�

	� Otherwise a non�null constraint is selected according to the parameter s�
such that the average size of all non�universal constraints is s� This is
accomplished by selecting one of the atomic relations with uniform dis�
tribution and out of the remaining �� relations each one with probability
�s� ����	�

For H�n� d�� the random instances are generated as in steps �"� above� but
in step 	� we select a constraint from a particular set of 	��� probably very hard
constraints with a uniform distribution� The conjecture that these constraints
are hard is based on the fact that their translation to a logical form requires
clauses with at least three literals and the observation that the path�consistency
algorithm is similar to positive unit�resolution on the logical form�� As our expe�
riments demonstrate� these constraints lead indeed to hard reasoning problems�
Finally� for S�n� d� s�� the random instances are generated as in A�n� d� s��

but in a post�processing step the instances are made satis�able by adding atomic
relations that result from the description of a randomly generated scenario� i�e��
these instances are always satis�able� This model was proposed by van Beek and
Manchak ������� and they reported that a large fraction of instances generated by

�See �Nebel and B
urckert� ����	 for a precise de�nition of logical form of a temporal cons�
traint and for the similarity between path�consistency and positive unit resolution�
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S����� ��� ���� are very hard� sometimes requiring more than half a day of CPU
time on a Sun �#���
Using these random models� we analyze the e�ect of varying the parame�

ters and evaluate the runtime e�ciency of di�erent implementations of the
backtracking algorithm� As the performance indicator we use CPU time on a
SparcStation ��� Although this indicator is more dependent on the particular
implementation and platform than indicators such as the number of compositi�
ons performed or the number of search nodes explored� it gives a more realistic
picture of the e�ect of applying di�erent search techniques�

� Phase Transitions for Reasoning in Allen�s

Calculus

Cheeseman et al ������ conjectured�

All NP�complete problems have at least one order parameter and the
hard to solve problems are around a critical value of this order pa�
rameter� This critical value �a phase transition� separates one region
from another� such as overconstrained and underconstrained regions
of the problem space�

Instances in the phase transition are obviously particularly well suited for testing
algorithms on search intensive instances�
Ladkin and Reinefeld ����	� observed that reasoning in Allen
s calculus has

a phase transition in the range � � c � n � �� for c � ���� where c is the ratio
of non�universal constraints to all possible constraints and n is the number of
intervals� This phase transition is� however� not independent of the instance size�
and for this reason does not allow to generate arbitrarily hard instances�
Our conjecture was that the average degree of the constraint graph is a critical

order parameter that can lead to a size�independent phase�transition� As Figure �
demonstrates�	 this is indeed the case for A�n� d� �����
The probability that the instance is satis�able drops from � to � around

d � ���� As expected� the typical instances around the phase transition are hard�
meaning that the median value of CPU time has a peak in the phase transition
region� as shown in Figure 	 �the solid line marks the phase transition�� Further�
the mean value has a peak there as well� as also shown in Figure 	�
For other values of the average label size s� we get qualitatively similar results�

as Figure � shows for s � ���� The general picture that emerged from varying s
from ��� to 
�� was that with larger values of s the phase transition region moves
to higher values of d and the runtime requirements grow�

�Each data point in this and the following graphs is based on ��� randomly generated
instances�
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Figure �� Probability of satis�ability for A�n� d� ����
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Figure 	� CPU time for A�n� d� ����

These results on phase transitions provide us with test cases on which we can
evaluate di�erent backtracking methods� However� the predictive value of the
results is� of course� limited� The average label size together with the average
degree gives indications of whether instances may be hard or easy to solve� Ho�
wever� the particular distribution of constraints is much more important than
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Figure �� Probability of Satis�ability and Median CPU time for A�n� d� ����
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the average label size� If we use� for instance� a uniform distribution over the
ORD�Horn relations�which results in an average label size of ��
	�no runtime
peak is observable in the phase transition region� Using the �hard relations�
from H�n� d��resulting in an average label size of �����one would expect signi�
�cant more search and perhaps a move of the phase transition compared with
A�n� d� ����� This expectation is con�rmed by our experiments� as shown in Fi�
gure ��
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� Using the ORD	Horn Class

Comparing the backtracking algorithm for Split � H and Split � P in the
phase transition region shows that the ORD�Horn class provides a signi�cant
performance enhancement in some cases �Figure ���
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Figure �� Comparison between P and H for A�n� ���� ���� and H�n� �����

This means that contrary to previous observations� it can pay o� for search
intensive cases to use the ORD�Horn subclass instead of the pointizable subclass�
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The di�erence between A�n� ���� ���� and H�n� ����� is probably explainable by
the fact that the distribution of labels in the two di�erent random models lead
to a reduction of the branching factor of ���	� in the former case and ��	� in
the latter case when going from the pointizable to the ORD�Horn class�
One question might be� however� where the performance enhancements came

from� As Figure � shows� the median CPU time value is almost identical for
using H and P and the main di�erences appear for the very hard instances� For
this reason� the main value of using the ORD�Horn subclass seems to be that it
reduces the runtime of extreme cases�
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Figure �� Comparison by percentiles

The results described above were achieved by using all techniques described
in �van Beek and Manchak� ����� and varying only the set Split� So the question
arises how changing the set Split in our backtracking algorithm compares to other
design decisions� We varied the following design decisions in order to answer this
question�

ORD
Horn�pointizable� The subclass used for the set Split�

static�dynamic� Constraints are processed according to a heuristic evaluation
of their constrainedness which is determined statically before the back�
tracking starts or dynamically during the search�

local�global� The evaluation of the constrainedness is based on a local heuristic
weight criterion or on a global heuristic criterion �van Beek and Manchak�
������

queue�no queue� The path�consistency procedure uses a weighted queue

scheme for the constraints to be processed next �van Beek and Manchak�
����� or the scheme described in �Ladkin and Reinefeld� ������ which uses
no queue�

��



As it turns out� the improvement of using H instead of P is small compared with
the improvements achievable by other means �Figure 
��
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Figure 
� Using ORD�Horn and other design choices

The two lower curves in the graphs shown in Figure 
 correspond to the curves
in Figures �� The results show that node ordering and the heuristic evaluation
of constrainedness can have a much more signi�cant e�ect on the e�ciency than
the choice of the tractable subset used for the set Split in the algorithm�


 The Power of Orthogonally Combined Stra	

tegies

Van Beek and Manchak ������ used S�n� d� s��instances for evaluating di�erent
strategies� They noted that in particular S����� ��� ���� leads to a large fraction
of extraordinarily hard instances� Interestingly� the median value of the CPU
time does not vary much when varying the average degree� However� around
d � �� very hard instances occur that for n � �� are several orders of magnitude
harder to solve than the typical instances �see Figure ��� a phenomenon similar
to what Gent and Walsh have also observed for kSAT in the satis�able region
�Gent and Walsh� ������
When comparing ORD�Horn with the pointizable subclass on S����� ��� �����

van Beek and Manchak did not observe any signi�cant performance di�erence�
which our experiments con�rmed� When running the backtracking algorithm on
��� instances with a time limit of �� sec and varying the Split set and the strategy
for selecting the constraints in the search� the number of solved instances as well
as the runtime was almost the same for ORD�Horn and the pointizable set� The
results of this experiment are displayed in Figure ��� in which the percentage of
solved instances is plotted against the maximal CPU time necessary to solve one
instance�
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Figure ��� Runtime performance on S����� ��� ����

However� it is� of course� not evident that the same instances are solved by all
methods� As a matter of fact� it turns out that by using di�erent search methods�
di�erent instances get solved�
Based on this observation� we ran �� di�erent search strategies resulting from

combining the four possible candidates A� C�P�H for the split�set Split� with
dynamic and static constraint ordering and local and global evaluation of the
constrainedness� Using all of the �� methods on ��� generated instances with
a time limit of �� sec on each method resulted in ��� solved instances� while
the application of just one method using ORD�Horn� static ordering and global
evaluation with a time limit of �
�� sec solved only 
���
In Figure ��� the results of this experiment are displayed� plotting the per�

centage of solved instances against the maximal CPU time necessary to solve
one instance� The line for the combined strategies results from multiplying the
minimumCPU time to solve a particular instance by one method with ��� which
would be the actual costs if all methods were applied in parallel�
One should note that the combination of di�erent search strategies is com�
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Figure ��� The e�ect of combining strategies orthogonally

pletely orthogonal and does not require any communication� which makes it very
well suited for parallel implementations�

� Conclusions and Outlook

We showed that using the ORD�Horn subclass in the backtracking algorithm pro�
posed by Ladkin and Reinefeld ������ leads to a complete reasoning algorithm
and has�as conjectured in �Nebel and B�urckert� ������the e�ect of enhancing
search e�ciency� On instances in the phase transition� which we have identi�ed
in this paper� the ORD�Horn subclass leads to an additional performance enhan�
cement over the already highly optimized version �van Beek and Manchak� �����

of Ladkin and Reinefeld
s ������ backtracking algorithm� For the hard satis�able
problems described in �van Beek and Manchak� ������ the bene�t of using the
ORD�Horn class is not directly observable� However� when combining it ortho�
gonally with other search strategies one notes that by using ORD�Horn some
instances become solvable which are not solvable otherwise�
An interesting question is� whether the orthogonal combination of search stra�

tegies as described above can also lead to a better performance in the phase
transition region� Another interesting question is� whether local search methods
similar to GSAT �Selman et al�� ����� can be applied to temporal reasoning� A
direct application of GSAT� however� does not seem to be promising because
translations from Allen
s calculus to propositional logic lead to a cubic blowup
�Nebel and B�urckert� ������
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